Learning Invariant Graph Representations for
Out-of-Distribution Generalization

Haoyang Li, Ziwei Zhang, Xin Wang; Wenwu Zhu*
Tsinghua University
lihy18@mails.tsinghua.edu.cn, {zwzhang,xin_wang,wwzhu}@tsinghua.edu.cn

Abstract

Graph representation learning has shown effectiveness when testing and training
graph data come from the same distribution, but most existing approaches fail to
generalize under distribution shifts. Invariant learning, backed by the invariance
principle from causality, can achieve guaranteed generalization under distribution
shifts in theory and has shown great successes in practice. However, invariant learn-
ing for graphs under distribution shifts remains unexplored and challenging. To
solve this problem, we propose Graph Invariant Learning (GIL) model capable of
learning generalized graph representations under distribution shifts. Our proposed
method can capture the invariant relationships between predictive graph structural
information and labels in a mixture of latent environments through jointly optimiz-
ing three tailored modules. Specifically, we first design a GNN-based subgraph
generator to identify invariant subgraphs. Then we use the variant subgraphs, i.e.,
complements of invariant subgraphs, to infer the latent environment labels. We
further propose an invariant learning module to learn graph representations that
can generalize to unknown test graphs. Theoretical justifications for our proposed
method are also provided. Extensive experiments on both synthetic and real-world
datasets demonstrate the superiority of our method against state-of-the-art baselines
under distribution shifts for the graph classification task.

1 Introduction

Graph structured data is ubiquitous in the real world, e.g., social networks, biology networks, chemical
molecules, etc. Graph representation learning, which encodes graphs into vectorized representations,
has been the central topic in graph machine learning in the last decade. For example, graph neural
networks (GNNs) [1H3]] design end-to-end learning schemes to extract useful graph information and
are shown to be successful in a variety of applications.

Despite the enormous success, the existing approaches for learning graph representations heavily rely
on the L.I.D. assumption, i.e., the testing and training graph data are independently drawn from an
identical distribution. However, distribution shifts of graph data widely exist in real-world scenarios
and are usually inevitable due to the uncontrollable underlying data generation mechanism [4]].
Most existing approaches fail to generalize to out-of-distribution (OOD) testing graph data. One
critical bottleneck is that the existing methods ignore the invariant graph patterns and tend to rely on
correlations that are variant for graphs from different environments. Therefore, it is of paramount
significance to learn graph representations under distribution shifts and develop methods capable of
out-of-distribution (OOD) generalization. Such studies are particularly critical for high-stake graph
applications such as medical diagnosis [5], financial analysis [6], molecular prediction [7], etc.

In this work, we propose a brand new methodology to learn invariant graph representation under
distribution shifts. Invariant learning, which aims to exploit the invariant relationships between

*Corresponding authors

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

features and labels across different distributions while disregarding the variant spurious correlations,
can provably achieve satisfactory OOD generalization under distribution shifts [8-10]. Though
invariant learning has been studied for images and texts [8} [11], it remains largely unexplored in
the literature of graph representation learning. However, invariant graph representation learning is
non-trivial due to the following challenges. First, graph data usually comes from a mixture of latent
environments without accurate environment la-
bels, as shown in Figure[T} Since most invariant }
methods require multiple training environments ,
with explicit environment labels, these existing | e | B £y | (750D Tasting Set | Poor Prediction
methods cannot be directly applied to graphs. 77" \59 50 {60 T/ by & M LN
Second, the formation process of graphs is af- - ' A i -

fected by the complex interaction of both invari- - Fjgure 1: An example of distribution shifts under

ant and variant patterns. How to identify the 5 mixture of latent environments, which leads to
invariant patterns among latent environments is poor generalization.

even more challenging. Last but not least, even
after having obtained the environmental labels, how to design a theoretically grounded learning
scheme to generate graph representations capable of OOD generalization remains largely unexplored.

Labels |

Yo ‘ﬁ"%@ = B3 [li..]-l

Training Set H 1ID Testing Set

To tackle these challenges, in this paper, we propose Graph Invariant Learning method (GIL) which
is able to capture invariant graph patterns in a mixture of latent environments and capable of OOD
generalization under distribution shifts. As shown in Figure [2] our proposed method can capture
the invariant relationships between predictive graph structural information and labels in a mixture
of latent environments through jointly optimizing three mutually promoting modules, with each
module tackling one aforementioned challenge. Specifically, in the invariant subgraph identification
module, we design a GNN-based subgraph generator to identify potentially invariant subgraphs
from the complex interaction between invariant and variant patterns. Then, we use the variant sub-
graphs, i.e., the complement of invariant subgraphs, to infer environment labels by clustering these
environment-discriminative features. The variant subgraphs capture variant correlations under differ-
ent distributions and therefore contain informative features to infer environment labels. Lastly, in the
invariant learning module, we propose to optimize the maximal invariant subgraph generator criterion
given the identified invariant subgraphs and inferred environments to generate graph representations
capable of OOD generalization under distribution shifts. We theoretically show that the OOD gener-
alization problem on graphs can be formulated as finding a maximal invariant subgraph generator
of our GIL, and further prove that our GIL satisfies permutation invariance. We conduct extensive
experiments on both synthetic graph datasets and real graph benchmarks for the graph classification
task. The results show that the representations learned from GIL achieve substantial performance
gains on the unseen OOD testing graphs compared with various state-of-the-art baselines.

Our contributions are summarized as follows.

* We propose a novel Graph Invariant Learning method (GIL) to learn invariant and OOD generalized
graph representations under distribution shifts. To the best of our knowledge, we are the first to
study invariant learning for graph representation learning under a mixture of latent environments.

* Our proposed method can automatically infer the environment label of graphs from a mixture of
latent environments without supervision.

* We propose maximal invariant subgraph generator criterion to learn graph representations capable
of OOD generalization under distribution shifts.

* We theoretically show that finding a maximal invariant subgraph generator of GIL can solve the
OOD generalization problem. Extensive empirical results demonstrate the effectiveness of GIL on
various synthetic and benchmark datasets under distribution shifts.

2 Notations and Problem Formulation

Notations. Let G and Y be the graph and label space. We consider a graph dataset G = {(G}, YZ—)}I.]\L1
where G; € G and Y; € Y. Following the OOD convention [[11} 8] 9], we assume the dataset is col-
lected from multiple training environments, i.e., G = {G®}cceupp(e,,)» Where G¢ = {(G%, Y£) } ¥,
denotes the dataset from environment e, supp(&-) is the support of the environmental variable in the
training data. We use G and Y to denote the random variables of graph and label, and G® and Y* to

. NaTs' Invariant Subgraph Identification Environment Inference
Latent environments: | }i | (b() Clust t sub hs {Gy} to infi "
. i uster varian subgraphs o infer environments
e, = Ladder, e,= Tree, Variant } p Q p v "
Granh dataset subgraphs {Gy}| i e, = Ladder \ e,= Tree
raph dataset i i i |
Labels: Y = Y= i .% H |
4 r-a - | =
T SR i oo ; coo | oee @
Trammg Dataset g AN Y . 3
Q
Invariant Learnmg o
;” e,= Ladder \\ r’ g
- K | él ® {E’l SHCl | | s
=]
., Edge Mask My, Ivariant Q.t -‘ .l 73
s o, o nvarian <
Graphs from a mixture oé‘g . -“Q}Q) subgraphs (G,}| (weg®) },,Shar,e,ﬁ,, wog() }&ate,g,,[w te0)
of latent environments 8501 093
: Aj=Top,(MOA) | Ay=A-A; * *
: Distribution shifts = Classification loss E, (R)
Invariant & variant subgraphs {G,}, {Gy} V R
. '} 9
Te%stmgg Dgatagt é..g ‘Q.. Invariance regulanzer /ltnce(Var(Vz,R“))
Objective function
| <1>(-)l wog()]

= Prediction
Y=7(6) = wegeo®(G)

Figure 2: The framework of GIL model. Our proposed method jointly optimizes three modules: (1)
In the invariant subgraph identification module, a GNN-based subgraph generator ®(-) identifies the
invariant subgraph G and the variant subgraph Gy . (2) The environment inference module uses
the variant subgraphs {Gy } to infer the latent environments by clustering the representations of
{Gv }. (3) The invariant learning module jointly optimizes the invariant subgraph generator ®(-), the
representation learning function g(-), and the classifier w(-). Training stage (shown by grey arrows):
we back propagate with the objective function to update model parameters. Testing stage (shown by
green arrows): we use the optimized model to make predictions.

specify random variables from environment e. The environment label for graphs is unobserved since
it is prohibitively expensive to collect graph environment labels for most real scenarios.

Problem Formulation. We formulate the generalization under distribution shifts on graphs as:

Problem 1. Let £ denote the random variable on indices of all possible environments. Our goal is to
find an optimal predictor f*(-) : G — Y that performs well on all environments:
f() =argmin sup R(fle), M
f ecsupp(€)
where R(fle) = EG y[¢(f(G),Y)] is the risk of the predictor f on the environment e, and ((-,-) :
Y x Y — R denotes a loss function. We further decompose f(-) = w o h, where h(-) : G — R% is
the representation learning function, d is the dimensionality, and w(-) : R? =Y is the classifier.

Note that supp(&;,.) C supp(£). Besides, distribution shifts indicate that P¢(G,Y) #

P (G,Y), e € supp(&), €' € supp(€) \ supp(&y), i.e., the joint distribution of the graph and the
corresponding label is different for training and testing graph data.

Problem [1]is difficult to be solved since supp(€) is unobserved or latent [8, O]. In addition, for
most graph datasets, we do not have access to accurate environment labels or environment partitions.
Therefore, we focus on jointly inferring the environments of the graph dataset G and achieving good
OOD generalization performance under the inferred environments. The problem is formulated as:

Problem 2. Given a graph dataset G collected from a mixture of latent environments but without
environment labels, the task is to jointly infer graph environments Eiy, fer, i.., G = {G® }ecsupp(£inser)s
and learn a graph predictor f*(-) in Problemunder the inferred environments &y, yer to achieve
good OOD generalization performance.

3 Method

In this section, we introduce our proposed method in detail, whose framework is shown in Figure 2]
We first present the invariant subgraph identification module. Then, we infer environment labels
by clustering the variant subgraphs. Next, we introduce the maximal invariant subgraph generator
criterion to generate graph representations which can generalize to test graphs under distribution
shifts. Lastly, we provide some discussions of our proposed method.

3.1 Invariant Subgraph Identification

We assume that each input graph G € G has an invariant subgraph G; C G so that its relationship
with the label is invariant across different environments. We refer to the rest of the graph, i.e., the
complement of G, as the variant subgraph and denote it as Gy . Gy represents the graph part
whose relationship with the label is variant across different environments, e.g., spurious correlations.
Therefore, the model will have a better OOD generalization ability if it can identify the invariant
subgraph and only uses structural information from G;.

We denote a generator to obtain the invariant subgraph as G; = ®(G). Following the invariant
learning literature [[12], we make an assumption on ®(G) as follows:

Assumption 3.1. Given G, there exists an optimal invariant subgraph generator ®*(G) satisfying:
a. Tnvariance property: Ve, e’ € supp(£), P¢(Y|®*(G)) = P¢ (Y|®*(G)).

b. Sufficiency property: Y = w*(g*(®*(G))) + €, € L G, where g*(-) denotes a representation
learning function, w* is the classifier, 1 indicates statistical independence, and ¢ is random noise.

The invariance assumption means that there exists a subgraph generator such that it can generate
invariant subgraphs across different environments. The sufficiency assumption means that the
generated invariant subgraphs should have sufficient predictive abilities in predicting the graph labels.

Under this assumption, we instantiate ®(-) with learnable parameters. Consider an input graph
instance G with n nodes. The corresponding adjacency matrix is denoted as A = {0, 1}™*™, where
A; ; = 1 represents that there exists an edge between node ¢ and 7, and A; ; = 0 otherwise. To split
the input graph G into G and Gy, a common strategy is to use a binary mask matrix M = {0, 1}"*"
on the adjacency matrix A. However, directly optimizing a discrete matrix M is intractable as G
has exponentially many subgraph candidates [[13]]. Besides, learning M for each graph G separately
hinders the method from handling unseen test graphs [[14]. Therefore, we adopt a shared learnable
GNN (denoted as GNNM) to generate a soft mask matrix M = R™*™ as follows:

.
M, =2 -z, z(™ = aNNM(@), @)

where Z(") is the node representation. Then, we obtain the invariant and variant subgraphs as:
A;=Top, M®A),Ay =A — Ay, A3)

where A and Ay denotes the adjacency matrix of Gy and Gy, respectively, © means the element-
wise matrix multiplication, and Top,(-) selects the top ¢-percentage of elements with the largest
values. The parameters of GNN™ are trained on all available graphs to generate the corresponding
G and Gy . Using the inductive learning ability of GNNs, it can also be used to unseen test graphs,
as opposed to directly optimizing mask matrices.

3.2 Environment Inference

After obtaining the invariant and variant subgraphs, we can infer the environment label £;;, fc,.. The
intuition is that since the invariant subgraph captures invariant relationships between predictive graph
structural information and labels, the variant subgraphs in turn capture variant correlations under
different distributions, which are environment-discriminative features. Therefore, we can use the
variant subgraphs to infer the latent environments. We adopt another GNN encoder, whose parameters
are also shared among different graphs, to generate the representation of the variant subgraph Gy :

Zyv = GNNY(Gv), hy = READOUTY (Zy), 4)

where READOUT is a permutation-invariant readout function that aggregates node-level representa-
tion Zy into graph-level representation hy . The representation of all the variant subgraphs is denoted
as H = [hy,, ..., hy,]. After obtaining H, we use an off-the-shelf clustering algorithm to infer the
environment label &;,, e,. In this paper, we adopt k-means [15]] as our clustering algorithm:

Einfer = k-means(H). 5)

Using &y, fer, We can partition the graph dataset into multiple training environments, i.e., G =
{G°}eesupp(Ein fer): The environment inference module is purely unsupervised without needing any
ground-truth environment labels.

3.3 Invariant Learning

After obtaining the inferred invariant subgraphs and environment labels, we propose the invariant
learning module which can generate OOD generalized graph representations under distribution shifts.

Recall that both the invariant subgraph identification module and environment inference module
heavily depend on the generator ®. Therefore, we aim to learn the optimal generator ®* in Assump-
tion 3.1 by proposing and optimizing the maximal invariant subgraph generator criterion. First,
following the invariant learning literature 9], we give the following definition.

Definition 1. The invariant subgraph generator set T with respect to £ is defined as:
Te = {®() : P*(Y|®(G)) = P (Y|B(G)), e, ¢’ € supp(€)}. ©)

Then, we show that the optimal generator ®* satisfies the following theorem.

Theorem 3.2. A generator ®(G) is the optimal generator that satisfies Assumption if and only if
it is the maximal invariant subgraph generator, i.e.,

¢ = arg max I (Y;2(G)),)
where I(-;-) is the mutual information between the label and the generated subgraph.

The proof is provided in Appendix. Eq. (7)) provides us an objective function to optimize the subgraph
generator. However, directly solving Eq. (7) for a non-linear ® is difficult [9]. Following the invariant
learning literature [9]], we transform Eq. (7)) into an invariance regularizer:

Eeesupp(gi,,Lfer,v)Re(f(G)7 Y7 6) + Atrace(var‘gin,‘f@r (nge))7 (8)

where f(-) = wo go ®, &y fer is the infered environment label, and ¢ denotes all the learnable
parameters. Recall that g(-) is the representation learning function of the invariant subgraphs and
w(-) is the classifier. We instantiate g as another GNN as follows:

Z; = GNN'(G;),h; = READOUTY(Z/). ©)
Z1 and h; are the node-level and graph-level representations of invariant subgraph Gy, respectively.
w(-) is instantiated as a multilayer perceptron followed by the softmax activation function. By

optimizing Eq. (8], we can get our desired generator ® and the subgraph representation learning
function g(-), which collectively serve as our representation learning method h(-), i.e., h = g o ®.

3.4 Discussions

Training Procedure. We present the pseudocode of GIL in Appendix.

Time Complexity. The time complexity of our GIL is O(|E|d + |V'| d?), where |V | and | E| denotes
the number of nodes and edges, respectively, and d is the dimensionality of the representations. Specif-
ically, we adopt message-passing GNNS to instantiate our GNN components, which has a complexity
of O(|E|d + |V'| d?). Since we only need to generate mask for the existing edges in graphs, the time
complexity of generating invariant and variant subgraphs and further obtaining their representations
is O(|E|d + |V| d?). The time complexity of environment inference is O(|B||E;n fer|T'd), where |B]
is the batch size, T is the number of iterations for the k-means algorithm, and |E;,, s | denotes the
number of inferred environments. The time complexity of the invariance regularizer is O(|iy, fer|d?),
as the number of parameters for most GNNs is O(d?). Since |B|, |€;yfer|, and T are small constants,
the overall time complexity of GIL is O(|E| d+ |V | d?). In comparison, the time complexity of other
GNN-based graph representation methods is also O(|E|d + |V | d?). Therefore, the time complexity
of our proposed GIL is on par with the existing methods.

4 Theoretical Analysis

In this section, we theoretically analyze our GIL model by showing that the maximal invariant
subgraph generator can achieve OOD optimal. The proofs are provided in Appendix.

Theorem 4.1. Let ®* be the optimal invariant subgraph generator in Assumption[3.1|and denote the
complement as G\®*(G), i.e., the corresponding variant subgraph. Then, we can obtain the optimal
predictor under distribution shifts, i.e., the solution to Problem[I} as follows:

argminwo go ®*(G) = argmin sup R(f|e), (10)
w,9 I eesupp(€)

if the following conditions hold: (1) ®*(G) L G\®*(G); and (2)V® € Zg, 3 ¢’ € supp(E) such
that P¢ (G,Y) = P¢ (®(G), Y)P¢ (G\®(G)) and P¢ (®(G)) = P*(®(G)).

The theorem shows that we can transform the OOD generalization problem into finding the optimal
invariant subgraphs while maintaining the optimality.

We also prove that our GIL satisfies permutation invariance in Appendix.

S Experiments

In this section, we evaluate the effectiveness of our GIL on both synthetic and real-world datasets.

5.1 Experimental Setup

Datasets. We adopt one synthetic dataset with controllable ground-truth environments and four
real-world benchmark datasets for the graph classification task.

* SP-Motif: Following [13}[16], we generate a synthetic dataset where each graph consists of one
variant subgraph and one invariant subgraph, i.e., motif. The variant subgraph includes Tree, Ladder,
and Wheel (denoted by V' =0, 1, 2, respectively) and the invariant subgraph includes Cycle, House,
and Crane (denoted by I =0, 1, 2). The ground-truth label Y only depends on the invariant subgraph
1, which is sampled uniformly. The spurious correlation between V and Y is injected by controlling
the variant subgraphs distribution as: P(V) = rif V.= I and P(V) = (1 —r)/2if V # I.
Intuitively, r controls the strength of the spurious correlation. We set r to different values in the
testing and training set to simulate the distribution shifts.

* MNIST-75sp [17]: The task is to classify each graph that is converted from an image in MNIST [[18]]
into the corresponding handwritten digit. Distribution shifts exist on node features by adding random
noises in the testing set.

* Graph-SST2 [19]: Each graph is converted from a text sequence. Graphs are split into different
sets based on average node degrees to create distribution shifts.

¢ Open Graph Benchmark (OGB) [20]: We consider two datasets, MOLSIDER and MOLHIV. The
default split separates structurally different molecules with different scaffolds into different subsets.

Baselines. We compare our GIL with some representative state-of-the-art methods. The first group
of these methods generates masks on graph structures to filter out important subgraphs using different
GNNS, including Attention [2l], Top-k Pool [21]], SAGPool [22]], and ASAP [23]]. The second group
is invariant learning methods, including standard ERM, GroupDRO [24], IRM [8], V-REx [25]],
DIR [16]. We also consider a recent interpretable graph learning method GSAT [26]. For a fair
comparison, we use the same GNN backbone as GIL for the baselines.

Optimization and Hyper-parameters. The adopted GNNs and READOUT functions including
GNNM, GNNV, GNN!, READOUTV, and READOUT! are listed in Appendix. The hyper-
parameter A in Eq. (8) is chosen from {1075,1072,10~*}. The number of clusters in Eq. (3) is
chosen from [2,4]. They are tuned on the validation set. We report the mean results and standard
deviations of five runs. More details on the datasets, baselines and implementations are in Appendix.

5.2 Experiments on SP-Motif

Settings. To simulate different degrees of distribution shifts, we vary r in both the training and testing
datasets. For the training set, we select 744, from {1/3,0.5,0.6,0.7,0.8,0.9}. A larger 7¢rqin
indicates a higher spurious correlation between Y and Gy in the training set, while r¢.q:n, = 1/3
implies that the training set is balanced without any spurious correlation. For the testing set, we
consider two settings: (1) r4es¢ = 1/3, which simulates that the invariant subgraphs and variant
subgraphs are randomly attached without spurious correlations; (2) r¢.s¢ = 0.2, which indicates that
the testing set has reversed spurious correlations and thus is more challenging.

Quantitative Results. The results are shown in Table|l] We have the following observations. Our
proposed GIL model consistently and significantly outperforms the baselines and achieves the best
performance on all settings. The results demonstrate that our proposed method can well handle graph
distribution shifts and have a remarkable out-of-distribution generalization ability.

Table 1: The graph classification accuracy (%) on testing sets of the synthetic dataset SP-Motif. In
each column, the boldfaced and the underlined score denotes the best and the second-best result,
respectively. Numbers in the lower right corner denote standard deviations.

| Scenario 1: 7. = 1/3 | Scenario 2: 7.5 = 0.2
Ttrain ‘ r=1/3 r=0.5 r=0.6 r=0.7 r=0.8 r=09 ‘ r=1/3 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9

ERM 53.60+379 51244413 47.04+701 38.80+372 37.84+301 37444215 | 48.48+453 41.72+481 36.92+693 35.72+833 28.80+391 19.60+1.66
Attention | 54.31+398 53.24+356 42524620 35.20+105 34.48+118 33.88+101 | 44.04+433 31.64+067 25.72+534 24.80+406 23.20+360 18.04+238
Top-k Pool | 54.68+271 53.12+558 44.56+457 37444204 35244208 34284411 | 45.68+5.06 34.20+434 31.00+289 30.64+359 29.16+218 27.56+3.91
SAG Pool | 54.08+366 52.60+352 44.68+525 37.68+403 34.28+182 32.72+183 | 44.36+609 38.64+302 31.36+440 32.84x186 28.72+311 26.60+537
ASAP 54.00+421 51.92+381 45.12+198 36.28+0s86 34.24+202 34.40+3.15 | 49.88+490 34.52+435 27.00+261 27.20+253 27.96+389 22.88+433
GroupDRO | 53.20+491 51.40+435 48324535 39.12+427 38.40+276 37.64+1.69 | 52.68+4.04 43.68+405 31.92+684 34.36+841 28.88+5.14 20.32+1.64
IRM 52.00+234 50.60+354 47.84+695 38.80+372 39.84+321 39.00+398 | 50.24+673 41.60+475 35244535 34924803 29.44+547 21.84x357
V-REx 53.16+325 46.04x6.11 45.36+366 40.24+386 39.48+300 39.12+348 | 50.56+283 37.16+624 34524300 29.72+458 27.32+318 24.04x6.08

DIR 52.96+506 52.08+193 50.12+276 49.84+246 4520+1.11 41.24+473 | 50.68+520 49.96+175 45.44+600 40.56+236 39.92+453 32.52+459
GSAT 53.67+365 53.34+408 51.54+378 50.12+329 45.83+401 44.22+557 | 51.36+421 50.48+398 46.93+s503 43.55+367 40.35+421 33.87+5.19
GIL 55441311 54.56+3.02 53.60+as2 53.12+218 51.24+388 46.04+351 | 54.80+393 52.48+441 50.08+547 47.44+287 46.36+380 35.80+5.03
70 80 Environments
— BN Test Accuracy === Silhouette Score "
ey, R S ol L 60 o o Tree
~ o o Ladder
0.35 - 0758
n 6] (2]
© © 50 o
< 0.29 3 0.70E
o o JGJJ
@ <% 3
8 0.23 ey Jan-J‘ 30 0.65%
e .
2 — = 8 | i
0.17
/3 05 06 07 08 0.9 0 0 5 10 15 20 25 30 35 0.60
I'train Epoch

Figure 5: The en-
Figure 3: The results of discovering ~ Figure 4: The test accuracy and the =~ vironment inference
the ground-truth invariant subgraphs performance of environment infer- results when train-
on SP-Motif (145 = 0.2). ence over different training periods. ing is finished.

As 1iqin grows larger, the performance of all the methods tends to decrease since there exists a
larger degree of distribution shift. Nevertheless, our proposed method is able to maintain the most
relatively stable performance. In fact, the performance gap between GIL and the baselines becomes
more significant as the degree of distribution shift increases. For example, when 74.s; = 1/3, the
accuracy of all baselines drops by more than 7% when 7,.4i, changes from 0.5 to 0.8, indicating
their poor OOD generalization ability. In contrast, our method only has 3% performance drop.

When the degree of distribution shift is relatively small, GNNs with different pooling methods to
generate subgraphs generally report better results. On the other hand, when the degree of distribution
shift is large, invariant baselines show more stable performance. Among them, DIR, which is a
recently proposed invariant method specifically designed for graphs, is one competitive baseline.
Nevertheless, our proposed method outperforms DIR by more than 3% in terms of the classification
accuracy in most cases. GSAT achieves promising gains over the other baselines, but our GIL still
performs better than GSAT. When ricst = train = 1/3, i.€., no distribution shifts, our proposed
method also achieves the best results, indicating that learning invariant subgraphs is also beneficial.

Analysis. To analyze whether our proposed method can accurately capture the invariant subgraph, we
compare GIL with baselines that also output subgraphs using the ground-truth invariant subgraphs.
The evaluation metric is Precision@5. We report the results in Figure[3] The results show that GIL
has a clear advantage in discovering invariant subgraphs under latent environments, while the other
baselines cannot handle distribution shifts well.

Ay A b A A B

*—g
I L j I
(a) Top-k Pool (b) SAG Pool (c) DIR (d) GSAT (e) GIL (f) Ground Truth

Figure 6: Visualizations of the learned invariant subgraph for a showcase from the testing set of
SP-Motif. In Figures (a)-(e), the red lines indicate the learned invariant subgraph, and the ground-truth
is shown by the black lines in Figure (f).

Table 2: The graph classification results (%) on

. o
testing sets of the real-world datasets. We report 2 o s/— R danlel a romantic
[72]
the accuracy for MNIST-75sp and Graph-SST2, S world best ;——autéuil delightful ~ comedy
ROC-AUC for MOLSIDER and MOLHIV. ST T T T T T o T s s s s
MNIST-75sp Graph-SST2 MOLSIDER MOLHIV 2 G .
© onto-screen 5 and an stupid
ERM 14.94+327 81.44+059 57.57+156 76.20+1.14 % ’/
Attention 16.44+378 81.57+071 56.99+0.54 75.84+133 c the loud = violent = mindl believably film
Top-k Pool 15.02+3.08 79.78+1.35 60.63+152 73.01+1.65
SAG Pool 19.34+173 80.24x172 61.29+131 73.26+084 . .
ASAP 15040358 8157+0s 5577214 7381+.n Figure 7: Four showcases of sentences with
GrowpDRO. 3T%sass Slasswa J0atas 7™ positive/negative sentiments of train/test sets on
V-REx 18.40+1.12 81.76+008 57.76+078 75.62+079 Graph-SSTZ learned by our GIL. Blue edges in-
DIR 17.38+3.52 83.29+053 57.74+1.63 77.05+0.57
GSAT 20121135 8205t0m 6082013 Te47rs dicate the learned invariant subgraphs, while the
GIL 21.94+0.38 83.44+0.37 63.50+057 79.08+0.54 others are variant subgraphs.

Besides the quantitative evaluation, we plot a showcase from the testing set of SP-Motif (7445, = 0.8
and 7.5, = 0.2) in Figure[6] The figure shows that the learned invariant subgraph of our method is
more accurate than baselines.

5.3 Experiments on Real-world Graphs

We further evaluate the effectiveness of our method on real-world graph datasets. The experimental
results are presented in Table[2] Our GIL achieves the best performance on all four datasets, indicating
that GIL can well handle distribution shifts on real-world graphs. For example, GIL increases the
classification accuracy by 1.8% on MNIST-75sp and ROC-AUC by 2.0% on MOLHIV against the
strongest baselines respectively. On MOLHIYV, the results of most baselines are worse than ERM,
indicating that they fail to achieve OOD generalization in this dataset. Besides, different datasets
have different distribution shifts, e.g., Graph-SST2 has different node degrees, the distribution shift
of MNIST-75sp is on node features, and OGB is split based on scaffold. Therefore, the results show
that our proposed method can well handle diverse types of distribution shifts in real graph datasets.

For MOLHIV, besides adopting GIN [J3]] as back- Table 3: The test results with different backbones.
bone (shown in Table [2), our method is also CIN GIL HIG PAS+FPs GIL
compatible with the other popular GNNs, We 1) (st s[4 o i
try using HIG and CIN [27] (Rank #2 and #8 on ——— = = e =
the MOLHIV leaderboard’) as the backbone since these models are orthogonal to ours. Table
shows that our GIL can consistently improve these models.

In addition, we present some showcases of the learned invariant subgraph of the proposed GIL on
both the train and test set of Graph-SST2. This dataset consists of sentences with positive/negative
sentiments and is more understandable for humans. Figure[7)shows that our method can learn invariant
subgraphs by consistently focusing on the positive/negative words that are salient for sentiments
and distinguishing invariant/variant parts under distribution shifts. For example, the subgraph “The
world’s best actors” identified by GIL has a predictive and invariant relationship with the positive
sentiment label, while the subgraph “daniel auteuil” may reflect variant sentiments in different
sentences. These results validate: (1) the invariant and variant subgraphs widely exist in real-world
datasets, and (2) our GIL can well identify invariant subgraphs under distribution shifts and further
make predictions with high accuracy based on the learned invariant subgraphs.

5.4 Analysis of Environment Inference

In our proposed model, all components are jointly optimized. To show that the environment inference
module and invariant learning module can mutually enhance each other, we record the test accuracy
and the Silhouette score [28]], which is a commonly used evaluation metric for clustering, as the
model is trained. The results on SP-Motif (44 = 0.8, r4est = 1/3) are shown in Figure We can
observe that the test accuracy and the clustering performance improve synchronously over training. A
plausible reason is that, as the training stage progresses, the invariant subgraph generator is optimized
so that it can generate more informative invariant subgraphs and therefore improve the performance
on the testing set. On the other hand, accurately discovering invariant subgraphs can also promote

https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molhiv

https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-molhiv

identifying variant subgraphs, which capture the environment-discriminate features and better infer
the latent environments. To verify that GIL can infer the environments accurately, we use t-SNE [29]
to plot the discovered environments on a 2D-plane when the optimization is finished. Figure [5|shows
that the variant subgraphs perfectly capture the environment-discriminate features. Notice that GIL
achieves such results without needing any ground-truth environment label.

5.5 Hyper-parameter Sensitivity

We investigate the sensitivity of hyper-parameters of our method, including the number of environ-
ments |E;, er|, the invariance regularizer coefficient A, and the size of the invariant subgraph mask ¢
in Eq. (3). For simplicity, we only report the results on SP-Motif (445, = 0.8 and r¢cs¢ = 1/3) and
MNIST-75sp in Figure[§] while the results on other datasets show similar patterns.

First, the number of environments has a moderate impact on the model performance.
For SP-Motif, the performance reaches a peak when |5mfer| = 3, showing that GIL
achieves the best result when the number of environments matches the ground truth.
For MNIST-75sp, the best number of environments is
|Einger| = 2. A plausible reason is that a large number of '__‘_____h‘
environments will bring difficulty in inferring the latent A —— S——
environment, leading to sub-optimal performance. Sec- (3) The number of environments |&;

P-Motif MNIST-75sp

)
8

@

S
3
o
o

Accuracy (%
Accuracy (%)

Fs

4.0

b

1
nfeTl-

ond, the coefficient A also has a slight influence on the _., spuotic s MNIST.755p
performance, indicating that we need to properly balance .., oo

the classification loss and the invariance regularizer term. 2, ~~-~7-~-—-=-| |~~~ """ """
Finally, a proper value of the mask size ¢ is important. (b) The regularizer coefficient .

A very large ¢ will result in too many edges in the in- _s
variant subgraph and bring in variant structures, while a
small ¢ may let the invariant subgraph become too small S <
to capture enough structural information. Although an ap- (c) The invariant subgraph mask size ¢.
propriate choice of hyper-parameters can further improve
the performance, our method is not very sensitive to hyper-
parameters. Figure [§] shows that GIL can outperform
the best baselines with a wide range of hyper-parameters
choices.

SP-Motif MNIST-75sp

4

N
o

Accuracy (%)
S
&
>
Accuracy (%)
N
o

40.0

19

Figure 8: The impact of different hyper-
parameters. Yellow and blue lines de-
note the results of GIL and grey dashed
lines are the best results of all baselines.

6 Related Works

Graph neural networks. Recently, graph neural networks (GNNs) have shown enormous success in
graph representation learning [[1H3]], demonstrating their strength in various tasks [30-36]. GNNs
generally adopt a neighborhood aggregation (message passing) paradigm, i.e., the representations of
nodes are iteratively updated by aggregating representations of their neighbors. The representation of
the whole graph is summarized on node representations through the readout function (i.e., pooling) [13}
22]]. However, most existing GNN models do not consider the out-of-distribution generalization
ability [37] so that their performances can drop substantially on testing graphs with distribution shifts.

Generalization of GNNs. Early works [38-41]] for analyzing the generalization ability of GNNs
do not consider distribution shifts [37, 42, 43]]. More recently, the generalization ability of GNNs
under distribution shifts starts to receive research attention [44)}, (16} 45! 146]). [47]] find that encoding
task-specific non-linearities in the architecture or features can improve GNNS in extrapolating graph
algorithmic tasks. [[17,/48}49] try to encourage GNNs to perform well on testing graphs with different
sizes. Some works [50, 511 are proposed to deal with node-level tasks. EERM [52]] studies the OOD
generalization in node classification. However, little attention has been paid to learning graph-level
representations under distribution shifts from the invariant learning perspective. One exception is
the work DIR [16]], which conducts interventions on graphs to create interventional distributions.
However, performing causal intervention relies on strong assumptions [53]] that could be violated
and expensive to satisfy in practice [54]. GSAT [26] applies graph information bottleneck criteria for
generalization, but its goal is mainly to build inherently interpretable GNNs.

Invariant Learning. Invariant learning aims to exploit the invariant relationships between features
and labels across distribution shifts, while filtering out the variant spurious correlations. Backed by
causal theory, invariant learning model can lead to OOD optimal models under some assumptions [[11}

8L19]. However, most existing methods heavily rely on multiple environments that have to be explicitly
provided in the training dataset. Such annotation is not only prohibitively expensive for graphs, but
also inherently problematic as the environment split could be inaccurate, rendering these invariant
learning methods inapplicable. A few works study OOD generalization on latent environments in
computer vision [35} 56| or raw feature data [S7], which cannot be directly applied to graphs. In
summary, how to learn invariant graph representations without explicit environment label under
distribution shits remains largely unexplored in the literature.

7 Conclusions

In this paper, we propose the graph invariant learning (GIL) model to tackle the problem of learning
invariant graph representations under distribution shifts. Three tailored modules are jointly optimized
to encourage the graph representations to capture the invariant relationships between predictive graph
structural information and labels. Theoretical analysis and extensive experiments on both synthetic
and real-world datasets demonstrate the superiority of GIL.

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China
No. 2020AAA0106300 and National Natural Science Foundation of China (No. 62250008, 62222209,
62102222, 62206149), China National Postdoctoral Program for Innovative Talents No. BX20220185,
China Postdoctoral Science Foundation No. 2022M711813.

References

[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[2] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[4] Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa
Bilaniuk, Anirudh Goyal, and Christopher Pal. A meta-transfer objective for learning to
disentangle causal mechanisms. International Conference on Learning Representations, 2019.

[5] Yang Li, Buyue Qian, Xianli Zhang, and Hui Liu. Graph neural network-based diagnosis
prediction. Big Data, 8(5):379-390, 2020.

[6] Yiying Yang, Zhongyu Wei, Qin Chen, and Libo Wu. Using external knowledge for financial
event prediction based on graph neural networks. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 2161-2164, 2019.

[7] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513-530, 2018.

[8] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[9] Masanori Koyama and Shoichiro Yamaguchi. Out-of-distribution generalization with maximal
invariant predictor. arXiv preprint arXiv:2008.01883, 2020.

[10] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Yoshua Bengio, Ioannis Mitliagkas, and Irina
Rish. Invariance principle meets information bottleneck for out-of-distribution generalization.
Neural Information Processing Systems (NeurIPS), 2021.

10

[11] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In Interna-
tional Conference on Machine Learning, pages 1448-1458. PMLR, 2020.

[12] Mateo Rojas-Carulla, Bernhard Scholkopf, Richard Turner, and Jonas Peters. Invariant models
for causal transfer learning. The Journal of Machine Learning Research, 19(1):1309-1342,
2018.

[13] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing

systems, 32:9240, 2019.

[14] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in Neural Information
Processing Systems, 33, 2020.

[15] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics), 28(1):100-108, 1979.

[16] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. In International Conference on Learning Representations,
2022.

[17] Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and gener-
alization in graph neural networks. Advances in Neural Information Processing Systems, 32:
4202-4212, 2019.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[19] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. arXiv preprint arXiv:2012.15445, 2020.

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Neural Information Processing Systems (NeurIPS), 2020.

[21] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pages 2083-2092. PMLR, 2019.

[22] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
Conference on Machine Learning, pages 3734-3743. PMLR, 2019.

[23] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling
for learning hierarchical graph representations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5470-5477, 2020.

[24] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[25] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrap-
olation (rex). In International Conference on Machine Learning, pages 5815-5826. PMLR,
2021.

[26] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. In ICML, 2022.

[27] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Neural Information
Processing Systems, 2021.

[28] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20:53-65, 1987.

11

[29] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[30] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolu-
tional networks. In International conference on machine learning, pages 4212-4221. PMLR,
2019.

[31] Haoyang Li, Xin Wang, Ziwei Zhang, Jianxin Ma, Peng Cui, and Wenwu Zhu. Intention-aware
sequential recommendation with structured intent transition. /EEE Transactions on Knowledge
and Data Engineering, 2021.

[32] Haoyang Li, Xin Wang, Ziwei Zhang, Zehuan Yuan, Hang Li, and Wenwu Zhu. Disentangled
contrastive learning on graphs. Advances in Neural Information Processing Systems, 34:
21872-21884, 2021.

[33] Xin Wang, Hong Chen, Yuwei Zhou, Jianxin Ma, and Wenwu Zhu. Disentangled representation
learning for recommendation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

[34] Haoyang Li, Peng Cui, Chengxi Zang, Tianyang Zhang, Wenwu Zhu, and Yishi Lin. Fates of
microscopic social ecosystems: Keep alive or dead? In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 668—676, 2019.

[35] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Disentangled graph contrastive learning
with independence promotion. IEEE Transactions on Knowledge and Data Engineering, 2022.

[36] Yijian Qin, Xin Wang, Peng Cui, and Wenwu Zhu. Gqnas: Graph q network for neural
architecture search. In 2021 IEEFE International Conference on Data Mining (ICDM), pages
1288-1293. IEEE, 2021.

[37] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on
graphs: A survey. arXiv preprint arXiv:2202.07987, 2022.

[38] Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization
bounds for graph neural networks. In International Conference on Learning Representations,
2020.

[39] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pages 3419-3430.
PMLR, 2020.

[40] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1539—-1548, 2019.

[41] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik—chervonenkis
dimension of graph and recursive neural networks. Neural Networks, 108:248-259, 2018.

[42] Huaxiu Yao, Caroline Choi, Yoonho Lee, Pang Wei Koh, and Chelsea Finn. Wild-time: A
benchmark of in-the-wild distribution shift over time. In Proceedings of the Thirty-sixth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

[43] Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman
problem with hardness-adaptive curriculum. In 36th AAAI Conference on Artificial Intelligence
(AAAI), 2022.

[44] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution gen-
eralized graph neural network. [EEE Transactions on Knowledge and Data Engineering,
2022.

[45] Yijian Qin, Xin Wang, Ziwei Zhang, Pengtao Xie, and Wenwu Zhu. Graph neural architecture

search under distribution shifts. In International Conference on Machine Learning, pages
18083-18095. PMLR, 2022.

12

[46] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic
graph neural networks under spatio-temporal distribution shift. In Thirty-Sixth Conference on
Neural Information Processing Systems, 2022.

[47] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. In
International Conference on Learning Representations, 2021.

[48] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In International Conference on
Machine Learning, pages 11975-11986. PMLR, 2021.

[49] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations
for graph classification extrapolations. In Proceedings of the 38th International Conference on
Machine Learning, pages 837-851, 2021.

[50] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming
the limitations of localized graph training data. Advances in Neural Information Processing
Systems, 34, 2021.

[51] Shaohua Fan, Xiao Wang, Chuan Shi, Kun Kuang, Nian Liu, and Bai Wang. Debiased graph
neural networks with agnostic label selection bias. IEEE transactions on neural networks and
learning systems, 2022.

[52] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs:
An invariance perspective. In International Conference on Learning Representations (ICLR),
2022.

[53] Miguel A Herndn and James M Robins. Causal inference, 2010.

[54] Tan Wang, Chang Zhou, Qianru Sun, and Hanwang Zhang. Causal attention for unbiased visual
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3091-3100, 2021.

[55] Toshihiko Matsuura and Tatsuya Harada. Domain generalization using a mixture of multiple
latent domains. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 11749—
11756, 2020.

[56] Elliot Creager, Jorn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, pages 2189-2200. PMLR, 2021.

[57] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan Shen. Heterogeneous risk minimization.
In International Conference on Machine Learning. PMLR, 2021.

ChecKklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

13

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Notations and Problem Formulation
	Method
	Invariant Subgraph Identification
	Environment Inference
	Invariant Learning
	Discussions

	Theoretical Analysis
	Experiments
	Experimental Setup
	Experiments on SP-Motif
	Experiments on Real-world Graphs
	Analysis of Environment Inference
	Hyper-parameter Sensitivity

	Related Works
	Conclusions

