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Abstract

Graph representation learning has shown effectiveness when testing and training
graph data come from the same distribution, but most existing approaches fail to
generalize under distribution shifts. Invariant learning, backed by the invariance
principle from causality, can achieve guaranteed generalization under distribution
shifts in theory and has shown great successes in practice. However, invariant learn-
ing for graphs under distribution shifts remains unexplored and challenging. To
solve this problem, we propose Graph Invariant Learning (GIL) model capable of
learning generalized graph representations under distribution shifts. Our proposed
method can capture the invariant relationships between predictive graph structural
information and labels in a mixture of latent environments through jointly optimiz-
ing three tailored modules. Specifically, we first design a GNN-based subgraph
generator to identify invariant subgraphs. Then we use the variant subgraphs, i.e.,
complements of invariant subgraphs, to infer the latent environment labels. We
further propose an invariant learning module to learn graph representations that
can generalize to unknown test graphs. Theoretical justifications for our proposed
method are also provided. Extensive experiments on both synthetic and real-world
datasets demonstrate the superiority of our method against state-of-the-art baselines
under distribution shifts for the graph classification task.

1 Introduction

Graph structured data is ubiquitous in the real world, e.g., social networks, biology networks, chemical
molecules, etc. Graph representation learning, which encodes graphs into vectorized representations,
has been the central topic in graph machine learning in the last decade. For example, graph neural
networks (GNNs) [1H3]] design end-to-end learning schemes to extract useful graph information and
are shown to be successful in a variety of applications.

Despite the enormous success, the existing approaches for learning graph representations heavily rely
on the L.I.D. assumption, i.e., the testing and training graph data are independently drawn from an
identical distribution. However, distribution shifts of graph data widely exist in real-world scenarios
and are usually inevitable due to the uncontrollable underlying data generation mechanism [4]].
Most existing approaches fail to generalize to out-of-distribution (OOD) testing graph data. One
critical bottleneck is that the existing methods ignore the invariant graph patterns and tend to rely on
correlations that are variant for graphs from different environments. Therefore, it is of paramount
significance to learn graph representations under distribution shifts and develop methods capable of
out-of-distribution (OOD) generalization. Such studies are particularly critical for high-stake graph
applications such as medical diagnosis [5], financial analysis [6], molecular prediction [7], etc.

In this work, we propose a brand new methodology to learn invariant graph representation under
distribution shifts. Invariant learning, which aims to exploit the invariant relationships between
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features and labels across different distributions while disregarding the variant spurious correlations,
can provably achieve satisfactory OOD generalization under distribution shifts [8-10]. Though
invariant learning has been studied for images and texts [8} [11], it remains largely unexplored in
the literature of graph representation learning. However, invariant graph representation learning is
non-trivial due to the following challenges. First, graph data usually comes from a mixture of latent
environments without accurate environment la-
bels, as shown in Figure[T} Since most invariant }
methods require multiple training environments ,
with explicit environment labels, these existing | e | B £y | (750D Tasting Set | Poor Prediction
methods cannot be directly applied to graphs. 77" \59 50 {60 T/ by & M LN
Second, the formation process of graphs is af- - ' A i -

fected by the complex interaction of both invari- - Fjgure 1: An example of distribution shifts under

ant and variant patterns. How to identify the 5 mixture of latent environments, which leads to
invariant patterns among latent environments is  poor generalization.

even more challenging. Last but not least, even
after having obtained the environmental labels, how to design a theoretically grounded learning
scheme to generate graph representations capable of OOD generalization remains largely unexplored.
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To tackle these challenges, in this paper, we propose Graph Invariant Learning method (GIL) which
is able to capture invariant graph patterns in a mixture of latent environments and capable of OOD
generalization under distribution shifts. As shown in Figure [2] our proposed method can capture
the invariant relationships between predictive graph structural information and labels in a mixture
of latent environments through jointly optimizing three mutually promoting modules, with each
module tackling one aforementioned challenge. Specifically, in the invariant subgraph identification
module, we design a GNN-based subgraph generator to identify potentially invariant subgraphs
from the complex interaction between invariant and variant patterns. Then, we use the variant sub-
graphs, i.e., the complement of invariant subgraphs, to infer environment labels by clustering these
environment-discriminative features. The variant subgraphs capture variant correlations under differ-
ent distributions and therefore contain informative features to infer environment labels. Lastly, in the
invariant learning module, we propose to optimize the maximal invariant subgraph generator criterion
given the identified invariant subgraphs and inferred environments to generate graph representations
capable of OOD generalization under distribution shifts. We theoretically show that the OOD gener-
alization problem on graphs can be formulated as finding a maximal invariant subgraph generator
of our GIL, and further prove that our GIL satisfies permutation invariance. We conduct extensive
experiments on both synthetic graph datasets and real graph benchmarks for the graph classification
task. The results show that the representations learned from GIL achieve substantial performance
gains on the unseen OOD testing graphs compared with various state-of-the-art baselines.

Our contributions are summarized as follows.

* We propose a novel Graph Invariant Learning method (GIL) to learn invariant and OOD generalized
graph representations under distribution shifts. To the best of our knowledge, we are the first to
study invariant learning for graph representation learning under a mixture of latent environments.

* Our proposed method can automatically infer the environment label of graphs from a mixture of
latent environments without supervision.

* We propose maximal invariant subgraph generator criterion to learn graph representations capable
of OOD generalization under distribution shifts.

* We theoretically show that finding a maximal invariant subgraph generator of GIL can solve the
OOD generalization problem. Extensive empirical results demonstrate the effectiveness of GIL on
various synthetic and benchmark datasets under distribution shifts.

2 Notations and Problem Formulation

Notations. Let G and Y be the graph and label space. We consider a graph dataset G = {(G}, YZ—)}I.]\L1
where G; € G and Y; € Y. Following the OOD convention [[11} 8] 9], we assume the dataset is col-
lected from multiple training environments, i.e., G = {G®}cceupp(e,,)» Where G¢ = {(G%, Y£) } ¥,
denotes the dataset from environment e, supp(&-) is the support of the environmental variable in the
training data. We use G and Y to denote the random variables of graph and label, and G® and Y* to
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Figure 2: The framework of GIL model. Our proposed method jointly optimizes three modules: (1)
In the invariant subgraph identification module, a GNN-based subgraph generator ®(-) identifies the
invariant subgraph G and the variant subgraph Gy . (2) The environment inference module uses
the variant subgraphs {Gy } to infer the latent environments by clustering the representations of
{Gv }. (3) The invariant learning module jointly optimizes the invariant subgraph generator ®(-), the
representation learning function g(-), and the classifier w(-). Training stage (shown by grey arrows):
we back propagate with the objective function to update model parameters. Testing stage (shown by
green arrows): we use the optimized model to make predictions.

specify random variables from environment e. The environment label for graphs is unobserved since
it is prohibitively expensive to collect graph environment labels for most real scenarios.

Problem Formulation. We formulate the generalization under distribution shifts on graphs as:

Problem 1. Let £ denote the random variable on indices of all possible environments. Our goal is to
find an optimal predictor f*(-) : G — Y that performs well on all environments:
f() =argmin  sup R(fle), M
f ecsupp(€)
where R(fle) = EG y[¢(f(G),Y)] is the risk of the predictor f on the environment e, and ((-,-) :
Y x Y — R denotes a loss function. We further decompose f(-) = w o h, where h(-) : G — R% is
the representation learning function, d is the dimensionality, and w(-) : R? =Y is the classifier.

Note that supp(&;,.) C supp(£). Besides, distribution shifts indicate that P¢(G,Y) #

P (G,Y), e € supp(&), €' € supp(€) \ supp(&y), i.e., the joint distribution of the graph and the
corresponding label is different for training and testing graph data.

Problem [1]is difficult to be solved since supp(€) is unobserved or latent [8, O]. In addition, for
most graph datasets, we do not have access to accurate environment labels or environment partitions.
Therefore, we focus on jointly inferring the environments of the graph dataset G and achieving good
OOD generalization performance under the inferred environments. The problem is formulated as:

Problem 2. Given a graph dataset G collected from a mixture of latent environments but without
environment labels, the task is to jointly infer graph environments Eiy, fer, i.., G = {G® }ecsupp(£inser)s
and learn a graph predictor f*(-) in Problemunder the inferred environments &y, yer to achieve
good OOD generalization performance.

3 Method

In this section, we introduce our proposed method in detail, whose framework is shown in Figure 2]
We first present the invariant subgraph identification module. Then, we infer environment labels
by clustering the variant subgraphs. Next, we introduce the maximal invariant subgraph generator
criterion to generate graph representations which can generalize to test graphs under distribution
shifts. Lastly, we provide some discussions of our proposed method.



3.1 Invariant Subgraph Identification

We assume that each input graph G € G has an invariant subgraph G; C G so that its relationship
with the label is invariant across different environments. We refer to the rest of the graph, i.e., the
complement of G, as the variant subgraph and denote it as Gy . Gy represents the graph part
whose relationship with the label is variant across different environments, e.g., spurious correlations.
Therefore, the model will have a better OOD generalization ability if it can identify the invariant
subgraph and only uses structural information from G;.

We denote a generator to obtain the invariant subgraph as G; = ®(G). Following the invariant
learning literature [[12], we make an assumption on ®(G) as follows:

Assumption 3.1. Given G, there exists an optimal invariant subgraph generator ®*(G) satisfying:
a. Tnvariance property: Ve, e’ € supp(£), P¢(Y|®*(G)) = P¢ (Y|®*(G)).

b. Sufficiency property: Y = w*(g*(®*(G))) + €, € L G, where g*(-) denotes a representation
learning function, w* is the classifier, 1 indicates statistical independence, and ¢ is random noise.

The invariance assumption means that there exists a subgraph generator such that it can generate
invariant subgraphs across different environments. The sufficiency assumption means that the
generated invariant subgraphs should have sufficient predictive abilities in predicting the graph labels.

Under this assumption, we instantiate ®(-) with learnable parameters. Consider an input graph
instance G with n nodes. The corresponding adjacency matrix is denoted as A = {0, 1}™*™, where
A; ; = 1 represents that there exists an edge between node ¢ and 7, and A; ; = 0 otherwise. To split
the input graph G into G and Gy, a common strategy is to use a binary mask matrix M = {0, 1}"*"
on the adjacency matrix A. However, directly optimizing a discrete matrix M is intractable as G
has exponentially many subgraph candidates [[13]]. Besides, learning M for each graph G separately
hinders the method from handling unseen test graphs [[14]. Therefore, we adopt a shared learnable
GNN (denoted as GNNM) to generate a soft mask matrix M = R™*™ as follows:

.
M, =2 -z, z(™ = aNNM(@), @)

where Z(") is the node representation. Then, we obtain the invariant and variant subgraphs as:
A;=Top, M®A),Ay =A — Ay, A3)

where A and Ay denotes the adjacency matrix of Gy and Gy, respectively, © means the element-
wise matrix multiplication, and Top,(-) selects the top ¢-percentage of elements with the largest
values. The parameters of GNN™ are trained on all available graphs to generate the corresponding
G and Gy . Using the inductive learning ability of GNNs, it can also be used to unseen test graphs,
as opposed to directly optimizing mask matrices.

3.2 Environment Inference

After obtaining the invariant and variant subgraphs, we can infer the environment label £;;, fc,.. The
intuition is that since the invariant subgraph captures invariant relationships between predictive graph
structural information and labels, the variant subgraphs in turn capture variant correlations under
different distributions, which are environment-discriminative features. Therefore, we can use the
variant subgraphs to infer the latent environments. We adopt another GNN encoder, whose parameters
are also shared among different graphs, to generate the representation of the variant subgraph Gy :

Zyv = GNNY(Gv), hy = READOUTY (Zy), 4)

where READOUT is a permutation-invariant readout function that aggregates node-level representa-
tion Zy into graph-level representation hy . The representation of all the variant subgraphs is denoted
as H = [hy,, ..., hy,]. After obtaining H, we use an off-the-shelf clustering algorithm to infer the
environment label &;,, e,. In this paper, we adopt k-means [15]] as our clustering algorithm:

Einfer = k-means(H). 5)

Using &y, fer, We can partition the graph dataset into multiple training environments, i.e., G =
{G°}eesupp(Ein fer): The environment inference module is purely unsupervised without needing any
ground-truth environment labels.



3.3 Invariant Learning

After obtaining the inferred invariant subgraphs and environment labels, we propose the invariant
learning module which can generate OOD generalized graph representations under distribution shifts.

Recall that both the invariant subgraph identification module and environment inference module
heavily depend on the generator ®. Therefore, we aim to learn the optimal generator ®* in Assump-
tion 3.1 by proposing and optimizing the maximal invariant subgraph generator criterion. First,
following the invariant learning literature 9], we give the following definition.

Definition 1. The invariant subgraph generator set T with respect to £ is defined as:
Te = {®() : P*(Y|®(G)) = P (Y|B(G)), e, ¢’ € supp(€)}. ©)

Then, we show that the optimal generator ®* satisfies the following theorem.

Theorem 3.2. A generator ®(G) is the optimal generator that satisfies Assumption if and only if
it is the maximal invariant subgraph generator, i.e.,

¢ = arg max I (Y;2(G)), )
where I(-;-) is the mutual information between the label and the generated subgraph.

The proof is provided in Appendix. Eq. (7)) provides us an objective function to optimize the subgraph
generator. However, directly solving Eq. (7) for a non-linear ® is difficult [9]. Following the invariant
learning literature [9]], we transform Eq. (7)) into an invariance regularizer:

Eeesupp(gi,,Lfer,v)Re(f(G)7 Y7 6) + Atrace(var‘gin,‘f@r (nge))7 (8)

where f(-) = wo go ®, &y fer is the infered environment label, and ¢ denotes all the learnable
parameters. Recall that g(-) is the representation learning function of the invariant subgraphs and
w(-) is the classifier. We instantiate g as another GNN as follows:

Z; = GNN'(G;),h; = READOUTY(Z/). ©)
Z1 and h; are the node-level and graph-level representations of invariant subgraph Gy, respectively.
w(-) is instantiated as a multilayer perceptron followed by the softmax activation function. By

optimizing Eq. (8], we can get our desired generator ® and the subgraph representation learning
function g(-), which collectively serve as our representation learning method h(-), i.e., h = g o ®.

3.4 Discussions

Training Procedure. We present the pseudocode of GIL in Appendix.

Time Complexity. The time complexity of our GIL is O(|E|d + |V'| d?), where |V | and | E| denotes
the number of nodes and edges, respectively, and d is the dimensionality of the representations. Specif-
ically, we adopt message-passing GNNS to instantiate our GNN components, which has a complexity
of O(|E|d + |V'| d?). Since we only need to generate mask for the existing edges in graphs, the time
complexity of generating invariant and variant subgraphs and further obtaining their representations
is O(|E|d + |V| d?). The time complexity of environment inference is O(|B||E;n fer|T'd), where |B]
is the batch size, T is the number of iterations for the k-means algorithm, and |E;,, s | denotes the
number of inferred environments. The time complexity of the invariance regularizer is O(|iy, fer|d?),
as the number of parameters for most GNNs is O(d?). Since |B|, |€;yfer|, and T are small constants,
the overall time complexity of GIL is O(|E| d+ |V | d?). In comparison, the time complexity of other
GNN-based graph representation methods is also O(|E|d + |V | d?). Therefore, the time complexity
of our proposed GIL is on par with the existing methods.

4 Theoretical Analysis

In this section, we theoretically analyze our GIL model by showing that the maximal invariant
subgraph generator can achieve OOD optimal. The proofs are provided in Appendix.

Theorem 4.1. Let ®* be the optimal invariant subgraph generator in Assumption[3.1|and denote the
complement as G\®*(G), i.e., the corresponding variant subgraph. Then, we can obtain the optimal
predictor under distribution shifts, i.e., the solution to Problem[I} as follows:

argminwo go ®*(G) = argmin sup R(f|e), (10)
w,9 I eesupp(€)



if the following conditions hold: (1) ®*(G) L G\®*(G); and (2)V® € Zg, 3 ¢’ € supp(E) such
that P¢ (G,Y) = P¢ (®(G), Y)P¢ (G\®(G)) and P¢ (®(G)) = P*(®(G)).

The theorem shows that we can transform the OOD generalization problem into finding the optimal
invariant subgraphs while maintaining the optimality.

We also prove that our GIL satisfies permutation invariance in Appendix.

S Experiments

In this section, we evaluate the effectiveness of our GIL on both synthetic and real-world datasets.

5.1 Experimental Setup

Datasets. We adopt one synthetic dataset with controllable ground-truth environments and four
real-world benchmark datasets for the graph classification task.

* SP-Motif: Following [13}[16], we generate a synthetic dataset where each graph consists of one
variant subgraph and one invariant subgraph, i.e., motif. The variant subgraph includes Tree, Ladder,
and Wheel (denoted by V' =0, 1, 2, respectively) and the invariant subgraph includes Cycle, House,
and Crane (denoted by I =0, 1, 2). The ground-truth label Y only depends on the invariant subgraph
1, which is sampled uniformly. The spurious correlation between V and Y is injected by controlling
the variant subgraphs distribution as: P(V) = rif V.= I and P(V) = (1 —r)/2if V # I.
Intuitively, r controls the strength of the spurious correlation. We set r to different values in the
testing and training set to simulate the distribution shifts.

* MNIST-75sp [17]: The task is to classify each graph that is converted from an image in MNIST [[18]]
into the corresponding handwritten digit. Distribution shifts exist on node features by adding random
noises in the testing set.

* Graph-SST2 [19]: Each graph is converted from a text sequence. Graphs are split into different
sets based on average node degrees to create distribution shifts.

¢ Open Graph Benchmark (OGB) [20]: We consider two datasets, MOLSIDER and MOLHIV. The
default split separates structurally different molecules with different scaffolds into different subsets.

Baselines. We compare our GIL with some representative state-of-the-art methods. The first group
of these methods generates masks on graph structures to filter out important subgraphs using different
GNNS, including Attention [2l], Top-k Pool [21]], SAGPool [22]], and ASAP [23]]. The second group
is invariant learning methods, including standard ERM, GroupDRO [24], IRM [8], V-REx [25]],
DIR [16]. We also consider a recent interpretable graph learning method GSAT [26]. For a fair
comparison, we use the same GNN backbone as GIL for the baselines.

Optimization and Hyper-parameters. The adopted GNNs and READOUT functions including
GNNM, GNNV, GNN!, READOUTV, and READOUT! are listed in Appendix. The hyper-
parameter A in Eq. (8) is chosen from {1075,1072,10~*}. The number of clusters in Eq. (3) is
chosen from [2,4]. They are tuned on the validation set. We report the mean results and standard
deviations of five runs. More details on the datasets, baselines and implementations are in Appendix.

5.2 Experiments on SP-Motif

Settings. To simulate different degrees of distribution shifts, we vary r in both the training and testing
datasets. For the training set, we select 744, from {1/3,0.5,0.6,0.7,0.8,0.9}. A larger 7¢rqin
indicates a higher spurious correlation between Y and Gy in the training set, while r¢.q:n, = 1/3
implies that the training set is balanced without any spurious correlation. For the testing set, we
consider two settings: (1) r4es¢ = 1/3, which simulates that the invariant subgraphs and variant
subgraphs are randomly attached without spurious correlations; (2) r¢.s¢ = 0.2, which indicates that
the testing set has reversed spurious correlations and thus is more challenging.

Quantitative Results. The results are shown in Table|l] We have the following observations. Our
proposed GIL model consistently and significantly outperforms the baselines and achieves the best
performance on all settings. The results demonstrate that our proposed method can well handle graph
distribution shifts and have a remarkable out-of-distribution generalization ability.



Table 1: The graph classification accuracy (%) on testing sets of the synthetic dataset SP-Motif. In
each column, the boldfaced and the underlined score denotes the best and the second-best result,
respectively. Numbers in the lower right corner denote standard deviations.

| Scenario 1: 7. = 1/3 | Scenario 2: 7.5 = 0.2
Ttrain ‘ r=1/3 r=0.5 r=0.6 r=0.7 r=0.8 r=09 ‘ r=1/3 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9

ERM 53.60+379 51244413 47.04+701 38.80+372 37.84+301 37444215 | 48.48+453  41.72+481 36.92+693 35.72+833 28.80+391  19.60+1.66
Attention | 54.31+398 53.24+356 42524620 35.20+105 34.48+118  33.88+101 | 44.04+433 31.64+067 25.72+534 24.80+406 23.20+360 18.04+238
Top-k Pool | 54.68+271 53.12+558 44.56+457 37444204 35244208 34284411 | 45.68+5.06 34.20+434  31.00+289 30.64+359 29.16+218  27.56+3.91
SAG Pool | 54.08+366 52.60+352 44.68+525 37.68+403 34.28+182 32.72+183 | 44.36+609 38.64+302 31.36+440 32.84x186 28.72+311  26.60+537
ASAP 54.00+421  51.92+381  45.12+198  36.28+0s86 34.24+202  34.40+3.15 | 49.88+490 34.52+435  27.00+261 27.20+253  27.96+389 22.88+433
GroupDRO | 53.20+491 51.40+435 48324535 39.12+427 38.40+276 37.64+1.69 | 52.68+4.04 43.68+405 31.92+684 34.36+841 28.88+5.14 20.32+1.64
IRM 52.00+234  50.60+354 47.84+695 38.80+372 39.84+321  39.00+398 | 50.24+673  41.60+475 35244535 34924803 29.44+547  21.84x357
V-REx 53.16+325  46.04x6.11  45.36+366 40.24+386  39.48+300  39.12+348 | 50.56+283  37.16+624 34524300 29.72+458  27.32+318  24.04x6.08

DIR 52.96+506  52.08+193 50.12+276 49.84+246 4520+1.11  41.24+473 | 50.68+520 49.96+175 45.44+600 40.56+236 39.92+453  32.52+459
GSAT 53.67+365 53.34+408 51.54+378 50.12+329 45.83+401 44.22+557 | 51.36+421  50.48+398 46.93+s503 43.55+367 40.35+421 33.87+5.19
GIL 55441311 54.56+3.02  53.60+as2  53.12+218  51.24+388  46.04+351 | 54.80+393 52.48+441  50.08+547 47.44+287 46.36+380 35.80+5.03
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As 1iqin grows larger, the performance of all the methods tends to decrease since there exists a
larger degree of distribution shift. Nevertheless, our proposed method is able to maintain the most
relatively stable performance. In fact, the performance gap between GIL and the baselines becomes
more significant as the degree of distribution shift increases. For example, when 74.s; = 1/3, the
accuracy of all baselines drops by more than 7% when 7,.4i, changes from 0.5 to 0.8, indicating
their poor OOD generalization ability. In contrast, our method only has 3% performance drop.

When the degree of distribution shift is relatively small, GNNs with different pooling methods to
generate subgraphs generally report better results. On the other hand, when the degree of distribution
shift is large, invariant baselines show more stable performance. Among them, DIR, which is a
recently proposed invariant method specifically designed for graphs, is one competitive baseline.
Nevertheless, our proposed method outperforms DIR by more than 3% in terms of the classification
accuracy in most cases. GSAT achieves promising gains over the other baselines, but our GIL still
performs better than GSAT. When ricst = train = 1/3, i.€., no distribution shifts, our proposed
method also achieves the best results, indicating that learning invariant subgraphs is also beneficial.

Analysis. To analyze whether our proposed method can accurately capture the invariant subgraph, we
compare GIL with baselines that also output subgraphs using the ground-truth invariant subgraphs.
The evaluation metric is Precision@5. We report the results in Figure[3] The results show that GIL
has a clear advantage in discovering invariant subgraphs under latent environments, while the other
baselines cannot handle distribution shifts well.
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(a) Top-k Pool  (b) SAG Pool (c) DIR (d) GSAT (e) GIL (f) Ground Truth

Figure 6: Visualizations of the learned invariant subgraph for a showcase from the testing set of
SP-Motif. In Figures (a)-(e), the red lines indicate the learned invariant subgraph, and the ground-truth
is shown by the black lines in Figure (f).
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Besides the quantitative evaluation, we plot a showcase from the testing set of SP-Motif (7445, = 0.8
and 7.5, = 0.2) in Figure[6] The figure shows that the learned invariant subgraph of our method is
more accurate than baselines.

5.3 Experiments on Real-world Graphs

We further evaluate the effectiveness of our method on real-world graph datasets. The experimental
results are presented in Table[2] Our GIL achieves the best performance on all four datasets, indicating
that GIL can well handle distribution shifts on real-world graphs. For example, GIL increases the
classification accuracy by 1.8% on MNIST-75sp and ROC-AUC by 2.0% on MOLHIV against the
strongest baselines respectively. On MOLHIYV, the results of most baselines are worse than ERM,
indicating that they fail to achieve OOD generalization in this dataset. Besides, different datasets
have different distribution shifts, e.g., Graph-SST2 has different node degrees, the distribution shift
of MNIST-75sp is on node features, and OGB is split based on scaffold. Therefore, the results show
that our proposed method can well handle diverse types of distribution shifts in real graph datasets.

For MOLHIV, besides adopting GIN [J3]] as back- Table 3: The test results with different backbones.
bone (shown in Table [2), our method is also CIN GIL HIG  PAS+FPs GIL
compatible with the other popular GNNs, We 1) (st s[4 o i
try using HIG and CIN [27] (Rank #2 and #8 on ——— = = e =
the MOLHIV leaderboard’) as the backbone since these models are orthogonal to ours. Table
shows that our GIL can consistently improve these models.

In addition, we present some showcases of the learned invariant subgraph of the proposed GIL on
both the train and test set of Graph-SST2. This dataset consists of sentences with positive/negative
sentiments and is more understandable for humans. Figure[7)shows that our method can learn invariant
subgraphs by consistently focusing on the positive/negative words that are salient for sentiments
and distinguishing invariant/variant parts under distribution shifts. For example, the subgraph “The
world’s best actors” identified by GIL has a predictive and invariant relationship with the positive
sentiment label, while the subgraph “daniel auteuil” may reflect variant sentiments in different
sentences. These results validate: (1) the invariant and variant subgraphs widely exist in real-world
datasets, and (2) our GIL can well identify invariant subgraphs under distribution shifts and further
make predictions with high accuracy based on the learned invariant subgraphs.

5.4 Analysis of Environment Inference

In our proposed model, all components are jointly optimized. To show that the environment inference
module and invariant learning module can mutually enhance each other, we record the test accuracy
and the Silhouette score [28]], which is a commonly used evaluation metric for clustering, as the
model is trained. The results on SP-Motif (44 = 0.8, r4est = 1/3) are shown in Figure We can
observe that the test accuracy and the clustering performance improve synchronously over training. A
plausible reason is that, as the training stage progresses, the invariant subgraph generator is optimized
so that it can generate more informative invariant subgraphs and therefore improve the performance
on the testing set. On the other hand, accurately discovering invariant subgraphs can also promote

https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molhiv
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identifying variant subgraphs, which capture the environment-discriminate features and better infer
the latent environments. To verify that GIL can infer the environments accurately, we use t-SNE [29]
to plot the discovered environments on a 2D-plane when the optimization is finished. Figure [5|shows
that the variant subgraphs perfectly capture the environment-discriminate features. Notice that GIL
achieves such results without needing any ground-truth environment label.

5.5 Hyper-parameter Sensitivity

We investigate the sensitivity of hyper-parameters of our method, including the number of environ-
ments |E;, er|, the invariance regularizer coefficient A, and the size of the invariant subgraph mask ¢
in Eq. (3). For simplicity, we only report the results on SP-Motif (445, = 0.8 and r¢cs¢ = 1/3) and
MNIST-75sp in Figure[§] while the results on other datasets show similar patterns.

First, the number of environments has a moderate impact on the model performance.
For SP-Motif, the performance reaches a peak when |5mfer| = 3, showing that GIL
achieves the best result when the number of environments matches the ground truth.
For MNIST-75sp, the best number of environments is
|Einger| = 2. A plausible reason is that a large number of '_\_‘_\____h‘
environments will bring difficulty in inferring the latent A —— S——
environment, leading to sub-optimal performance. Sec-  (3) The number of environments |&;
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Finally, a proper value of the mask size ¢ is important. (b) The regularizer coefficient .

A very large ¢ will result in too many edges in the in- _s
variant subgraph and bring in variant structures, while a
small ¢ may let the invariant subgraph become too small S <
to capture enough structural information. Although an ap- (c) The invariant subgraph mask size ¢.
propriate choice of hyper-parameters can further improve
the performance, our method is not very sensitive to hyper-
parameters. Figure [§] shows that GIL can outperform
the best baselines with a wide range of hyper-parameters
choices.

SP-Motif MNIST-75sp

4

N
o

Accuracy (%)
S
&
>
Accuracy (%)
N
o

40.0

19

Figure 8: The impact of different hyper-
parameters. Yellow and blue lines de-
note the results of GIL and grey dashed
lines are the best results of all baselines.

6 Related Works

Graph neural networks. Recently, graph neural networks (GNNs) have shown enormous success in
graph representation learning [[1H3]], demonstrating their strength in various tasks [30-36]. GNNs
generally adopt a neighborhood aggregation (message passing) paradigm, i.e., the representations of
nodes are iteratively updated by aggregating representations of their neighbors. The representation of
the whole graph is summarized on node representations through the readout function (i.e., pooling) [13}
22]]. However, most existing GNN models do not consider the out-of-distribution generalization
ability [37] so that their performances can drop substantially on testing graphs with distribution shifts.

Generalization of GNNs. Early works [38-41]] for analyzing the generalization ability of GNNs
do not consider distribution shifts [37, 42, 43]]. More recently, the generalization ability of GNNs
under distribution shifts starts to receive research attention [44)}, (16} 45! 146]). [47]] find that encoding
task-specific non-linearities in the architecture or features can improve GNNS in extrapolating graph
algorithmic tasks. [[17,/48}49] try to encourage GNNs to perform well on testing graphs with different
sizes. Some works [50, 511 are proposed to deal with node-level tasks. EERM [52]] studies the OOD
generalization in node classification. However, little attention has been paid to learning graph-level
representations under distribution shifts from the invariant learning perspective. One exception is
the work DIR [16]], which conducts interventions on graphs to create interventional distributions.
However, performing causal intervention relies on strong assumptions [53]] that could be violated
and expensive to satisfy in practice [54]. GSAT [26] applies graph information bottleneck criteria for
generalization, but its goal is mainly to build inherently interpretable GNNs.

Invariant Learning. Invariant learning aims to exploit the invariant relationships between features
and labels across distribution shifts, while filtering out the variant spurious correlations. Backed by
causal theory, invariant learning model can lead to OOD optimal models under some assumptions [[11}



8L19]. However, most existing methods heavily rely on multiple environments that have to be explicitly
provided in the training dataset. Such annotation is not only prohibitively expensive for graphs, but
also inherently problematic as the environment split could be inaccurate, rendering these invariant
learning methods inapplicable. A few works study OOD generalization on latent environments in
computer vision [35} 56| or raw feature data [S7], which cannot be directly applied to graphs. In
summary, how to learn invariant graph representations without explicit environment label under
distribution shits remains largely unexplored in the literature.

7 Conclusions

In this paper, we propose the graph invariant learning (GIL) model to tackle the problem of learning
invariant graph representations under distribution shifts. Three tailored modules are jointly optimized
to encourage the graph representations to capture the invariant relationships between predictive graph
structural information and labels. Theoretical analysis and extensive experiments on both synthetic
and real-world datasets demonstrate the superiority of GIL.
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