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Abstract
Generative AI technologies, including text-to-speech (TTS) and
voice conversion (VC), frequently become indistinguishable from
genuine samples, posing challenges for individuals in discerning
between real and synthetic content. This indistinguishability un-
dermines trust in media, and the arbitrary cloning of personal voice
signals presents significant challenges to privacy and security. In
the field of deepfake audio detection, the majority of models achiev-
ing higher detection accuracy currently employ self-supervised
pre-trained models. However, with the ongoing development of
deepfake audio generation algorithms, maintaining high discrimi-
nation accuracy against new algorithms grows more challenging.
To enhance the sensitivity of deepfake audio features, we propose
a deepfake audio detection model that incorporates an SLS (Sensi-
tive Layer Selection) module. Specifically, utilizing the pre-trained
XLS-R enables our model to extract diverse audio features from its
various layers, each providing distinct discriminative information.
Utilizing the SLS classifier, our model captures sensitive contextual
information across different layer levels of audio features, effectively
employing this information for fake audio detection. Experimental
results show that our method achieves state-of-the-art (SOTA) per-
formance on both the ASVspoof 2021 DF and In-the-Wild datasets,
with a specific Equal Error Rate (EER) of 1.92% on the ASVspoof
2021 DF dataset and 7.46% on the In-the-Wild dataset. Codes and
data can be found at https://github.com/QiShanZhang/SLSforADD.

CCS Concepts
• Security and privacy→ Social aspects of security and pri-
vacy; • Information systems → Multimedia content creation; •
Computing methodologies → Speech recognition; • Applied
computing → Sound and music computing.
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Audio Deepfake Detection, Anti Spoofing, Countermeasures, Voice
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1 Introduction
Deepfake audio produced by artificial intelligence algorithms like
text-to-speech (TTS) [1], voice conversion (VC) [2] difficult to distin-
guish from real samples [3] have the potential to cause significant
social and economic damage, have already been used to scam a CEO
for 243.000$ [4]. Additionally, the potential for slander, misinfor-
mation, and fake news is enormous. There are also many biometric
identity authentication applications, such as access control systems,
telephone banking, and forensic scenarios [5]. Thus, there is a need
for automatic detection and verification of human speech.

The audio deepfake detection task emerge as required by the
times. The ASVspoof initiative and challenge series [6] was con-
ceived to foster the development of countermeasures to protect
against the manipulation of Automatic Speaker Verify (ASV) sys-
tems from spoofing attacks. The latest ASVspoof challenge is [7],
which has introduced a new task: Deepfake (DF). This task aims
to distinguish genuine utterances from AI-generated fake ones us-
ing machine learning techniques. The Audio deepfake detection
challenge(ADD) [8, 9] has also held aim to fill the gap between
the attack and the defense. Therefore, numerous deepfake audio
detection algorithms have been proposed, which can essentially be
classified into three categories: one based on handcrafted features
such as Linear Frequency Cepstral Coefficients (LFCC) [10], Mel
Frequency Cepstral Coefficients (MFCC) [11], Constant Q Cepstral
Coefficients (CQCC) [12], etc., another on deep learning features
like SincNet [13], FastAudio [14], and the third on features from
pre-trained self-supervised models such asWav2vec [15, 16], XLS-R
[17], HuBERT [18], WavLM [19], and Whisper [20].

The flaw of handcrafted features is that they may overlook poten-
tially useful characteristics for identifying deepfake audio, leading
to deep learning features increasingly becoming the mainstream so-
lution. Obtaining fake utterances for deep learning models to learn
to extract features is costly and technically demanding, further com-
plicated by the continuous emergence of new generative algorithms.
Therefore, an efficient method involves using self-supervised pre-
trained models that can be trained with any bona fide speech data.
Using features from pre-trained models has achieved high detec-
tion accuracy. However, even with large pre-trained voice mod-
els, maintaining high accuracy against previously unseen neural
network attack algorithms remains a challenge. Currently, the top-
performing model on the ASVspoof 2021 deepfake (DF) eval dataset
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Figure 1: XLS-R different layer show different level dicramenate feature.

has achieved an EER of 2.56% [21], significantly lagging behind the
0.82% [16] achieved on the ASVspoof 2021 logical access (LA) eval
dataset. The latter faces 17 unseen attacks, a number that is less
than the array faced by the DF dataset.

In this paper, we are motivated by the following: (i) We believe
that the features in the pre-trained, self-supervised XLS-R hidden
layers contain useful discriminatory characteristics of audio, which
can be very helpful in identifying deepfake audio, as shown in
Figure 1. Regardless of whether the audio is real or deepfake, the
features displayed by different hidden layers of XLS-R exhibit the
same pattern. However, the difference map between real audios
(row 4 of Figure 1) and the difference map between real and deep-
fake audios (row 5 of Figure 1) show different disparities in certain
hidden layers. We believe that these differences may serve as ef-
fective features for distinguishing deepfake audio. (ii) When the
hidden layers of XLS-R indeed offer more effective features for deep-
fake audio detection, is it still necessary to apply data augmentation
and fine-tune pre-trained models?

The principal contributions of this work are:

• We propose a self-supervised, pre-trained XLS-R model-
based SLS classifier for detecting deepfake audio. Features
extracted from various XLS-R Transformer layers are fed
into our classifier. The XLS-R features processed by the SLS
module have a strong ability to distinguish between real and
fake audio and exhibit strong generalization ability. The fea-
ture maps of randomly selected real and fake audio processed

by SLS have significant differences. At the same time, the
module boasts rapid convergence and a simple architecture.

• For the first time, the method proposed in this paper has
achieved an Equal Error Rate (EER) below 2% on theASVspoof
2021 DF dataset, demonstrated competitive performance on
the ASVspoof 2021 LA dataset, and secured state-of-the-art
performance on the In-The-Wild dataset. Provides a new
perspective for improving the robustness of deepfake audio
detection models. Further analysis of experimental outcomes
reveals that fine-tuning continues to play a pivotal role in
enhancing the model’s performance. Moreover, even with
the exploitation of rich hidden layer information from the
XLS-R model, the necessity for data augmentation persists.

2 Related Work
In Section 1, we introduce the most effective feature for audio
deepfake detectionwhen facing new generative algorithms: features
from pre-trained models. This approach significantly enhances the
model’s recognition accuracy, thereby overcoming the bottleneck
of limited training data availability. A number of pre-trained, self-
supervised models are publicly available, including Wav2vec 2.0
[22], XLS-R [23] (a variant of Wav2vec 2.0), HuBERT [24], WavLM
[19], and Whisper [20]. In this section, we briefly review prior work
that utilizes pre-trained models to enhance model generalizability
with the same limited training data as ours.

In 2021, Xie et al. [15] proposed utilizing features from the
Wav2vec model, in conjunction with a Siamese neural network,
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Figure 2: Overview of the proposed audio deepfake detection approach base on XLS-R.

for spoofing speech detection. This approach significantly reduced
the Equal Error Rate (EER) from the previous state-of-the-art re-
sult of 4.07% to 1.15% on the ASVspoof 2019 evaluation set [25].
Martin-Donas [26] designed a system utilizing various transformer
layers from XLS-128, a large-scale model for cross-lingual speech
representation learning, paired with a simple downstream model
to detect deepfake audio, achieving a 4.98% EER on the ASVspoof
2021 DF dataset. Wang et al. [18] explored various pre-trained, self-
supervised speech models as the frontend for spoofing countermea-
sures. They experimented with Wav2vec2-small, Wav2vec2-large1,
Wav2vec2-large2, HuBERT-XL, and XLS-53 (which is similar to
Wav2vec2’s structure but uses more training data). The experimen-
tal results suggest that the backend needs to be deep when the
pre-trained frontend is not fine-tuned. In contrast, if the frontend
can be fine-tuned, a simple backend with just average temporal
pooling and a linear layer is sufficient. Additionally, the XLS-53 fron-
tend with LGF classfier achieved a 4.75% EER on the DF dataset. Tak
et al. [16] achieved significantly improved performance in the field
of spoofing detection by applying the XLS-R model with a Rawnet2
[27] encoder and AASIST [28] backend, achieving an EER of 2.85%
on the ASVspoof 2021 DF eval set. Furthermore, they demonstrated
the use of data augmentation, showing its complementary benefits
to self-supervised learning. Guo et al. [21] introduced the usage
of WavLM as a frontend feature extractor and proposed the Multi-
Fusion Attentive (MFA) classifier, based on the attentive statistics
pooling layer. The MFA aggregates the output representations of
WavLM, focusing on features at various layers and time steps, thus
facilitating the extraction of highly discriminative features. These
methods pushed the DF eval set’s EER to 2.56%.

Wang et al. [29] utilized the pre-trainedmodel HuBERT to extract
duration features from the waveform, and employed a conformer
to extract pronunciation features. These features were then fused
with Wav2vec 2.0’s output features via an attention mechanism,
achieving a 29.53% EER on the In-the-wild dataset. Yang et al. [30]
investigated the performance of a broad range of pre-trainedmodels,
including XLS-R, HuBERT, WavLM, and Whisper, coupled with a
ResNet18 backend. They found that XLS-R performs best on the
DF eval set, while HuBERT excels on the In-the-Wild dataset. They
proposed two multi-view feature incorporation methods to capture
the subtleties of multiple candidate features from XLS-R, WavLM,
and HuBERT, thereby enhancing the system’s performance and
generalizability. This approach achieved a 24.27% EER on the In-
the-Wild dataset.

3 Proposed Method
Our objective is to detect deepfake audio by classifying the con-
textualized representations derived from various transformer layer
outputs of the pre-trained XLS-R model. Previous studies have
demonstrated that, for many tasks such as speaker verification
or emotion recognition, more discriminative information can be
gleaned from the initial or intermediate layers of pre-trained mod-
els Since synthetic TTS algorithms cannot accurately mimic the
real human speech flow and duration, the voice conversion process
introduces vocoder artifacts into the audio signals, and some sound
quality may be lost. This may result in the generated sound being
unnatural or distorted. Pre-trained models can effectively capture
these features for use as input in downstream models. Furthermore,
the hidden layers of the transformer may provide representations
more suitable for audio deepfake detection tasks. To achieve this,
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Figure 3: The proposed Sensitive Layer Select(SLS) module.

consider 𝑥 to be the waveform of a human voice signal labeled
𝑦 ∈ 0, 1, where 0 signifies a real human voice and 1 denotes a syn-
thetic human voice. Our aim is to construct a classifier 𝑦 = 𝐹𝜃 (𝑥)
to predict the label of input 𝑥 . The binary detection model is con-
structed as a cascade of neural networks:

𝐹𝜃 (𝑥) = 𝐶𝜃𝑐 (𝑊𝜃𝑊 (𝑥)) (1)

where𝑊𝜃𝑊 represents the front-end XLS-R model for audio rep-
resentation, equipped with its own set of parameters 𝜃𝑊 . 𝐶𝜃𝑐 de-
notes a backend binary classifier with a Senstive Layer Select (SLS)
module designed to select useful outputs from different XLS-R
transformer layers, and 𝜃𝑐 are its parameters. This classifier can be
optimized by solving:

min
𝜃

∑︁
(𝑥,𝑦) ∈𝑇

L𝑏 (𝑦, 𝐹𝜃 (𝑥)) (2)

where L𝑏 (𝑦,𝑦) represents the cross-entropy loss for binary clas-
sification, and 𝑇 denotes the training dataset comprising labeled
real and synthetic examples.The model’s overall framework is de-
picted in Fig. 2.Input raw waveforms are processed by the XLS-R
model to obtain contextualized feature representations from various
transformer layers.All contextualized representation features from
the transformer layers are then input into our classifier.Within the
classifier, features from various layers initially undergo weight ad-
justment, are subsequently summed, and then connected to a simple
fully connected layer for binary classification.Detailed explanations
of each component are presented in the subsequent subsections.

3.1 XLS-R model
The XLS-R [23] is a large-scale model for cross-lingual speech rep-
resentation learning, based on wav2vec 2.0 and trained across 128
languages.The raw speech signal 𝑥 is initially processed by a feature
encoder comprising several convolutional layers (CNN), extracting
vector representations of size 1024 every 20ms, utilizing a receptive
field of 25ms. This process yields 𝑧. Subsequently, these encoder fea-
tures 𝑧 are input into a transformer network comprising 24 layers,
which is utilized to derive contextualized representations ℎ. The
outputs from the distinct 24 transformer layers are concatenated
as: 𝐻 = [ℎ1, ℎ2, ..., ℎ𝐿]. The model is trained in a self-supervised
setting using a contrastive loss. The primary objective is to predict
the quantized representations of specific masked encoded features
from a set of distractors, utilizing the contextualized representa-
tions.Consequently, this model is capable of learning high-level

representations of the waveform signal. The features extracted
from the pre-trained XLS-R model can be used to train a down-
stream classifier in a specific task with a relatively few amount of
labeled data.Moreover, the XLS-R model and downstream models
can be jointly trained in the related task. In this work, the utiliza-
tion of XLS-R as a pre-trained model is explored. The mathematical
representation of processing the audio signal 𝑥 through the XLS-R
model is as follows:

𝐻 =𝑊𝜃𝑊 (𝑥) (3)

3.2 Classification Model
In this section, our objective is to employ algorithms capable of
selecting useful contextualized representations from different XLS-
R transformer layers. Inspired by the SENet, as proposed byHu Jie et
al. [31], it introduces a mechanism designed to recalibrate channel-
wise feature responses by explicitly modeling interdependencies
between channels. Given 𝐻 = [ℎ1, ℎ2, ..., ℎ𝐿], our goal is to obtain:

𝐹𝜃 (𝑥) = 𝐶𝜃𝑐 (𝐻 ) = FC(maxpool(
𝐿∑︁
𝑙=1

𝛼𝑙ℎ𝑙 )) (4)

Where ℎ𝑙 denotes the output of a distinct transformer layer in the
XLS-R model, and 𝐿 represents the number of transformer layers.𝛼𝑙
represents the layer weight, defined as 𝛼 = [𝛼1, 𝛼2, ..., 𝛼24]. This is
derived from 𝐻 ∈ R𝐿×𝑁×1024, as illustrated in the equation below.

𝛼 = Sigmoid(FC(avgpool(𝐻 ))) (5)

In the above equation, 𝑎𝑣𝑔𝑝𝑜𝑜𝑙 denotes an average pooling op-
eration that is applied along the dimension 𝑁 of 𝐻 ∈ R𝐿×𝑁×1024.
Subsequently, �̂� ∈ R𝐿×1×1024 is obtained, and through the full con-
nected layer (FC), �̂� ∈ R𝐿×1×1 is produced. Our design rationale is
that a single audio frame from avgpooling can represent the entire
audio, and representing audio frames through a full connection
can ascertain the layer’s usefulness. A sigmoid function is then
applied to these weights to ensure scaling between 0 and 1, thus
facilitating dynamic channel-wise recalibration of the feature maps.
Subsequently, the results of the 24 weighted layers are aggregated.
This process is illustrated in Fig.3.

4 Experiment
To confirm the motivations outlined in the introduction, we con-
ducted a series of experiments to evaluate the effectiveness of our
proposed method. The first set entails jointly fine-tuning the XLS-R
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Figure 4: Visualization of the weight values 𝛼 of the SLS module demonstrates different attentions to various XLS-R features
when dealing with real and deepfake audio. Where The first four rows display the attention weight distribution of the SLS
module when processing audio in the DF dataset; rows 0 and 1 (0-1) respectively show the weight distribution for deepfake
and real audio when handled by the SLS module; rows 2 and 3 (2-3) illustrate the weight distribution for fake and real audio
respectively when the sigmoid function in the SLS module is replaced with softmax. Rows 4 to 7 show the attention weights for
four different scenarios when processing audio in the LA dataset, and rows 8 to 11 for the In-the-Wild dataset.

model with our proposed classifier and comparing its performance
with those of other models on the ASVspoof 2021 LA (Logical
Access), DF (DeepFake), and In-The-Wild evaluation datasets. Sub-
sequently, we trained our model in scenarios without fine-tuning
and without data augmentation. Finally, we conducted an ablation
study to test our opinion that previous work limited the hidden
layer’s ability for audio deepfake detection. This section details
the databases employed for training and evaluating our systems,
alongside the data augmentation techniques and training setup
procedures utilized. Then show the experiment result compartive
with the state-of-the-art system, ans analyze the reason behind the
result.

4.1 Datasets
We utilized the ASVspoof 2019 LA database [25, 32] training part
for training, opting not to use the validation part, because we be-
lieve the validation set is traditionally used to prevent overfitting,
but the validation part, compared to the train set, only differs in
the speaker, we posit that the validation set can only prevent the
model from overfitting to the train set’s speaker features, it does not
possess the ability to prevent overfitting produced by generative
algorithms’ features, and in the real world, it is necessary to con-
front features generated by various algorithms, thus, we exclusively
use the train set and monitor training loss to determine the occur-
rence of overfitting. We evaluated our approach on the ASVspoof
2021 LA,DF [33], and In-The-Wild [34] evaluation sets. The 2021
LA dataset presents a challenge due to its inclusion of codec and
transmission variability, elements not present in the training and

validation datasets. The DF dataset is more reflective of the per-
formance of audio deepfake detection algorithms compared to the
LA dataset; it contains over a hundred generation algorithms not
seen in the training set, as well as compression variability during
audio transmission. The In-The-Wild dataset consists of 37.9 hours
of audio clips that are either fake (17.2 hours) or real (20.7 hours).
The fake clips were created by segmenting 219 publicly available
videos and audio files that explicitly advertise audio deepfakes. The
corresponding genuine instances from the same speakers were col-
lected using publicly available materials, such as podcasts, speeches,
etc. The fake and genuine instances are similar in aspects such as
background noise, emotions, and duration. Based on the above, the
DF and In-the-Wild datasets are the most challenging and capable
of reflecting the generality of models. The Equal Error Rate (EER)
[35] is used as the evaluation metric.

Table 1: The detailed information of the training sets, the
development sets, ASVspoof2019 LA dataset and In-the-Wild
dataset.

Set
Genuine Spoofed Total

#utterance #utterance #utterance

Train 2,580 22,800 25,380
Eval (2021 LA) 14,816 133,360 148,176
Eval (2021 DF) 14,869 519,059 533,928
Eval (In-the-Wild) 19,963 11,816 31,779
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4.2 Training setup
Audio data is cropped or concatenated, yielding segments of ap-
proximately 4 seconds in duration (64,600 samples). We employ
the pre-trained model XLS-R 300M provided by the literature [23],
which is jointly optimised with the back-end SLS classifier using
back-propagation [36], and utilize the Adam optimizer with the
learning rate is 10−6 and weight_decay 0.0001. The batch size is
5. We set the training duration to 50 epochs, incorporating early
stopping technology with a patience of 3. This indicates that when
the training loss does not improve for three epochs, the training is
stopped, and the model with the lowest loss is chosen for evaluation.

All models were trained on a single GeForce RTX 4090 GPU, and
all results are reproducible using open source code1 with the same
random seed and GPU environment. RawBoost algorithm 3 [37] is
used as the data augmentation method. The RawBoost algorithm
addswhite noise, which is used to simulate the confrontation caused
by electromagnetic interference in audio spoofing detection. The
white noise is processed by the FIR filter and added to the audio
signal.

4.3 Comparison with State-of-The-Art

Table 2: Comparative Pooled EER(%) results of our proposed
method with other systems in the ASVspoof 2021 DF and LA
evaluation set. Results are the best (average) obtained from
three runs of each experiment with different random seeds.

model DF LA

CQCC & GMM [33] 25.56 15.62
LFCC & GMM [33] 25.25 19.30
LFCC & LCNN [33] 23.48 9.26
RawNet2 [33] 22.38 9.50
XLS-53 & LLGF [18] 5.44 7.18
XLS-R & FC & ASP [26] 4.98 3.53
XLS-53 & LGF [18] 4.75 6.53
XLS-R & Rawnet & ASSIST [16] 2.85 4.11
WavLM & MFA [21] 2.56 5.08
Ours 1.92(2.09) 2.87(3.88)

Table 3: Comparison with other anti-spoofing systems In-
The-Wild evaluation set, reported in terms of EER(%).

System EER(%)

RawGAT-ST [34] 37.81
Wav2vec,HuBERT,Conformer & attention [29] 36.84
XLS-R & Res2Net [3] 36.62
MPE & SENet [38] 29.62
Spec & POI-Forensics [39] 25.14
XLS-R,WavLM,Hubert & Fusion [30] 24.27
XLS-R & Rawnet & ASSIST [16] 10.46

Ours 7.46(8.87)

1https://github.com/QiShanZhang/SLSforADD
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Figure 5: Comparing the convergence speed of our model
with the model proposed by Tak [16].

Table 2 shows a comparison of our results with those of other
models on the ASVspoof 2021 LA and DF evaluation datasets. Our
method demonstrated the best performance on the DF dataset,. To
our knowledge, this is the lowest reported equal error rate (EER) on
the DF evaluation dataset, marking the first time EER has dropped
below 2%. And achieve the lowest EER on the LA dataset. FromTable
2, it can be seen that manual features such as CQCC and LFCC
exhibit significant differences compared to pre trained features
when combined with GMM or deep classifier LCNN. [26] and [21]
also used hidden layer features, which proves the hypothesis we
proposed at the beginning of the experiment. Previous models have
limited the performance of hidden layer features, demonstrating
the effectiveness of our proposed SLS classifier.

As shown in Table 4, audio generated by the Neural AR vocoder
is the most difficult to distinguish under any condition. In the future,
efforts can be made to explore methods to reduce this gap. It can
be observed that our model has significantly minimized differences
among various conditions; compared to the baseline condition C1,
there are no significant disparities. Compared to Tak’s model, which
uses the same data augmentation and front-end, this demonstrates
our SLS classifier’s ability. The XLS-R features processed through
our SLS module produce a very powerful feature map that can
distinguish bona-fide or deepfake audio. This is illustrated in Figure
6.

Furthermore, in the LA dataset (Table 5), the transmission con-
dition factors significantly influence, resulting in substantial dis-
parities in EER. In Condition C1, which lacks transmission factors,
algorithms such as A07, A08, A09, A13, and A14 generate deepfake
audio that our model detects with 100% accuracy; moreover, dif-
ferent algorithms do not exhibit particularly large fluctuations in
accuracy. The accuracy for Condition 6 dropped by approximately
700%. This is attributed to the use of Data Augmentation (DA) al-
gorithms that adapt to data loss during the compression process.
Our primary goal is to address the robustness of new generative
algorithms; therefore, we did not implement data augmentation for
transmission condition factors.

As demonstrated in Table 3, our model exhibited unprecedented
generalization capabilities on the In-The-Wild dataset, achieving
state-of-the-art performance. This result further substantiates the

https://github.com/QiShanZhang/SLSforADD
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Table 4: Results in terms of Equal Error Rates (EERs, %) for each codec condition (DFC1-DFC9) and different generative algorithm
vocoders on the ASVspoof 2021 DF evaluation partition. In the leftmost column, ’V’ represents Vocoder, ’T’ traditional vocoder,
’C’ Wav concatenation, ’N’ autoregressive neural vocoder, ’Nn’ non-autoregressive use,’U’ unkonw vocoder, and ’P’ weighted
pooling. In each condition, the left column represents our results, and the right column shows the results from Tak [16].

V C1 C2 C3 C4 C5 C6 C7 C8 C9 Pooled

T 1.21 1.22 1.94 2.72 1.39 1.83 1.48 1.57 1.34 1.16 2.14 2.35 1.52 1.57 2.28 3.01 2.15 2.28 1.88 2.15
C 0.80 2.28 2.16 5.84 1.17 3.35 1.24 2.09 0.71 2.10 0.91 2.23 0.71 1.50 1.08 2.96 0.99 2.52 1.07 2.85
N 3.12 3.45 2.71 5.96 2.91 3.79 2.79 3.75 2.96 3.39 2.44 3.67 2.26 2.92 2.31 4.49 2.57 3.76 2.86 4.05
Nn 0.68 1.56 0.78 3.33 0.69 2.02 0.70 1.65 0.64 1.34 0.61 1.62 0.52 1.00 0.65 2.05 0.65 1.57 0.69 1.84
U 1.23 1.99 1.65 4.30 1.34 2.65 1.14 2.10 1.34 1.87 1.00 2.23 0.96 1.27 1.09 2.66 1.09 2.14 1.23 2.45
P 1.72 2.34 2.02 4.30 1.59 2.64 1.74 2.37 1.79 2.14 1.88 2.58 1.57 1.92 1.92 3.31 2.04 2.75 1.92 2.85

Table 5: Results in terms of Equal Error Rates (EERs, %) for each transmission condition (LA C1-LA C9) and different generative
algorithm on the ASVspoof 2021 LA evaluation partition.

algorithems Input processor Conversion Wavform generator C1 C2 C3 C4 C5 C6 C7 Pooled

A07 NLP RNN* WORLD 0.00 0.22 0.15 0.15 0.13 0.18 0.18 0.18
A08 NLP AR RNN* Neural source-filter* 0.00 0.36 0.43 0.30 0.20 0.55 0.37 0.41
A09 NLP RNN* Vocaine 0.00 0.06 0.06 0.00 0.00 0.07 0.00 0.05
A10 CNN+bi-RNN* ARRNN+CNN* WaveRNN* 0.88 1.98 3.19 1.61 1.83 2.33 3.10 5.93
A11 CNN+bi-RNN* ARRNN+CNN* Griffn-Lim 0.91 1.41 2.37 1.35 1.46 1.48 3.48 4.79
A12 NLP RNN* WaveNet* 0.30 0.83 0.58 0.76 0.80 0.55 1.36 1.76
A13 WORLD Momentmatching* Waveform filtering 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A14 ASR* RNN* STRAIGHT 0.00 0.22 0.09 0.06 0.13 0.18 0.35 0.19
A15 ASR* RNN* WaveNet* 0.06 0.61 0.36 0.67 0.50 0.50 0.48 0.73
A16 NLP CART Waveform concat. 0.06 0.64 0.67 0.67 0.50 1.10 0.97 1.00
A17 WORLD VAE* Waveform filtering 0.97 1.55 4.35 1.13 1.41 7.34 2.34 3.47
A18 MFCC/i-vector Linear MFCCvocoder 1.27 1.72 5.32 1.44 1.74 5.70 2.42 3.63
A19 LPCC/MFCC GMM-UBM Spectral filtering+OLA 0.88 1.50 4.74 1.19 1.28 8.27 2.41 3.69
Pooled 0.51 1.15 2.38 1.08 1.10 3.48 2.16 2.87

effectiveness and generalizability of our proposed model in audio
deepfake detection.

The underlying reason is likely attributable to our utilization of
rich hidden layer features. Compared to prior work utilizing hidden
layer features [21, 26], the weight assignment function is identified
as playing a crucial role. These studies employ softmax for weight
assignment, thereby limiting the classifier to the utilization of fea-
tures from no more than one layer. The ablation study Section 4.4
and Figure 4 support this viewpoint.

Compared to prior work[16, 30], our model architecture achieves
high accuracy despite its simplicity. This phenomenon prompts a
reevaluation of audio deepfake detection model design principles.
The comparison of model convergence speeds, as illustrated in
Figure 5, shows our model converges faster than Tak’s model[16],
provided all other training hyperparameters remain constant.

This further substantiates the capability of XLS-R’s hidden layers
to provide a rich and effective feature set for discriminating against
audio deepfake.

Based on the above experimental results, we introduce a new
perspective on utilizing the XLS-R hidden layers, which contain
rich features capable of enhancing deepfake audio detection perfor-
mance. We propose an SLS classifier that uses a simple architecture

and achieves fast convergence, resulting in state-of-the-art (SOTA)
performance across three challenging datasets.

4.4 Ablation Study
Demonstrated that every component of our proposed model is
essential in this section. Table 6 presents the results of our abla-
tion experiments on each component of the modified architecture.
Clearly, the sensitive layer selection module plays a critical role in
the model.

Table 6: The ablation study intends to demonstrate the effec-
tiveness of each part of the system.

Ablation Configuration DF LA In-The-Wild

ours 1.92 2.87 7.46

w/o fine-tuning XLS-R&SLS 2.47 2.58 9.82
w/o DA XLS-R&SLS 3.72 3.23 11.97
w/o first five layer XLS-R&SLS 2.29 3.46 9.44

w/o sigmoid sum 2.37 2.88 12.09
softmax 3.01 3.41 8.89
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Figure 6: Comparison of feature maps after the SLS module processes 6 bona fide audios and 6 deepfake audios randomly
selected from the DF dataset.

Clearly, we utilized the rich hidden layer features of XLS-R and
the SLS effectively processed its features, our model still achieved
cutting-edge performance without fine-tuning XLS-R. However,
compared to fine-tuning, accuracy on theDF and In-the-Wild datasets
declined. Conversely, on the LA dataset, there was an improvement,
likely due to fine-tuning accelerating the model’s adaptation to
certain DF dataset features.

Without data augmentation, the model’s performance signifi-
cantly decreased across all three datasets, possibly due to conditions
not encountered during XLS-R’s pre-training, like encoding loss
factors affecting audio data. In the absence of data augmentation,
the model’s accuracy was higher on the LA dataset than on the DF
dataset, aligning with our intuition given the DF dataset’s challeng-
ing nature. Accuracy also declined on the In-The-Wild dataset. This
indicates that our data augmentation methods not only counteract
encoding loss effectively but also accommodate the distribution of
other real-world factors.

To test whether each hidden layer provides valuable discrimina-
tive features, we removed the first five layers of features with low
weights, as shown in Figure 4. The experimental results showed
that although the features in the first few layers were assigned
lower weights, they still provided useful discriminative features.
After removing these first five layers, the error rates of the three
datasets increased.

The final ablation experiment confirmed our earlier hypothesis:
replacing the weighted classification function in the SLS module
with softmax limited the features provided by XLS-R. Simply ag-
gregating all features from XLS-R yielded better results in the DF
and LA datasets compared to softmax, whereas in the In-The-Wild
dataset, softmax outperformed simple aggregation. We conclude
that the In-The-Wild dataset encompasses the most diverse range
of real-world factors affecting audio. Therefore, when XLS-R pro-
vides all feature representations, simply aggregating them results in
chaotic feature maps from the SLS module, underscoring the need
to differentiate between the features in real-world scenarios. The
experiments suggest that our proposed SLS classifier is a promising
option.

This contrasts with previous studies [26] that used softmax, a
difference we attribute to our unique approach in feature processing.
We treat weighted features as a single-channel image and apply
direct pooling to reduce data volume. Unlike the fully connected
layers employed in these studies, our pooling method retains more
original features.

Upon further analysis of the SLS module’s weight distribution
map, we observed that the SLS module effectively discerns the dis-
parity between the feature maps of genuine and fake audio. This
selective aggregation of feature maps facilitates classification by
downstream models. As illustrated in Figure 6, randomly selected
examples from the DF dataset underscore this remarkable capa-
bility. Moreover, it exhibited consistency across various datasets.
However, in rows eight and nine of the In-the-Wild dataset, the
SLS module showed some blurring compared to its performance in
the first two datasets, with less distinct attention to the differences
between genuine and fake audio. By analyzing the weight distri-
bution diagram of the SLS module in conjunction with the feature
difference diagram of different audio samples from Figure 1, it can
be observed that the primary differences between the gap diagram
of real audio samples and the gap diagram between real and deep-
fake audio samples occur in layers 19, 20, and 23. This explains the
phenomenon of weight distribution decreases for layers 19, 20, and
23 shown in Figure 6. However, this is just one possible preliminary
explanation, and future work could involve more statistical efforts
in the area of interpretability.

5 Conclusion
In this study, we validated the hypothesis that hidden layers of pre-
trained models harbor more abundant features for detecting audio
deepfake.We introduced a classifier featuring a sensitive layer selec-
tion module, achieving state-of-the-art (SOTA) performance on two
challenging datasets. One dataset, DF, features spoofed utterances
generated by over 100 different attack algorithms, while In-The-
Wild showcases real-world data distribution, thereby proving the
approach’s correctness and practical feasibility. Furthermore, our
findings confirm that data augmentation is essential, even with
the use of richer hidden layer features, and that fine-tuning en-
hances performance. While our model maintains state-of-the-art
(SOTA) performance, it also boasts faster convergence and fewer
parameters, prompting a reevaluation of future model design.

Future work could focus on designing strategies that more effec-
tively utilize hidden layer features, as outlined in this paper, along
with developing more precise and complex classification models.
Our classifier structure is very simple, indicating significant po-
tential for improvement. Utilizing more effective deep learning
modules may offer further enhancements to model performance.
The currently used pre-trained models are based on bonafide audio.
A feasible solution might be to retrain these models with deepfake
audio from more varied scenarios.
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