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ABSTRACT

Direct Advantage Estimation (DAE) was recently shown to improve sample-
efficiency of deep reinforcement learning algorithms. However, DAE assumes full
observability of the environment, which may be restrictive in realistic settings. In
the present work, we first show that DAE can be extended to partially observable
domains with minor modifications. Secondly, we address the increased compu-
tational cost due to the need to approximate the transition probabilities through
the use of discrete latent dynamics models. Finally, we empirically evaluate the
proposed method using the Arcade Learning Environments, and show that it is
scalable and sample-efficient.

1 INTRODUCTION

Real-world decision-making problems often involve incomplete information, where observations
received by the agents are not enough to fully determine the underlying state of the system. For
example, a robot navigating a building may only have a local view of its surroundings; a doctor has
to decide the course of treatment for a patient based on a limited set of test results. The Partially
Observable Markov Decision Process (POMDP) framework (Kaelbling et al., 1998) provides a
generalization of the fully observable MDP framework (Puterman, 2014) to tackle these problems.

While reinforcement learning (RL) (Sutton and Barto, 2018) paired with deep neural networks (deep
RL) has achieved unprecedented results in various domains (Mnih et al., 2015; Berner et al., 2019;
Schrittwieser et al., 2020; Ouyang et al., 2022; Wurman et al., 2022), it is known to be challenging to
train and often requires millions or billions of samples (Henderson et al., 2018). Approximating the
state(-action) value functions (Qπ or V π) is a crucial part of training deep RL agents. However, these
functions often depend strongly on the policy, making them highly non-stationary and difficult to
learn. Recently, Pan et al. (2022) demonstrated that the advantage function is more stable under policy
variations, proposing Direct Advantage Estimation (DAE) to learn the advantage function directly for
on-policy settings. DAE demonstrated strong empirical performance, but is restricted to on-policy
settings. Later, Pan and Schölkopf (2024) observed that the return of a trajectory can be decomposed
into two different advantage functions, which enabled a natural generalization of DAE to off-policy
settings (Off-policy DAE). Off-policy DAE was reported to further improve the sample efficiency of
DAE; however, the method suffers from significantly increased computational complexity due to the
need to learn a high dimensional generative model to approximate the transition probabilities.

The present work explores the feasibility of DAE in partially observable domains, and ways to reduce
its computational complexity. More specifically, the contributions are:

• We show that Off-policy DAE can be applied to POMDPs with minor modifications to the
constraints of the objective.

• We address the problem of increased computational cost of Off-policy DAE by modeling
transitions in a low dimensional embedding space, which circumvents the need to model
high dimensional observations.

• We show that truncating trajectories, a common technique for reducing the computational
cost of training POMDP agents, can lead to confounding and degrade performance.

• We evaluate our method empirically using the Arcade Learning Environment (Bellemare
et al., 2013), and perform an extensive ablation study to show the contributions of various
corrections and hyperparameters.
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2 BACKGROUND

In the present work, we consider a discounted POMDP defined by the tuple (S, A, T , Ω, O, r,
γ) (Kaelbling et al., 1998), where S is the state space, A is the action space, T (s, a, s′) denotes
the transition probability from state s into state s′ after taking action a, Ω is the observation space,
O(s, o) denotes the probability of observing o ∈ Ω in state s, r(s, a) denotes the reward received by
the agent after taking action a in state s, and γ ∈ [0, 1) denotes the discount factor. When the context
is clear, we shall simply denote T (s, a, s′) by p(s′|s, a), andO(s, o) by p(o|s). In this work, we shall
consider the case where S, A, and Ω are finite. An agent in a POMDP cannot directly observe the
states, but only the observations emitted from the state through O. We consider the infinite-horizon
discounted setting, where the goal of an agent is to find a policy π, which maximizes the expected
cumulative reward, i.e., J(π) = Eπ [

∑∞
t=0 γ

tr(st, at)].

In fully observable environments, one can estimate the state(-action) value function V π(s) (or
Qπ(s, a)) as the states are observed directly. In POMDPs, however, agents do not observe states
directly, and have to estimate the values based on the observed history (information vector) ht =
(o0, a0, r0, o1, ..., ot) (Bertsekas, 2012). Similar to their counterparts in MDPs, we can define the
value functions by:

V π(ht) = Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht

]
, Qπ(ht, at) = Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht, at

]
. (1)

2.1 DIRECT ADVANTAGE ESTIMATION

Aside from Q and V , another function of interest is the advantage function defined by Aπ(s, a) =
Qπ(s, a)− V π(s) (Baird, 1995). Recently, Pan et al. (2022) proposed Direct Advantage Estimation
(DAE) to estimate the advantage function by minimizing

L(Â, V̂ ) = Eπ

(n−1∑
t=0

γt(rt − Ât) + γnV̂target(sn)− V̂ (s0)

)2
 s.t.

∑
a∈A

Â(s, a)π(a|s) = 0,

(2)
where V̂target is a given bootstrapping target, rt = r(st, at), and Ât = Â(st, at). The constraint
ensures the centering property of the advantage function (i.e., Eπ[A

π(s, a)|s] = 0). The minimizer
of L(Â, V̂ ) can be viewed as a multi-step estimate of (Aπ, V π). One limitation of DAE is that it is
on-policy, that is, the behavior policy (Eπ) has to be the same as the target policy (π in the constraint).

Pan and Schölkopf (2024) extended DAE to off-policy settings (Off-policy DAE), by showing that
if we view stochastic transitions as actions from an imaginary agent (nature), then the return of a
trajectory can be decomposed using the advantage functions from both agents as

∞∑
t=0

γtr(st, at) =

∞∑
t=0

γt (Aπ(st, at) +Bπ(st, at, st+1)) + V π(s0), (3)

where Bπ(st, at, st+1) = γV π(st+1) − γEs′∼p(·|st,at)[V
π(s′)|st, at] is the advantage function of

nature, which was referred to as luck as it quantifies how much of the return is caused by nature. This
decomposition admits a natural generalization of DAE into off-policy settings by incorporating B̂
into the objective function (Equation 2):

L(Â, B̂, V̂ ) = Eµ

(n−1∑
t=0

γt(rt − Ât − B̂t) + γnV̂ (sn)− V̂ (s0)

)2


subject to

{
Ea∼π(·|s)[Â(s, a)] = 0

Es′∼p(·|s,a)[B̂(s, a, s′)] = 0
.

(4)

Contrary to Equation 2, the behavior policy (Eµ) and the target policy (π in the constraint) need not
be equal. Intuitively, Â and B̂ can be viewed as corrections for stochasticity originating from the
policy and the transitions, respectively. Under mild assumptions, one can show that (Aπ, Bπ, V π) is
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the unique minimizer of this objective function, suggesting that we can perform off-policy policy
evaluation by minimizing the empirical version of this objective function. However, Off-policy DAE
has some limitations:

• The method assumes fully observable MDPs, which can be restrictive in realistic settings.

• Enforcing the B̂ constraint in Equation 4 requires estimating the transition probability
p(s′|s, a), which can be difficult when the state space is high-dimensional (e.g., images).
Pan and Schölkopf (2024) reported that learning the transition probability can drastically
increase the computational complexity (∼7 fold increase in runtime).

We address these issues in Section 3.

3 RETURN DECOMPOSITION IN POMDPS

The key observation of Pan and Schölkopf (2024) is that the return can be decomposed using two
different advantage functions (Equation 3). Here, we show that such a decomposition also exists in
POMDPs.

Firstly, we can define the advantage function in POMDPs by

Aπ(ht, at) = Qπ(ht, at)− V π(ht) = Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht, at

]
− Eπ

[ ∞∑
t′=0

γt′rt+t′

∣∣∣∣∣ht

]
. (5)

Similar to its counterpart in MDPs, this function also satisfies the centering property, namely∑
a∈A π(at|ht)A

π(ht, at) = 0. The next question is how we can similarly define the luck function
Bπ such that the return can be decomposed, and whether this function also satisfies the centering
condition.

We proceed by examining the difference between the return and the sum of the advantage function
along a given trajectory (o0, a0, r0, o1, a1, r1, ...)

∞∑
t=0

γtrt −

( ∞∑
t=0

γtAπ(ht, at) + V π(h0)

)
=

∞∑
t=0

γt (rt + γV π(ht+1)−Qπ(ht, at)) . (6)

This equation suggests that we can define the luck function as

Bπ(ht, at, ht+1) = rt + γV π(ht+1)−Qπ(ht, at) (7)

Remember that ht+1 is simply the concatenation of ht and (at, rt, ot+1), meaning that we can rewrite
Bπ(ht, at, ht+1) as Bπ(ht, at, rt, ot+1). We thus see that the Bπ defined this way also satisfies a
(slightly different) centering property, namely,

E(rt,ot+1)∼p(·|ht,at) [B
π(ht, at, rt, ot+1)|ht, at] = 0. (8)

Essentially, this equation differs from its MDP counterpart by the variables that are being integrated.
In POMDPs, since the agent does not observe the underlying state, we simply integrate the variables
being observed after taking an action (i.e., the immediate reward and the next observation).

Finally, we arrive at the following generalization:
Proposition 1 (Off-policy DAE for POMDPs). Given behavior policy µ, target policy π, and backup
length n ≥ 0. (Aπ, Bπ, V π) is a minimizer of

L(Â, B̂, V̂ ) = Eµ

(n−1∑
t′=0

γt′
(
rt+t′ − Ât+t′ − B̂t+t′

)
+ γnV̂ (hn+t)− V̂ (ht)

)2


subject to

{
Ea∼π(·|h)[Â(h, a)|h] = 0 ∀h ∈ H
E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] = 0 ∀(h, a) ∈ H ×A

,

(9)

where H is the set of all trajectories of the form (o0, a0, r0, ...ot), Ât = Â(ht, at), and B̂t =

B̂(ht, at, rt, ot+1). Furthermore, the minimizer is unique if, for any trajectory h ∈ H, pµ(h) > 0.

3
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ht−3

ot−3

enc
xt−2

ht−2

ot−2

enc
xt−1

ht−1

ot−1

enc
xt

ht

ot

x̂t+1,1 pϕ(1|ht, at)

x̂t+1,2 pϕ(2|ht, at)

...
x̂t+1,z pϕ(z|ht, at)

...
x̂t+1,|Z|pϕ(|Z||ht, at)

prior

enc
xt+1

ot+1

z = argmini |x̂t+1,i − xt+1|
posterior

Figure 1: The latent dynamics model first embeds observations (ot) into low dimensional vectors (xt),
which are then processed by an RNN to capture the information vectors ht (for illustrative purpose,
we omit conditioning on previous actions and rewards). At each time-step, |Z| predictions of the
embeddings x̂t+1,· along with their probabilities pϕ(·|ht, at) are generated to capture the distribution
of xt+1. During training, gradients only propagate through one of the predictions determined by the
posterior, which, in this case, is a one-hot vector.

See Appendix A for a proof. Again, we remind the reader that Proposition 1 differs from its MDP
counterpart (Equation 4) by simply replacing states with histories, and transition probabilities with
conditional densities of the observed variables (in the B̂ constraint). This is a consequence of the fact
that POMDPs can be reformulated as MDPs using information vectors (Bertsekas, 2012). Like DAE,
this can be seen as an off-policy multi-step method for value approximation, as the objective function
includes n-step rewards. Deploying this method in practice, however, can be computationally heavy,
and we discuss methods to reduce its computational complexity below.

3.1 PRACTICAL CONSIDERATIONS — ENFORCING CONSTRAINTS

We first discuss how to (approximately) enforce the two centering constraints in the objective function
(Equation 9) by reparameterizing the function approximators.

The Â constraint can be easily enforced upon a given function approximator f̂(h, a) for a given
policy π by constructing Â(h, a) = f̂(h, a) −

∑
a∈A f̂(h, a)π(a|h) (Wang et al., 2016). The B̂

constraint, on the other hand, is much more challenging, as it requires knowledge of the transition
probabilities p(·|h, a). In the original Off-policy DAE implementation (Pan and Schölkopf, 2024),
this was achieved by encoding transitions (h, a, r, o′) into a small discrete latent space z ∈ Z using a
conditional variational autoencoder (Kingma and Welling, 2013; Sohn et al., 2015), and constructing
B̂(h, a, r, o′) from a given function approximator ĝ(h, a, z) by

B̂(h, a, r, o′) = Ez∼qϕ(·|h,a,r,o′)[ĝ(h, a, z)|h, a, r, o
′]− Ez∼pϕ(·|h,a)[ĝ(h, a, z)|h, a], (10)

where qϕ(·|h, a, r, o′) is the approximated posterior (encoder), pϕ(·|h, a) is the prior, and ϕ is
the parameters of the CVAE1. In practice, the expectations can be computed efficiently since Z
is discrete. It then follows that E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] ≈ 0. This approach, however,
can be computationally heavy if observations are high dimensional due to the need to reconstruct
observations.

To reduce computational complexity, we propose to learn a discrete dynamics model purely in
the embedding space2 (see Figure 1). This is achieved by first embedding observations into a low
dimensional vector x = enc(o) ∈ Rd (with d ≪ dim(Ω)), where enc denotes the encoder (e.g., a

1We adapt the POMDP setting here for clarity, but note that this was originally developed for B̂(s, a, s′).
2We will refer to the space of encoded observations as the embedding space, and Z as the latent space of the

CVAE to avoid confusion.
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convolutional network), and learning to predict xt+1 = enc(ot+1) from the observed history (ht, at).
This approach is similar to the self-predictive representation (SPR) (Schwarzer et al., 2020); however,
SPR only produces a single prediction, which cannot capture the stochasticity of transitions. We
address this by combining SPR with the Winner-Takes-All (WTA) loss (Lee et al., 2015; Guzman-
Rivera et al., 2012), which was shown to be useful for modeling stochastic predictions. More
specifically, we combine them by: (1) making |Z| predictions of the next embedding (note that |Z| is
an integer since we are using discrete latent variables), and (2) minimizing only the best prediction.
More specifically, the objective function is:

Lrec =
∑
z∈Z

w(x̂t+1,z, xt+1)|x̂t+1,z − sg(xt+1)|2, (11)

w(x̂t+1,z, xt+1) =

{
1, z = argmini |x̂t+1,i − xt+1|
0, otherwise

, (12)

where sg denotes stop-gradient. Intuitively, this can be seen as performing k-means clustering (with
k = |Z|) in the embedding space with centroids x̂·,z (Rupprecht et al., 2017). Next, note that,
the objective (Equation 11) is equivalent to a conditional vector-quantized VAE (VQ-VAE) (Van
Den Oord et al., 2017), with posterior qϕ(z|ht, at, xt+1) = w(x̂t+1,z(ht, at), xt+1), and codebook
x̂t+1,z(ht, at) that are dependent on the information vector ht. Consequently, we can learn the prior
by minimizing the KL-divergence between the prior pϕ(z|ht, at) and the posterior qϕ(z|ht, at, xt+1).
Once we learn a conditional VQ-VAE, we can approximate the B̂ constraint using Equation 10. The
constraint in the objective (Equation 9) indicates that we should also consider stochasticity of the
rewards, which can be similarly achieved by making multiple reward predictions and adding a reward
reconstruction term to the objective function.

In practice, we found that using shallow MLPs to model the dynamics already achieves strong
empirical performance with negligible computational cost compared to other parts of the system. In
addition, we found it possible to learn the RL objective (Equation 9) and the dynamics model jointly
end-to-end to further reduce computational complexity compared to learning them separately as done
by Pan and Schölkopf (2024).

3.2 PRACTICAL CONSIDERATIONS — TRUNCATING SEQUENCES & CONFOUNDING

As states are now replaced by histories, we have to process sequences of observations instead of
singular states. In modern deep RL, this is typically achieved by using recurrent neural networks
(RNNs), such as LSTMs or GRUs (Hochreiter and Schmidhuber, 1997; Hausknecht and Stone, 2015;
Mnih et al., 2016; Kapturowski et al., 2018; Gruslys et al., 2018; Cho et al., 2014; Hafner et al.,
2023). This can be computationally heavy during training when trajectories extend to thousands of
steps. Instead, it is common to truncate histories by sampling random segments of trajectories from
the replay buffer, and initialize the hidden recurrent state with the first few steps (burn-in) before
updating the values (Kapturowski et al., 2018), as demonstrated below:

(o0, a0, r0, · · · , ot−k−1︸ ︷︷ ︸
truncated

, at−k−1, rt−k−1, ot−k, · · ·︸ ︷︷ ︸
burn in (initialize RNN state)

, ot, at, rt, · · · , ot+n︸ ︷︷ ︸
value updates

)

Here, we highlight a problem that is commonly overlooked due to confounding (Pearl, 2009).
Confounding can bias our estimates when the unobserved variables (the truncated part of the trajectory
h0:t−k−1) simultaneously influence both the input variables (the remaining part of the trajectory
ht−k:t) and the output variables (the future rewards rt′ for t′ ≥ t). We illustrate this problem with
a toy example (see Figure 2). In this environment, the optimal policy is π∗(up|o0) = p ∈ [0, 1]
(arbitrary), and π∗(a|o0, a0=a, o1) = 1 (repeat previous actions). Now, let us consider the case where
the behavior policy is the optimal policy with π∗(up|o0) = 0.5, but the truncation length is 0 (i.e.,
memoryless) for the target policy. In this case, we will incorrectly infer that V π(o1) = Qπ(o1, ·) = 1
for any target policy π, since all the collected trajectories receive a reward 1 irrespective of the
action a1. This is a classic example of confounding, where the unobserved variable a0 behaves as a
confounder that biases our estimates.

In the online setting, we can partially eliminate confounding by conditioning both the behavior policy
and the target policy on the same set of variables (i.e., same memory capacity). This then breaks the

5
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s0

o0

s1

s2

s3

r = 0

r = 0

r = 1

r = 0

r = 0

r = 1

o1

a0

a1 r1

Figure 2: Left: A toy POMDP with 4 states and 2 actions. The nodes and the arrows represent
the states and the actions (up, down), respectively. s0 is the starting state and s3 is the terminal
(absorbing) state. The agent does not observe the underlying state but only the emitted observation at
each time step, o0 and o1, where both s1 and s2 emit the same observation o1. Right: The causal
relationship between a0, a1, and r1. We ignore other variables as they do not influence r1. The
variable a0 can act as a confounder during training when the target policy is memoryless.

causal influence from h0:t−k−1 to at′ for all t′ ≥ t. While this does not fully eliminate confounding
since ht−k:t and rt can still be influenced by h0:t−k−1, we empirically show that this simple change
can have non-trivial effects on the agent’s performance (see Section 4). Finally, we remind the reader
that this is not a limitation of the proposed method, but a common issue due to partial observability.

4 EXPERIMENTS

We examine the performance of the proposed method using the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), which includes environments with diverse dynamics and various
degrees of partial observability. More specifically, we use the five environments subset (Battle Zone,
Double Dunk, Name This Game, Phoenix, Qbert) suggested by Aitchison et al. (2023) because it was
found that the learning performance in this subset strongly correlates with the overall performance of
an algorithm. We use the same environment setting as the Dopamine baselines (Castro et al., 2018),
which largely follows the protocols proposed by Machado et al. (2018), including the use of sticky
actions (repeat previous action with a certain probability) and discarding end-of-life signals. Note
that while sticky actions were originally proposed to inject stochasticity into the environments, they
also introduce additional partial observability due to its dependency on previous actions.

We evaluate our method using a DQN-like (Mnih et al., 2015) agent with some modifications,
which we briefly summarize below. (1) Recurrent Architecture: We do not use frame-stacking,
but simply use an LSTM after the convolutional encoder to process sequences of observations.
Aside from image inputs, we also feed previous actions and rewards into the LSTM. (2) DAE
objective: We replace the 1-step Q-learning objective with our multi-step DAE objective (Equation 9),
and use three separate MLPs on top of the LSTM to model Â, B̂, and V̂ . (3) Discrete Latent
Dynamics Model: We use three additional MLPs on top of the LSTM to estimate the next observation
embedding x̂t+1(ht, at, zt), the immediate reward p(rt|ht, at), and the prior probability p(zt|ht, at).
(4) Exponential Moving Average: Similar to SPR, we use an exponential moving average of the
online network as the target network to generate the next observation embeddings for the dynamics
model. This target network is also used to construct smoothly changing target policies and value
bootstrapping targets for the DAE objective. (5) Deeper Network: We use the deep residual network
proposed by Espeholt et al. (2018) instead of the shallow three-layer convolutional network, which
we found to enjoy better scalability and improved sample efficiency. In our implementation, we use
a CNN-LSTM backbone with MLP heads on top to model the value functions (Â, B̂, V̂ ) and the
dynamics (x̂, p(·|h, a)). For more details, we refer the reader to Appendix C.

In the following experiments, we train the agents for 20 million frames (5 million environment steps
due to frame-skipping), and evaluate the agent every 1 million frames by averaging the cumulative
scores of 50 episodes.
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Figure 3: Comparing scalability and sample efficiency with off-policy correction (top row) and
without it (bottom row). Results are aggregated over 10 random seeds. Lines and shadings represent
the mean and 1 standard error, respectively. m: width multiplier of the convolutional layers.

Table 1: Effect of model capacity and off-policy correction on the final evaluation score. Scores
were aggregated over 10 random seeds after 20M training frames. Values represent (mean)±(1
standard error). O: Off-policy correction. m: width multiplier. RBW: Rainbow (200M frames). DV2:
DreamerV2 (20M frames). DV3: DreamerV3 (20M frames).
O m BattleZone DoubleDunk NameThisGame Phoenix Qbert

✓

1 35044± 986 8.80± 2.13 10977± 441 5666± 54 15313± 56
2 38164± 603 17.68± 1.15 14308± 289 8010± 270 15831± 146
4 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
8 39262± 763 21.49± 0.38 19638± 633 18127± 1075 23451± 415

✗

1 27700± 433 7.59± 1.55 6066± 74 5366± 94 14944± 124
2 31310± 554 11.00± 0.95 8090± 246 5835± 189 15599± 239
4 30600± 490 11.16± 1.22 10171± 270 8838± 515 17529± 794
8 32438± 752 11.46± 0.90 11007± 186 9641± 408 19868± 732

RBW 40061± 1866 22.12± 0.34 9026± 193 8545± 1286 17383± 543
DV2 21225± 743 12.95± 1.31 12145± 87 9117± 2151 3441± 969
DV3 37818± 3979 22.46± 0.35 20652± 1002 56889± 3402 23540± 1976

Off-policy correction is crucial for scaling In value-based deep RL, it is common to use biased
multistep value targets by ignoring off-policy corrections (Hessel et al., 2018; Hernandez-Garcia
and Sutton, 2019; Kapturowski et al., 2018; Horgan et al., 2018). However, as we will demonstrate,
ignoring off-policy corrections can hurt the agent’s scalability and final performance. Following Pan
and Schölkopf (2024), we partially disable off-policy corrections by setting B̂ ≡ 0, which can be seen
as ignoring corrections for the stochasticity of the environment (this is due to Bπ ≡ 0 for arbitrary π
if the environment is deterministic3). We also remind the reader that the widely used biased n-step
method is more aggressive and equivalent to enforcing both Â ≡ 0 and B̂ ≡ 0. For scaling, we simply
multiply the width of the convolutional layers in the encoder by a multiplier m. As a comparison,
we include both model-based (DreamerV2 (Hafner et al., 2020) and DreamerV3 (Hafner et al.,
2023)), and model-free (Rainbow (Castro et al., 2018)) algorthms as baselines. For DreamerV2 and
DreamerV3, we report their scores evaluated at 20 million training frames as their model capacities
(∼ 20M and ∼ 200M parameters, respectively) are similar to ours (the m = 8 model has ∼50M
parameters), but also note that both Dreamer methods were originally trained for 200M frames. For
Rainbow, we simply report its score at 200 million training frames, since it uses a much smaller
model. Figure 3 and Table 1 summarize the results. Firstly, we find that scaling up can substantially
improve the sample efficiency of our method, and we see efficiency comparable to DreamerV3 in 3

3Based on the observed transition probability p(r, o′|h, a) instead of the state transition probability p(s′|s, a).
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Figure 4: Effect of backup length n. Results are aggregated over 10 random seeds. Lines and shadings
represent the mean and 1 standard error, respectively.
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Figure 5: Comparing LSTM to frame-stacking. Results are aggregated over 10 random seeds. Lines
and shadings represent the mean and 1 standard error, respectively.

out of 5 environments with our m = 8 model, and better efficiency compared to DreamerV2 in most
environments with our smaller model m = 2. Comparisons with Rainbow also demonstrate that our
method can achieve similar performance while using only 10% of the training frames. Secondly, we
see that disabling off-policy corrections can drastically degrade the performance and limit the benefit
of scaling. These results also suggest that the learned latent dynamics model can indeed capture the
stochasticity of the environments, as approximating the B̂ constraint hinges on the dynamics model.

Next, we perform ablation studies to better understand the contribution of each part. For the following
experiments, we use the m = 4 model to reduce the computational cost.

Effect of backup length. Multi-step learning allow reward information to propagate faster and
reduce dependencies on the bootstrapping target, and it was found to stabilize and speedup train-
ing (Hernandez-Garcia and Sutton, 2019; Van Hasselt et al., 2018). However, it can also increase
the variance of value updates, and choosing the backup length n can be seen as a bias-variance
tradeoff (Kearns and Singh, 2000). Figure 4 summarizes the effect of n for our DAE agent. In general,
we find using larger n to be beneficial, except for Battle Zone and Name This Game, where we see
that increasing the backup length beyond 8 can hurt the performance.

Frame-stacking can be suboptimal. Frame-stacking has been the standard approach to approximate
the ALE environments as MDPs since its introduction by Mnih et al. (2015). Here, we examine the
effect of our proposed POMDP correction compared to approximating the environment as an MDP
via frame-stacking.4 This can also be seen as a comparison between the POMDP version of DAE
and its MDP counterpart. For fair comparison, we set the truncation length of the LSTM agent to
4 (this also applies to action selection), such that both agents have the same context length during
action selection, and differ only in how the values are learned. In Figure 5, we see the LSTM agent to
perform at least on par with the frame-stacking agent, while being significantly better in three of the
environments. This indicates that our POMDP correction is indeed effective when the underlying
environments are POMDPs.

Confounding can degrade performance. As pointed out in Section 3.2, truncating sequences is
essential to reducing computational cost, but naively truncating sequences without adjusting the
behavior policy can lead to bias in value estimations due to confounders. Here, we test the impact
of truncation length and the confounding bias in the ALE. To test this, we compare two different

4For easier comparison, we use a different frame-stacking implementation. See Appendix C.4 for details.
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Table 2: Effect of confounding and truncation length on the final evaluation score. Scores were
aggregated over 10 random seeds after 20M training frames. Values represent (mean)±(1 standard
error). k: truncation length. R: recurrent behavior policy. diff: relative difference of the score.

k R BattleZone DoubleDunk NameThisGame Phoenix Qbert

4 ✗ 39404± 899 19.88± 0.58 21283± 412 12945± 590 19825± 559
✓ 36762± 887 17.67± 1.43 19760± 800 12234± 379 18718± 493

diff(%) −6.70% −11.12% −7.15% −5.49% −5.58%

8 ✗ 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
✓ 37224± 803 18.86± 1.21 17104± 579 13486± 735 19355± 555

diff(%) −7.17% −10.90% −8.45% −0.79% −1.74%

sampling strategies: (1) fully recurrent behavior policy (no truncation), which causes confounding
by conditioning on variables that are being truncated during training; (2) behavior policy with same
truncation length as the target policy (see also Figure 6 for the causal graph). It is noteworthy that the
confounded approach is actually widely used by popular algorithms (e.g., DRQN (Hausknecht and
Stone, 2015)). We summarize the results in Table 2. Surprisingly, we find that this simple change
leads to small, yet consistent performance degradation across all five environments and two truncation
lengths. This suggests that the ALE may be more partially observable than previously believed, and
confounding should be considered when designing sampling strategies.

In Appendix C.5, we also examine the effect of the latent space size |Z| on the performance, and find
it to be relative robust above a certain level. This suggests that while the environments are stochastic,
the stochasticity can be well approximated by a small number of latent variables.

5 RELATED WORK

Advantage Estimation Estimating the advantage function is an important part of policy optimiza-
tion (Kakade and Langford, 2002). Schulman et al. (2015) proposed Generalized Advantage Es-
timation (GAE), which utilizes TD(λ) (Sutton, 1988) to perform on-policy multi-step estimates
of the advantage function. Wang et al. (2016) proposed dueling network to parametrize Qθ into
Vθ + Aθ and showed that it can improve the performance of the original DQN. Tang et al. (2023)
proposed VA learning to estimate V and A separately, and showed that it can outperform the dueling
architecture. Pan et al. (2022) proposed DAE to perform on-policy multi-step estimation of the
advantage function. This was later generalized to the off-policy setting by Pan and Schölkopf (2024).
The present work extends off-policy DAE to partially observable environments and improves its
computational efficiency.

POMDP POMDPs provide a general framework for studying decision making with incomplete
states (Åström, 1965). In RL, POMDPs are usually solved by first converting them into MDPs either
using belief states (Kaelbling et al., 1998) or information vectors (Bertsekas, 2012). In deep RL,
partial observability is usually addressed using frame-stacking (Mnih et al., 2015), or by modeling
the histories directly (Kapturowski et al., 2018; Gruslys et al., 2018; Hafner et al., 2023; Hausknecht
and Stone, 2015; Mnih et al., 2016).

Latent Dynamics Model Learning dynamics models in the latent space is a promising approach to
model-based RL (Ha and Schmidhuber, 2018; Han et al., 2019; Schrittwieser et al., 2020; Hafner et al.,
2023; Antonoglou et al., 2021). It is, however, still common to rely on reconstructing observations
to learn meaningful latent representations (Anand et al., 2021). In the present work, we combine
ideas from self-supervised learning methods (Schwarzer et al., 2020; Grill et al., 2020) and the WTA
loss (Makansi et al., 2019; Rupprecht et al., 2017) to estimate the transition probabilities purely in
the latent space, and found it to be beneficial.

Causality The problem of inferring the effect of an action under partial observability dates at least
back to Splawa-Neyman et al. (1990); Rubin (1974), and is a central topic in the study of causal
inference (Pearl, 2009; Peters et al., 2017). In RL, these problems have been studied in the bandit
setting (Bareinboim et al., 2015; Tennenholtz et al., 2021) and the sequential setting (Tennenholtz
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et al., 2020; Pace et al., 2023). We showed that the confounding problem can also have negative
impacts when training with recurrent policies.

6 DISCUSSION

In the present work, we showed how to extend DAE for POMDPs and addressed the computational
cost issue by using discrete latent dynamics models. Through experiments in the ALE, we demon-
strated that DAE is sample efficient and scalable, and that the proposed corrections are effective.

One limitation of our method is the need to approximate the transition probabilities through the use
of latent dynamics. This introduces additional hyperparameters (e.g., network architectures of the
dynamics model), and renders our method closer to model-based than model-free, although we do
not explicitly use the model for rollouts. One direction for future work is to explore model-free
approaches to approximate the constraints. Another limitation is that, while we can partially mitigate
the problem of confounding caused by using truncated trajectories, our approach is only applicable in
the online setting, where we can control the behavior policy. An important direction is to develop
computationally efficient methods for eliminating the confounding bias for broader settings.
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A PROOF OF PROPOSITION 1

Proposition (Off-policy DAE for POMDPs). Given behavior policy µ, target policy π, and backup
length n ≥ 0. (Aπ, Bπ, V π) is a minimizer of

L(Â, B̂, V̂ ) = Eµ

(n−1∑
t′=0

γt′
(
rt+t′ − Ât+t′ − B̂t+t′

)
+ γnV̂ (hn+t)− V̂ (ht)

)2


subject to

{
Ea∼π(·|h)[Â(h, a)|h] = 0 ∀h ∈ H
E(r,o′)∼p(·|h,a)[B̂(h, a, r, o′)|h, a] = 0 ∀(h, a) ∈ H ×A

,

(13)

where H is the set of all trajectories of the form (o0, a0, r0, ...ot), Ât = Â(ht, at), and B̂t =

B̂(ht, at, rt, ot+1). Furthermore, the minimizer is unique if, for any trajectory h ∈ H, pµ(h) > 0.

Proof. Firstly, we note that a POMDP can be reformulated as an MDP with state space equal to the
space of information vectors (ht) (Bertsekas, 2012). The theorem is then a direct result of applying
Off-policy DAE (Pan and Schölkopf, 2024) to the reformulated MDP.

Remark: The original proof of Off-policy DAE assumes that the reward function is determin-
istic, which can be violated when converting POMDPs into MDPs. As such, our definition of
Bπ(s, a, r, s′) = r+γV π(s′)−Eπ,s′′∼p(·|s,a)[r+γV π(s′′)|s, a] (in a fully observable MDP) differs
slightly from the original one Bπ(s, a, s′) = γV π(s′)− Eπ,s′′∼p(·|s,a)[γV

π(s′′)|s, a].

B CAUSAL GRAPH OF TRUNCATED SEQUENCES

Figure 6 shows the causal relationship between variables when sequences are truncated. For multi-
step methods like DAE, we learn the value/advantage functions by building a model that takes in
(h′′, at, rt, ot+1, · · · ) to predict

∑
t′>t rt′ (assuming the backup length is infinity for illustrative

purpose). It is then clear that h′ can influence both the input variables and the output variables, and
lead to confounding. In the confounding experiment in section 4, the two sampling strategies differ in
whether the red arrows are present for the behavior policy.

Modern recurrent agents (e.g., R2D2 (Kapturowski et al., 2018), Dreamer (Hafner et al., 2023)) often
store recurrent states in the replay buffer during sampling and initialize the RNN states from the
replay buffer during training. While, in theory, this can mitigate the confounding bias if the stored
recurrent states contain enough information to predict future observables (i.e., the recurrent states are
sufficient statistics), these methods are harder to analyze, as it is difficult to quantify (or measure) the
quality of the recurrent states. Consequently, we only consider the simplest case (no recurrent states),
and leave it for future work to explore other directions.

C EXPERIMENT DETAILS & ADDITIONAL RESULTS

C.1 PSEUDOCODE AND ADDITIONAL IMPLEMENTATION DETAILS

We provide the pseudocode in Algorithm 1. For illustrative purpose, the pseudocode assumes a single
actor and batch size 1; however, the algorithm can be easily parallelized over multiple actors and
mini-batches.

To avoid the latent dynamics from collapsing, we use a soft loss for the reconstruction by including
ϵW ≥ 0 into the posterior construction. In practice, ϵW is linearly annealed from 1 to 0 in the early
stage of training. This is similar to the approach proposed by Makansi et al. (2019), which was found
to make training less dependent on initialization, except that the authors construct the posterior using
the top-k nearest neighbors.

Incorporating stochastic rewards can be done by adding an additional reward reconstruction loss.
In the case of Atari games, we can exploit the discrete structure of the rewards (rewards can only
be in R = {−1, 0, 1}) and construct the latent space by Z = ZO × R. This then allows us to
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h′ h′′

at at+1

ot+1 ot+2 · · ·

rt rt+1

Figure 6: Causal relationship between variables of a truncated sequence for a general POMDP.
h′ = h0:t−k−1 denotes the truncated part of the sequence, and h′′ = ht−k:t denotes the remaining
(or "context") part of the sequence. The red arrows shows the dependency between actions and h′

when using recurrent actors.

decompose the prior and the posterior by p(z|h, a) = p(zo|h, a)p(r|h, a) and p(z|h, a, r, o′) =
p(zo|h, a, r, o′)p(r̂|h, a, r, o′), respectively. Note that p(r̂|h, a, r, o′) = I(r̂ = r) is simply the
indicator function.

As pointed out by Pan et al. (2022), having a smoothly changing target policy is crucial to optimizing
the DAE objective function. Consequently, we use a softmax policy based on ÂθEMA as the target
policy. However, as reward densities can vary drastically between environments, we additionally
learn a temperature parameter T by minimizing log T + βKLKL(π||πEMA), where both policies are
softmax policies constructed using the advantage functions (i.e. π = softmax( ÂT )). This ensures that
the online policy π does not deviate too much from the target policy πEMA, and alleviates the need to
tune the temperature manually for each environment.

Finally, to balance the scales between various objective functions, we set βV to be inverse proportional
to the standard deviation of the cumulative rewards (i.e., σ(G)).

C.2 ENVIRONMENT SETTING

For fair comparison, our environment settings follow the ones used by the Dopamine baseline (Castro
et al., 2018), except that we do not use frame-stacking. In addition, we use EnvPool (Weng et al.,
2022) for efficient implementation of the parallelized environments.

Parameter Value
Grey-scaling True

Observation Resolution 84×84
Frame Stack 1

Action Repetitions 4
Reward Clipping [-1, 1]

Terminal on life-loss False
Sticky Action Prob. 0.25
γ (discount factor) 0.99

Table 3: ALE preprocessing parameters. Blue: Best practice suggested by Machado et al. (2018).
Red: Differ from the baseline (Castro et al., 2018).

C.3 HYPERPARAMETERS

Table 4 summarizes the default hyperparameters used in the experiments. The hyperparameters
largely follows the ones used by Castro et al. (2018) with some exceptions. For the learning rate, we
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Algorithm 1 Off-policy DAE (POMDP)
Require: n (backup length), k (truncation length)

1: Initialize network parameters θ
2: θEMA ← θ
3: D = {}
4: Observe o0
5: h0 ← (o0)
6: for t = 0, 1, 2, . . . do
7: Sample transition (o, a, r, o′) with ϵ-greedy based on Âθ(ht, ·)
8: ht+1 ← (ht, a, r, o

′)
9: ht+1 ← ht+1−k:t+1 (truncation)

10: D ← D ∪ {(o, a, r, o′)}
11: if t+ 1 mod steps_per_update = 0 then
12: Sample an n+ k-step trajectory T = (oi, ai, ri, ..., oi+n+k) from D
13: Encode observations of oi into xi

14: Compute the predicted next embedding x̂i+1 for each time step i
15: Compute the posterior

p(z|hi, ai, xi+1) =

{
1− ϵWTA + ϵWTA

|Z| , if z = argminz ∥x̂i+1,z − xi+1∥
ϵWTA
|Z| , otherwise

16: Compute embedding reconstruction loss by

Lrec =
∑
i>k

∑
z

p(z|hi, ai, xi+1)∥x̂i+1,z − sg(xi+1)∥2

17: Compute prior loss Lprior = −
∑

i>k log pθ(zi|hi, ai)
18: Approximate B-constraint by

B̂θ,i ←
∑
z

(p(z|hi, ai, xi+1)− sg(pθ(z|hi, ai))) B̂θ(hi, ai, z)

19: Compute target policy πtarget ← softmax(
ÂθEMA

T )

20: Compute online policy π ← softmax( Âθ

T )
21: Enforce A-constraint by

Âθ,i ← Âθ(hi, ai)−
∑
a

Âθ(hi, a)πtarget(hi, a)

22: Compute DAE objective by (note that we truncate the first k elements)

LDAE =

 n∑
j=k

γj−k(ri+j − Âθ,i+j − B̂θ,i+j) + γn−k+1V̂θEMA,i+n+k − V̂θ,i

2

23: Compute adaptive temperature objective LT = log T + βKLKL(π||πtarget)
24: Update θ by SGD with loss function βV LDAE + βpriorLprior + βrecLrec + LT

25: θEMA ← τθEMA + (1− τ)θ
26: end if
27: end for
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found linear warmup to be important, which is likely due to the use of LSTMs that can be unstable in
the early stage of training. The batch size indicates the number of trajectories instead of frames, as
such, the number of frames per batch is (backup length + truncation length)× batch size.

Parameter Value
Replay buffer size 1000000

Minimum Steps before training 20000
Number of parallel actors 16

ϵ (exploration) Linearly annealed from 1 to 0.01 in the first 1M steps
ϵ (evaluation) 0.001

Optimizer Adam (Kingma and Ba, 2014)

Learning rate Linear warmup from 0 to 1.25× 10−4 in the first 100000 steps
and then linearly annealed to 0 throughout training

Adam β (0.9, 0.95)
Adam ϵ 10−6

Replay ratio ( Gradient updates
Environment steps ) 0.0625

Backup length 16
Truncation length 8

Batch size 12
|Z| 16
ϵWTA Linearly annealed from 1 to 0 in the first 500000 steps

τ (target EMA) 0.995
βprior 0.025
βrec 1
βKL 150

Table 4: Default hyperparameters for the experiments.

C.4 NETWORK ARCHITECTURE

Figure 7 shows the network architecture used in the experiments. In the scaling experiments, we only
multiply the width of the convolutional layers in the ResNet by the multiplier, with the sizes of other
modules fixed. Table 5 summarizes the number of parameters in each component.

We use Layer Normalization (Ba et al., 2016) before the activations in the MLP heads and before the
LSTM. In addition, we apply L2 normalization to the image embeddings (after the linear layer) such
that the SPR objective (cosine similarity) reduces to L2 distance between the encoded vectors.

In the ablation study, we replace the LSTM layer with a 1D convolution with kernel size 4 to simulate
the effect of stacking 4 frames. This has the same effect of limiting the context window to 4, and
can also be seen as a late-fusion type of network for video processing, in contrast to frame-stacking,
which can be seen as early-fusion.

Component Parameters (millions)
ResNet 2×m
LSTM 7

Transition Model (VQ-VAE) 21
Value heads (Â, B̂, V̂ ) 3

Table 5: Number of parameters in each component.

C.5 ADDITIONAL RESULTS

Latent space size The latent dynamics model relies on having multiple predictions to capture the
stochasticity of the environment. Here we examine the impact of the number of predictions at each
timestep on the learning performance. We summarize the results in Figure 10 and Table 6. In general,
we find the agent’s performance to be quite robust.
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Figure 7: The network architecture. We use the same ResNet encoder proposed by Espeholt et al.
(2018). All MLP heads have 1 hidden layer. Previous actions and rewards are first embedded
into 512-dimensional vectors before summed together with the image embedding to form the final
embedding vector. We use a residual connection around the LSTM similar to Kim et al. (2017).
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Figure 8: Effect of |Z| on the sample efficiency. Results are aggregated over 10 random seeds. Lines
and shadings represent the mean and 1 standard error, respectively.
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Table 6: Effect of latent space size on the final evaluation score. Scores were aggregated over 10
random seeds after 20M training frames. Values represent (mean)±(1 standard error).
|Z| BattleZone DoubleDunk NameThisGame Phoenix Qbert

4 35738± 584 19.14± 0.81 18579± 659 15902± 1065 21161± 695
8 40044± 1152 18.50± 0.93 19805± 466 16163± 1496 20686± 618
16 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599

Exponential moving average While soft targets (EMA) were used in the original implementation
of SPR (Schwarzer et al., 2020), hard targets (periodic copy) are much more popular among DQN
variants. Here, we compare the effect of using soft and hard moving targets on the performance. For
hard updates, we follow Rainbow (Hessel et al., 2018) and set the update period to 8000 agent steps
(32k frames). Figure 9 and Table 7 summarize the effects of updating rules on learning curves and
final performance, respectively. In general, we find EMA updates to be more effective.

Table 7: Effect of target update rules on the final evaluation score. Scores were aggregated over 10
random seeds after 20M training frames. Values represent (mean)±(1 standard error).

Update BattleZone DoubleDunk NameThisGame Phoenix Qbert

Soft 40098± 900 21.17± 0.45 18682± 580 13593± 1036 19697± 599
Hard 36218± 979 15.34± 1.47 20513± 427 11536± 259 17890± 682
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Figure 9: Effect of target updating rules on the sample efficiency. Results are aggregated over 10
random seeds. Lines and shadings represent the mean and 1 standard error, respectively.
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Figure 10: Performance profile (Agarwal et al., 2021) for Atari-5.

20


	Introduction
	Background
	Direct Advantage Estimation

	Return Decomposition in POMDPs
	Practical Considerations — Enforcing Constraints
	Practical Considerations — Truncating Sequences & Confounding

	Experiments
	Related Work
	Discussion
	Proof of Proposition 1
	Causal Graph of Truncated Sequences
	Experiment Details & Additional Results
	Pseudocode and additional implementation details
	Environment Setting
	Hyperparameters
	Network Architecture
	Additional Results


