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Abstract

Mixture of Experts (MoE) architecture improves
Large Language Models (LLMs) with better scal-
ing, but its higher parameter counts and mem-
ory demands create challenges for deployment.
In this paper, we present MoE-SVD, a new
decomposition-based compression framework tai-
lored for MoE LLMs without any extra training.
By harnessing the power of Singular Value De-
composition (SVD), MoE-SVD addresses the crit-
ical issues of decomposition collapse and matrix
redundancy in MoE architectures. Specifically,
we first decompose experts into compact low-rank
matrices, resulting in accelerated inference and
memory optimization. In particular, we propose
selective decomposition strategy by measuring
sensitivity metrics based on weight singular val-
ues and activation statistics to automatically iden-
tify decomposable expert layers. Then, we share
a single V-matrix across all experts and employ
a top-k selection for U-matrices. This low-rank
matrix sharing and trimming scheme allows for
significant parameter reduction while preserving
diversity among experts. Comprehensive experi-
ments on Mixtral, Phi-3.5, DeepSeek, and Qwen2
MoE LLMs show MoE-SVD outperforms other
compression methods, achieving a 60% compres-
sion ratio and 1.5× faster inference with mini-
mal performance loss. Codes are available at:
https://github.com/lliai/MoE-SVD.
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1. Introduction
Mixture of Experts (MoE) (Cai et al., 2024b) have demon-
strated promising advancements in the realm of recent large
language models (LLMs) (e.g., MiniMax-01 (MiniMax
et al., 2025), Qwen2.5-Max (Team, 2024) and DeepSeek-
V3 (DeepSeek-AI et al., 2024)). These architectures incor-
porate multiple experts and employ a sparse gating mech-
anism, enabling efficient computation and facilitating the
scaling of LLMs within the constraints of limited compu-
tational resources (Dai et al., 2024). Despite these advan-
tages, MoE LLMs still face several challenges: (1) Im-
mense Parameter Sizes: MoE models generally have a
larger number of parameters than dense models (Gu et al.,
2025), which can make them difficult to train and deploy, es-
pecially in resource-constrained environments. (2) Memory
Overhead: MoE models can suffer from memory ineffi-
ciency due to the need to store and access multiple expert
weights and biases, potentially hindering their deployment
on devices with limited memory (Song et al., 2023).

Limitations of Traditional MoE Compressions: To ad-
dress the challenges of large parameter size and memory
overhead, some MoE-specific compression methods have
been proposed to prune unimportant experts or weights.
For example, NAEE (Lu et al., 2024) proposes task-
specific expert pruning and dynamic skipping, while MoE-
Compression (He et al., 2024) evaluates various types of
sparse schemes across multiple MoE components. Although
these techniques show promise, they suffer from certain lim-
itations: (1) Performance Degradation, especially under
high compression ratios, often necessitating costly and time-
consuming retraining. For instance, pruning 25% of experts
in Mixtral-8×7B results in a 23% performance drop (He
et al., 2024). (2) Hardware Dependency: Some semi-
structured sparse methods only gain speedup on NVIDIA
Ampere and Hopper architecture GPUs, limiting their gen-
eral applicability. (3) Limited Acceleration: Some MoE
compression methods only reduce the number of experts
without significantly reducing the size of the activated ex-
perts (Liu et al., 2024a), resulting in minimal speedup dur-
ing inference. MoE-Compression (He et al., 2024) report
that eliminating 12.5% of experts yields less than a 1%
speed boost. In contrast, recent Singular Value Decompo-
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Figure 1: Perplexity of 50% per-layer SVD decomposition (left), per-layer values of OWL & our metric (middle), mean
CKA similarity (Kornblith et al., 2019) of decomposed V & U matrix and original matrix of each expert layer (right). These
results are obtained for Mixtral-8×7B on WikiText-2.

sition (SVD) techniques (Hsu et al., 2022) are hardware-
independent and successfully compact LLM to high com-
pression ratios without additional training. These facts en-
courage us to explore SVD as an alternative to pruning.
However, we directly apply these SVD-based methods to
compress MoE models, resulting in serious performance
collapse. For example, Mixtral-8×7B with ASVD (Yuan
et al., 2023) and SVD-LLM (Wang et al., 2024) reach over
1000 perplexity on WikiText-2. This naturally raises key
questions: Why SVD-based methods fail on MoE LLMs
and how to solve this?

Our New Observations: To answer these questions, we
individually decompose each expert layer in Figure 1 and un-
cover observations: (1) Decomposition Sensitivity: Some
expert layers are more sensitive to SVD decomposition than
others. For example, initial and final layers of decompo-
sition can lead to drastic performance loss. This indicates
that layer-wise non-uniform decomposition is important for
MoE LLMs. (2) Model Statistic Disparities: Activation
outliers in OWL (Yin et al., 2023) are an effective pre-layer
importance statistic and metric for dense LLM. However,
we notice that their values on MoE in Figure 1 (middle) do
not match the pre-layer decomposition result in (1). This
could be attributed to biases derived from multi-expert de-
sign and dynamic activation in MoE LLMs. (3) Expert
Redundancy: Expert merging methods (Liu et al., 2024a)
show various experts are similar in the weight space and
contain significant redundancy. Our Figure 1 (right) indi-
cates high similarity of decomposed V-matrices, which can
further share weights or trim redundant matrices.

“Different problems require different solutions."

— Albert Einstein

Our Novel Framework: As this well-said quote goes, the
sparse-activated MoE dynamic architecture differs from
common LLMs and deserves customized decomposition
schemes based on the above observations. To this end, we
develop MoE-SVD, a novel compression framework specif-
ically designed for MoE LLMs. Our MoE-SVD leverages
SVD to decompose expert layers in a structured manner,

creating a naturally sparse expert structure that reduces com-
putational costs while maintaining model expressiveness.
The core innovation of MoE-SVD lies in: (1) Selective De-
composition Strategy: Unlike previous SVD approaches
that apply uniform compression across different layers, our
method introduces a sensitivity metric derived from matrix
singular values and activation statistics, facilitating adap-
tive decomposition. As illustrated in Figure 1 (middle), this
metric accurately identifies the sensitive expert layers, allow-
ing for more targeted compression. (2) Low-rank Matrix
Sharing and Trimming: To further minimize parameter
redundancy, we introduce V-matrix sharing, where the most
frequently sampled V-matrix is retained and shared across
all experts. In addition, we apply U-matrix trimming by
selecting the top-k U-matrices based on sampling frequency,
while discarding the less frequently used matrices. This
strategy significantly minimizes the number of parameters,
while ensuring the diversity for effective MoE function-
ing. With these innovative schemes, our MoE-SVD offers
substantial parameter reduction, creates a naturally sparse
expert structure for faster inference, and can be deployed on
standard computing infrastructure without requiring addi-
tional training phases. This flexible framework allows high
compression ratios and strikes an optimal balance between
computational efficiency and model performance.

Validation and Results: Extensive experiments demon-
strate Our MoE-SVD method achieves state-of-the-art per-
formance in compressing MoE models while maintaining
their performance on various language modeling and com-
mon sense reasoning datasets. The results show that MoE-
SVD outperforms other methods such as SVD, ASVD, and
SVD-LLM across all compression ratios from 20% to 60%,
on both Mixtral-8×7B and Phi-3.5-MoE models. For ex-
ample, on the Mixtral-8×7B model, MoE-SVD achieves a
20% compression ratio with only a 2% drop in performance,
while the other methods experience a significant drop in
performance. Similarly, on the Phi-3.5-MoE, MoE-SVD
achieves a 40% compression ratio with only a 5% drop in
performance. These results demonstrate the effectiveness of
MoE-SVD in compressing MoE models while maintaining
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Table 1: Comparison of our MoE-SVD to general LLM compressors (e.g., Wanda, SparseGPT, LoSparse) and MoE-specific
compressors (e.g., MC-SMoE, MoE-I2, MoE-Compression).

Method Pipeline Decomposition Training MoE-specific Strategy Evaluated Models

Wanda (2023) Pruning without weight updates None None None LLaMA, LLaMA-2 (7B, 13B, 70B)
SparseGPT (2023) Pruning and weight updates None ADMM-tuning None OPT-175B, BLOOM-176B
LoSparse (2023b) Decompose→sparse Low-rank + sparse Fine-tuning None BERT-base (110M), DeBERTaV3-large (131M)

MC-SMoE (2024g) Merge→compress Low-rank + sparse Fine-tuning (distill) Frequency-based merging T5-base (220M), Switch-base-32 (2.0B)
MoE-I2 (2024) Search→expert drop→decompose Low-rank + sparse Fine-tuning Genetic Search, KT-Reception Field Qwen, Mixtral-8×7B
MoE-Compression (2024) Pruning and layer dropping None None Layer-dropping, sparsity Mixtral-8×7B, DeepSeekMoE

MoE-SVD (Ours) Decompose→matrix share-trim Low-rank None Selective SVD, matrix share-trim Mixtral-8×7B/22B, Phi-3.5-42B, DeepSeek|QwenMoE

their performance. In addition, our MoE-SVD can general-
ize well to other MoE LLMs such as DeepSeekMoE-16B
and Mixtral-8×22B, and can be further improved in perfor-
mance by LoRA fine-tuning and efficiency with quantiza-
tion. We summarize our contribution as follows:

• To overcome limitations of existing methods, we open
new doors for MoE compression from the SVD tech-
nical route. We derive series of important findings
about decomposition collapse, statistic discrepancies,
and redundancy, providing insights into this new area.

• We introduce MoE-SVD, new structured compressor
for MoE LLMs. Our MoE-SVD enjoys benefits: high
compression ratios, clear inference acceleration, free
from specialized hardware and extra training

• We propose a selective decomposition that adaptively
applies SVD and develop low-rank matrix sharing and
trimming techniques. By sharing V-matrices across ex-
perts and trimming redundant U-matrices, we achieve
significant parameter reduction while maintaining ex-
pert diversity and model performance.

• Extensive experiments demonstrate the effectiveness
of MoE-SVD on Mixtral, Phi-3.5 and DeepSeek MoE.
Our MoE-SVD consistently outperforms other SVD-
based methods across 20% ∼ 60% compression ratios
and achieves 1.2× ∼ 1.5× inference speedups.

2. Related Work
Mixture of Experts. architecture’s ability to achieve supe-
rior scaling laws at reduced costs (Clark et al., 2022) has
led to its widespread adoption in recent Large Language
Models (LLMs) (Jiang et al., 2024; Dai et al., 2024). Recent
advancements in MoE focus on refining expert structures
(Dai et al., 2024), enhancing router designs (Zhou et al.,
2022), and developing training strategies (Liu et al., 2023).
However, MoE LLMs still face challenges, including in-
creased parameter budgets due to expert replication (He
et al., 2023), communication costs that enhance latency
(Xue et al., 2024b), and significant memory overhead issues
(Li et al., 2024g), posing challenges to their efficiency.

MoE Compression. Table 1 highlights the key differences
between our method and other compressor: (1) Rather than
LLM compressors like Wanda (Sun et al., 2023) (mostly un-
structured), we propose new MoE-specific structured com-
pression paradigms. (2) Compared to other expert pruning
methods (Lu et al., 2024; He et al., 2024) requiring fine-
tuning and drop inactive experts without acceleration, MoE-
SVD primarily exploits SVD to reduce the size of activated
experts for acceleration without extensive retraining. (3)
Our MoE-SVD enhances the SVD for large-scale MoEs
without expert merging and fine-tuning, in contrast to MC-
SMoE (Li et al., 2024g), which only addresses small-scale
MoE by first merging experts and then applying vanilla de-
composition before fine-tuning. (4) MoE-SVD performs
low-rank matrix sharing and trimming, avoiding the direct
dropping of entire experts like MoE-I2 (Yang et al., 2024)
and MoE-Compression (He et al., 2024), which prevents
drastic performance loss. (5) Our method is search-free,
avoiding the huge search overhead of in MoE-I2 (Yang et al.,
2024) and EEP (Liu et al., 2024a). (6) Other approaches
include post-training quantization (Li et al., 2024f) and
system optimization (e.g., expert offloading (Xue et al.,
2024a), parallelism (Cai et al., 2024a), and switching (Liu
et al., 2024b)). Our MoE-SVD focuses solely on expert
compression and remains orthogonal to these methods.

Singular Value Decomposition. Recently, several SVD-
based methods have been proposed for compressing LLMs
(Golub et al., 1987). FWSVD (Hsu et al., 2022) introduces
a weighted low-rank factorization, while ASVD (Yuan
et al., 2023) proposes an activation-aware SVD method
that considers the activation patterns of the model’s lay-
ers to improve compression efficiency. Meanwhile, SVD-
LLM (Wang et al., 2024) adopts truncation-aware data
whitening and layer-wise parameter update strategies to
achieve better compression ratios. In contrast to these gen-
eral SVD-based methods, our MoE-SVD is specifically de-
signed for MoE LLMs, addressing their unique challenges
(e.g., decomposition sensitivity and expert redundancy). Ad-
ditionally, while these methods typically uniformly decom-
pose every layer in LLMs, our method employs adaptive
decomposition across various expert layers in MoE LLMs.
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Figure 2: Pipeline of MoE-SVD. We first selectively decompose expert layers with SVD, dividing them into U and V
matrices. Then, we present V-matrix sharing and U-matrix trimming steps. For V-matrix sharing, we retain only a single
V-matrix Vs and share it across experts. For U-matrix trimming, we perform frequency-based top-k selection of U-matrices
and trim out unselected ones.

3. Methodology
Our MoE-SVD introduces SVD expert decomposition, se-
lective decomposition strategy, low-rank matrix sharing and
trimming to reduce model parameters while maintaining
performance. The main process of MoE-SVD is illustrated
in Figure 2. More algorithm details are in Appendix C.

3.1. SVD Expert Decomposition in MoE LLMs

Recap of MoE Formulation. MoE architectures in LLM
enhance model capacity and efficiency by using expert-
based Feed-Forward Network (FFN) layers for different
input tokens. The output y of the MoE-FFN layer for input
x is computed as:

y =

N∑
i=1

G(x)i · Ei(x), (1)

where N is the number of experts, G(x) is the gating func-
tion, The gating function G(x) typically employs a top-k
selection mechanism, where only the top-k experts are acti-
vated G′(x) = TopK(G(x), k), resulting in a sparse output.
and Ei(x) is the output of the i-th expert. Each expert Ei

is a standard FFN with two or three fully-connected layers.
Our method and other MoE compressors are focused on
compressing FFN experts, which account for the majority
of parameters and memory overhead in MoE models.

Activation-weighted SVD for Expert Decomposition. In
our SVD-based framework, we apply SVD to decompose
the weights of expert layers. To capture outliers and low-
rank features in activations, we scale the original matrix W
to activation-weighted matrix W · S before SVD, where
S is obtained via cholesky decomposition of activation
gram matrix (see more details in Appendix D.1). Con-
sider an MoE model with N experts, each fully-connected
layer represented by the activation-weighted weight matrix
Wi ∈ Rm×n, where i ∈ {1, ..., N}. We begin by applying
activation-weighted SVD to each expert matrix:

Wi = UiΣiV
T
i , (2)

where Ui ∈ Rm×m and Vi ∈ Rn×n are orthogonal matrices
containing the left and right singular vectors, respectively,

and Σi ∈ Rm×n is a diagonal matrix containing the sin-
gular values in descending order, respectively. To create
a sparse MoE structure, we first factorize each expert W
using the SVD decomposition and then trunca the top-k
singular values and their corresponding singular vectors and
finally reconstruct an approximated weight matrix:

{Ei}ki=1 = {ui · σi · vTi }ki=1, (3)

where ui and vi are the i-th columns of U and V respec-
tively, and σi is the i-th singular value. Our SVD-based
expert decomposition creates a naturally sparse expert struc-
ture, potentially reducing computational costs. The number
of experts can be easily adjusted, allowing for fine-grained
control over the MoE’s capacity and computational require-
ments, avenues for compress MoE LLMs.

3.2. Selective Decomposition Strategy

To determine the sensitivity of expert layers in the MoE to
decomposition, we employ a selective decomposition strat-
egy. This approach is based on a carefully crafted sensitivity
metric that considers both the singular value decomposition
of expert weight matrices and the activation patterns of these
experts during inference. For a layer with N experts, we nor-
malize these sensitivities using expert sampling frequency
to obtain the layer-wise sensitivity metric SL:

SL =
N∑
i=1

fi · pi · ai, (4)

where fi represents the sampling frequency of the i-th ex-
pert during router selection, pi denotes the principal rank
(number of large value components) of singular vectors
Σi = diag(σi,1, σi,2, ..., σi,d) obtained from the SVD of
the i-th expert’s weight matrix, and ai measures the pro-
portion of activation outliers of the i-th expert exceeding
the mean absolute activation value (see more details in Ap-
pendix D.1). To apply selective decomposition, we set
a threshold τ based on the desired compression ratio. Ex-
pert layer with sensitivity Si ≥ τ are preserved without
decomposition, while those below the threshold undergo
SVD decomposition. This process is repeated for each layer
in the network. This selective decomposition strategy allows
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Figure 3: Decomposed expert layers in MoE-SVD.

for a nuanced approach to MoE compression, preserving the
most important experts while reducing the computational
footprint of less critical components.

Decomposable Expert Layer Analysis. To better under-
stand our selective decomposition, we show layer decompo-
sition results for Mixtral-8×7B and Phi-3.5-MoE in Figure 3.
As the compression increases from 20% to 60%, both mod-
els exhibit a gradual increase in decomposed layers, albeit
with distinct characteristics. Mixtral-8×7B displays a more
aggressive decomposition pattern, with approximately half
of its layers decomposed at 60% compression, whereas Phi-
3.5-MoE demonstrates greater resilience, maintaining more
undecomposed layers at higher compression ratios. Notably,
both models consistently undecompose their initial and final
layers across all compression levels, suggesting the critical
nature of these layers for maintaining model performance.
In contrast, certain middle layers in both architectures show
remarkable tendencies to decomposition. Mixtral-8×7B
exhibits a block-like decomposition pattern, while Phi-3.5-
MoE showcases a more uniform distribution of decomposed
layers. These observations reveal intriguing patterns and
present insights for our selective decomposition of expert
layers under layer-wise MoE compression.

3.3. Low-rank Matrix Sharing and Trimming

Motivation: For MoE models, different expert matrices con-
tain some similarities and can be merged (Liu et al., 2024a).
As shown in Figure 1 (right), decomposed V-matrices
share certain similarities. Consider two expert matrices
W1 and W2 with SVD decompositions W1 = U1Σ1V

T
1 and

W2 = U2Σ2V
T
2 . The similarity in their output transfor-

mations can be quantified by the Frobenius inner product
of their V-matrices ⟨V1, V2⟩F = tr(V T

1 V2). For experts
trained on similar tasks, this inner product is often close to
high values, indicating high similarity in output transforma-
tions. Consequently, we can perform a more fine-grained
matrix selection and sharing, achieving a superior trade-off

between performance and the number of parameters.

V-matrix Sharing: We compress MoE by retaining only
the V-matrix with the highest router sampling frequency
and sharing this matrix across all experts. This method
significantly reduces the model’s memory footprint while
preserving crucial directional information in the feature
space. The router sampling frequency f(Vi) for each expert
i is computed based on the routing decisions made by the
gating network G(x). The shared V-matrix, denoted as Vs,
is selected as follows:

Vs = argmax
Vi

f(Vi),

f(Vi) =

∑
x∈X I[i ∈ TopK(G(x), k)]

|X |
,

(5)

where X represents the set of all input tokens, I[·] is the
indicator function, and k denotes the number of experts
selected by the top-k gating mechanism. After selecting Vs,
we update all expert matrices to use this shared V-matrix:

Ei ≈ UiΣiV
T
s , i = 1, . . . , N, (6)

The shared Vs matrix encapsulates common output space
transformations across all experts. For the expert matrix Wi

using the shared V-matrix Vs, its expected reconstruction
error is E[∥Wi − W̃i∥2F ] = E[∥Wi − UiΣiV

T
s ∥2F ]. Mini-

mizing this error is equivalent to maximizing the correlation
between Wi and UiΣiV

T
s . Given that Vs is chosen based

on the highest router sampling frequency, it represents the
most commonly used output transformation. Thus, sharing
Vs minimizes the expected reconstruction error across all
experts.

U-matrix Trimming: For the remaining U-matrices, we
employ a top-k selection strategy based on router sampling
frequency. The diversity among experts is primarily main-
tained through the unique UiΣi components. Typically, we
set k = 2 to balance parameter efficiency and expert diver-
sity. The selected U-matrices for each expert are determined
as follows:

{Ui,1, Ui,2} = TopK ({Uj | f(Vj) > f(Vi)}, k = 2) , (7)

where TopK selects the k U-matrices with the highest router
sampling frequencies among those experts more frequently
sampled than expert i. The final expert function for expert i
becomes:

Ei(x) = (Ui,1Σi,1 + Ui,2Σi,2)V
T
s x. (8)

where Σi,1 and Σi,2 are the corresponding singular value
matrices for the selected U-matrices.

Parameter Reduction: Our method achieves significant
parameter reduction compared to the original MoE model
with N ×m× n parameters. After applying our low-rank
decomposition, each expert matrix Wi is decomposed into
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Table 2: Results of MoE-SVD and MoE-SVD† (with LoRA fine-tuning) on three language modeling datasets (measured by
perplexity (↓)) and seven common sense reasoning datasets (measured by both individual and average accuracy (↑)). Ratio
means model parameter size reduction ratio. Runtime denotes runtime throughput (Tokens/sec) on a single H800 GPU.

Ratio Method Runtime WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑

Mixtral-8×7B
0% Original 87.7 3.98 12.99 6.78 0.36 0.84 0.76 0.65 0.57 0.82 0.43 0.63

20%

Wanda (2023) (2:4) 91.1 (1.04×) 4.72 18.8 8.43 0.32 0.76 0.72 0.55 0.47 0.79 0.36 0.57
SparseGPT (2023) (2:4) 93.1 (1.06×) 4.61 21.11 8.19 0.3 0.77 0.74 0.56 0.45 0.77 0.35 0.56
LoSparse (2023b) 92.9 (1.05×) 953.51 805.16 1273.12 0.2 0.27 0.49 0.28 0.26 0.53 0.20 0.32
ASVD (2023) 100.8 (1.1×) 9.44 47.29 20.30 0.25 0.71 0.66 0.48 0.40 0.73 0.35 0.51
SVD-LLM (2024) 102.6 (1.2×) 13.45 42.72 17.36 0.22 0.62 0.58 0.42 0.29 0.71 0.26 0.44
MoE-I2 (2024) 102.3 (1.2×) 18.80 80.04 23.92 0.24 0.57 0.58 0.43 0.33 0.68 0.23 0.44
MC-SMoE (2024g) 95.3 (1.09×) 1341.36 1316.52 1478.13 0.26 0.28 0.51 0.29 0.25 0.54 0.19 0.33
MoE-Compression (2024) 99.1 (1.13×) 6.12 14.67 11.61 0.3 0.73 0.70 0.54 0.46 0.73 0.33 0.54

MoE-SVD (Ours) 104.7 (1.2×) 4.86 19.42 8.98 0.33 0.79 0.74 0.56 0.49 0.78 0.37 0.58
MoE-SVD† (Ours) 104.7 (1.2×) 4.31 14.94 7.82 0.33 0.80 0.73 0.61 0.55 0.81 0.38 0.60

40%

ASVD (2023) 107.8 (1.2×) 30.57 196.02 87.74 0.18 0.41 0.58 0.34 0.22 0.59 0.22 0.36
SVD-LLM (2024) 108.2 (1.2×) 254.76 252.25 79.40 0.16 0.43 0.52 0.33 0.22 0.63 0.23 0.36

MoE-SVD 109.8 (1.3×) 6.74 27.73 12.41 0.27 0.72 0.67 0.43 0.38 0.71 0.32 0.50

50%

ASVD (2023) 120.9 (1.4×) 86.61 402.60 164.57 0.15 0.42 0.53 0.30 0.22 0.61 0.22 0.35
SVD-LLM (2024) 122.0 (1.4×) 1325.51 1856.62 439.20 0.14 0.33 0.48 0.28 0.21 0.56 0.23 0.32

MoE-SVD (Ours) 123.9 (1.4×) 9.03 42.93 16.18 0.20 0.61 0.63 0.37 0.30 0.63 0.27 0.43
MoE-SVD† (Ours) 123.9 (1.4×) 8.73 23.36 12.13 0.25 0.67 0.64 0.50 0.37 0.73 0.28 0.49

60%

ASVD (2023) 150.2 (1.7×) 12524.91 14702.02 11691.72 0.13 0.26 0.51 0.26 0.21 0.53 0.21 0.30
SVD-LLM (2024) 148.5 (1.7×) 10181.25 9284.95 10987.80 0.14 0.26 0.51 0.26 0.22 0.54 0.21 0.30

MoE-SVD (Ours) 156.1 (1.8×) 13.52 130.26 39.54 0.19 0.45 0.55 0.33 0.23 0.62 0.25 0.37

Phi-3.5-MoE
0% Original 98.2 3.48 8.43 8.22 0.40 0.77 0.76 0.68 0.56 0.79 0.38 0.62

20%

ASVD (2023) 105.1 (1.1×) 7.22 10.66 9.58 0.35 0.73 0.72 0.57 0.49 0.75 0.34 0.56
SVD-LLM (2024) 104.5 (1.1×) 8.34 14.77 12.89 0.31 0.67 0.66 0.53 0.45 0.72 0.22 0.51

MoE-SVD (Ours) 108.6 (1.1×) 4.58 10.13 9.93 0.39 0.77 0.73 0.63 0.53 0.78 0.35 0.60
MoE-SVD† (Ours) 108.6 (1.1×) 4.29 10.99 8.81 0.39 0.81 0.74 0.65 0.54 0.79 0.36 0.61

40%

ASVD (2023) 121.5 (1.3×) 14.51 22.14 21.82 0.30 0.69 0.63 0.41 0.40 0.68 0.25 0.48
SVD-LLM (2024) 122.7 (1.3×) 38.83 68.52 43.81 0.23 0.56 0.60 0.39 0.31 0.66 0.24 0.43

MoE-SVD (Ours) 124.8 (1.3×) 5.54 11.73 11.94 0.35 0.72 0.72 0.58 0.48 0.75 0.31 0.56

50%

ASVD (2023) 130.4 (1.3×) 20.58 33.53 30.26 0.23 0.62 0.62 0.36 0.32 0.66 0.24 0.44
SVD-LLM (2024) 129.6 (1.3×) 6494.87 6451.79 9348.47 0.16 0.29 0.49 0.27 0.23 0.53 0.20 0.31

MoE-SVD (Ours) 137.2 (1.4×) 6.24 13.99 14.99 0.34 0.68 0.69 0.53 0.47 0.72 0.30 0.53

60%

ASVD (2023) 138.8 (1.4×) 107.71 208.69 161.40 0.18 0.40 0.53 0.30 0.24 0.59 0.23 0.35
SVD-LLM (2024) 140.3 (1.4×) 7168.09 7101.49 7119.43 0.15 0.28 0.51 0.26 0.22 0.54 0.21 0.31

MoE-SVD (Ours) 148.7 (1.5×) 7.46 20.95 21.85 0.30 0.60 0.68 0.46 0.40 0.71 0.25 0.49

Table 3: Results under 20% compression ratio on language modeling and reasoning datasets.
Models Runtime WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑

DeepSeekMoE-16B Original 52.53 6.38 9.47 9.82 0.33 0.76 0.71 0.58 0.44 0.79 0.31 0.56
DeepSeekMoE-16B MoE-SVD 62.79 (1.21×) 6.92 10.48 11.99 0.31 0.75 0.70 0.53 0.42 0.76 0.31 0.54

Mixtral-8x22B Original 66.34 2.95 10.1 6.14 0.37 0.86 0.80 0.67 0.59 0.83 0.50 0.66
Mixtral-8x22B MoE-SVD 78.18 (1.18×) 4.03 15.02 8.73 0.37 0.84 0.79 0.61 0.54 0.81 0.44 0.63

Qwen2-57B-A14B Original 42.70 4.32 11.66 9.23 0.33 0.75 0.74 0.63 0.47 0.8 0.39 0.58
Qwen2-57B-A14B MoE-SVD 53.16 (1.25×) 5.41 13.26 11.63 0.30 0.74 0.73 0.61 0.45 0.78 0.35 0.56

UiΣi ∈ Rm×r, Σi ∈ Rr×r, and Vi ∈ Rr×n, resulting
in N × (m × r + r × n) parameters per expert. With
V-matrix sharing, we retain only one Vs ∈ Rr×n matrix
shared across all experts, reducing the parameter count by a
factor of N for the V-matrices. Furthermore, with U-matrix
selection, we typically select k = 2 U-matrices, reducing
the parameter count by a factor of N

2 for the U-matrices.
Thus, the total number of parameters in our compressed
MoE model is m× r× 2+ r×n = 2mr+ rn. Comparing
this to the original N ×m × n parameters, we achieve a
substantial reduction in the number of parameters, especially
when r ≪ min(m,n). The parameter reduction ratio is
approximately 2mr+rn

Nmn , which can be significant for LLMs
with high input and output dimensions.

4. Experiments
In this section, we first compare MoE-SVD against other
compressors on Mixtral-8×7B and Phi-3.5-MoE at differ-
ent compression ratios. Then, we conduct evaluation on
diverse MoE LLMs, inference efficiency, ablation studies
and extend MoE-SVD with quantization. All experiments
are conducted on NVIDIA H800 GPUs.

4.1. Experimental Setups

Models and Datasets. To showcase the versatility of our
MoE-SVD method, we assess its effectiveness on Mixtral
models (8×7B and 8×22B), Phi-3.5-MoE, and DeepSeek-
MoE. Mixtral variations employ 8 experts, achieving re-
markable language modeling capabilities. Phi-3.5-MoE
excels with 16×3.8 B parameters, while DeepSeek-MoE,
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Figure 4: Throughput (Tokens/sec) of Mixtral-8×7B and Phi-3.5-MoE compressed by MoE-SVD at 20%∼60% ratios on a
single H800 GPU is compared in Figures (a) & (b) for various batch sizes at sequence length = 32, and in Figures (c) & (d)
for varying sequence lengths at batch size = 64.

Figure 5: Memory usage (GB) of MoE-SVD at varying
compression ratios.

Figure 6: Perplexity of 20% compressed Mixtral-8×22B via
calibration data with varying number (a) and seeds (b) from
WikiText-2 and C4.

with 16 B parameters utilizing fine-grained experts, also ex-
hibits superior performance. We evaluate our method across
10 datasets, encompassing 3 language modeling datasets
(WikiText-2 (Merity et al., 2017), PTB (Marcus et al., 1993),
and C4 (Raffel et al., 2020)), along with 7 common sense
reasoning datasets (OpenbookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2020), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), MathQA (Amini
et al., 2019), ARC-e, and ARC-c (Clark et al., 2018)) in a
zero-shot setting using the LM-Evaluation-Harness frame-
work (Gao et al., 2023).

Implementation Details. For fair comparisons, we fol-
lowed the same settings as ASVD and SVD-LLM and used
256 random samples from WikiText-2 as calibration data.
We focus on compressing the model without retraining the
full model parameters. See Appendix D for more details.

4.2. Performance and Acceleration Results

Performance Comparisons. Results in Table 2 demon-
strate that our MoE-SVD method maintains performance
close to the original model across various compression ra-
tios, with minimal degradation in perplexity and common-
sense reasoning accuracy. For instance, at a 20% com-
pression ratio, MoE-SVD achieves comparable results to
the Original, particularly in common-sense reasoning tasks.
This highlights the robustness of our method in preserv-
ing model performance even under significant compres-
sion. Compared to other compression methods, including
Wanda, SparseGPT, MC-SMoE, and SVD-based approaches
(ASVD, SVD-LLM), MoE-SVD consistently achieves bet-
ter performance across both language modeling and reason-
ing datasets. For example, at 20% compression, MoE-SVD
outperforms SparseGPT and Wanda in both perplexity and
average accuracy. Additionally, MoE-SVD achieves a sig-
nificant improvement over ASVD and SVD-LLM in all
evaluated metrics, with lower perplexity and higher accu-
racy, particularly in challenging reasoning tasks such as
ARC-e and HellaSwag. At a 40% compression ratio, MoE-
SVD achieves 0.50 average accuracy of, significantly out-
performing SVD-LLM (0.36) and ASVD (0.36), while at
a higher 60% compression, MoE-SVD still achieves 0.37
average accuracy, maintaining a clear performance margin
compared to SVD-LLM (0.30) and ASVD (0.30). This con-
sistent superiority across varying sparsity levels highlights
the robustness and adaptability of MoE-SVD in handling
large-scale compression challenges. These results under-
score the effectiveness of our method in delivering superior

7
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Table 4: Performance of different decomposition settings on Mixtral-8×7B.

Method WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑

Original 3.98 12.99 6.78 0.36 0.84 0.76 0.65 0.57 0.82 0.43 0.63

SVD (Uniform) 18.80 80.04 23.92 0.24 0.57 0.58 0.43 0.33 0.68 0.23 0.44
SVD (OWL) 16.57 62.13 30.82 0.26 0.61 0.64 0.45 0.32 0.68 0.29 0.46
SVD (Our Selective) 8.67 26.72 12.06 0.24 0.67 0.66 0.48 0.35 0.72 0.28 0.49
MoE-SVD 4.86 19.42 8.98 0.33 0.79 0.74 0.56 0.49 0.78 0.37 0.58

Table 5: Perplexity (↓) of our MoE-SVD with various selec-
tive metrics for Mixtral-8×7B on WikiText-2.

Metrics fi pi ai fi · pi fi · ai fi · pi · ai
Perplexity 12.65 9.85 10.23 9.27 9.31 8.67

Table 6: Perplexity (↓) of our MoE-SVD with various num-
bers of trimmed matrices for Mixtral-8×7B on WikiText-2.

U trimming 0 1 2 3 4 5 6 7

Perplexity 4.86 5.21 5.98 6.47 7.11 8.67 9.81 10.25

compression performance compared to existing approaches.
Furthermore, by leveraging LoRA fine-tuning, MoE-SVD†
further improves upon the already strong results of MoE-
SVD. At a 20% compression ratio, MoE-SVD† achieves an
average accuracy of 0.60, a notable gain over MoE-SVD’s
0.58, while also reducing perplexity across language model-
ing datasets. This enhancement demonstrates the potential
of fine-tuning techniques to refine and optimize compressed
models, further bridging the gap with the original model.

Generalizability of Across Diverse MoE Architectures.
To demonstrate the broad applicability of MoE-SVD, we
evaluate its performance on two distinct MoE models,
DeepSeek-MoE-16B and Mixtral-8×22B, under a 20% com-
pression ratio, as shown in Table 3. The results indicate
that compressed models retain competitive performance,
with MoE-SVD achieving an 0.54 average accuracy on
DeepSeek-MoE-16B and 0.63 on Mixtral-8×22B, compared
to 0.56 and 0.66 for their respective original versions. These
results highlight the ability of MoE-SVD to preserve a sub-
stantial portion of the original model’s reasoning capabilities
across diverse datasets and architectures. Similarly, for the
Qwen2-57B-A14B model, MoE-SVD achieves 0.56 aver-
age accuracy, closely matching the original model. This
demonstrates the robustness and generalizability of MoE-
SVD across varying MoE architectures, enabling efficient
compression without significant loss in performance.

Inference Speed Acceleration and Memory Reduction.
Figure 4 shows significant inference speed up for Phi-3.5-
MoE and Mixtral-8×7B models as compression ratios in-
crease, with Phi-3.5-MoE achieving up to 1.52× acceleration
at 60% compression and Mixtral-8×7B reaching 1.53× at
the same compression level, demonstrating consistent gains
across batch sizes and sequence lengths. Meanwhile, Fig-

Table 7: Performance of Mixtral-8×7B with MoE-SVD un-
der 20% compression ratios using calibration data randomly
sampled from WikiText-2 (by default in our paper) and C4.

Calibration WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑

WikiText-2 4.86 19.42 8.98 0.33 0.79 0.74 0.56 0.49 0.78 0.37 0.58
C4 4.91 19.38 8.70 0.32 0.79 0.73 0.56 0.50 0.79 0.37 0.58

Table 8: Perplexity (↓) of Mixtral 8x7B and Phi-3.5-MoE
compressed with GPTQ and MoE-SVD on WikiText-2.

Mixtral 8x7B GPTQ (4bit) GPTQ (3bit) MoE-SVD (4bit) MoE-SVD (3bit)
Memory 44.5 33.4 35.6 26.7
Perplexity 4.35 6.22 6.93 11.53

Phi-3.5-MoE GPTQ (4bit) GPTQ (3bit) MoE-SVD (4bit) MoE-SVD (3bit)
Memory 39.0 29.3 27.3 20.5
Perplexity 4.59 6.71 6.64 10.28

ure 9 highlights MoE-SVD’s memory reduction capabilities,
with Phi-3.5-MoE’s weight memory decreasing to 67.78
GB (43.45% of original) and Mixtral-8×7B’s to 70.31 GB
(40.41% of original) at 60% compression, enabling deploy-
ment on memory-limited devices and broadening real-world
applicability. These results underscore MoE-SVD’s dual
benefits of faster inference and reduced memory usage, mak-
ing MoE LLMs more efficient and accessible.

4.3. Ablation study

Ablation of Selective Decomposition. Table 4 delves into
the performance of different selective decomposition meth-
ods. our non-uniform decomposition metric outperforms
both uniform SVD and the OWL-based non-uniform SVD
method for compressing MoE. Table 5 our metrics can ob-
tain better performance than vanilla ai, ri and fi, respec-
tively, demonstrating the importance of ensemble designs.
In addition, our matrix sharing and trimming (MoE-SVD
in Table 4) can further reduce the parameter redundancy
allowing us to retain more sensitive expert layers, which
leads to significant performance gains based on our selective
decomposition.

Varying Numbers for Low-rank Matrix Trimming. Our
U-matrix trimming serves the same purpose of performance-
efficiency tradeoff as other expert pruning. Note that our
trimmed U-matrix is derived from decomposable layer,
which intrinsically contains more parameter redundancy
and contributes slightly smaller to overall performance com-
pared to the other layers. Ablation in Table 6 shows that
retaining the Top-2 U-matrix with the highest frequency and
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trimming the rest 6 U-matrices results in an ideal trade-off
and greatly reduces the number of parameters.

Impact of Calibration Data. Table 7 examines the impact
of different calibration data sources and results indicate that
the choice between WikiText-2 and C4 has minimal impact
on the overall performance across various tasks. Figure 6
explores the effects of varying the number of calibration
samples and random seed. Results indicate that increasing
the number of data samples generally leads to a decrease
in perplexity, suggesting improved performance with more
samples. Additionally, the choice of random seed shows
minimal effect on perplexity across both datasets, demon-
strating that our MoE-SVD is relatively robust to sampling
variability.

Expanding MoE-SVD via Quantization. The results in
Table 8 demonstrate the results of combining MoE-SVD
with GPTQ (Frantar et al., 2022) to achieve significant mem-
ory savings. Comparing 4-bit and 3-bit quantization levels,
our MoE-SVD (4-bit) proves to be on par with direct 3-bit
quantization (e.g., GPTQ (3bit)) in terms of both memory ef-
ficiency and performance. These findings underscore the ef-
fectiveness of the quantization method when combined with
MoE-SVD, showcasing its potential for creating memory-
efficient models without compromising performance quality.

5. Conclusion
In this paper, we introduce MoE-SVD, a novel SVD-based
compression framework tailored for MoE LLMs, effectively
streamlining parameter expenses, and memory usage while
upholding performance. To combat decomposition collapse
stemming from matrix redundancy, we propose innovative
solutions, including the selective decomposition strategy
and a low-rank matrix sharing and trimming mechanism.
The former utilizes a sensitivity metric for automated iden-
tification of decomposable layers, while the latter harmo-
nizes parameter efficiency and expert specialization through
V-matrix sharing and U-matrix trimming. Our extensive as-
sessments on Mixtral-8×7B and Phi-3.5-MoE models show-
case the method’s superiority over existing compressors in
preserving model capabilities across diverse tasks. These
promising results, encompassing preserved performance,
accelerated inference speed, and substantial memory reduc-
tion, position MoE-SVD as a significant stride forward in
making MoE LLMs more accessible and efficient for real-
world applications, paving the way for widespread adoption
and deployment of these powerful models.

Limitations: As a common phenomenon, SVD-based meth-
ods (e.g., ASVD and SVD-LLM) add communication over-
head during tensor parallelism. Nevertheless, our substantial
reduction in computation time ultimately optimizes the total
computation time, as detailed in the Appendix B.4.
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Appendix
Our appendix provides additional information and in-depth analysis to supplement the main content of the paper on
MoE-SVD. It is organized into two main sections: further discussions and implementation details. The discussion section
covers innovation, advantages and implications, disadvantages, and social implications of our proposed method. The
implementation details section includes an algorithm table and specific implementation considerations.

A. Further Discussions
A.1. Ethics Statement

We focus solely on developing efficient techniques for Large Language Models (LLMs), utilizing publicly available datasets
and models. Our research is not designed to address human ethics or privacy concerns directly. Instead, we concentrate on
improving the computational efficiency and deployment capabilities of existing MoE LLMs, which may indirectly contribute
to broader accessibility and utilization of these powerful models.

A.2. Reproducibility

We affirm the solid reproducibility of our results and provide specific code implementations in the appendix. Our main
experiments represent average outcomes from multiple repetitions, ensuring reliability. MoE LLMs, being very large
models, exhibit relatively small variances in experimental results and evaluations. To further demonstrate the robustness and
repeatability of our method, we present detailed results for different initial seeds, showcasing consistent performance across
various conditions.

A.3. Detailed Comparison with Other Work

As shown in Table 1, our MoE-SVD method focuses on large-scale MoE architectures and avoids fine-tuning while
employing advanced strategies like activation-weighted SVD and selective decomposition. Other methods either target
dense model (Dong et al., 2024; Li et al., 2024c;h), smaller architectures (Li et al., 2024d;e), require retraining, or address
different aspects of model compression (e.g., quantization (Dong et al., 2025b; 2023b), AutoML (Dong et al., 2025a;
2023a), distillation (Li et al., 2024a;b; 2023a; Li & Jin, 2022; Li, 2022)). In addition, we conducted comparisons with these
methods where feasible and included the results in the revised manuscript. However, our primary comparisons are with
SVD-based methods (ASVD, and SVD-LLM), which are directly applicable to MoE architectures and closely aligned with
our methodology. These comparisons demonstrate the clear advantages of our approach. Finally, we extra individually
discuss and contrast other methods primarily target different architectures, employ distinct strategies, or address challenges
unrelated to those in our study:

• STUN (Lee et al., 2024) lacks available code or implementation details, as it was recently published on arXiv. Without
the ability to replicate its results, it remains inaccessible for direct comparison.

• Wanda and SparseGPT are sparsity-based pruning methods designed for dense architectures, not Mixture-of-Experts
(MoE) models. These methods do not utilize Singular Value Decomposition (SVD) or address the unique challenges of
large-scale MoE architectures, such as expert diversity and weight redundancy.

• LoSparse and MC-MoE (Huang et al., 2024) focus on small-scale models, such as BERT-base (110M parameters)
and Switch-base-32 (2.0B parameters), whereas our method is designed for large-scale MoE models (16B–57B
parameters). Additionally, these methods rely on fine-tuning and knowledge distillation, whereas our approach avoids
such computationally expensive steps.

• MoE-Compression (He et al., 2024) employs sparsity and layer-dropping techniques, which are fundamentally
different from our SVD-based strategy. This framework focuses on compressing small to medium-sized models,
making it less relevant to our focus on large-scale MoE architectures.

A.4. Detailed Comparison with Fine-Tuning Compression Methods

We also compare our method with fine-tuning-based approaches like MC-SMoE. Table 9 highlights the key differences
between our method and MC-SMoE.
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Table 9: Comparison of MoE-SVD with MC-SMoE (Li et al., 2024g).

Method Comparison Method Pipeline Decomposition Training Advanced Strategy for MoE LLMs Evaluated Models

MC-SMoE (Li et al., 2024g) Model merge methods Merge, then compress Low-rank + sparse matrix Needs fine-tuning Frequency-based merge T5-base (220M), Switch-base-32 (2.0B)
MoE-SVD (Ours) Model SVD methods Decompose, then trim Low-rank matrix No fine-tuning required Activation-weighted SVD, selective decomposition, matrix sharing Mixtral-8×7B/22B, Phi-3.5-MoE (41.9B), DeepSeekMoE (16.4B)

Figure 8: Sensitivity scores of Mixtral-8×7B and Phi-3.5-MoE accrossing layers

Our approach differs significantly from MC-SMoE in terms of methodology and application. While MC-SMoE relies on
merging experts and fine-tuning, MoE-SVD employs selective decomposition tailored for large-scale MoE architectures
without requiring fine-tuning. As shown in Table 9, our method achieves superior performance and scalability, handling
models with up to 57B parameters.

A.5. Selective Decomposition Results

We detail the results of our selective decomposition strategy in Table 10. These results show clear trends: as the compression
ratio increases, more layers are selectively decomposed. Middle layers are more likely to be decomposed, while the first and
last layers tend to be retained, aligning with empirical observations and sensitivity analyses.

Table 10: Decomposed layers of our selective decomposition strategy by varying compression ratios.
Mixtral-8×7B Phi3.5 MoE

Ratios Selected Decomposition Expert Layers Ratios Selected Decomposition Expert Layers

20 [3,5,6,7,9,12,23,24,25], 20 [11,12,15,20,21,23,24,25],
30 [3,5,6,7,9,12,13,22,23,24,25,26], 30 [11,12,15,20,21,23,24,25,27,28],
40 [3,5,6,7,9,10,12,13,21,22,23,24,25,26], 40 [10,11,12,15,16,18,20,21,23,24,25,26,27,28],
50 [3,5,6,7,9,10,12,13,14,15,16,20,21,22,23,24,25,26], 50 [5,6,10,11,12,13,15,16,18,20,21,23,24,25,26,27,28],
60 [2,3,5,6,7,9,10,12,13,14,15,16,17,20,21,22,23,24,25,26,27] 60 [5,6,10,11,12,13,15,16,18,19,20,21,23,24,25,26,27,28,29]

B. More results
B.1. More Results on Per-layer Decomposition and Compression Ratios

Figure 7: Perplexity of Mixtral-8×7B via 20% per-
layer SVD decomposition on WikiText-2.

Our extended experimental investigations provide deeper insights
into the efficacy and behavior of the MoE-SVD compression
technique. Figure 8 presents a detailed distribution of sensitivity
scores across layers for both Mixtral-8×7B and Phi-3.5-MoE mod-
els. This analysis elucidates the varying impact of compression
on different layers within the network architecture. Furthermore,
we conduct an in-depth examination of perplexity results for each
decomposed block of Mixtral-8×7B at 20% compression, as illus-
trated in Figure 7. These results offer valuable insights into the
relationship between compression ratios and model performance.
To further optimize our layer selection process, we develop and
implement a sophisticated heatmap-based approach, visualized in
Figure 10. This method provides a more intuitive and data-driven
way to identify layers most suitable for compression, enhancing the overall efficiency and effectiveness of our MoE-SVD
technique.

B.2. More Comparison with Structured Compression Methods

In Table 2, we compare our MoE-SVD against several structured compression methods applied to Mixtral-8×7B, as well
as methods specifically targeting expert layer compression (Li et al., 2024g; He et al., 2024). Our MoE-SVD achieves a

14



Structured Mixture-of-Experts LLMs Compression via Singular Value Decomposition

Table 11: Metrics (model size, TFLOPs, runtime) of MoE-SVD. Runtime denotes runtime throughput (Tokens/sec) on a
single H800 GPU.

Mixtral-8×7B Dense 20% 30% 40% 50% 60%

Model-size 46.7B 37.1B 32.2B 28.3B 23B 17.6B
TFLOPs 5.27E+14 4.92E+14 4.40E+14 4.26E+14 3.97E+14 3.67E+14
Runtime 87.73 104.66 106.03 108.83 123.88 156.1

Phi-3.5-MoE Dense 20% 30% 40% 50% 60%

Model-size 41.9B 33.2B 29B 25.2B 20.6B 16.4B
TFLOPs 2.72E+14 2.46E+14 2.27E+14 2.00E+14 1.82E+14 1.71E+14
Runtime 98.2 108.63 114.8 124.79 137.17 148.7

DeepSeekMoE Dense 20% 30% 40% 50% 60%
Model-size 6.4B 13.2B 11.4B 9.7B 8B 6.4B
TFLOPs 1.10E+14 1.02E+14 9.88E+13 9.29E+13 9.25E+13 8.82E+13
Runtime 52.53 62.79 94.71 118.93 119.81 128.71

Table 12: Significance test for three repeated experiments of Mixtral-8×7B and Phi-3.5-MoE compressed by MoE-SVD
under 20% compression ratios.

Mixtral-8×7B Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA

MoE-SVD (512) 0.32±0.0199 0.78±0.0088 0.73±0.0129 0.57±0.0050 0.48±0.0146 0.79±0.0096 0.37±0.0087
MoE-SVD (512) +LoRA 0.33±0.0205 0.80±0.0086 0.73±0.0128 0.61±0.0049 0.55±0.0145 0.81±0.0095 0.38±0.0084

Phi-3.5-MoE Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA

MoE-SVD (512) 0.38±0.0215 0.76±0.0090 0.72±0.0127 0.63±0.0049 0.53±0.0146 0.77±0.0099 0.35±0.0081
MoE-SVD (512) +LoRA 0.39±0.0213 0.81±0.0080 0.74±0.0123 0.65±0.0041 0.54±0.0142 0.79±0.0095 0.36±0.0084

runtime speedup of 1.2× while maintaining performance across various benchmarks. Specifically, MoE-SVD records lower
perplexities on language modeling tasks such as WikiText-2 (4.44) and PTB (15.21) compared to Wanda (4.72 and 18.8)
and SparseGPT (4.61 and 21.11). On downstream tasks, our method attains the highest average score of 0.58, outperforming
Unified-MoE-Compress (He et al., 2024)’s 0.54 and significantly surpassing LoSparse (Li et al., 2023c) and MC-SMoE (Li
et al., 2024g), which exhibit substantial performance drops. These results highlight that MoE-SVD not only accelerates
inference but also preserves or improves accuracy relative to other methods.

B.3. More Results on Real-time and Significance test

In Tables 11 and 12, we present the experimental results of our MoE-SVD method applied to Mixtral-8×7B and Phi-3.5-MoE
models at 20% ratios. Our approach achieves substantial reductions in model size and computational overhead while
maintaining competitive performance. Specifically, MoE-SVD reduces the model size of Mixtral-8×7B from 46.7B to 37.1B
and improves runtime throughput from 87.73 to 104.66 Tokens/Sec. The significance tests in Table 12 indicate that these
improvements are statistically meaningful across multiple runs.

B.4. Detailed Tensor Parallelism and Potential Communication Overhead

Our MoE-SVD method significantly reduces computation time for weight matrices through low-rank decomposition,
achieving a 1.2x–1.5x speedup during inference. These results outperform existing structured compression methods on an
algorithmic level, confirming the effectiveness of our approach. When combined with hardware optimization techniques
such as tensor parallelism, all low-rank decomposition methods, including ours, MC-SMoE [1], ASVD, and SVD-LLM,
inherently introduce communication overhead. This trade-off is a common phenomenon for such techniques in tensor-
parallel scenarios. However, the total optimization between computation time and communication time depends on specific
hardware configurations.

Our SVD-MoE framework optimizes the trade-off between computation and communication by leveraging low-rank
matrix decomposition. The expert weight matrix W ∈ RH×H , where H = 4096, is decomposed into U ∈ RH×r and
V⊤ ∈ Rr×H , with the reduced rank r = 1024 representing 25% of the hidden dimension (r = H/4). For input activations
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X ∈ RB×H with batch size B = 128, the matrix multiplication Y = XW is replaced by a two-stage process, Y = XUV⊤,
introducing an intermediate activation Z = XU ∈ RB×r.

The computational efficiency is evident in the following metrics. The original computation requires:

Computationsbefore = B ×H2 = 128× 40962 = 2.15× 1011 operations.

After decomposition, the computation is reduced to:

Computationsafter = 2×B ×H × r = 2× 128× 4096× 1024 = 1.07× 1011 operations.

This results in a 50% reduction in computational cost. However, the decomposition increases communication volume from
B ×H = 128× 4096 = 524, 288 elements to B × (r +H) = 128× (1024 + 4096) = 655, 360 elements, representing a
25% increase.

To analyze this trade-off, we evaluate performance on NVIDIA A100 GPUs, which feature 600 GB/s NVLink bandwidth
and a 19.5 TFLOPS peak performance (FP32). Communication time is calculated as:

Communication Time =
Total Data (bytes)

Bandwidth (bytes/s)
.

The communication time increases from 3.5 × 10−6 seconds to 4.37 × 10−6 seconds. Meanwhile, computation time
decreases from:

Computationsbefore

19.5× 1012
≈ 11× 10−3 seconds,

to:
Computationsafter

19.5× 1012
≈ 5.5× 10−3 seconds.

The total processing time improves from 11.0035× 10−3 seconds to 5.50437× 10−3 seconds, yielding a net optimization
of 5.49913× 10−3 seconds.

The marginal increase in communication overhead:

∆Communication Time = 0.87× 10−6 seconds,

is negligible compared to the substantial reduction in computation time:

∆Computation Time = 5.5× 10−3 seconds.

This demonstrates that the SVD-MoE architecture effectively navigates the trade-off between computational efficiency and
communication overhead. The high-bandwidth infrastructure ensures that increased communication does not negate the
performance gains achieved through decomposition.

We considered conducting additional experiments to further validate these findings. However, performing such experiments
was infeasible within the rebuttal period due to the limitations of PyTorch’s tensor parallelism, which only supports official
models. Adapting tensor parallelism for non-official models like ours would require substantial modifications to the library.
Nonetheless, our analysis strongly suggests that the computational benefits of SVD-MoE outweigh the communication costs.
We plan to explore these aspects in future work to further optimize the performance of decomposed MoE architectures.

C. Pseudocode
In our experimental implementation, we present a detailed algorithmic procedure for compressing MoE-based large language
models using the proposed MoE-SVD method. Algorithm 4 outlines the main steps of this approach. The process begins
by collecting scaling matrices through forward hooks during inference, as shown in Algorithm 1 (Step 1). This step is
crucial for capturing activation patterns and computing the sensitivity metric for each expert. Subsequently, we perform
singular value decomposition (SVD) on the scaled weight matrices, followed by truncation for effective compression, as
detailed in Algorithm 2 (Step 2). Our method introduces a V-matrix sharing mechanism, where the most frequently used
V-matrix is selected and shared among all experts, as described in Algorithm 3 (Step 3). Additionally, we employ U-matrix
trimming by retaining the top-k U-matrices based on expert sampling frequencies to refine the expert functions (Step 4).
To ensure numerical stability, we apply the adjustment function provided in Algorithm 5, which modifies matrices to be
positive definite when necessary. This comprehensive approach enables significant model compression while maintaining
performance, effectively addressing the need for efficient large-scale language models.
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D. Implementation Details
MoE-SVD optimizes MoE models by selectively decomposing less critical experts to reduce computational complexity
while maintaining performance. It consists of two main phases: computing a sensitivity metric SL for each expert layer
during calibration data inference, and decomposing experts.

D.1. Calculation of Sensitivity Score

During calibration data inference, both the sensitivity metric SL =
∑N

i=1 fi · pi · ai and the activation matrices for each
expert i are collected. The sensitivity metric integrates utilization frequency fi, principal Rank pi, and activation outliers ai,
where each component is described in detail below:

Sampling Frequency (fi): The variable fi represents the utilization frequency of the i-th expert, quantifying how often this
expert is selected by the router during inference. It is calculated over a calibration dataset X as:

fi =

∑
x∈X I[i ∈ TopK(G(x), k)]

|X |
, (9)

where G(x) is the output of the gating network for input x, TopK(G(x), k) returns the indices of the top k selected experts,
I[·] is the indicator function, and |X | denotes the total number of samples in the dataset. This metric reflects the relative
importance of each expert based on its selection frequency.

Principal Rank (pi): The variable pi denotes the principal rank of the i-th expert, which is the number of dominant singular
values in the diagonal matrix Σi obtained from the SVD of the expert’s weight matrix Wi. pi is defined as the number of
singular values in Σi that exceed a given threshold, effectively capturing the dimensionality of the weight matrix’s significant
components. This rank reflects the structural complexity of the expert’s weight representation, with higher values of pi
indicating more complex and information-rich weights.

Activation Outliers (ai): The variable ai measures the proportion of activations in the i-th expert that exceed a certain
threshold relative to the mean absolute activation value. For a set of activations Ai in the i-th expert, ai is computed as:

ai =

∑
a∈Ai

I(|a| > τ ·Mean(|Ai|))
|Ai|

, (10)

where |Ai| denotes the total number of activations for the i-th expert, Mean(|Ai|) is the mean absolute value of these
activations, and τ is a user-defined threshold. This metric highlights the presence of outlier activations indicative of the
expert’s contribution to the model’s capacity. The overall sensitivity metric SL aggregates these factors across all N experts
in a layer, providing a comprehensive measure of the layer’s importance.

D.2. Decomposition Process of Expert Matrix

Following ASVD (Yuan et al., 2023) and SVD-LLM (Wang et al., 2024), our framework employs an activation-weighted
SVD that enhances the vanilla SVD by incorporating activation statistics to improve decomposition accuracy. With activation
matrix X and original weight Woriginal, we compute the activation-weighted matrix by scaling the original weight matrix
based on the activation statistics:

Waw = Woriginal · S, (11)

where Waw ∈ Rm×n represents the activation-weighted matrix and matrix S is obtained through cholesky decomposition of
activation gram matrix XXT . We then perform SVD on Waw and final compressed weight matrix is obtained by truncating
the smallest singular values:

Waw = U · Trunc(Σ) · V T · S−1, (12)

This activation-weighted approach effectively mitigates reconstruction loss from outliers during matrix decomposition while
maintaining the essential characteristics of the original weight distribution.

D.3. Model-Specific Configurations

In our experimental realization, we develop tailored post-decomposition strategies for various large language models, each
with unique architectures. For Mixtral-8×7B, which employs 8 experts per layer, we implement a novel approach of sharing
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Figure 9: Retained parameters calculation
for Mixtral-8×22B.

Figure 10: Retained parameters calculation
for Phi-3.5-MoE.

V components (v1, v2, v3) from the most frequently activated expert while retaining U components (u1, u2, u3) from the
top two most frequent experts. We extend this methodology to Phi-3.5-MoE, featuring 16 experts per layer, by broadening
the retention scope. In this instance, we share V components from the most frequently selected expert and preserve U
components from the top four most frequent experts. For the more complex Deepseek 16B, which utilizes 64 experts per
block, we innovate further by partitioning the experts into 8 distinct groups. Within each group, we share the most frequent
V component and strategically trim the 6 lowest frequency U components. This carefully crafted selective retention and
sharing approach enables us to maintain model performance while achieving substantial reductions in both parameter count
and computational requirements.

D.4. Computational Efficiency

We rigorously assess the computational efficiency of our LLM compression techniques, recognizing its paramount importance
for practical deployment scenarios. Our MoE-SVD compression methodology comprises two distinct phases: activation data
collection and SVD decomposition with expert trimming. Through extensive experimentation on the Phi 3.5 MoE model, we
meticulously quantify time requirements for various layer counts. Our findings reveal that single-layer processing consumes
266 seconds for activation collection and 107 seconds for SVD and trimming. These durations exhibit a non-linear increase,
reaching 489 and 209 seconds for two layers, and 689 and 320 seconds for three layers, respectively. In a comprehensive
20% layer compression test, we observe a total time requirement of 44 minutes, with 30 minutes allocated to data collection
and 14 minutes to SVD and trimming. These results provide crucial insights into the scalability and efficiency of our
approach across different model configurations.

D.5. Scalability Analysis

Our in-depth scalability analysis unveils intriguing patterns in the computational behavior of our compression technique. The
activation collection phase demonstrates near-linear time growth with respect to layer count, indicating limited parallelization
potential due to the inherent sequential nature of data propagation. However, we emphasize that this collection process
is a one-time operation per model, with the resulting data being storable and reusable for various compression ratios.
In contrast, the SVD and trimming phase exhibits promising sub-linear scaling, suggesting enhanced opportunities for
parallelization. While our current implementation relies on sequential Python loops, we identify significant potential for
efficiency improvements through parallel processing of experts across layers. This aligns seamlessly with the independent
operation of experts in different layers of MoE models, indicating promising scalability prospects for MoE-SVD, particularly
in the computationally intensive SVD and trimming phase when applied to large-scale models.

D.6. Potential Parallelization Strategies

To further optimize our approach, we explore a range of potential parallelization strategies. We consider leveraging Python’s
multiprocessing modules and GPU acceleration frameworks such as PyTorch or TensorFlow to exploit parallel computing
capabilities. For models exceeding 100B parameters, we propose the utilization of distributed computing frameworks like
Dask or Ray to efficiently scale computation across multiple machines. We hypothesize that this approach could potentially
reduce SVD phase time complexity from O(mn2) to near-linear relative to processor count, with the potential to scale with
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the maximum expert count per layer rather than the total layer count. However, we acknowledge that the effectiveness
of these strategies may vary based on available computational resources, inter-process communication overhead, and the
challenges of expert load balancing in distributed environments. In addressing the research challenges associated with
our proposed parallelization strategies, we encounter several non-trivial technical hurdles. These include the need to
fundamentally redesign algorithms for efficient concurrent processing, develop robust mechanisms for managing complex
data dependencies, and optimize resource utilization across heterogeneous computing environments. We emphasize the
critical importance of conducting comprehensive empirical studies to quantify potential performance improvements across a
diverse range of model sizes and hardware configurations. While we anticipate that parallel processing may significantly
enhance MoE-SVD’s scalability for large language models, we maintain a cautious stance regarding its effectiveness when
combined with our existing matrix sharing and trimming optimizations. We assert that rigorous experimentation and
thorough analysis are essential to verify these potential benefits and to fully understand the implications of our proposed
parallelization strategies in real-world, large-scale language model compression scenarios.

Algorithm 1 PyTorch code for sensitivity metric of MoE-SVD.
import torch
import torch.nn as nn

def compute_layer_sensitivity(experts_weights, activations, gating_outputs, calibration_data, top_k=2,
tau=2.0):

"""
Compute layer-wise sensitivity metric S_L for MoE compression

Args:
experts_weights (list of torch.Tensor): Weight matrices for each expert
activations (list of torch.Tensor): Activation values for each expert
gating_outputs (torch.Tensor): Router outputs for calibration data
calibration_data (torch.Tensor): Calibration dataset
top_k (int): Number of experts to select per token
tau (float): Threshold for activation outliers

Returns:
float: Layer sensitivity score S_L

"""
num_experts = len(experts_weights)
device = experts_weights[0].device

# Compute sampling frequency (f_i)
top_k_indices = torch.topk(gating_outputs, top_k, dim=-1).indices
expert_counts = torch.zeros(num_experts, device=device)
for indices in top_k_indices:

expert_counts[indices] += 1
f_i = expert_counts / len(calibration_data)

# Compute principal rank (r_i) using SVD
r_i = torch.zeros(num_experts, device=device)
for i, weight in enumerate(experts_weights):

U, S, V = torch.linalg.svd(weight)
# Count singular values above threshold
threshold = torch.max(S) * 1e-2 # Example threshold
r_i[i] = torch.sum(S > threshold)

# Compute activation outliers (a_i)
a_i = torch.zeros(num_experts, device=device)
for i, activation in enumerate(activations):

mean_abs_act = torch.mean(torch.abs(activation))
outliers = torch.sum(torch.abs(activation) > tau * mean_abs_act)
a_i[i] = outliers / activation.numel()

# Compute final sensitivity metric S_L
S_L = torch.sum(f_i * r_i * a_i)

return S_L
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Algorithm 2 PyTorch code for SVD Expert Decomposition of MoE-SVD.
class MoESVDCompression:

def __init__(self, truncate_k=None, top_k_experts=2):
"""
Initialize Activation-Weighted SVD with Matrix Sharing and Trimming

Args:
truncate_k (int): Number of singular values to keep
top_k_experts (int): Number of top experts to select for U-matrix trimming

"""
self.truncate_k = truncate_k
self.top_k_experts = top_k_experts

def compute_activation_weights(self, X):
"""
Compute activation-weighted scaling matrix S using Cholesky decomposition

Args:
X (torch.Tensor): Activation matrix [batch_size,feature_dim]
torch.mm(X, X.t()) is Cumulative activation matrix, representing the sum of processed

activation data.
"""
# Compute Gram matrix
gram = torch.mm(X, X.t())

# Cholesky decomposition
S = torch.linalg.cholesky(gram)
return S

def decompose_expert(self, W_original, X):
"""
Perform activation-weighted SVD on single expert

Args:
W_original (torch.Tensor): Original weight matrix
X (torch.Tensor): Activation matrix

"""
# Compute activation-weighted matrix
S = self.compute_activation_weights(X)
W_aw = torch.mm(W_original, S)

# Perform SVD
U, sigma, V = torch.linalg.svd(W_aw, full_matrices=False)

# Truncate if specified
if self.truncate_k is not None:

U = U[:, :self.truncate_k]
sigma = sigma[:self.truncate_k]
V = V[:self.truncate_k, :]

return U, torch.diag(sigma), V, S
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Algorithm 3 PyTorch code for Matrix Sharing & Trimming of MoE-SVD
class MoESVDCompression:

def __init__(self, truncate_k=None, top_k_experts=2):
"""
Initialize Activation-Weighted SVD with Matrix Sharing and Trimming

Args:
truncate_k (int): Number of singular values to keep
top_k_experts (int): Number of top experts to select for U-matrix trimming

"""
self.truncate_k = truncate_k
self.top_k_experts = top_k_experts

def __init__(self, truncate_k=None, top_k_experts=2):
"""
Initialize Activation-Weighted SVD with Matrix Sharing and Trimming

Args:
truncate_k (int): Number of singular values to keep
top_k_experts (int): Number of top experts to select for U-matrix trimming

"""
self.truncate_k = truncate_k
self.top_k_experts = top_k_experts

def compress_moe(self, expert_weights, activations, routing_frequencies):
"""
Compress MoE using V-matrix sharing and U-matrix trimming

Args:
expert_weights (list): List of expert weight matrices
activations (list): List of activation matrices for each expert
routing_frequencies (torch.Tensor): Expert selection frequencies

"""
num_experts = len(expert_weights)
compressed_experts = []

# Decompose all experts
decomposed = []
for i in range(num_experts):

U, Sigma, V, S = self.decompose_expert(expert_weights[i], activations[i])
decomposed.append((U, Sigma, V, S))

# Select shared V-matrix based on highest routing frequency
max_freq_idx = torch.argmax(routing_frequencies)
V_shared = decomposed[max_freq_idx][2]

# Sort experts by routing frequency for U-matrix trimming
sorted_indices = torch.argsort(routing_frequencies, descending=True)

# Perform U-matrix trimming and construct compressed experts
for i in range(num_experts):

# Find top-k U-matrices from more frequently used experts
more_frequent = [j for j in sorted_indices if routing_frequencies[j] > routing_frequencies[i

]]
top_k_indices = more_frequent[:self.top_k_experts]

if len(top_k_indices) < self.top_k_experts:
# If not enough more frequent experts, use own U-matrix
top_k_indices = top_k_indices + [i]

# Combine selected U-matrices and corresponding Sigma matrices
U_combined = torch.zeros_like(decomposed[i][0])
Sigma_combined = torch.zeros_like(decomposed[i][1])

for idx, expert_idx in enumerate(top_k_indices[:self.top_k_experts]):
U_combined += decomposed[expert_idx][0]
Sigma_combined += decomposed[expert_idx][1]

# Reconstruct compressed expert
W_compressed = torch.mm(torch.mm(U_combined, Sigma_combined),

torch.mm(V_shared, torch.inverse(decomposed[i][3])))
compressed_experts.append(W_compressed)

return compressed_experts
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Algorithm 4 SVD-MOE: Expert Decomposition, V-Matrix Sharing, and U-Matrix Trimming
Input: model: Language model, data: Calibration data, device: Device, layers: Selected layers, config: Expert configuration
Output: model_compressed: Compressed model

{Step 1: Calibration Processing}

for layer ℓ in layers do
for expert i in ℓ do

fi ← i∈TopK(G(x),K)
|X | ;

{Update activation matrix}
Si ← Si +AAT ;
U,Σ, V T ← SVD(experti);
ri ← Rank(Σ);
{Update weight outlier}
W i ← mean(experti.W );
ai ← +#{|A|>αW i}

A ;
experti.SL ← experti.SL + firiai;

{Step 2: Decompose Experts}

for layer ℓ in layers do
for expert i in ℓ do

if experti.SL < τ then
if Si is not positive definite then

Adjust Si

Ws ← experti.W × Si;
U,Σ, V T ← SVD(Ws);
Σtrunc ← Truncate(Σ);
experti.U ← UΣtrunc;
experti.V ← V T ;

{Step 3: V-Matrix Sharing}
{Select shared V-matrix}
Vs ← argmaxVi

f(Vi);
{Select top-2 U-matrices}
{Ui,1, Ui,2} ← TopK({Uj}, k = 2);
{Step 4: U-Matrix Trimming and Selection}
{Update expert function}
Ei(x)← (Ui,1Σi,1 + Ui,2Σi,2)V

T
s x;

Algorithm 5 MakePositiveDefinite: Adjust Matrix to be Positive Definite
Function MakePositiveDefinite(M , tolerance, max_attempts):

Input: M - Input matrix; tolerance - Small value for adjustment; max_attempts - Maximum number of attempts
Output: Mpd - Positive definite matrix
Step 1: Symmetrize the Matrix Msym ← M+MT

2 // Ensure the matrix is symmetric
Step 2: Check Eigenvalues Compute eigenvalues λ of Msym
if any λi < 0 then

λ← λ+ |min(λi)|+ tolerance // Shift negative eigenvalues to positive
end
Step 3: Reconstruct Positive Definite Matrix Mpd = V diag(λ)V T where V are the eigenvectors of Msym

Step 4: Ensure Matrix is Symmetric Mpd ←
Mpd+MT

pd

2
return Mpd
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