
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIRECT ADVANTAGE ESTIMATION IN PARTIALLY OB-
SERVABLE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Direct Advantage Estimation (DAE) was recently shown to improve sample-
efficiency of deep reinforcement learning algorithms. However, DAE assumes full
observability of the environment, which may be restrictive in realistic settings. In
the present work, we first show that DAE can be extended to partially observable
domains with minor modifications. Secondly, we address the increased compu-
tational cost due to the need to approximate the transition probabilities through
the use of discrete latent dynamics models. Finally, we empirically evaluate the
proposed method using the Arcade Learning Environments, and show that it is
scalable and sample-efficient.

1 INTRODUCTION

Real-world decision-making problems often involve incomplete information, where observations
received by the agents are not enough to fully determine the underlying state of the system. For
example, a robot navigating a building may only have a local view of its surroundings; a doctor has
to decide the course of treatment for a patient based on a limited set of test results. The Partially
Observable Markov Decision Process (POMDP) framework (Kaelbling et al., 1998) provides a
generalization of the fully observable MDP framework (Puterman, 2014) to tackle these problems.

While reinforcement learning (RL) (Sutton and Barto, 2018) paired with deep neural networks (deep
RL) has achieved unprecedented results in various domains (Mnih et al., 2015; Berner et al., 2019;
Schrittwieser et al., 2020; Ouyang et al., 2022; Wurman et al., 2022), it is known to be challenging to
train and often requires millions or billions of samples (Henderson et al., 2018). Approximating the
state(-action) value functions (Qπ or V π) is a crucial part of training deep RL agents. However, these
functions often depend strongly on the policy, making them highly non-stationary and difficult to
learn. Recently, Pan et al. (2022) demonstrated that the advantage function is more stable under policy
variations, proposing Direct Advantage Estimation (DAE) to learn the advantage function directly for
on-policy settings. DAE demonstrated strong empirical performance, but is restricted to on-policy
settings. Later, Pan and Schölkopf (2024) observed that the return of a trajectory can be decomposed
into two different advantage functions, which enabled a natural generalization of DAE to off-policy
settings (Off-policy DAE). Off-policy DAE was reported to further improve the sample efficiency of
DAE; however, the method suffers from significantly increased computational complexity due to the
need to learn a high dimensional generative model to approximate the transition probabilities.

The present work explores the feasibility of DAE in partially observable domains, and ways to reduce
its computational complexity. More specifically, the contributions are:

• We show that Off-policy DAE can be applied to POMDPs with minor modifications to the
constraints of the objective.

• We address the problem of increased computational cost of Off-policy DAE by modeling
transitions in a low dimensional embedding space, which circumvents the need to model
high dimensional observations.

• We show that truncating trajectories, a common technique for reducing the computational
cost of training POMDP agents, can lead to confounding and degrade performance.

• We evaluate our method empirically using the Arcade Learning Environment (Bellemare
et al., 2013), and perform an extensive ablation study to show the contributions of various
corrections and hyperparameters.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 BACKGROUND

In the present work, we consider a discounted POMDP defined by the tuple (S, A, T , Ω, O, r,
γ) (Kaelbling et al., 1998), where S is the state space, A is the action space, T (s, a, s′) denotes
the transition probability from state s into state s′ after taking action a, Ω is the observation space,
O(s, o) denotes the probability of observing o ∈ Ω in state s, r(s, a) denotes the reward received by
the agent after taking action a in state s, and γ ∈ [0, 1) denotes the discount factor. When the context
is clear, we shall simply denote T (s, a, s′) by p(s′|s, a), andO(s, o) by p(o|s). In this work, we shall
consider the case where S, A, and Ω are finite. An agent in a POMDP cannot directly observe the
states, but only the observations emitted from the state through O. We consider the infinite-horizon
discounted setting, where the goal of an agent is to find a policy π, which maximizes the expected
cumulative reward, i.e., J(π) = Eπ [

∑∞
t=0 γ

tr(st, at)].

In fully observable environments, one can estimate the state(-action) value function V π(s) (or
Qπ(s, a)) as the states are observed directly. In POMDPs, however, agents do not observe states
directly, and have to estimate the values based on the observed history (information vector) ht =
(o0, a0, r0, o1, ..., ot) (Bertsekas, 2012). Similar to their counterparts in MDPs, we can define the
value functions by:

V π(ht) = Eπ

[∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht

]
, Qπ(ht, at) = Eπ

[∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht, at

]
. (1)

2.1 DIRECT ADVANTAGE ESTIMATION

Aside from Q and V , another function of interest is the advantage function defined by Aπ(s, a) =
Qπ(s, a)− V π(s) (Baird, 1995). Recently, Pan et al. (2022) proposed Direct Advantage Estimation
(DAE) to estimate the advantage function by minimizing

L(Â, V̂) = Eπ

(n−1∑
t=0

γt(rt − Ât) + γnV̂target(sn)− V̂ (s0)

)2
 s.t.

∑
a∈A

Â(s, a)π(a|s) = 0,

(2)
where V̂target is a given bootstrapping target, rt = r(st, at), and Ât = Â(st, at). The constraint
ensures the centering property of the advantage function (i.e., Eπ[A

π(s, a)|s] = 0). The minimizer
of L(Â, V̂) can be viewed as a multi-step estimate of (Aπ, V π). One limitation of DAE is that it is
on-policy, that is, the behavior policy (Eπ) has to be the same as the target policy (π in the constraint).

Pan and Schölkopf (2024) extended DAE to off-policy settings (Off-policy DAE), by showing that
if we view stochastic transitions as actions from an imaginary agent (nature), then the return of a
trajectory can be decomposed using the advantage functions from both agents as

∞∑
t=0

γtr(st, at) =

∞∑
t=0

γt (Aπ(st, at) +Bπ(st, at, st+1)) + V π(s0), (3)

where Bπ(st, at, st+1) = γV π(st+1) − γEs′∼p(·|st,at)[V
π(s′)|st, at] is the advantage function of

nature, which was referred to as luck as it quantifies how much of the return is caused by nature. This
decomposition admits a natural generalization of DAE into off-policy settings by incorporating B̂
into the objective function (Equation 2):

L(Â, B̂, V̂) = Eµ

(n−1∑
t=0

γt(rt − Ât − B̂t) + γnV̂ (sn)− V̂ (s0)

)2

subject to

{
Ea∼π(·|s)[Â(s, a)] = 0

Es′∼p(·|s,a)[B̂(s, a, s′)] = 0
.

(4)

Contrary to Equation 2, the behavior policy (Eµ) and the target policy (π in the constraint) need not
be equal. Intuitively, Â and B̂ can be viewed as corrections for stochasticity originating from the
policy and the transitions, respectively. Under mild assumptions, one can show that (Aπ, Bπ, V π) is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the unique minimizer of this objective function, suggesting that we can perform off-policy policy
evaluation by minimizing the empirical version of this objective function. However, Off-policy DAE
has some limitations:

• The method assumes fully observable MDPs, which can be restrictive in realistic settings.

• Enforcing the B̂ constraint in Equation 4 requires estimating the transition probability
p(s′|s, a), which can be difficult when the state space is high-dimensional (e.g., images).
Pan and Schölkopf (2024) reported that learning the transition probability can drastically
increase the computational complexity (∼7 fold increase in runtime).

We address these issues in Section 3.

3 RETURN DECOMPOSITION IN POMDPS

The key observation of Pan and Schölkopf (2024) is that the return can be decomposed using two
different advantage functions (Equation 3). Here, we show that such a decomposition also exists in
POMDPs.

Firstly, we can define the advantage function in POMDPs by

Aπ(ht, at) = Qπ(ht, at)− V π(ht) = Eπ

[∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht, at

]
− Eπ

[∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht

]
. (5)

Similar to its counterpart in MDPs, this function also satisfies the centering property, namely∑
a∈A π(at|ht)A

π(ht, at) = 0. The next question is how we can similarly define the luck function
Bπ such that the return can be decomposed, and whether this function also satisfies the centering
condition.

We proceed by examining the difference between the return and the sum of the advantage function
along a given trajectory (o0, a0, r0, o1, a1, r1, ...)

∞∑
t=0

γtrt −

(∞∑
t=0

γtAπ(ht, at) + V π(h0)

)
=

∞∑
t=0

γt (rt + γV π(ht+1)−Qπ(ht, at)) . (6)

This equation suggests that we can define the luck function as

Bπ(ht, at, ht+1) = rt + γV π(ht+1)−Qπ(ht, at) (7)

Remember that ht+1 is simply the concatenation of ht and (at, rt, ot+1), meaning that we can rewrite
Bπ(ht, at, ht+1) as Bπ(ht, at, rt, ot+1). We thus see that the Bπ defined this way also satisfies a
(slightly different) centering property, namely,

E(rt,ot+1)∼p(·|ht,at) [B
π(ht, at, rt, ot+1)|ht, at] = 0. (8)

Essentially, this equation differs from its MDP counterpart by the variables that are being integrated.
In POMDPs, since the agent does not observe the underlying state, we simply integrate the variables
being observed after taking an action (i.e., the immediate reward and the next observation).

Finally, we arrive at the following generalization:
Proposition 1 (Off-policy DAE for POMDPs). Given behavior policy µ, target policy π, and backup
length n ≥ 0. (Aπ, Bπ, V π) is a minimizer of

L(Â, B̂, V̂) = Eµ

(n−1∑
t′=0

γt′
(
rt+t′ − Ât+t′ − B̂t+t′

)
+ γnV̂ (hn+t)− V̂ (ht)

)2

subject to

{
Ea∼π(·|h)[Â(h, a)|h] = 0 ∀h ∈ H
E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] = 0 ∀(h, a) ∈ H ×A

,

(9)

where H is the set of all trajectories of the form (o0, a0, r0, ...ot), Ât = Â(ht, at), and B̂t =

B̂(ht, at, rt, ot+1). Furthermore, the minimizer is unique if, for any trajectory h ∈ H, pµ(h) > 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

enc
xt−3

ht−3

ot−3

enc
xt−2

ht−2

ot−2

enc
xt−1

ht−1

ot−1

enc
xt

ht

ot

x̂t+1,1 pϕ(1|ht, at)

x̂t+1,2 pϕ(2|ht, at)

...
x̂t+1,z pϕ(z|ht, at)

...
x̂t+1,|Z|pϕ(|Z||ht, at)

prior

enc
xt+1

ot+1

z = argmini |x̂t+1,i − xt+1|
posterior

Figure 1: The latent dynamics model first embeds observations (ot) into low dimensional vectors (xt),
which are then processed by an RNN to capture the information vectors ht (for illustrative purpose,
we omit conditioning on previous actions and rewards). At each time-step, |Z| predictions of the
embeddings x̂t+1,· along with their probabilities pϕ(·|ht, at) are generated to capture the distribution
of xt+1. During training, gradients only propagate through one of the predictions determined by the
posterior, which, in this case, is a one-hot vector.

See Appendix A for a proof. Again, we remind the reader that Proposition 1 differs from its MDP
counterpart (Equation 4) by simply replacing states with histories, and transition probabilities with
conditional densities of the observed variables (in the B̂ constraint). This is a consequence of the fact
that POMDPs can be reformulated as MDPs using information vectors (Bertsekas, 2012). Like DAE,
this can be seen as an off-policy multi-step method for value approximation, as the objective function
includes n-step rewards. Deploying this method in practice, however, can be computationally heavy,
and we discuss methods to reduce its computational complexity below.

3.1 PRACTICAL CONSIDERATIONS — ENFORCING CONSTRAINTS

We first discuss how to (approximately) enforce the two centering constraints in the objective function
(Equation 9) by reparameterizing the function approximators.

The Â constraint can be easily enforced upon a given function approximator f̂(h, a) for a given
policy π by constructing Â(h, a) = f̂(h, a) −

∑
a∈A f̂(h, a)π(a|h) (Wang et al., 2016). The B̂

constraint, on the other hand, is much more challenging, as it requires knowledge of the transition
probabilities p(·|h, a). In the original Off-policy DAE implementation (Pan and Schölkopf, 2024),
this was achieved by encoding transitions (h, a, r, o′) into a small discrete latent space z ∈ Z using a
conditional variational autoencoder (Kingma and Welling, 2013; Sohn et al., 2015), and constructing
B̂(h, a, r, o′) from a given function approximator ĝ(h, a, z) by

B̂(h, a, r, o′) = Ez∼qϕ(·|h,a,r,o′)[ĝ(h, a, z)|h, a, r, o
′]− Ez∼pϕ(·|h,a)[ĝ(h, a, z)|h, a], (10)

where qϕ(·|h, a, r, o′) is the approximated posterior (encoder), pϕ(·|h, a) is the prior, and ϕ is
the parameters of the CVAE1. In practice, the expectations can be computed efficiently since Z
is discrete. It then follows that E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] ≈ 0. This approach, however,
can be computationally heavy if observations are high dimensional due to the need to reconstruct
observations.

To reduce computational complexity, we propose to learn a discrete dynamics model purely in
the embedding space2 (see Figure 1). This is achieved by first embedding observations into a low
dimensional vector x = enc(o) ∈ Rd (with d ≪ dim(Ω)), where enc denotes the encoder (e.g., a

1We adapt the POMDP setting here for clarity, but note that this was originally developed for B̂(s, a, s′).
2We will refer to the space of encoded observations as the embedding space, and Z as the latent space of the

CVAE to avoid confusion.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

convolutional network), and learning to predict xt+1 = enc(ot+1) from the observed history (ht, at).
This approach is similar to the self-predictive representation (SPR) (Schwarzer et al., 2020); however,
SPR only produces a single prediction, which cannot capture the stochasticity of transitions. We
address this by combining SPR with the Winner-Takes-All (WTA) loss (Lee et al., 2015; Guzman-
Rivera et al., 2012), which was shown to be useful for modeling stochastic predictions. More
specifically, we combine them by: (1) making |Z| predictions of the next embedding (note that |Z| is
an integer since we are using discrete latent variables), and (2) minimizing only the best prediction.
More specifically, the objective function is:

Lrec =
∑
z∈Z

w(x̂t+1,z, xt+1)|x̂t+1,z − sg(xt+1)|2, (11)

w(x̂t+1,z, xt+1) =

{
1, z = argmini |x̂t+1,i − xt+1|
0, otherwise

, (12)

where sg denotes stop-gradient. Intuitively, this can be seen as performing k-means clustering (with
k = |Z|) in the embedding space with centroids x̂·,z (Rupprecht et al., 2017). Next, note that,
the objective (Equation 11) is equivalent to a conditional vector-quantized VAE (VQ-VAE) (Van
Den Oord et al., 2017), with posterior qϕ(z|ht, at, xt+1) = w(x̂t+1,z(ht, at), xt+1), and codebook
x̂t+1,z(ht, at) that are dependent on the information vector ht. Consequently, we can learn the prior
by minimizing the KL-divergence between the prior pϕ(z|ht, at) and the posterior qϕ(z|ht, at, xt+1).
Once we learn a conditional VQ-VAE, we can approximate the B̂ constraint using Equation 10. The
constraint in the objective (Equation 9) indicates that we should also consider stochasticity of the
rewards, which can be similarly achieved by making multiple reward predictions and adding a reward
reconstruction term to the objective function.

In practice, we found that using shallow MLPs to model the dynamics already achieves strong
empirical performance with negligible computational cost compared to other parts of the system. In
addition, we found it possible to learn the RL objective (Equation 9) and the dynamics model jointly
end-to-end to further reduce computational complexity compared to learning them separately as done
by Pan and Schölkopf (2024).

3.2 PRACTICAL CONSIDERATIONS — TRUNCATING SEQUENCES & CONFOUNDING

As states are now replaced by histories, we have to process sequences of observations instead of
singular states. In modern deep RL, this is typically achieved by using recurrent neural networks
(RNNs), such as LSTMs or GRUs (Hochreiter and Schmidhuber, 1997; Hausknecht and Stone, 2015;
Mnih et al., 2016; Kapturowski et al., 2018; Gruslys et al., 2018; Cho et al., 2014; Hafner et al.,
2023). This can be computationally heavy during training when trajectories extend to thousands of
steps. Instead, it is common to truncate histories by sampling random segments of trajectories from
the replay buffer, and initialize the hidden recurrent state with the first few steps (burn-in) before
updating the values (Kapturowski et al., 2018), as demonstrated below:

(o0, a0, r0, · · · , ot−k−1︸ ︷︷ ︸
truncated

, at−k−1, rt−k−1, ot−k, · · ·︸ ︷︷ ︸
burn in (initialize RNN state)

, ot, at, rt, · · · , ot+n︸ ︷︷ ︸
value updates

)

Here, we highlight a problem that is commonly overlooked due to confounding (Pearl, 2009).
Confounding can bias our estimates when the unobserved variables (the truncated part of the trajectory
h0:t−k−1) simultaneously influence both the input variables (the remaining part of the trajectory
ht−k:t) and the output variables (the future rewards rt′ for t′ ≥ t). We illustrate this problem with
a toy example (see Figure 2). In this environment, the optimal policy is π∗(up|o0) = p ∈ [0, 1]
(arbitrary), and π∗(a|o0, a0=a, o1) = 1 (repeat previous actions). Now, let us consider the case where
the behavior policy is the optimal policy with π∗(up|o0) = 0.5, but the truncation length is 0 (i.e.,
memoryless) for the target policy. In this case, we will incorrectly infer that V π(o1) = Qπ(o1, ·) = 1
for any target policy π, since all the collected trajectories receive a reward 1 irrespective of the
action a1. This is a classic example of confounding, where the unobserved variable a0 behaves as a
confounder that biases our estimates.

In the online setting, we can partially eliminate confounding by conditioning both the behavior policy
and the target policy on the same set of variables (i.e., same memory capacity). This then breaks the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

s0

o0

s1

s2

s3

r = 0

r = 0

r = 1

r = 0

r = 0

r = 1

o1

a0

a1 r1

Figure 2: Left: A toy POMDP with 4 states and 2 actions. The nodes and the arrows represent
the states and the actions (up, down), respectively. s0 is the starting state and s3 is the terminal
(absorbing) state. The agent does not observe the underlying state but only the emitted observation at
each time step, o0 and o1, where both s1 and s2 emit the same observation o1. Right: The causal
relationship between a0, a1, and r1. We ignore other variables as they do not influence r1. The
variable a0 can act as a confounder during training when the target policy is memoryless.

causal influence from h0:t−k−1 to at′ for all t′ ≥ t. While this does not fully eliminate confounding
since ht−k:t and rt can still be influenced by h0:t−k−1, we empirically show that this simple change
can have non-trivial effects on the agent’s performance (see Section 4). Finally, we remind the reader
that this is not a limitation of the proposed method, but a common issue due to partial observability.

4 EXPERIMENTS

We examine the performance of the proposed method using the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), which includes environments with diverse dynamics and various
degrees of partial observability. More specifically, we use the five environments subset (Battle Zone,
Double Dunk, Name This Game, Phoenix, Qbert) suggested by Aitchison et al. (2023) because it was
found that the learning performance in this subset strongly correlates with the overall performance of
an algorithm. We use the same environment setting as the Dopamine baselines (Castro et al., 2018),
which largely follows the protocols proposed by Machado et al. (2018), including the use of sticky
actions (repeat previous action with a certain probability) and discarding end-of-life signals. Note
that while sticky actions were originally proposed to inject stochasticity into the environments, they
also introduce additional partial observability due to its dependency on previous actions.

We evaluate our method using a DQN-like (Mnih et al., 2015) agent with some modifications,
which we briefly summarize below. (1) Recurrent Architecture: We do not use frame-stacking,
but simply use an LSTM after the convolutional encoder to process sequences of observations.
Aside from image inputs, we also feed previous actions and rewards into the LSTM. (2) DAE
objective: We replace the 1-step Q-learning objective with our multi-step DAE objective (Equation 9),
and use three separate MLPs on top of the LSTM to model Â, B̂, and V̂ . (3) Discrete Latent
Dynamics Model: We use three additional MLPs on top of the LSTM to estimate the next observation
embedding x̂t+1(ht, at, zt), the immediate reward p(rt|ht, at), and the prior probability p(zt|ht, at).
(4) Exponential Moving Average: Similar to SPR, we use an exponential moving average of the
online network as the target network to generate the next observation embeddings for the dynamics
model. This target network is also used to construct smoothly changing target policies and value
bootstrapping targets for the DAE objective. (5) Deeper Network: We use the deep residual network
proposed by Espeholt et al. (2018) instead of the shallow three-layer convolutional network, which
we found to enjoy better scalability and improved sample efficiency. In our implementation, we use
a CNN-LSTM backbone with MLP heads on top to model the value functions (Â, B̂, V̂) and the
dynamics (x̂, p(·|h, a)). For more details, we refer the reader to Appendix C.

In the following experiments, we train the agents for 20 million frames (5 million environment steps
due to frame-skipping), and evaluate the agent every 1 million frames by averaging the cumulative
scores of 50 episodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10 20

20000

30000

40000
BattleZone

10 20
20

0

20
DoubleDunk

10 20

10000

20000
NameThisGame

10 20
0

25000

50000
Phoenix

10 20
0

10000

20000

Qbert

10 20

20000

30000

40000
BattleZone

10 20
20

0

20
DoubleDunk

10 20

10000

20000
NameThisGame

10 20
0

25000

50000
Phoenix

10 20
0

10000

20000

Qbert

Frames (millions)

Sc
or

e

m=1 m=2 m=4 m=8 DreamerV2 DreamerV3 Rainbow

Figure 3: Comparing scalability and sample efficiency with off-policy correction (top row) and
without it (bottom row). Results are aggregated over 10 random seeds. Lines and shadings represent
the mean and 1 standard error, respectively. m: width multiplier of the convolutional layers.

Table 1: Effect of model capacity and off-policy correction on the final evaluation score. Scores
were aggregated over 10 random seeds after 20M training frames. Values represent (mean)±(1
standard error). O: Off-policy correction. m: width multiplier. RBW: Rainbow (200M frames). DV2:
DreamerV2 (20M frames). DV3: DreamerV3 (20M frames).
O m BattleZone DoubleDunk NameThisGame Phoenix Qbert

✓

1 35044± 986 8.80± 2.13 10977± 441 5666± 54 15313± 56
2 38164± 603 17.68± 1.15 14308± 289 8010± 270 15831± 146
4 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
8 39262± 763 21.49± 0.38 19638± 633 18127± 1075 23451± 415

✗

1 27700± 433 7.59± 1.55 6066± 74 5366± 94 14944± 124
2 31310± 554 11.00± 0.95 8090± 246 5835± 189 15599± 239
4 30600± 490 11.16± 1.22 10171± 270 8838± 515 17529± 794
8 32438± 752 11.46± 0.90 11007± 186 9641± 408 19868± 732

RBW 40061± 1866 22.12± 0.34 9026± 193 8545± 1286 17383± 543
DV2 21225± 743 12.95± 1.31 12145± 87 9117± 2151 3441± 969
DV3 37818± 3979 22.46± 0.35 20652± 1002 56889± 3402 23540± 1976

Off-policy correction is crucial for scaling In value-based deep RL, it is common to use biased
multistep value targets by ignoring off-policy corrections (Hessel et al., 2018; Hernandez-Garcia
and Sutton, 2019; Kapturowski et al., 2018; Horgan et al., 2018). However, as we will demonstrate,
ignoring off-policy corrections can hurt the agent’s scalability and final performance. Following Pan
and Schölkopf (2024), we partially disable off-policy corrections by setting B̂ ≡ 0, which can be seen
as ignoring corrections for the stochasticity of the environment (this is due to Bπ ≡ 0 for arbitrary π
if the environment is deterministic3). We also remind the reader that the widely used biased n-step
method is more aggressive and equivalent to enforcing both Â ≡ 0 and B̂ ≡ 0. For scaling, we simply
multiply the width of the convolutional layers in the encoder by a multiplier m. As a comparison,
we include both model-based (DreamerV2 (Hafner et al., 2020) and DreamerV3 (Hafner et al.,
2023)), and model-free (Rainbow (Castro et al., 2018)) algorthms as baselines. For DreamerV2 and
DreamerV3, we report their scores evaluated at 20 million training frames as their model capacities
(∼ 20M and ∼ 200M parameters, respectively) are similar to ours (the m = 8 model has ∼50M
parameters), but also note that both Dreamer methods were originally trained for 200M frames. For
Rainbow, we simply report its score at 200 million training frames, since it uses a much smaller
model. Figure 3 and Table 1 summarize the results. Firstly, we find that scaling up can substantially
improve the sample efficiency of our method, and we see efficiency comparable to DreamerV3 in 3

3Based on the observed transition probability p(r, o′|h, a) instead of the state transition probability p(s′|s, a).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 20

20000

40000

BattleZone

10 20
20

0

20
DoubleDunk

10 20

10000

20000

NameThisGame

10 20

5000

10000

Phoenix

10 20
0

10000

20000
Qbert

Frames (millions)

Sc
or

e

n=4 n=8 n=16

Figure 4: Effect of backup length n. Results are aggregated over 10 random seeds. Lines and shadings
represent the mean and 1 standard error, respectively.

10 20
20000

30000

40000
BattleZone

10 20

0

20
DoubleDunk

10 20

10000

20000
NameThisGame

10 20

5000

10000

Phoenix

10 20
0

10000

20000
Qbert

Frames (millions)

Sc
or

e

LSTM Frame Stack

Figure 5: Comparing LSTM to frame-stacking. Results are aggregated over 10 random seeds. Lines
and shadings represent the mean and 1 standard error, respectively.

out of 5 environments with our m = 8 model, and better efficiency compared to DreamerV2 in most
environments with our smaller model m = 2. Comparisons with Rainbow also demonstrate that our
method can achieve similar performance while using only 10% of the training frames. Secondly, we
see that disabling off-policy corrections can drastically degrade the performance and limit the benefit
of scaling. These results also suggest that the learned latent dynamics model can indeed capture the
stochasticity of the environments, as approximating the B̂ constraint hinges on the dynamics model.

Next, we perform ablation studies to better understand the contribution of each part. For the following
experiments, we use the m = 4 model to reduce the computational cost.

Effect of backup length. Multi-step learning allow reward information to propagate faster and
reduce dependencies on the bootstrapping target, and it was found to stabilize and speedup train-
ing (Hernandez-Garcia and Sutton, 2019; Van Hasselt et al., 2018). However, it can also increase
the variance of value updates, and choosing the backup length n can be seen as a bias-variance
tradeoff (Kearns and Singh, 2000). Figure 4 summarizes the effect of n for our DAE agent. In general,
we find using larger n to be beneficial, except for Battle Zone and Name This Game, where we see
that increasing the backup length beyond 8 can hurt the performance.

Frame-stacking can be suboptimal. Frame-stacking has been the standard approach to approximate
the ALE environments as MDPs since its introduction by Mnih et al. (2015). Here, we examine the
effect of our proposed POMDP correction compared to approximating the environment as an MDP
via frame-stacking.4 This can also be seen as a comparison between the POMDP version of DAE
and its MDP counterpart. For fair comparison, we set the truncation length of the LSTM agent to
4 (this also applies to action selection), such that both agents have the same context length during
action selection, and differ only in how the values are learned. In Figure 5, we see the LSTM agent to
perform at least on par with the frame-stacking agent, while being significantly better in three of the
environments. This indicates that our POMDP correction is indeed effective when the underlying
environments are POMDPs.

Confounding can degrade performance. As pointed out in Section 3.2, truncating sequences is
essential to reducing computational cost, but naively truncating sequences without adjusting the
behavior policy can lead to bias in value estimations due to confounders. Here, we test the impact
of truncation length and the confounding bias in the ALE. To test this, we compare two different

4For easier comparison, we use a different frame-stacking implementation. See Appendix C.4 for details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Effect of confounding and truncation length on the final evaluation score. Scores were
aggregated over 10 random seeds after 20M training frames. Values represent (mean)±(1 standard
error). k: truncation length. R: recurrent behavior policy. diff: relative difference of the score.

k R BattleZone DoubleDunk NameThisGame Phoenix Qbert

4 ✗ 39404± 899 19.88± 0.58 21283± 412 12945± 590 19825± 559
✓ 36762± 887 17.67± 1.43 19760± 800 12234± 379 18718± 493

diff(%) −6.70% −11.12% −7.15% −5.49% −5.58%

8 ✗ 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
✓ 37224± 803 18.86± 1.21 17104± 579 13486± 735 19355± 555

diff(%) −7.17% −10.90% −8.45% −0.79% −1.74%

sampling strategies: (1) fully recurrent behavior policy (no truncation), which causes confounding
by conditioning on variables that are being truncated during training; (2) behavior policy with same
truncation length as the target policy (see also Figure 6 for the causal graph). It is noteworthy that the
confounded approach is actually widely used by popular algorithms (e.g., DRQN (Hausknecht and
Stone, 2015)). We summarize the results in Table 2. Surprisingly, we find that this simple change
leads to small, yet consistent performance degradation across all five environments and two truncation
lengths. This suggests that the ALE may be more partially observable than previously believed, and
confounding should be considered when designing sampling strategies.

In Appendix C.5, we also examine the effect of the latent space size |Z| on the performance, and find
it to be relative robust above a certain level. This suggests that while the environments are stochastic,
the stochasticity can be well approximated by a small number of latent variables.

5 RELATED WORK

Advantage Estimation Estimating the advantage function is an important part of policy optimiza-
tion (Kakade and Langford, 2002). Schulman et al. (2015) proposed Generalized Advantage Es-
timation (GAE), which utilizes TD(λ) (Sutton, 1988) to perform on-policy multi-step estimates
of the advantage function. Wang et al. (2016) proposed dueling network to parametrize Qθ into
Vθ + Aθ and showed that it can improve the performance of the original DQN. Tang et al. (2023)
proposed VA learning to estimate V and A separately, and showed that it can outperform the dueling
architecture. Pan et al. (2022) proposed DAE to perform on-policy multi-step estimation of the
advantage function. This was later generalized to the off-policy setting by Pan and Schölkopf (2024).
The present work extends off-policy DAE to partially observable environments and improves its
computational efficiency.

POMDP POMDPs provide a general framework for studying decision making with incomplete
states (Åström, 1965). In RL, POMDPs are usually solved by first converting them into MDPs either
using belief states (Kaelbling et al., 1998) or information vectors (Bertsekas, 2012). In deep RL,
partial observability is usually addressed using frame-stacking (Mnih et al., 2015), or by modeling
the histories directly (Kapturowski et al., 2018; Gruslys et al., 2018; Hafner et al., 2023; Hausknecht
and Stone, 2015; Mnih et al., 2016).

Latent Dynamics Model Learning dynamics models in the latent space is a promising approach to
model-based RL (Ha and Schmidhuber, 2018; Han et al., 2019; Schrittwieser et al., 2020; Hafner et al.,
2023; Antonoglou et al., 2021). It is, however, still common to rely on reconstructing observations
to learn meaningful latent representations (Anand et al., 2021). In the present work, we combine
ideas from self-supervised learning methods (Schwarzer et al., 2020; Grill et al., 2020) and the WTA
loss (Makansi et al., 2019; Rupprecht et al., 2017) to estimate the transition probabilities purely in
the latent space, and found it to be beneficial.

Causality The problem of inferring the effect of an action under partial observability dates at least
back to Splawa-Neyman et al. (1990); Rubin (1974), and is a central topic in the study of causal
inference (Pearl, 2009; Peters et al., 2017). In RL, these problems have been studied in the bandit
setting (Bareinboim et al., 2015; Tennenholtz et al., 2021) and the sequential setting (Tennenholtz

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

et al., 2020; Pace et al., 2023). We showed that the confounding problem can also have negative
impacts when training with recurrent policies.

6 DISCUSSION

In the present work, we showed how to extend DAE for POMDPs and addressed the computational
cost issue by using discrete latent dynamics models. Through experiments in the ALE, we demon-
strated that DAE is sample efficient and scalable, and that the proposed corrections are effective.

One limitation of our method is the need to approximate the transition probabilities through the use
of latent dynamics. This introduces additional hyperparameters (e.g., network architectures of the
dynamics model), and renders our method closer to model-based than model-free, although we do
not explicitly use the model for rollouts. One direction for future work is to explore model-free
approaches to approximate the constraints. Another limitation is that, while we can partially mitigate
the problem of confounding caused by using truncated trajectories, our approach is only applicable in
the online setting, where we can control the behavior policy. An important direction is to develop
computationally efficient methods for eliminating the confounding bias for broader settings.

REFERENCES

R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare. Deep reinforcement
learning at the edge of the statistical precipice. Advances in Neural Information Processing Systems,
2021.

M. Aitchison, P. Sweetser, and M. Hutter. Atari-5: Distilling the arcade learning environment down
to five games. In International Conference on Machine Learning, pages 421–438. PMLR, 2023.

A. Anand, J. Walker, Y. Li, E. Vértes, J. Schrittwieser, S. Ozair, T. Weber, and J. B. Hamrick. Procedu-
ral generalization by planning with self-supervised world models. arXiv preprint arXiv:2111.01587,
2021.

I. Antonoglou, J. Schrittwieser, S. Ozair, T. K. Hubert, and D. Silver. Planning in stochastic
environments with a learned model. In International Conference on Learning Representations,
2021.

K. J. Åström. Optimal control of markov processes with incomplete state information i. Journal of
mathematical analysis and applications, 10:174–205, 1965.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine
Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

E. Bareinboim, A. Forney, and J. Pearl. Bandits with unobserved confounders: A causal approach.
Advances in Neural Information Processing Systems, 28, 2015.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

D. Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scientific,
2012.

P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare. Dopamine: A Research Framework
for Deep Reinforcement Learning. 2018. URL http://arxiv.org/abs/1812.06110.

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

10

http://arxiv.org/abs/1812.06110

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In International conference on machine learning, pages 1407–1416. PMLR, 2018.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires,
Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
learning. Advances in neural information processing systems, 33:21271–21284, 2020.

A. Gruslys, W. Dabney, M. G. Azar, B. Piot, M. Bellemare, and R. Munos. The reactor: A fast and
sample-efficient actor-critic agent for reinforcement learning. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rkHVZWZAZ.

A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice learning: Learning to produce multiple
structured outputs. Advances in neural information processing systems, 25, 2012.

D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models. ArXiv,
abs/2010.02193, 2020.

D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104, 2023.

D. Han, K. Doya, and J. Tani. Variational recurrent models for solving partially observable control
tasks. arXiv preprint arXiv:1912.10703, 2019.

M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable mdps. In 2015 aaai
fall symposium series, 2015.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

J. F. Hernandez-Garcia and R. S. Sutton. Understanding multi-step deep reinforcement learning: A
systematic study of the dqn target. arXiv preprint arXiv:1901.07510, 2019.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. Van Hasselt, and D. Silver. Distributed
prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. In In Proc.
19th International Conference on Machine Learning. Citeseer, 2002.

S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney. Recurrent experience replay in
distributed reinforcement learning. In International conference on learning representations, 2018.

M. J. Kearns and S. Singh. Bias-variance error bounds for temporal difference updates. In COLT,
pages 142–147, 2000.

J. Kim, M. El-Khamy, and J. Lee. Residual lstm: Design of a deep recurrent architecture for distant
speech recognition. arXiv preprint arXiv:1701.03360, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

11

https://openreview.net/forum?id=rkHVZWZAZ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra. Why m heads are better than one:
Training a diverse ensemble of deep networks. arXiv preprint arXiv:1511.06314, 2015.

M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling. Revisiting
the arcade learning environment: Evaluation protocols and open problems for general agents.
Journal of Artificial Intelligence Research, 61:523–562, 2018.

O. Makansi, E. Ilg, O. Cicek, and T. Brox. Overcoming limitations of mixture density networks: A
sampling and fitting framework for multimodal future prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7144–7153, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937. PMLR, 2016.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback,
2022. URL https://arxiv. org/abs/2203.02155, 13:1, 2022.

A. Pace, H. Yèche, B. Schölkopf, G. Rätsch, and G. Tennenholtz. Delphic offline reinforcement
learning under nonidentifiable hidden confounding. arXiv preprint arXiv:2306.01157, 2023.

H.-R. Pan and B. Schölkopf. Skill or luck? return decomposition via advantage functions. arXiv
preprint arXiv:2402.12874, 2024.

H.-R. Pan, N. Gürtler, A. Neitz, and B. Schölkopf. Direct advantage estimation. Advances in Neural
Information Processing Systems, 35:11869–11880, 2022.

J. Pearl. Causality. Cambridge university press, 2009.

J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons, 2014.

D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari, N. Navab, and G. D. Hager. Learning in
an uncertain world: Representing ambiguity through multiple hypotheses. In Proceedings of the
IEEE international conference on computer vision, pages 3591–3600, 2017.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman. Data-efficient
reinforcement learning with self-predictive representations. arXiv preprint arXiv:2007.05929,
2020.

K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. Advances in neural information processing systems, 28, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

J. Splawa-Neyman, D. M. Dabrowska, and T. Speed. On the application of probability theory to
agricultural experiments. essay on principles. section 9. Statistical Science, pages 465–472, 1990.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:9–44,
1988.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Y. Tang, R. Munos, M. Rowland, and M. Valko. Va-learning as a more efficient alternative to
q-learning. In International Conference on Machine Learning, pages 33739–33757. PMLR, 2023.

G. Tennenholtz, U. Shalit, and S. Mannor. Off-policy evaluation in partially observable environments.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 10276–10283,
2020.

G. Tennenholtz, U. Shalit, S. Mannor, and Y. Efroni. Bandits with partially observable confounded
data. In Uncertainty in Artificial Intelligence, pages 430–439. PMLR, 2021.

A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

H. Van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Modayil. Deep reinforcement
learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network architectures
for deep reinforcement learning. In International conference on machine learning, pages 1995–
2003. PMLR, 2016.

J. Weng, M. Lin, S. Huang, B. Liu, D. Makoviichuk, V. Makoviychuk, Z. Liu, Y. Song, T. Luo,
Y. Jiang, Z. Xu, and S. Yan. EnvPool: A highly parallel reinforcement learning environment
execution engine. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 22409–22421. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_
and_Benchmarks.pdf.

P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capo-
bianco, A. Devlic, F. Eckert, F. Fuchs, et al. Outracing champion gran turismo drivers with deep
reinforcement learning. Nature, 602(7896):223–228, 2022.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION 1

Proposition (Off-policy DAE for POMDPs). Given behavior policy µ, target policy π, and backup
length n ≥ 0. (Aπ, Bπ, V π) is a minimizer of

L(Â, B̂, V̂) = Eµ

(n−1∑
t′=0

γt′
(
rt+t′ − Ât+t′ − B̂t+t′

)
+ γnV̂ (hn+t)− V̂ (ht)

)2

subject to

{
Ea∼π(·|h)[Â(h, a)|h] = 0 ∀h ∈ H
E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] = 0 ∀(h, a) ∈ H ×A

,

(13)

where H is the set of all trajectories of the form (o0, a0, r0, ...ot), Ât = Â(ht, at), and B̂t =

B̂(ht, at, rt, ot+1). Furthermore, the minimizer is unique if, for any trajectory h ∈ H, pµ(h) > 0.

Proof. Firstly, we note that a POMDP can be reformulated as an MDP with state space equal to the
space of information vectors (ht) (Bertsekas, 2012). The theorem is then a direct result of applying
Off-policy DAE (Pan and Schölkopf, 2024) to the reformulated MDP.

Remark: The original proof of Off-policy DAE assumes that the reward function is determin-
istic, which can be violated when converting POMDPs into MDPs. As such, our definition of
Bπ(s, a, r, s′) = r+γV π(s′)−Eπ,s′′∼p(·|s,a)[r+γV π(s′′)|s, a] (in a fully observable MDP) differs
slightly from the original one Bπ(s, a, s′) = γV π(s′)− Eπ,s′′∼p(·|s,a)[γV

π(s′′)|s, a].

B CAUSAL GRAPH OF TRUNCATED SEQUENCES

Figure 6 shows the causal relationship between variables when sequences are truncated. For multi-
step methods like DAE, we learn the value/advantage functions by building a model that takes in
(h′′, at, rt, ot+1, · · ·) to predict

∑
t′>t rt′ (assuming the backup length is infinity for illustrative

purpose). It is then clear that h′ can influence both the input variables and the output variables, and
lead to confounding. In the confounding experiment in section 4, the two sampling strategies differ in
whether the red arrows are present for the behavior policy.

Modern recurrent agents (e.g., R2D2 (Kapturowski et al., 2018), Dreamer (Hafner et al., 2023)) often
store recurrent states in the replay buffer during sampling and initialize the RNN states from the
replay buffer during training. While, in theory, this can mitigate the confounding bias if the stored
recurrent states contain enough information to predict future observables (i.e., the recurrent states are
sufficient statistics), these methods are harder to analyze, as it is difficult to quantify (or measure) the
quality of the recurrent states. Consequently, we only consider the simplest case (no recurrent states),
and leave it for future work to explore other directions.

C EXPERIMENT DETAILS & ADDITIONAL RESULTS

C.1 PSEUDOCODE AND ADDITIONAL IMPLEMENTATION DETAILS

We provide the pseudocode in Algorithm 1. For illustrative purpose, the pseudocode assumes a single
actor and batch size 1; however, the algorithm can be easily parallelized over multiple actors and
mini-batches.

To avoid the latent dynamics from collapsing, we use a soft loss for the reconstruction by including
ϵW ≥ 0 into the posterior construction. In practice, ϵW is linearly annealed from 1 to 0 in the early
stage of training. This is similar to the approach proposed by Makansi et al. (2019), which was found
to make training less dependent on initialization, except that the authors construct the posterior using
the top-k nearest neighbors.

Incorporating stochastic rewards can be done by adding an additional reward reconstruction loss.
In the case of Atari games, we can exploit the discrete structure of the rewards (rewards can only
be in R = {−1, 0, 1}) and construct the latent space by Z = ZO × R. This then allows us to

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

h′ h′′

at at+1

ot+1 ot+2 · · ·

rt rt+1

Figure 6: Causal relationship between variables of a truncated sequence for a general POMDP.
h′ = h0:t−k−1 denotes the truncated part of the sequence, and h′′ = ht−k:t denotes the remaining
(or "context") part of the sequence. The red arrows shows the dependency between actions and h′

when using recurrent actors.

decompose the prior and the posterior by p(z|h, a) = p(zo|h, a)p(r|h, a) and p(z|h, a, r, o′) =
p(zo|h, a, r, o′)p(r̂|h, a, r, o′), respectively. Note that p(r̂|h, a, r, o′) = I(r̂ = r) is simply the
indicator function.

As pointed out by Pan et al. (2022), having a smoothly changing target policy is crucial to optimizing
the DAE objective function. Consequently, we use a softmax policy based on ÂθEMA as the target
policy. However, as reward densities can vary drastically between environments, we additionally
learn a temperature parameter T by minimizing log T + βKLKL(π||πEMA), where both policies are
softmax policies constructed using the advantage functions (i.e. π = softmax(ÂT)). This ensures that
the online policy π does not deviate too much from the target policy πEMA, and alleviates the need to
tune the temperature manually for each environment.

Finally, to balance the scales between various objective functions, we set βV to be inverse proportional
to the standard deviation of the cumulative rewards (i.e., σ(G)).

C.2 ENVIRONMENT SETTING

For fair comparison, our environment settings follow the ones used by the Dopamine baseline (Castro
et al., 2018), except that we do not use frame-stacking. In addition, we use EnvPool (Weng et al.,
2022) for efficient implementation of the parallelized environments.

Parameter Value
Grey-scaling True

Observation Resolution 84×84
Frame Stack 1

Action Repetitions 4
Reward Clipping [-1, 1]

Terminal on life-loss False
Sticky Action Prob. 0.25
γ (discount factor) 0.99

Table 3: ALE preprocessing parameters. Blue: Best practice suggested by Machado et al. (2018).
Red: Differ from the baseline (Castro et al., 2018).

C.3 HYPERPARAMETERS

Table 4 summarizes the default hyperparameters used in the experiments. The hyperparameters
largely follows the ones used by Castro et al. (2018) with some exceptions. For the learning rate, we

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 Off-policy DAE (POMDP)
Require: n (backup length), k (truncation length)

1: Initialize network parameters θ
2: θEMA ← θ
3: D = {}
4: Observe o0
5: h0 ← (o0)
6: for t = 0, 1, 2, . . . do
7: Sample transition (o, a, r, o′) with ϵ-greedy based on Âθ(ht, ·)
8: ht+1 ← (ht, a, r, o

′)
9: ht+1 ← ht+1−k:t+1 (truncation)

10: D ← D ∪ {(o, a, r, o′)}
11: if t+ 1 mod steps_per_update = 0 then
12: Sample an n+ k-step trajectory T = (oi, ai, ri, ..., oi+n+k) from D
13: Encode observations of oi into xi

14: Compute the predicted next embedding x̂i+1 for each time step i
15: Compute the posterior

p(z|hi, ai, xi+1) =

{
1− ϵWTA + ϵWTA

|Z| , if z = argminz ∥x̂i+1,z − xi+1∥
ϵWTA
|Z| , otherwise

16: Compute embedding reconstruction loss by

Lrec =
∑
i>k

∑
z

p(z|hi, ai, xi+1)∥x̂i+1,z − sg(xi+1)∥2

17: Compute prior loss Lprior = −
∑

i>k log pθ(zi|hi, ai)
18: Approximate B-constraint by

B̂θ,i ←
∑
z

(p(z|hi, ai, xi+1)− sg(pθ(z|hi, ai))) B̂θ(hi, ai, z)

19: Compute target policy πtarget ← softmax(
ÂθEMA

T)

20: Compute online policy π ← softmax(Âθ

T)
21: Enforce A-constraint by

Âθ,i ← Âθ(hi, ai)−
∑
a

Âθ(hi, a)πtarget(hi, a)

22: Compute DAE objective by (note that we truncate the first k elements)

LDAE =

 n∑
j=k

γj−k(ri+j − Âθ,i+j − B̂θ,i+j) + γn−k+1V̂θEMA,i+n+k − V̂θ,i

2

23: Compute adaptive temperature objective LT = log T + βKLKL(π||πtarget)
24: Update θ by SGD with loss function βV LDAE + βpriorLprior + βrecLrec + LT

25: θEMA ← τθEMA + (1− τ)θ
26: end if
27: end for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

found linear warmup to be important, which is likely due to the use of LSTMs that can be unstable in
the early stage of training. The batch size indicates the number of trajectories instead of frames, as
such, the number of frames per batch is (backup length + truncation length)× batch size.

Parameter Value
Replay buffer size 1000000

Minimum Steps before training 20000
Number of parallel actors 16

ϵ (exploration) Linearly annealed from 1 to 0.01 in the first 1M steps
ϵ (evaluation) 0.001

Optimizer Adam (Kingma and Ba, 2014)

Learning rate Linear warmup from 0 to 1.25× 10−4 in the first 100000 steps
and then linearly annealed to 0 throughout training

Adam β (0.9, 0.95)
Adam ϵ 10−6

Replay ratio (Gradient updates
Environment steps) 0.0625

Backup length 16
Truncation length 8

Batch size 12
|Z| 16
ϵWTA Linearly annealed from 1 to 0 in the first 500000 steps

τ (target EMA) 0.995
βprior 0.025
βrec 1
βKL 150

Table 4: Default hyperparameters for the experiments.

C.4 NETWORK ARCHITECTURE

Figure 7 shows the network architecture used in the experiments. In the scaling experiments, we only
multiply the width of the convolutional layers in the ResNet by the multiplier, with the sizes of other
modules fixed. Table 5 summarizes the number of parameters in each component.

We use Layer Normalization (Ba et al., 2016) before the activations in the MLP heads and before the
LSTM. In addition, we apply L2 normalization to the image embeddings (after the linear layer) such
that the SPR objective (cosine similarity) reduces to L2 distance between the encoded vectors.

In the ablation study, we replace the LSTM layer with a 1D convolution with kernel size 4 to simulate
the effect of stacking 4 frames. This has the same effect of limiting the context window to 4, and
can also be seen as a late-fusion type of network for video processing, in contrast to frame-stacking,
which can be seen as early-fusion.

Component Parameters (millions)
ResNet 2×m
LSTM 7

Transition Model (VQ-VAE) 21
Value heads (Â, B̂, V̂) 3

Table 5: Number of parameters in each component.

C.5 ADDITIONAL RESULTS

Latent space size The latent dynamics model relies on having multiple predictions to capture the
stochasticity of the environment. Here we examine the impact of the number of predictions at each
timestep on the learning performance. We summarize the results in Figure 10 and Table 6. In general,
we find the agent’s performance to be quite robust.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: The network architecture. We use the same ResNet encoder proposed by Espeholt et al.
(2018). All MLP heads have 1 hidden layer. Previous actions and rewards are first embedded
into 512-dimensional vectors before summed together with the image embedding to form the final
embedding vector. We use a residual connection around the LSTM similar to Kim et al. (2017).

10 20

20000

30000

40000
BattleZone

10 20
20

0

20
DoubleDunk

10 20
5000

10000

15000

20000
NameThisGame

10 20

5000

10000

15000
Phoenix

10 20
0

10000

20000
Qbert

Frames (millions)

Sc
or

e

|Z|=4 |Z|=8 |Z|=16

Figure 8: Effect of |Z| on the sample efficiency. Results are aggregated over 10 random seeds. Lines
and shadings represent the mean and 1 standard error, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Effect of latent space size on the final evaluation score. Scores were aggregated over 10
random seeds after 20M training frames. Values represent (mean)±(1 standard error).
|Z| BattleZone DoubleDunk NameThisGame Phoenix Qbert

4 35738± 584 19.14± 0.81 18579± 659 15902± 1065 21161± 695
8 40044± 1152 18.50± 0.93 19805± 466 16163± 1496 20686± 618
16 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599

Exponential moving average While soft targets (EMA) were used in the original implementation
of SPR (Schwarzer et al., 2020), hard targets (periodic copy) are much more popular among DQN
variants. Here, we compare the effect of using soft and hard moving targets on the performance. For
hard updates, we follow Rainbow (Hessel et al., 2018) and set the update period to 8000 agent steps
(32k frames). Figure 9 and Table 7 summarize the effects of updating rules on learning curves and
final performance, respectively. In general, we find EMA updates to be more effective.

Table 7: Effect of target update rules on the final evaluation score. Scores were aggregated over 10
random seeds after 20M training frames. Values represent (mean)±(1 standard error).

Update BattleZone DoubleDunk NameThisGame Phoenix Qbert

Soft 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
Hard 36218± 979 15.34± 1.47 20513± 427 11536± 259 17890± 682

10 20

20000

40000
BattleZone

10 20
20

0

20
DoubleDunk

10 20

10000

20000
NameThisGame

10 20

5000

10000

Phoenix

10 20
0

10000

20000
Qbert

Frames (millions)

Sc
or

e

EMA Periodic

Figure 9: Effect of target updating rules on the sample efficiency. Results are aggregated over 10
random seeds. Lines and shadings represent the mean and 1 standard error, respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 1 2 3 4
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Dreamer v3 (20M)
Dreamer v2 (20M)
Rainbow (200M)
DAE (m=1)
DAE (m=2)
DAE (m=4)
DAE (m=8)

Figure 10: Performance profile (Agarwal et al., 2021) for Atari-5.

20

	Introduction
	Background
	Direct Advantage Estimation

	Return Decomposition in POMDPs
	Practical Considerations — Enforcing Constraints
	Practical Considerations — Truncating Sequences & Confounding

	Experiments
	Related Work
	Discussion
	Proof of Proposition 1
	Causal Graph of Truncated Sequences
	Experiment Details & Additional Results
	Pseudocode and additional implementation details
	Environment Setting
	Hyperparameters
	Network Architecture
	Additional Results

