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Abstract

Advances in Large Language Models (LLMs)001
have significantly improved multi-step rea-002
soning through generating free-text rationales.003
However, recent studies show that LLMs tend004
to lose focus over the middle of long con-005
texts. This raises concerns that as reasoning006
progresses, LLMs may overlook information in007
earlier steps when decoding subsequent steps,008
leading to generate unreliable and redundant009
rationales. To address this, we propose guiding010
LLMs to generate more accurate and concise011
step-by-step rationales by (1) proactively ref-012
erencing information from underutilized prior013
steps, and (2) minimizing redundant informa-014
tion between new and existing steps. We in-015
troduce stepwise informativeness search, an016
inference-time tree search framework incor-017
porating two selection heuristics: grounding-018
guided selection which prioritizes steps pay-019
ing higher attention over underutilized steps;020
and novelty-guided selection which encourages021
steps with novel conclusions. During rationale022
generation, we use a self-grounding strategy023
that prompts LLMs to explicitly reference rel-024
evant prior steps to provide premises before025
deduction at each step. Experimental results026
on four reasoning datasets demonstrate that our027
approach improves reasoning accuracy by gen-028
erating higher-quality rationales with reduced029
errors and redundancy 1.030

1 Introduction031

Large Language Models (LLMs) (OpenAI, 2023;032

Team et al., 2023) have shown remarkable per-033

formance in reasoning tasks through Chain-of-034

Thought (CoT) (Wei et al., 2022) prompting, which035

elicits step-by-step rationales to derive answers.036

However, complex multi-step reasoning remains037

challenging, particularly for smaller-scale mod-038

els (Dziri et al., 2024). Recent advances in tree-039

search algorithms (Wang et al., 2024b; Yao et al.,040

1Code is uploaded and will be released upon acceptance.

Generated reasoning steps:

[Step-2] … Nadia is James's aunt.

[Step-3] … Cesar is Nadia's father or uncle.

[Step-5] … Beatrice is Dan's cousin.

[Step-6] … Don is Beatrice's brother.

Query:  Orville got his son, James …; Charles was thrilled his brother, Orville …; 
Charles …with his sister Nadia; Steven …with his granddaughter, Nadia. Cesar 
took his dad Steven to …; Cesar‘s son Dan …; Dan has a aunt named
Constance …; Constance wanted … for her daughter, Beatrice; Don and his 
brother Sidney ...; Sidney asked his sister, Beatrice, …. So Don is James's what?

Underutilized Step: 
Providing valuable 
information but are 
overlooked

Redundant Step:
[Step-5][Step-7]
Beatrice is Dan's cousin.

[Step-4] … Dan is Nadia’s sibling.

[Step-1] … Charles is James's uncle.

[Step-8] James is Orville's son, and Orville 
is Don's father, so Don is James's father.

🧩

🔁

[Step-7] … Beatrice is Dan's cousin. 🔁

🧩

🧩

❌

❌ Incorrect Answer:
Hallucinated reference
Orville is Don's father
[Step-2,4,5,6] are useful but 
not utilized

🔁

Figure 1: An example illustrating LLMs’ difficulty in
referencing early-step information (e.g., underutiliza-
tion of [Step-2,4,5,6]), and the inclusion of redundant
steps (e.g., repeated conclusions in [Step-5, 7]). The
rightward red arrow indicates the focus is on generating
[Step-8] with [Step 1-7] have been generated.

2024; Zhang et al., 2024b) improve this by gen- 041

erating step-level candidates 2 and using scoring 042

mechanisms to select the most promising ones it- 043

eratively, thereby improving overall generated ra- 044

tionales. However, they typically rely on domain- 045

specific reward models or more powerful LLMs to 046

assess candidate validity (Luo et al., 2024). 047

Moreover, LLMs tend to focus on leading and 048

recent contexts while losing attention in the mid- 049

dle (Hsieh et al., 2024). As reasoning progresses, 050

this causes difficulty in referencing useful inter- 051

mediate conclusions from earlier steps when de- 052

coding subsequent ones, leading to unreliable and 053

redundant rationales. For example, in Fig. 1, [Step 054

2,4,5,6] provide useful information for deriving 055

the final answer but are not effectively utilized. 056

This results in redundant steps (e.g., [Step-7] and 057

[Step-5] have repeated conclusions) and incorrect 058

answer (e.g., [Step-8]). Consequently, LLMs risk 059

2A reasoning step in this paper refers to a sentence in
generated rationales, delimited by the end-of-line token “/n”.
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getting trapped in repetitive reasoning loops (Chen060

et al., 2024) and generating unnecessarily lengthy061

rationales, increasing the likelihood of cumulative062

errors (Furuta et al., 2024).063

To address this, we propose to guide LLMs in064

generating more accurate and concise step-by-step065

rationales by (1) proactively referencing intermedi-066

ate conclusions generated from underutilized steps,067

and (2) minimizing redundancy between new and068

existing steps. With higher-quality rationales gen-069

erated, we can improve answer accuracy and re-070

duce decoding costs. Underutilized steps are those071

whose intermediate conclusions have been less fre-072

quently referenced before the current step, suggest-073

ing untapped potential to offer useful information074

for subsequence reasoning. Meanwhile, reducing075

redundancy across steps can contribute novel infor-076

mation, enabling more efficient exploration of the077

reasoning space toward final answers.078

We introduce stepwise informativeness search,079

an inference-time tree search framework that prior-080

itizes steps based on informativeness, either from081

leveraging underutilized steps or generating novel082

content. The framework follows a stepwise beam083

search paradigm (Xie et al., 2024), generating a084

set of candidate steps in parallel at each iteration.085

Based on standard cumulative step-level likelihood,086

it incorporates two heuristics to guide candidate087

selection. (1) Grounding-guided selection identi-088

fies underutilized steps by computing each step’s089

reference degree so far to estimate its information090

gain for subsequent reasoning. Since LLMs nat-091

urally assign higher attention to their grounding092

context (Zhang et al., 2023), we prioritize candi-093

date steps with the highest attention scores over094

underutilized steps. (2) Novelty-guided selection095

ranks candidates based on the novelty of their in-096

termediate conclusions relative to prior steps. A097

trigram-based similarity measure filters out highly098

similar candidates.099

To prevent grounding-guided selection from fo-100

cusing on irrelevant prior steps that may emerge101

during reasoning, we further introduce a self-102

grounding strategy. This approach elicits LLMs’103

inherent ability to identify relevant prior steps to104

provide premises before deduction at each step.105

This process also extend the possibility of con-106

necting with distant underutilized steps by first107

specifying their step numbers, and reinforcing the108

generation of well-supported new steps through109

explicit grounding. We implement our informative-110

ness search framework both with and without self-111

grounding strategy. Experimental results across 112

four multi-step reasoning datasets demonstrate the 113

effectiveness of both the informativeness search 114

framework and self-grounding strategy when ap- 115

plied to LLMs of varying families and scales. 116

Overall, our framework can generate more effec- 117

tive solutions with improved accuracy and fewer to- 118

kens. Moreover, the two selection heuristics lever- 119

age the model’s own outputs and attention scores 120

to intrinsically guide step search, making the ap- 121

proach domain-agnostic and minimizing the need 122

for exhaustive interactions with external scorers or 123

self-evaluation at each decoding step. 124

2 Stepwise Beam Search for Reasoning 125

In this work, we formulate multi-step reasoning 126

as a stepwise beam search process considering its 127

generation parallelizability can accelerates search 128

process (Xie et al., 2024). This contrasts with an- 129

other common tree-search practice, Monte Carlo 130

Tree Search (MCTS) methods (Feng et al., 2023; 131

Zhang et al., 2024a), which involve extensive roll- 132

out simulations and are computationally expensive. 133

Specifically, at each iteration, the model gen- 134

erates a set of reasoning steps in parallel, each 135

delimited by a special end-of-line token “/n”. A 136

beam of the top N steps are selected according to 137

various criteria, where N is the beam size. Un- 138

like step-level evaluation, stepwise beam search 139

ranks candidates by their cumulative rewards (e.g., 140

likelihood) across the sequence generated so far. 141

Formally, the generation of a reasoning sequence
R = [s1, s2, . . . , sT ] with T steps is formulated as

P (R = s1:T |x) =
∏
t

P (st|s1:t−1, x),

where st is the t-th step and x is the input query. 142

Stepwise generation and selection are performed 143

with beam size N and sample size k as follows: 144

starting with N sequences at step t − 1, it gener- 145

ates k continuations from P (st|s1:t−1, x) for each 146

sequence s1:t−1, forming a candidate set Ct con- 147

taining Nk reasoning chains of length t. The top 148

N sequences are then selected based on a scoring 149

criteria ϕ(Ct, γ(·)) = {s1, s2, . . . , sN}. ϕ is the 150

selection function (e.g., topk(·)) and γ(s1:t) eval- 151

uates the sequence so far s1:t. Initially, given only 152

an input x, we generate Nk candidates. 153

A standard scoring criteria is the cumulative 154

likelihood of a sequence, defined as: γL(s1:t) = 155

log
∏

t P (st|s1:t−1, x). Alternative scoring func- 156

tions γ(s1:t) are employed in self-evaluation (Xie 157
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[Step-1] From Query, 
Orville is James's father, 
and Charles is Orville's 
brother, so Charles is 
James's uncle.

[Step-2] From Step-1 
and Query,
Charles is James's 
uncle, and Nadia is 
Charles's sister, so 
Nadia is James's aunt.

[Step-3] 
… Cesar is Nadia's father.
[Step-4] 
… Dan is Nadia’s brother.
[Step-5] 
…Beatrice is Dan's cousin.
[Step-6] 
… Don is Beatrice's brother.

[Step-8] … Nadia is 
James’s aunt, Beatrice 
is Nadia‘s cousin, so
Beatrice is James's aunt.
[Step-9] … Beatrice is 
James's aunt, Don is 
Beatrice’s brother, so
Don is James’s uncle.

[Step-1] From Query,
because James is 
Orville's son, Cesar is 
Orville's son, and Dan 
is Cesar's son, so Dan 
is James's cousin.

Orville got his son, James…; Charles 
was thrilled his brother, Orville…; 
Charles …with his sister Nadia;
Steven …with his granddaughter Nadia. 
Cesar took his dad Steven to …; Cesar‘s 
son Dan …; Dan has a aunt named
Constance …; Constance wanted … for 
her daughter, Beatrice; Don and his 
brother Sidney ...; Sidney asked his sister, 
Beatrice…. So Don is James's what?

Query:

…

[Step-7] From Step-4 and 
Step-5, 
Dan is Nadia’s brother, 
Beatrice is Dan's cousin, so 
Beatrice is Nadia's cousin.

[Step-7] From Query, 
Constance is Cesar’s sister 
(since she is Dan’s aunt), 
and Nadia is Cesar’s 
daughter, so Beatrice is
Dan’s cousins.

[Step-7] From Step-3 and 
Query,
James is Orville's son, and 
Orville is Don's father, so 
Don is James's father.

…
……

Cesar is James's nephew, 
and Don is Cesar's son, 
so Don is James's nephew.

…

Is the above step of reasoning:
(A) Correct
(B) Incorrect
The above step of reasoning is (A)

Self-Evaluator:

Query + [Step-1,2,3,4,5,6] => [Step 7] ?
Yes!

Deductive Verifier:

🧩🧩

… …

🔁

[Step-7] From Query, 
Constance is Cesar’s 
sister (since she is Dan’s 
aunt), and Nadia is 
Cesar’s daughter, so 
Beatrice is Dan’s cousins.

✅

❌

❌❌

Low Novelty: “Beatrice is Dan’s cousins” is a 
repeated conclusion.
Uninformative Grounding: Not ground on 
underutilized steps [2,4,5,6].

Grounding & Novelty based Evaluator:

Evaluation at [Step-7] 

Figure 2: Upper: Overview of our informativeness search framework, illustrated with beam size of 1. Green
diagonal-striped blocks represent selected steps while gray blocks are discarded. Cross marks indicate incorrect
deductions, and the orange crosshatched block highlights a redundant step that may lead to errors. Italics illustrate
our self-grounding strategy. Bottom: While previous methods would accept this redundant [Step-7] as logically
valid, our framework filters it out based on its low novelty and poor grounding on underutilized steps.

et al., 2024) and deductive beam search (Zhu158

et al., 2024). The former prompts the backend159

LLM to provide a correctness score γc(st) to as-160

sess whether st is correct given s1:t−1, which161

is then combined with likelihood: γE(s1:t) =162

log
∏

t P (st|s1:t−1, x) γc(st). The latter trains an163

external deductive verifier f to assess whether164

each step st is logically entailed by previous165

contexts, and replaces the sequence likelihood166

with a cumulative deductive score: γD(s1:t) =167 ∏
t f(entails|st, s1:t−1, x).168

While these methods improve performance, they169

require additional annotations or prompts to obtain170

domain-specific scoring models. They also incur171

interaction overhead by waiting for scorer response172

at each decoding step, yet failing to address afore-173

mentioned grounding and redundancy challenges.174

3 Informativeness Search Framework175

Unlike iteration-based scoring functions described176

above, we introduce stepwise informativeness177

search framework with two scoring heuristics178

that utilize model’s intrinsic outputs and attention179

scores. This reduces reliance on off-the-shelf scor-180

ers and iterative interactions during decoding. It181

prioritizes steps based on informativeness, assessed182

by grounding-guided and novelty-guided heuristics183

that determine whether new decoded steps ground184

on underutilized steps and generate novel content.185

3.1 Grounding-Guided Selection186

To ground each deduction upon underutilized steps187

to maximally leverage useful intermediate informa-188

tion, we design an algorithm to identify underuti- 189

lized ones among all prior steps. The candidate 190

sequences, denoted as Ct = {s11:t, s21:t, . . . , sNk
1:t }, 191

are then evaluated and selected based on whether 192

each current step sit is well derived from its corre- 193

sponding underutilized steps. 194

Identifying Underutilized Steps At each reason- 195

ing step, underutilized steps are those referenced 196

less frequently up to that point, offering higher 197

untapped potential for contributing information to 198

subsequent reasoning. At the current step st, the 199

immediately preceding step st−1 is by default con- 200

sidered underutilized since it represents the most 201

recent addition to the reasoning path. For addi- 202

tional underutilized steps, we perform a backward 203

traversal from step st−2 to s1, calculating the refer- 204

ence degree of each step to assess its information 205

gain to subsequent reasoning. 206

Specifically, for each prior step sj ∈ 207

{st−2, ..., s2, s1}, we first extract its intermedi- 208

ate conclusion cj by segmenting it using special 209

clause delimiters (e.g., “so”, “thus” and commas). 210

We then compare cj with each subsequent step 211

sm ∈ {sj+1, . . . , st−1} before the current step us- 212

ing a trigram-based similarity measure. The infor- 213

mation gain of sj is computed as follows: 214

InfoGain(sj) = 1− max
m∈j+1,...,t−1

Simtri(cj , sm) 215

We classify a prior step as underutilized if its infor- 216

mation gain exceeds a predefined threshold τ . The 217
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set of underutilized steps at step t is:218

It = {st−1} ∪ {sj | InfoGain(sj) > τ},219

j ∈ {1, . . . , t− 2}220

Grounding on Underutilized Steps After iden-221

tifying the set of underutilized steps Ii
t for each222

candidate sequence si1:t in the candidate set Ct =223

{s1, s2, . . . , sNk} (with subscripts omitted for sim-224

plicity), we prioritize candidates that more effec-225

tively ground their reasoning in sit upon their re-226

spective underutilized steps.227

LLMs typically assign higher attention scores to228

their grounding context (Zhang et al., 2023). We229

leverage attention scores to evaluate how well each230

candidate focuses on and utilizes its identified un-231

derutilized steps Ii
t when constructing step sit in232

the reasoning path. We specifically compute the233

attention score of sit over Ii
t as γa(s

i
t) by apply-234

ing mean pooling across all tokens in sit and the235

highly attended tokens within Ii
t . We then integrate236

this attention-based measure into the original cu-237

mulative likelihood scoring function to obtain an238

grounding-enhanced score:239

γG(s1:t) = γL(s1:t) + α · γa(st)240

where γL(s1:t) = log
∏

t P (st|s1:t−1, x) and α is241

a weighted hyperparameter. Then N candidates242

are selected from Ct = {s1, s2, . . . , sNk} with243

the highest γG(s1:t). We validate this attention-244

based operation in Sec. 5.3 by analyzing the consis-245

tency between highly attended content and actual246

grounded information.247

3.2 Novelty-Guided Selection248

To reduce redundancy across multiple intermedi-249

ate steps, we assess the conclusion novelty of each250

newly generated step sit in a candidate sequence251

si1:t, and select candidates with higher novelty. We252

extract intermediate conclusions from sit and all253

its prior steps {si1, . . . , sit−1} by segmenting the254

corresponding sentences using special clause de-255

limiters (e.g., “so”, “thus” and commas), forming256

a set of conclusions {ci1, . . . , cit−1, c
i
t}. We then257

calculate the trigram-based similarity between the258

newly generated conclusion cit and all preceding259

conclusions {ci1, . . . , cit−1}. The novelty score of260

sit is then obtained as follows:261

N(sit) = 1− max
j∈1,...,t−1

Simtri(c
i
t, c

i
j)262

where Simtri(·, ·) measures trigram-based similar-263

ity. To incorporate novelty into candidate selection,264

we calibrate the grounding-enhanced scoring func- 265

tion with novelty score. At step t, candidates with 266

low-novelty conclusions (i.e., N(st) ≤ θ) are fil- 267

tered out, retaining only diverse and meaningful 268

candidates. The adjusted scoring function is de- 269

fined as below, where θ is a predefined threshold. 270

γN (s1:t) =

{
γG(s1:t), ifN(st) > θ,

−100, otherwise.
271

3.3 Self-Grounding Strategy 272

To handle irrelevant steps that may arise during rea-
soning generation and prevent grounding-guided
selection from focusing on irrelevant prior steps, es-
pecially when contexts contain distracting informa-
tion, we introduce a self-grounding strategy. This
approach leverages LLMs’ inherent ability to an-
chor reasoning in relevant prior information, either
from prior steps or the input query, that serve as
necessary premises for each new deduction. The
strategy explicitly prompts LLMs to reason step by
step, structuring each step in the format:

“[Step-i] From <source>, <deduction>.”

where “<source>” refers to either relevant prior 273

steps or the input query that provide premises 274

for deducing new conclusions in “<deduction>”. 275

For example, “[Step-1] From Query, we know ...”, 276

“[Step-2] From Step-1 and Query, we know ...” and 277

“[Step-3] From Step-1 and Step-2, because ...”. This 278

explicit step-grounding process ensures that each 279

new step directly builds upon established informa- 280

tion, maintaining logical coherence while minimiz- 281

ing irrelevant or unsupported conclusions. More- 282

over, explicitly referencing step numbers facilitates 283

connections with distant underutilized steps. Fur- 284

ther details on the prompts and few-shot demon- 285

strations are provided in Appendix B. 286

4 Experiments 287

4.1 Setup 288

Datasets We evaluate our framework on four 289

multi-step reasoning datasets: FOLIO (Han et al., 290

2022), ProofWriter (Tafjord et al., 2020), MMLU- 291

Pro (Wang et al., 2024c) and GPQA (Rein et al., 292

2023). FOLIO and ProofWriter focus on deductive 293

reasoning, requiring 1-8 and 1-6 reasoning steps 294

respectively, with test sets of 204 and 600 cases. 295

MMLU-Pro covers 14 domains, including math, 296

physics, chemistry, engineering, law, and psychol- 297

ogy, from which we uniformly sample 280 cases. 298

4



Models Methods FOLIO ProofWriter MMLU-Pro GPQA-Diamond Avg.

Llama3.2-3B-Instruct

Few-shot CoT 38.73% 40.00% 28.57% 21.72% 32.25%
Self-Grounding CoT 45.59% 43.33% 28.57% 22.73% 35.06%

Best-of-N 45.59% 37.00% 30.00% 22.73% 33.83%
Self-Consistency 46.57% 47.67% 29.64% 22.73% 36.65%
Tree-of-Thought 44.12% 44.17% 26.43% 22.73% 34.36%

Self-Eval Beam Search 45.10% 47.00% 30.71% 19.19% 35.50%
Deductive Beam Search 48.04% 38.17% 25.71% 24.75% 34.17%

MCTS + Math-PRM / / 26.07% 22.22% /
Informativeness Search 46.57% 50.33% 33.57% 27.27% 39.44%

Informativeness Search (w/ SG) 51.96% 53.67% 33.93% 24.24% 40.95%

Llama3-8B-Instruct

Few-shot CoT 54.90% 55.33% 37.50% 29.29% 44.25%
Self-Grounding CoT 55.39% 57.00% 38.57% 30.30% 45.32%

Best-of-N 56.86% 50.00% 39.29% 30.30% 44.11%
Self-Consistency 57.84% 60.17% 39.29% 31.31% 47.15%
Tree-of-Thought 55.88% 53.33% 39.29% 27.78% 44.07%

Self-Eval Beam Search 59.31% 56.17% 35.00% 29.80% 45.07%
Deductive Beam Search 54.90% 48.83% 37.50% 27.78% 42.25%

MCTS + Math-PRM / / 27.14% 28.28% /
Informativeness Search 58.33% 61.33% 40.00% 33.33% 48.25%

Informativeness Search (w/ SG) 59.80% 62.00% 40.71% 35.35% 49.46%

Table 1: Experimental results (accuracy %) of different methods on Llama3.2-3B-Instruct and LLaMA3-8B-Instruct.
SG denotes the Self-Grounding strategy. Shaded rows present results from our proposed method.

GPQA specializes in biology, physics, and chem-299

istry, and we use its Diamond subset containing 198300

expert-answered but non-expert-failed questions.301

Baselines We evaluate against both sequence-302

level CoT methods and step-level search meth-303

ods. Sequence-level methods include: (1) Few-shot304

CoT (Wei et al., 2022) performs step-by-step rea-305

soning. (2) Self-Grounding CoT is our proposed306

self-grounding strategy without search. (3) Best-of-307

N (Lightman et al., 2023) samples Nk rationales308

and selects the best via LLM self-evaluation as we309

lack general reward models for diverse tasks. (4)310

Self-Consistency (Wang et al., 2022) samples Nk311

rationales and uses majority voting for the final312

answer. Step-level methods include: (5) Tree-of-313

thought (Yao et al., 2024) performs breadth-first314

tree search with self-evaluation at each step. (6)315

Self-Eval Beam Search (Xie et al., 2024) and (7)316

Deductive Beam Search (Zhu et al., 2024) both317

use stepwise beam search, with the former re-318

lying on self-evaluation and the latter on deduc-319

tive scoring trained on synthesized datasets. (8)320

MCTS (Zhang et al., 2024a) where we use the min-321

imum score across all steps from Qwen2.5-Math-322

PRM-7B (Zhang et al., 2025) to evaluate simulated323

solutions. As this is a mathematical PRM, we re-324

port MCTS results only on MMLU-Pro and GPQA-325

Diamond. We evaluate our informativeness search326

with and without the self-grounding (SG) strategy.327

Implementation Details We evaluate our method 328

and baselines on Llama3.2-3B-Instruct and 329

Llama3-8B-Instruct, using a two-shot prompting 330

strategy with a 1024-token generation limit. We 331

set N = 3 and k = 2 for all stepwise beam search 332

methods. The weighted parameter α is set to 2 and 333

the threshold τ to 0.7. θ is set to 0.5 for FOLIO 334

and ProofWriter, 0.4 for MMLU-Pro and GPQA- 335

Diamond. Further details and search configurations 336

are provided in Appendix A. 337

4.2 Main Results 338

Table 1 presents the overall performance com- 339

parison across four benchmark datasets. Our 340

method consistently outperforms all baseline meth- 341

ods across both deductive and diverse reasoning 342

datasets when implemented with either Llama3.2- 343

3B-Instruct or Llama3-8B-Instruct. This demon- 344

strates the general superiority of our informative- 345

ness search framework and self-grounding strat- 346

egy. Notably, our method yields more substantial 347

improvements on Llama3.2-3B-Instruct, suggest- 348

ing its particular effectiveness in enhancing rea- 349

soning for lower-performing models. Additionally, 350

self-grounding further enhances informativeness 351

search, except when using Llama3.2-3B-Instruct 352

on GPQA-Diamond. We attribute this to Llama3.2- 353

3B-Instruct’s inability to perform self-grounding ef- 354

fectively for the challenging GPQA-Diamond task. 355

Step-level methods like tree-of-thought, deductive 356
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Figure 3: Accuracy and average token count (Avg. # Tokens) of final predicted rationales using different methods
on Llama3.2-3B-Instruct.

beam search and MCTS show moderate perfor-357

mance due to their reliance on specialized reward358

model or verifiers, limiting their generalizability. In359

contrast, informativeness search is broadly applica-360

ble without requiring task-specific customization.361

4.3 Efficiency Analysis362

Average Rationale Length We analyze the aver-363

age token count of final predicted rationales using364

different methods on Llama3.2-3B-Instruct to ex-365

amine the relationship between rationale length and366

accuracy. As shown in Table 3, our method gener-367

ates shorter rationales with fewer tokens than few-368

shot CoT and stepwise beam search while achiev-369

ing higher accuracy, both with and without the370

self-grounding strategy. Notably, our approach ex-371

hibits greater token reduction in deductive reason-372

ing, correlating with more significant performance373

improvements. We attribute this to our informa-374

tiveness search framework can effectively reduce375

redundancy by combining grounding-guided and376

novelty-guided selection. This minimizes cumula-377

tive errors and prevents circular reasoning loops,378

ultimately leading to better performance.379

Total Token Cost We further analyze the total380

token consumption following (Xie et al., 2024),381

including all candidate steps during the stepwise382

beam search process for all methods involving step-383

wise beam search. As shown in Table 4, our method384

exhibits superior inference efficiency, reducing to-385

ken usage compared to the baseline and other beam386

search methods. Specifically, both informative-387

ness search and self-grounding progressively re-388

duce token budget compared to baseline stepwise389
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Figure 4: Total token costs (×k tokens) of different step-
wise beam search methods. Baseline refers to stepwise
beam search using only cumulative likelihood scoring.

beam search. The high costs of self-eval and de- 390

ductive beam search stem from additional interac- 391

tions for obtaining evaluation feedback after each 392

step. Moreover, deductive beam search requires 393

additional computational resources for training a 394

domain-specific deductive verifier. 395

4.4 Results on Additional LLMs 396

To further validate the broad effectiveness of our 397

method, we implement it on Phi-4 (Abdin et al., 398

2024), a 14B-parameter model from a different 399

model family, and DeepSeek-R1-Distill-Llama- 400

8B (Guo et al., 2025), a slow-thinking Llama3- 401

8B variant distilled from DeepSeek-R1. We eval- 402

uate performance on FOLIO, ProofWriter, and 403

MMLU-Pro, comparing against few-shot CoT, self- 404

grounding, and self-consistency baselines using 405

corresponding backbones. A one-shot prompting 406

strategy is used with N = 3 and k = 1, and we 407
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extend the generation limit to 2048 tokens to ac-408

commodate long CoT from R1-Distill-Llama-8B.409

As shown in Table 2, our framework consistently410

improves performance on more powerful LLMs,411

though self-grounding fails on R1-Distill-Llama-412

8B, as it learns to generate free-form CoT and strug-413

gles to follow a structured response format. Despite414

this, our informativeness search still yields signif-415

icant improvements, notably reducing redundant416

tokens in final rationales (Table 3). This aligns417

with DeepSeek-R1’s over-thinking problems as418

pointed by (Chen et al., 2024; Cuadron et al., 2025).419

These results, along with Table 1 demonstrate our420

method’s robustness across models.

Method FOLIO ProofWriter MMLU-Pro

Phi-4
Few-shot CoT 73.67% 72.55% 71.79%

Self-Grounding CoT 73.50% 72.06% 72.14%
Self-Consistency 71.17% 72.55% 72.50%

Informativeness Search w/ SG 76.67% 77.94% 72.86%

DeepSeek-R1-Distill-Llama-8B
Few-shot CoT 61.76% 48.67% 38.57%

Self-Grounding CoT 53.92% 38.17% 35.36%
Self-Consistency 62.25% 63.50% 46.07%

Informativeness Search 70.10% 66.50% 47.50%

Table 2: Results on Phi-4 and R1-Distill-Llama-8B.

Method FOLIO ProofWriter MMLU-Pro

Few-shot CoT 1105 1861 1636
Informativeness Search 588 1023 1001

Table 3: Average token count of the final predicted
reasoning paths from R1-Distill-Llama-8B.

421

5 Further Analysis422

5.1 Ablation Study423

To investigate the contribution of different com-424

ponents in our method, we conduct an ablation425

study using LLama3.2-3B-Instruct on FOLIO and426

MMLU-Pro datasets. Starting with stepwise beam427

search as our baseline, we progressively add: (1)428

novelty-guided selection heuristic, (2) grounding-429

guided selection heuristic (forming our Informative-430

ness Search Framework), and (3) self-grounding431

strategy (resulting in Informativeness Search w/432

SG). As shown in Table 4, incorporating each se-433

lection heuristic and self-grounding strategy incre-434

mentally improves performance, finally yielding435

our best-performing informativeness search frame-436

work with self-grounding. Notably, novelty-based437

selection proves especially effective on FOLIO,438

suggesting that deductive reasoning is more sus- 439

ceptible to redundant step generation. Furthermore, 440

self-grounding achieves more significant improve- 441

ment on deductive reasoning where contexts con- 442

tain verbally similar but irrelevant information.

Methods FOLIO MMLU-Pro

Stepwise Beam Search 41.18% 30.36%
+ Novelty-Guided Heuristic 45.10% 32.14%
+ Grounding-Guided Heuristic 46.57% 33.57%
+ Self-Grounding Strategy 51.96% 33.93%

Table 4: Ablation study using LLaMA3.2-3B-Instruct.

443

5.2 Redundant Step Analysis 444

In complex multi-step reasoning tasks, LLMs tend 445

to generate repeated intermediate conclusions, ei- 446

ther from same or different premises, which can 447

trap reasoning in circular loops. For detailed in- 448

vestigation, we measure the average number of re- 449

peated conclusions across steps per rationale gener- 450

ated by our method compared to few-shot CoT and 451

self-grounding CoT baselines using LLama3.2-3B- 452

Instruct. Specifically, we split rationales into steps 453

using end-of-line token “/n” and extract intermedi- 454

ate conclusions based on special clause delimiters 455

as operated in Sec. 3.2. A step is considered re- 456

dundant if its conclusion shares over 70% tri-word 457

overlap with any previous conclusions in the same 458

rationale. As shown in Figure 5, LLMs exhibit a 459

pronounced tendency to produce redundant steps, 460

particularly in deductive reasoning tasks. This oc- 461

curs because deductive contexts often contain ver- 462

bally similar information, causing LLMs to lose 463

track of logical progression and become stuck in
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circular reasoning. In contrast, our self-grounding465

strategy and informativeness search substantially466

reduce redundant steps, enabling more effective467

and efficient multi-step reasoning.468

5.3 Validity of Attention-Based Selection469

To validate our attention-based implementation in470

grounding-guided selection, we examine whether471

LLMs naturally assign higher attention to grounded472

steps than other steps. Using the CLUTRR dataset,473

which provides well-annotated reasoning paths, we474

conduct a teacher-forcing analysis where all pre-475

vious ground-truth steps are fed into the model to476

prompt the next step. We then compute the aver-477

age attention score over both grounded and non-478

grounded steps. This analysis is performed both479

with and without self-grounding, using Llama3.2-480

3B-Instruct and Llama3-8B-Instruct. As shown481

in Fig. 6, LLMs exhibit significantly higher atten-482

tion over grounded steps. This demonstrates the483

consistency of LLMs’ attention patterns and their484

grounding behavior, and confirms the validity of485

our attention-based implementation.
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Figure 6: Average attention on grounded and other steps.

486

6 Related Work487

LLMs (OpenAI, 2023; Touvron et al., 2023; Abdin488

et al., 2024; Guo et al., 2025) have demonstrated re-489

markable performance across diverse tasks. Chain-490

of-Thought (CoT) (Wei et al., 2022; Zhou et al.,491

2022) prompting has emerged as an effective strat-492

egy for generating step-by-step rationale to derive493

answers. However, for complex multi-step rea-494

soning problems, LLMs often underutilize critic495

information from earlier steps as rationale get-496

ting longer due to their tendency to lose focus497

on middle-context information (Peysakhovich and498

Lerer, 2023; Junqing et al., 2023; Hsieh et al.,499

2024). Additionally, they frequently generate re- 500

dundant steps with repeated conclusions, leading 501

to repetitive reasoning loops and error accumula- 502

tion (Dziri et al., 2024; Furuta et al., 2024). These 503

difficulties are especially pronounced in smaller- 504

scale LLMs with limited reasoning capacity (Fu 505

et al., 2023). An intuitive method is to prompt 506

LLMs for more concise outputs. However, LLMs 507

often struggle to maintain output quality under 508

length constraints, and simple prompting alone fails 509

to resolve grounding and redundancy issue (Nayab 510

et al., 2024; Han et al., 2024). 511

This inspires generating multiple rationales and 512

determine the most likely solution using major- 513

ity voting (Wang et al., 2022) or best-of-N (Wang 514

et al., 2024b). However, they are computationally 515

expensive due to the exponentially growing search 516

space when integrating diverse solutions. To re- 517

duce the search space, recent studies have applied 518

tree search techniques with scoring mechanisms to 519

prioritize promising candidates at each step, such 520

as stepwise beam search (Xie et al., 2024), Tree-of- 521

Thought (Yao et al., 2024), and Monte Carlo Tree 522

Search (Jiang et al., 2024; Feng et al., 2023; Zhang 523

et al., 2024a). While effective, they face practical 524

limitations, relying on extensive rollouts (Wang 525

et al., 2024b,a) and intensive annotations (Light- 526

man et al., 2023) for training specialized reward 527

models. Additionally, they introduce latency due 528

to interactions with external or self-evaluators dur- 529

ing autoregressive decoding (Xie et al., 2024; Yao 530

et al., 2024), and fail to address the grounding and 531

redundancy issues we focus on in this work. 532

7 Conclusion 533

In this work, we address the challenge of LLMs 534

losing focus on intermediate steps during multi- 535

step reasoning, which can lead to unreliable and 536

redundant rationales. To mitigate this issue, we pro- 537

pose an inference-time tree search framework in- 538

corporating grounding-guided and novelty-guided 539

selection heuristics, that enhances rationale genera- 540

tion by proactively grounding underutilized prior 541

steps and minimizing redundant conclusions be- 542

tween reasoning steps. We additionally employ a 543

self-grounding strategy, prompting LLMs to explic- 544

itly reference relevant prior steps before making 545

deductions. Experimental results demonstrate that 546

our method improves reasoning accuracy by gen- 547

erating higher-quality rationales with fewer errors 548

and reduced redundancy. 549
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Limitations550

Our work has several limitations to address in fu-551

ture research. First, our experiments primarily fo-552

cus on four multi-step reasoning datasets covering553

deductive and diverse-discipline reasoning. Ex-554

panding to a broader range of tasks and datasets555

will further validate our framework’s effectiveness.556

Second, due to computational constraints, our main557

experiments operate within a limited search space558

with beam size 3 and sample size 2, and use LLM559

backbones of at most 14B parameters. Future work560

can explore larger search spaces and more pow-561

erful LLMs to further unlock the potential of our562

framework. Finally, while our method currently re-563

lies solely on stepwise beam search with standard564

cumulative likelihood, incorporating our selection565

heuristics with other scoring mechanism, such as566

self-evaluation and process reward models, as well567

as other tree-search algorithms like MCTS could568

be potential future work.569
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A Implementation Details751

A.1 Baseline Details752

For Best-of-N and Self-Consistency, we adopt a753

sampling configuration with temperature T = 1.0754

and top-40 token truncation. For tree-of-thought755

(ToT) and self-eval beam search (Self-Eval BS),756

we prompt LLMs to conduct self-evaluation. For757

deductive beam search that provide a general ver-758

ifier checkpoint and two data subsets for training759

a commonsense and a mathematical verifier, we760

select the best-performing verifier for each dataset.761

Specifically, we use the general or commonsense762

verifier for FOLIO, ProofWriter, and MMLU-Pro,763

and the general or mathematical verifier for GPQA.764

For MCTS which operates in a iterative four-stage765

manner: selection, expansion, simulation and back-766

progation, we use the minimum score across all767

steps from Qwen2.5-Math-PRM-7B (Zhang et al.,768

2025) to evaluate simulated rollout.769

A.2 Varying Search Configurations770

For step-level candidate generation in stepwise771

beam search, we explore both temperature sam-772

pling and tokenwise beam search. As shown in773

Table 5, our method with grounding and novelty-774

guided selection consistently outperforms stepwise775

beam search baseline (with cumulative likelihood776

scoring), regardless of whether self-grounding is777

applied. Additionally, tokenwise beam search for778

candidate generation yields slightly better perfor-779

mance than temperature sampling.

Methods FOLIO MMLU-Pro

Beam Search
Stepwise Beam Search 41.18% 30.36%
Informativeness Search 46.57% 33.57%
Stepwise Beam Search (w/ SG) 50.49% 32.86%
Informativeness Search (w/ SG) 51.96% 33.93%

Temperature Sampling
Stepwise Beam Search 41.67% 29.64%
Informativeness Search 44.12% 31.43%
Stepwise Beam Search (w/ SG) 47.55% 29.64%
Informativeness Search (w/ SG) 48.53% 32.50%

Table 5: Different candidate step generation methods.

780
We further evaluate the impact of varying beam781

sizes in our informativeness search, using both to-782

kenwise beam search and temperature sampling783

for candidate step generation. Specifically, we set784

the sample size to 2 and vary the beam size from785

1 to 4. As shown in Fig. 7, both alternatives con-786
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Figure 7: The impact of beam size on our utility-based
search for the FOLIO dataset on Llama3.2-3B-Instruct.

sistently outperform the few-shot CoT baseline. 787

Additionally, our informativeness search continues 788

to improve as beam size increases. Notably, when 789

the search space is constrained (i.e., with a smaller 790

beam size), tokenwise beam search performs better. 791

Based on these findings, we adopt tokenwise beam 792

search for all stepwise beam search methods in our 793

reported results (Table 1∼ 3) considering its better 794

performance and accelerated computational speed. 795

A.3 Comparison to Tokenwise Beam Search 796

We further compare our informativeness search 797

(beam size N = 3, sample size k = 2) with naive 798

tokenwise beam search for whole rationale genera- 799

tion using beam size 3 and 6. Table 6 demonstrate 800

the effectiveness of our method.

Method FOLIO ProofWriter MMLU-Pro GPQA-D

Few-shot CoT 38.73% 40.00% 28.57% 21.72%
Tokenwise BS (3) 43.63% 45.00% 28.93% 21.72%
Tokenwise BS (6) 46.08% 42.17% 31.07% 19.19%

Informativeness Search 46.57% 50.33% 33.93% 27.27%

Table 6: Comparison with tokenwise beam search using
Llama3.2-3B-Instruct for whole rationale generation.
Numbers in parentheses denote the beam size.

801

B Framework Prompts 802

Table 7, 8, 9 and 10 present the prompts used in 803

our informativeness search framework without self- 804

grounding strategy for the FOLIO, ProofWriter, 805

MMLU-Pro and GPQA-Diamond datasets. For 806

illustration, Table 11 provides the prompt used in 807

our informativeness search framework with self- 808
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grounding strategy on GPQA-Diamond 3.809

C Illustration of the Grounding810

Challenge811

We provide a detailed illustration of the chal-812

lenge LLM face in grounding prior reasoning steps.813

Specifically, we analyze all instances involving 8-9814

reasoning steps from CLUTRR (Sinha et al., 2019),815

a dataset with well-annotated rationales. We evalu-816

ate the performance of Llama3-8B-Instruct across817

instances with varying maximum distances be-818

tween referencing and referenced steps. As shown819

in Fig. 8, performance degrades as the distance820

to the referenced prior steps grows. This demon-821

strate the inherent difficulty of grounding prior step,822

with longer distances (steps accumulating) making823

grounding progressively harder.
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Figure 8: Accuracy versus maximum distance between
referencing and referenced steps on CLUTRR.

824

3We use GPT-4o and Claude to adjust prompts manually.
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Prompt without Self-Grounding (FOLIO)

You are a helpful assistant.
You will receive a query. Your task is to answer the query.

#### Examples
Query: LanguageA is a universal language. If a universal language exists, then for every two people if they both
know the same universal language they can communicate. Katya cannot communicate with Danil. Katya knows
LanguageA. Based on the above information, is the following statement true, false, or uncertain? Danil knows
LanguageA.
Thought:
Because LanguageA is a universal language, and if a universal language exists, then for every two people if they
both know the same universal language they can communicate, so every two people that know LanguageA can
communicate.
Because every two people that know LanguageA can communicate, and Katya knows LanguageA, so Katya can
communicate with others that know LanguageA.
Because Katya can communicate with others that knows LanguageA, and Katya cannot communicate with Danil, so
Danil does not know LanguageA.
Therefore, the statement "Danil knows LanguageA." is False.
END.
So the answer is: False.
——
Query: All eels are fish. No fish are plants. A thing is either a plant or animal. Nothing that breathes is paper. All
animals breathe. If a sea eel is either an eel or a plant, then a sea eel is an eel or an animal. Based on the above
information, is the following statement true, false, or uncertain? Sea eel breathes or is paper.
Thought:
Because all eels are fish, so a sea eel is a fish.
Because no fish are plants, a thing is either a plant or animal, so a fish is an animal.
Because a sea eel is a fish, and a fish is an animal, so a sea eel is an animal.
Because a sea eel is an animal, and all animals breathe, so a sea eel breathes.
Because a sea eel breathes and nothing that breathes is paper, so a sea eel is not paper.
Therefore, the statement "Sea eel breathes or is paper." is True.
END.
So the answer is: True.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline,
then end your thought with "END.". Finally respond "True", "False" or "Uncertain" in a newline, strictly starting with
"So the answer is: ".

Table 7: The prompt without self-grounding on FOLIO.
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Prompt without Self-Grounding (ProofWriter)

You are a helpful assitant.
You will receive a query. Your task is to answer the query.

#### Examples
Query: Bob is big. Dave is big. Dave is rough. Erin is nice. Erin is white. Gary is nice. Gary is white. Red things are
white. All big things are green. All red, white things are nice. All green things are blue. If something is nice then it is
big. All blue, green things are rough. All rough things are red. If something is blue then it is nice. If something is red
then it is blue. Based on the above information, is the following statement true, false, or unknown? Gary is not red.
Thought:
Because Gary is nice, and if something is nice then it is big, so Gary is big.
Because Gary is big and all big things are green, so Gary is green.
Because Gary is green and all green things are blue, so Gary is blue.
Because Gary is green and Gary is blue, and all blue, green things are rough, so Gary is rough.
Because Gary is rough and all rough things are red, so Gary is red.
Therefore, the statement "Gary is not red." is false.
END.
So the answer is: False.
——
Query: Anne is nice. Anne is smart. Charlie is green. Fiona is nice. Fiona is round. Fiona is white. Harry is blue.
White, kind things are nice. If something is smart and kind then it is green. If something is round and kind then it is
white. Smart things are kind. Nice, white things are kind. Round things are kind. If something is nice then it is smart.
All white things are round. If Charlie is green then Charlie is white. Based on the above information, is the following
statement true, false, or unknown? Charlie is smart.
Thought:
Because Charlie is green, and if Charlie is green then Charlie is white, so Charlie is white.
Because Charlie is white and all white things are round, so Charlie is round.
Because Charlie is round and round things are kind, so Charlie is kind.
Because Charlie is white and Charlie is kind, and white, kind things are nice, so Charlie is nice.
Because Charlie is nice, and if something is nice then it is smart, so Charlie is smart.
Therefore, the statement "Charlie is smart." is true.
END.
So the answer is: True.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline,
then end your thought with "END.". Finally respond "True", "False" or "Unknown" in a newline, strictly starting with
"So the answer is: ".

Table 8: The prompt without self-grounding on ProofWriter.
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Prompt without Self-Grounding (MMLU-Pro)

You will receive a query and ten options. Your task is to select an option to answer the query.

#### Examples
Query: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs
only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Options: A.24, B.54, C.40, D.32, E.64, F.8, G.16, H.60, I.100, J.74
Thought:
Because one glass costs $5, and every second glass costs only 60% of the price, so the discount price of every second
glass is 60/100 * 5 = $3.
Because every second glass is discounted at $3, and Kylar wants to buy 16 glasses, so Kylar is going to buy 16 / 2 = 8
discounted glasses and 16 - 8 = 8 regular-priced glasses.
Because Kylar is going to buy 8 discounted glasses, and every discounted glass is $3, so Kylar is going to pay 8 * 3 =
$24.
Because Kylar is also going to buy 8 regular-priced glasses, and one glass costs $5, so Kylar will pay 8 * 5 = $40.
Because Kylar will pay $24 for 8 discounted glasses, and $40 for 8 regular-priced glasses, so in total Kylar needs to
pay 24 + 40 = $64 for the glasses he wants to buy.
END.
So the answer is: E.
——
Query: A refracting telescope consists of two converging lenses separated by 100 cm. The eye-piece lens has a focal
length of 20 cm. The angular magnification of the telescope is ?
Options: A.10, B.40, C.6, D.25, E.15, F.50, G.30, H.4, I.5, J.20
Thought:
Because in a refracting telescope both lenses are converging, so their focus must be between the two lenses.
Because the focus of both lenses must lie between them, so their focal lengths must add up to their separation.
Because the two lenses are separated by 100 cm, and one lens has a focal length of 20 cm, so the other lens must have
a focal length of 80 cm.
Because one lens has a focal length of 20 cm and the other 80 cm, so the magnification is the ratio of their focal
lengths, which is 4.
END.
So the answer is: H.

#### Here’s what you need to do. Please first think step-by-step, presenting each of your step in a new
line. Then end your thought with "END.". Finally respond with an option from "A", "B", "C", "D", "E", "F", "G",
"H", "I" or "J" in a newline, strictly starting with "So the answer is: ".

Table 9: The prompt without self-grounding on MMLU-Pro.

15



Prompt without Self-Grounding (GPQA-Diamond)

You will receive a query along with four options. Your task is to select an option to answer the query.

#### Examples
Query: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs
only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Options:
(A) 24
(B) 54
(C) 40
(D) 64
Thought:
Because one glass costs $5, and every second glass costs only 60% of the price, so the discount price of every second
glass is 60/100 * 5 = $3.
Because every second glass is discounted at $3, and Kylar wants to buy 16 glasses, so Kylar is going to buy 16 / 2 = 8
discounted glasses and 16 - 8 = 8 regular-priced glasses.
Because Kylar is going to buy 8 discounted glasses, and every discounted glass is $3, so Kylar is going to pay 8 * 3 =
$24.
Because Kylar is also going to buy 8 regular-priced glasses, and one glass costs $5, so Kylar will pay 8 * 5 = $40.
Because Kylar will pay $24 for 8 discounted glasses, and $40 for 8 regular-priced glasses, so in total Kylar needs to
pay 24 + 40 = $64 for the glasses he wants to buy.
END.
So the answer is: D.
——
Query: A refracting telescope consists of two converging lenses separated by 100 cm. The eye-piece lens has a focal
length of 20 cm. The angular magnification of the telescope is ?
Options:
(A) 10
(B) 6
(C) 4
(D) 25
Thought:
Because in a refracting telescope both lenses are converging, so their focus must be between the two lenses.
Because the focus of both lenses must lie between them, so their focal lengths must add up to their separation.
Because the two lenses are separated by 100 cm, and one lens has a focal length of 20 cm, so the other lens must have
a focal length of 80 cm.
Because one lens has a focal length of 20 cm and the other 80 cm, so the magnification is the ratio of their focal
lengths, which is 4.
END.
So the answer is: C.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline.
Then end all your thought with "END.". Finally respond with an option from "A", "B", "C" or "D" in a newline,
strictly starting with "So the answer is: ".

Table 10: The prompt without self-grounding on GPQA-Diamond.
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Prompt with Self-Grounding (GPQA-Diamond)

You will receive a query along with four options. Your task is to select an option to answer the query.

#### Examples
Query: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs
only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Options:
(A) 24
(B) 54
(C) 40
(D) 64
Thought:
[Step-1] From Query, because one glass costs $5, and every second glass costs only 60% of the price, so the discount
price of every second glass is 60/100 * 5 = $3.
[Step-2] From Step-1 and Query, because every second glass is discounted at $3, and Kylar wants to buy 16 glasses,
so Kylar is going to buy 16 / 2 = 8 discounted glasses and 16 - 8 = 8 regular-priced glasses.
[Step-3] From Step-1 and Step-2, because Kylar is going to buy 8 discounted glasses, and every discounted glass is
$3, so Kylar is going to pay 8 * 3 = $24.
[Step-4] From Step-2 and Query, because Kylar is also going to buy 8 regular-priced glasses, and one glass costs $5,
so Kylar will pay 8 * 5 = $40.
[Step-5] From Step-3 and Step-4, because Kylar will pay $24 for 8 discounted glasses, and $40 for 8 regular-priced
glasses, so in total Kylar needs to pay 24 + 40 = $64 for the glasses he wants to buy.
END.
So the answer is: D.
——
Query: A refracting telescope consists of two converging lenses separated by 100 cm. The eye-piece lens has a focal
length of 20 cm. The angular magnification of the telescope is ?
Options:
(A) 10
(B) 6
(C) 4
(D) 25
Thought:
[Step-1] From Query, because in a refracting telescope both lenses are converging, so their focus must be between
the two lenses.
[Step-2] From Step-1, because the focus of both lenses must lie between them, so their focal lengths must add up to
their separation.
[Step-3] From Step-2 and Query, because the two lenses are separated by 100 cm, and one lens has a focal length of
20 cm, so the other lens must have a focal length of 80 cm.
[Step-4] From Step-3 and Query, because one lens has a focal length of 20 cm and the other 80 cm, so the
magnification is the ratio of their focal lengths, which is 4.
END.
So the answer is: C.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline
starting with [Step-i], and cite the sources (e.g., Step-i, Query) of your premises at the beginning of each step. Then
end all your thought with "END.". Finally respond with an option from "A", "B", "C" or "D" in a newline, strictly
starting with "So the answer is: ".

Table 11: The prompt with self-grounding on GPQA-Diamond.
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