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ABSTRACT

Quantized Neural Networks (QNNs) are widely deployed in edge and resource-
constrained environments for their efficiency in computation and memory. While
quantization distorts gradient landscapes and weakens pixel-level attacks, it of-
fers limited robustness against patch-based adversarial attacks—localized, high-
saliency perturbations that remain highly transferable across bit-widths. Existing
defenses either overfit to specific quantization settings or fail to address this cross-
bit vulnerability. We propose TriQDef, a tri-level quantization-aware defense
framework that disrupts the transferability of patch-based attacks across QNNs.
TriQDef integrates: (1) a Feature Disalignment Penalty (FDP) that enforces se-
mantic inconsistency by penalizing perceptual similarity in intermediate features;
(2) a Gradient Perceptual Dissonance Penalty (GPDP) that misaligns input gra-
dients across quantization levels using structural metrics such as Edge IoU and
HOG Cosine; and (3) a Joint Quantization-Aware Training Protocol that applies
these penalties within a shared backbone jointly optimized across multiple quan-
tizers. Extensive experiments on CIFAR-10 and ImageNet show that TriQDef
lowers Attack Success Rates (ASR) by over 40% on unseen patch and quantiza-
tion combinations while preserving high clean accuracy. These results highlight
the importance of disrupting both semantic and perceptual gradient alignment to
mitigate patch transferability in QNNs.

1 INTRODUCTION & RELATED WORK

Quantized Neural Networks (QNNs) offer a compelling trade-off by significantly reducing memory
and compute requirements while maintaining competitive accuracy (Liu et al., 2021a; Katare et al.,
2023; Zhang & Chung, 2021; Tonellotto et al., 2021; Hernández et al., 2024). Prior studies have
shown that quantization can distort gradient landscapes, thereby weakening the effectiveness of
traditional pixel-level adversarial attacks (Li et al., 2024; Yang et al., 2024). However, such gradient
masking effects offer little protection against more structured threats.

Adversarial patch attacks (Karmon et al., 2018; Brown et al., 2017; Chen et al., 2022) pose a unique
challenge by inserting localized, high-saliency patterns that hijack model predictions. Unlike subtle
pixel perturbations, these patches are robust to input variation and generalize across architectures
and quantization levels. Crucially, our analysis reveals that even under aggressive quantization (e.g.,
2-bit), adversarial patches crafted on full-precision models maintain high success rates, highlighting
a critical blind spot in current quantization-aware defenses.

Existing defenses such as Projected Gradient Descent (PGD)-based adversarial training (Madry
et al., 2018) offer limited effectiveness against patch attacks, which exploit model attention rather
than gradient sensitivity. Classical input-transformation defenses including MagNet (Meng & Chen,
2017), Feature Squeezing (Xu et al., 2017), and randomized input transformations as explored by
Tramèr et al. (Tramèr et al., 2017a) provide robustness against pixel-level perturbations but are
substantially less effective against large, structured adversarial patches that bypass small-noise as-
sumptions. Patch-Based Adversarial Training (PBAT) (Rao et al., 2020) incorporates patch patterns
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during training and improves robustness on seen configurations, but often fails to generalize across
novel patch types or bit-widths. Other approaches, such as Double-Win Quantization (DWQ) (Fu
et al., 2021), stochastic precision inference (Sen et al., 2020), and feature-space smoothing (Song
et al., 2020), primarily target pixel-level noise and do not directly tackle the structured, cross-bit
nature of adversarial patches (Xiao et al., 2023). Input preprocessing-based defenses such as (Tar-
choun et al., 2023; Nie et al., 2022) impose significant computational overhead, undermining the
efficiency gains that quantization aims to provide.

In this work, we introduce TriQDef, a unified defense framework designed to explicitly disrupt the
core enablers of patch-based adversarial transferability in QNNs. Our analysis reveals that quantized
models (even under extreme bit-width reduction) exhibit surprisingly high vulnerability to transfer-
able adversarial patches. This phenomenon arises from persistent alignment in both internal features
and input gradient signals across bit-widths. TriQDef addresses this vulnerability through three syn-
ergistic components that target semantic and optimization-level consistency:
Feature Disalignment Penalty (FDP) enforces semantic divergence by penalizing perceptual simi-
larity in feature maps across quantized variants. Using differentiable variants of Edge IoU and HOG
Cosine similarity, FDP encourages each bit-width to develop unique feature representations, thus
weakening patch generalization. Gradient Perceptual Dissonance Penalty (GPDP) misaligns the
saliency landscape by penalizing structural and perceptual gradient similarity across bit-widths. It
directly targets gradient-level alignment that facilitates adversarial transfer, extending beyond cosine
similarity to include perceptual alignment in edge structures and gradient orientations. Bit-Width-
Aware Curriculum Training (BACT) stabilizes optimization by staging the activation of quantizers
on the same backbone θ: training begins at higher precision and progressively enables lower-bit Qb;
losses are computed over the active set Bt so that LFDP and LGPDP act across bit-widths.

Our main contributions are summarized as follows:

• We conduct, to our knowledge, the first systematic study of patch-based transferability in
QNNs, demonstrating that adversarial patches remain highly effective across quantization
levels, including 2-bit regimes.

• We propose TriQDef, a tri-component defense targeting both feature and gradient align-
ment, explicitly designed to prevent cross-bit patch generalization.

• We introduce perceptual alignment metrics (Edge IoU and HOG Cosine Similarity) as theo-
retically justified tools to quantify and disrupt semantic and gradient-level alignment across
bit-widths. These metrics provide a principled alternative to cosine similarity by capturing
structural and textural alignment that underlies patch transferability in QNNs.

• Our approach reduces attack success rate (ASR) by over 40% on unseen patch and quan-
tization configurations across CIFAR-10 and ImageNet, outperforming PBAT and DWQ
with around 2% drop in clean accuracy.

• Ablation studies validate the complementary role of each module and reveal that quanti-
zation alone does not sufficiently alter the shared attack surface, highlighting the need for
targeted perceptual and structural misalignment.

TriQDef challenges the assumption that quantization inherently enhances adversarial robustness.
By explicitly dismantling shared vulnerabilities at both the representational and gradient levels,
TriQDef provides a principled and extensible framework for securing QNNs against patch-based
threats.

2 MOTIVATION

Despite recent progress in adversarial training and quantization-aware techniques, we show that
QNNs remain highly vulnerable to structured, localized adversarial attacks, particularly adversarial
patches. This vulnerability stems from a critical oversight: existing defenses do not generalize
across quantization levels, and thus fail to prevent cross-bit transferability of patch-based attacks.
Our investigation reveals two key limitations that motivate the need for a principled, quantization-
aware patch defense framework.
Adversarial Patches Transfer Effectively Across Bit-Widths. We begin by evaluating the
transferability of adversarial patches crafted on full-precision (32-bit) models to quantized models
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trained using Quantization-Aware Training (QAT). Table 1 reports the Attack Success Rates (ASR)
of two state-of-the-art patch attacks (LAVAN (Karmon et al., 2018) and GAP (Brown et al., 2017)
on various QNN architectures. Notably, the adversarial patches retain high effectiveness even
under extreme quantization (e.g., over 73% ASR on 2-bit ResNet-56), confirming that quantization
alone offers limited resilience against structured perturbations. This cross-bit vulnerability persists
despite the reduced numerical precision and quantization noise introduced by QAT.

Table 1: ASR (%) of LAVAN and GAP (6x6 patches)
transferred from full-precision models to QAT-trained
QNNs on CIFAR-10.

Attack LAVAN GAP
Model 32bit 8bit 4bit 2bit 32bit 8bit 4bit 2bit
Res-56 86.43 83.24 76.22 73.08 84.40 56.69 54.22 47.91
Res-20 87.22 83.73 77.30 74.18 84.71 59.61 58.45 50.31

VGG-19 88.95 85.56 79.81 77.19 95.79 59.65 48.70 40.69
VGG-16 87.17 84.73 78.29 76.67 95.71 64.24 52.04 48.90

Standard and Patch-Based Adver-
sarial Training Fail to Generalize
Across Bit-Widths. We further an-
alyze whether existing adversarial de-
fense methods can mitigate this vulner-
ability. In Table 2, we compare standard
adversarial training (AT) and Patch-
Based Adversarial Training (PBAT) un-
der different quantization paradigms:
full-precision (FP), 8-bit Quantization-
Aware Training (QAT), and 8-bit Post-
Training Quantization (PTQ). While
PBAT significantly reduces ASR for patch types seen during training, its robustness deteriorates
sharply on unseen patch configurations—particularly when the patch was generated or tested un-
der a different bit-width. For instance, ASR increases by more than 20% when evaluated on 2-bit
patches not seen during training. These results reveal a failure to generalize across quantization
shifts, underscoring the need for defenses that explicitly target bit-level adversarial generalization.

Table 2: ASR (%) of LAVAN attack across training
paradigms and quantization levels. PBAT-trained mod-
els fail to generalize to unseen patch bit-widths.

Standard PBAT
Patch Type FP QAT PTQ FP QAT PTQ
8×8 (Seen) 88.17 81.56 85.24 40.39 40.56 45.44
10×10 (Seen) 92.33 84.33 87.48 57.86 56.77 60.60
8×8 (Unseen, 4-bit) 89.92 83.40 86.78 62.10 71.42 75.16
10×10 (Unseen, 2-bit) 91.18 85.62 87.91 65.30 78.34 81.09

To further support these observations,
we present in Appendix A: (1) cross-
architecture transfer results including
vision transformers; (2) analysis under
dynamic and post-training quantization;
(3) results using additional patch-based
attacks (e.g., DPR, PatchAttack); and
(4) comprehensive ablations and visu-
alizations. These collectively highlight
the limitations of existing defenses and
motivate the design of TriQDef—a tri-
level framework that breaks patch trans-
ferability via semantic, gradient, and
curriculum-based alignment disruption.

3 METHODOLOGY

3.1 OVERVIEW

We propose TriQDef, a framework that mitigates the transferability of patch-based adversarial at-
tacks in QNNs. TriQDef integrates three complementary components into a cohesive training strat-
egy. The first component, Feature Disalignment Penalty (FDP), disrupts semantic consistency by
encouraging divergence in internal feature representations across different quantization levels. The
second component, Gradient Perceptual Dissonance Penalty (GPDP), penalizes perceptual align-
ment in input gradients between bit-widths, targeting edge- and texture-level similarity that facili-
tates cross-bit transferability. The third component, Bit-Width-Aware Curriculum Training (BACT),
stabilizes training under extreme quantization by progressively enabling lower-bit quantizers on the
same backbone, starting from higher precision and expanding the active bit-width set over time.

3.2 FEATURE DISALIGNMENT PENALTY (FDP)

As we show in Section 2, adversarial patches remain highly transferable across quantized neural
network (QNN) variants, despite the reduced numerical precision. We argue that this transferabil-
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Figure 1: TriQDef overview. A single shared backbone θ is paired with multiple quantizers {Qb}
(e.g., 32/8/2-bit). Clean and adversarial inputs produce bit-specific views whose intermediate fea-
tures (for LFDP) and input gradients (for LGPDP) are contrasted across bit-widths. Losses are
aggregated into Ltotal and used to update θ and {Qb} under a BACT schedule. Inference uses a
single forward pass with the deployed Qb (no runtime overhead).

ity is facilitated by a phenomenon we call semantic alignment across bit-widths—where internal
representations across quantized models remain perceptually similar even under adversarial attack.

To assess this, we quantify perceptual similarity using two established descriptors: (i) edge-based
overlap, computed using the Sobel operator and Intersection-over-Union (IoU) (Zhang et al.,
2018), and (ii) textural similarity, captured using Histogram of Oriented Gradients (HOG) (Dalal
& Triggs, 2005), a robust descriptor widely used in computer vision and feature analysis.
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Figure 2: Perceptual Alignment Across Bit-
Widths. Heatmaps show pairwise Edge IoU and
HOG Cosine Similarity across feature maps ex-
tracted at four convolutional layers in (L0–L3)
from ResNet variants (fp, 5bit, 4bit, 2bit). High
similarity persists even under adversarial input,
enabling patch transferability.

Figure 2 illustrates this behavior. Using a
ResNet model on ImageNet, we analyze feature
maps from clean and patched inputs across dif-
ferent bit-widths (full precision (fp), 5bit, 4bit,
2bit) and multiple layers. We compute pair-
wise Edge IoU and HOG Cosine Similarity as
perceptual proxies. Results averaged over 100
samples reveal consistently high similarity, es-
pecially between adjacent quantization levels
(e.g., 5bit ↔ 4bit), indicating strong structural
alignment that supports cross-bit patch gener-
alization. To mitigate this, we introduce the
Feature Disalignment Penalty (FDP), a regu-
larizer inspired by perceptual similarity metrics
and soft alignment losses (Zhang et al., 2018).
Unlike defenses that learn patch-specific filters,
FDP explicitly discourages feature alignment
across quantized variants by penalizing struc-
tural and textural similarity at selected inter-
mediate layers during training. Let f (l)

b (xadv)
denote the activation at layer l ∈ L of model
fb with bit-width b, given a patched input
xadv. FDP measures both structural and textural
alignment between models bi ̸= bj using two
perceptual metrics: Edge IoU: Intersection-
over-Union between binarized Sobel edge maps of f (l)

b . HOG Cosine Similarity: Cosine similarity
between Histogram of Oriented Gradient (HOG) descriptors.

The FDP loss is defined as:
LFDP =

∑
l∈L

∑
bi,bj∈B
bi ̸=bj

[
α · IoU

(
E(f

(l)
bi

(xadv)), E(f
(l)
bj

(xadv))
)
+ β · cos

(
ϕ(f

(l)
bi

(xadv)), ϕ(f
(l)
bj

(xadv))
)]

(1)

Because traditional perceptual metrics (e.g., hard thresholded edges, non-differentiable HOG) are
not suitable for gradient-based optimization, we adapt recent differentiable approximations such as
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SoftDice (Sudre et al., 2017) and smooth HOG descriptors (Kachouane et al., 2012) to create an
end-to-end trainable loss.

LFDP =
∑
l∈L

∑
bi,bj∈B
bi ̸=bj

[
α · SoftDice

(
S

(
E

(
f
(l)
bi

(xadv)
))

, S

(
E

(
f
(l)
bj

(xadv)

)))

+ β · cos
(
H

(
f
(l)
bi

(xadv)
)
, H

(
f
(l)
bj

(xadv)

)) ]
(2)

where E(·) computes Sobel edge magnitudes over spatial dimensions, S(·) applies soft binarization
using a sigmoid with quantile-based threshold: S(A; τ, k) = σ (k · (A− τ)) , τ = quantile(A, q),
with sharpness k = 100, percentile q = 85. SoftDice(A,B) = 2·

∑
A·B∑

A+
∑

B+ϵ . H(·) computes a
normalized HOG descriptor with 4 × 4 pixels per cell and 2 × 2 cells per block. α = 0.5, β = 1.0
weighting hyperparameters.

The choice of hyperparameters is based on ablation studies on their sensitivity (see Appendix C).
Why Use HOG Cosine Similarity? HOG captures local edge orientation distributions and is
robust to minor quantization noise and scale distortions. We observe high HOG similarity across
bit-widths—indicating preserved structure—even when raw cosine similarity or Edge IoU degrade.
This makes HOG a strong candidate for identifying transferable perceptual patterns.
Why Use Edge-based SoftDice? Edge IoU offers structural insight, but hard binarization is
non-differentiable. SoftDice over softly binarized edges ensures smooth gradients while preserving
interpretability. It captures shape-level alignment that HOG may overlook.

Algorithm 1: Compact FDP Training with
Soft Disalignment
Input : Quantized models {fb},

adversarial patch P ,
batch (x, y), target layers
L, mask M

Hyperparameters : λFDP, α, β
1 xadv ← x⊙ (1−M) + P ⊙M
2 foreach bi ∈ B, l ∈ L do
3 f

(l)
bi
← f

(l)
bi

(xadv)

4 LFDP ← 0
5 foreach l ∈ L, (bi, bj), i ̸= j do
6 Ei ← Sobel(mean(f (l)

bi
)),

Ej ← Sobel(mean(f (l)
bj

))

7 Hi ← SoftHOG(f
(l)
bi

),

Hj ← SoftHOG(f
(l)
bj

)

8 LFDP +=
α · SoftDice(Ei, Ej) + β · cos(Hi, Hj)

9 Lclean ← 1
|Bt|

∑
b∈Bt
LCE(fb(x), y)

Ladv ← 1
|Bt|

∑
b∈Bt
LCE(fb(xadv), y)

10 Ltotal ←
Lclean + λLadv + λFDP · LFDP + λGPDP · LGPDP

11 Optimization step (shared backbone): Update
shared weights θ and per-bit quantizer
parameters {Qb | b ∈ Bt} using Ltotal.

Why Not LPIPS? LPIPS, while widely used for
perceptual similarity, is less suitable in our setting
for several reasons. It is optimized for high-level
semantic similarity based on human visual per-
ception, making it less sensitive to the structural
and directional patterns found in gradient maps or
early-layer features that underlie patch transfer-
ability in quantized models. Moreover, LPIPS re-
quires three-channel, large-resolution inputs and
cannot be directly applied to single-channel or
low-resolution feature maps or gradients. In
contrast, Edge IoU and HOG Cosine Similarity
offer lightweight, interpretable, and structurally
grounded measures. They effectively capture
spatial alignment (edges) and texture/orientation
similarity (HOG) in both features and gradients,
making them more appropriate for quantifying
and disrupting perceptual alignment across bit-
widths.
Why FDP Works? By introducing bit-level per-
ceptual disalignment at key layers, FDP disrupts
shared internal cues that adversarial patches ex-
ploit. This effectively breaks the cross-bit repre-
sentational invariance that makes patches trans-
ferable. This perceptual disalignment strategy
complements adversarial training by targeting a
root enabler of transferability—shared structure
across models—which remains underexplored in
the literature on quantized model robustness (Li
et al., 2024). We provide a theoretical motivation for the FDP in Appendix B.1, grounding its design
in principles of perceptual alignment, representation similarity, and adversarial vulnerability across
quantized models.
Training with FDP. Algorithm 1 outlines our training procedure with the Feature Disalignment
Penalty. For each batch, we apply an adversarial patch and extract intermediate features from mul-
tiple quantized models at selected layers. We then compute pairwise perceptual similarity using
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SoftDice over edge maps and cosine similarity over differentiable HOG descriptors. The total loss
combines the standard cross-entropy with the FDP regularizer, guiding the models to develop diver-
gent internal representations and weaken cross-bit adversarial transferability.

3.3 GRADIENT PERCEPTUAL DISSONANCE PENALTY (GPDP)

As shown in Table 3, although gradient cosine similarity (CS) is low across quantized models, sug-
gesting directional disagreement, we observe persistently high perceptual similarity in the gradient
maps. In particular, gradients exhibit strong HOG Cosine Similarity and moderate Edge IoU, reveal-
ing a hidden perceptual alignment that traditional CS fails to capture. We posit that this alignment
facilitates the transferability of adversarial patches between bit-width variants by preserving texture
and edge structure in gradient saliency.

Table 3: Gradient similarity across bit-width models using
different metrics. Despite low cosine similarity, perceptual
metrics (HOG Cosine and Edge IoU) reveal strong structural
alignment.

Metric fp↔5b fp↔4b fp↔2b 5b↔4b 5b↔2b 4b↔2b
Cosine Sim. 0.05 0.06 0.05 0.25 0.10 0.13

Edge IoU 0.14 0.15 0.14 0.20 0.15 0.15
HOG CS 0.81 0.81 0.80 0.82 0.81 0.81

To address this, we propose the
Gradient Perceptual Dissonance
Penalty (GPDP), a perceptual reg-
ularizer designed to break gra-
dient alignment across quantized
models. GPDP penalizes both
structural (edge-based) and textural
(orientation-based) similarity in gra-
dients, promoting gradient diversity
that weakens the transferability of
patch-based attacks. Let ∇bi

x be the
input gradient from a model quantized to bit-width bi. We define the GPDP loss as:

LGPDP =
∑

bi,bj∈B
bi ̸=bj

[
α · SoftDice

(
Sobel(∇bi

x ), Sobel(∇bj
x )

)
+ β · cos

(
SoftHOG(∇bi

x ), SoftHOG(∇bj
x )

)]
(3)

Here, Sobel(·) computes edge maps from the gradient, and SoftHOG(·) is a differentiable version of
the Histogram of Oriented Gradients (HOG) descriptor. SoftDice measures structural overlap, while
the cosine of SoftHOG descriptors captures perceptual similarity. Coefficients α and β balance these
two components, with values set to α = 0.5 and β = 1.0 in our experiments.

Algorithm 2: Training with GPDP
Input : Quantized models

{fb}b∈B, input batch
(x, y), adversarial
version xadv

Hyperparameters : λGPDP, α, β
1 LGPDP ← 0
2 foreach (bi, bj) ∈ B × B, i ̸= j do
3 gi ← ∇xLCE(fbi(xadv), y)
4 gj ← ∇xLCE(fbj (xadv), y)

5 Ei ← Sobel(gi), Ej ← Sobel(gj)
6 Hi ← SoftHOG(gi),

Hj ← SoftHOG(gj)
7 LGPDP +=

α · SoftDice(Ei, Ej) + β · cos(Hi, Hj)

Why GPDP Works? Prior work (Yang et al.,
2024; Tramèr et al., 2018) has shown that ad-
versarial transferability is tightly linked to gra-
dient alignment. However, our findings indi-
cate that even when gradients are directionally di-
vergent (low cosine similarity), transfer persists
due to structural similarity. GPDP directly pe-
nalizes this perceptual consensus, targeting espe-
cially early-layer gradient representations where
saliency is concentrated. By diversifying gra-
dient structure, GPDP reduces shared adversar-
ial vulnerabilities across bit-widths. We theoreti-
cally justify GPDP in Appendix B.2, showing that
perceptual alignment in gradient structure (not
just cosine similarity) enables patch transferabil-
ity across bit-widths, and disrupting this align-
ment significantly weakens cross-bit attacks.
Training with GPDP. Algorithm 2 describes how the Gradient Perceptual Dissonance Penalty is
integrated into the training loop. For each pair of quantized models, we compute the input gradients
and apply perceptual similarity losses, based on edge structure and HOG texture, to penalize align-
ment. These losses are aggregated and added to the clean classification loss for joint optimization,
thereby enforcing perceptual dissonance in gradient signals across bit-widths. We apply GPDP only
to adversarial inputs to avoid impacting clean accuracy. It complements the Feature Disalignment
Penalty (FDP) by targeting the gradient-level alignment that FDP cannot capture.
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We train with both clean and adversarially patched inputs. For a mini-batch (x, y), a patched input
is constructed as xadv = x⊙ (1−M) + P ⊙M, where M is a binary patch mask and P is either
drawn from a diverse offline pool of adversarial patches (default in our experiments) or optimized
on-the-fly (see Appendix). For the currently active bit-widths Bt (scheduled by BACT), we define
Lclean = 1

|Bt|
∑

b∈Bt
LCE(fb(x), y) , and Ladv = 1

|Bt|
∑

b∈Bt
LCE(fb(xadv), y) .

The total training loss then combines clean classification, adversarial classification, and the proposed
perceptual regularizers: Ltotal = Lclean + λadv Ladv + λFDP LFDP + λGPDP LGPDP. Unless
otherwise noted, we use λadv = 1. LFDP and LGPDP are evaluated on adversarial inputs to disrupt
feature- and gradient-level alignment under attack, while Lclean preserves natural accuracy. We adopt
a clean/adv mix ratio ρ = 0.5, i.e. half of each mini-batch is patched to prevent over-regularization
while ensuring the perceptual penalties remain attack-focused.

3.4 BIT-WIDTH-AWARE CURRICULUM TRAINING (BACT)

Directly optimizing ultra-low-bit quantizers from scratch destabilizes training. BACT therefore
stages the activation of quantizers while keeping one shared θ. We start with higher precision
(e.g., 32/8-bit) to learn stable features, then introduce lower-bit quantizers (5/4/2-bit) by: (i)
initializing their observers from short calibration passes on a held-out subset (no weight copy),
and (ii) enabling them in Bt for joint fine-tuning with the already-active quantizers. This avoids
maintaining multiple backbones, reduces memory, and enforces cross-bit coupling through θ, which
empirically improves robustness and stabilizes LFDP/LGPDP optimization. At inference, a single
forward under the deployed bit-width b⋆ is used, yielding no runtime overhead and preserving
integer-only deployment.
Model parameterization (shared backbone with switchable quantizers). Unless otherwise
stated, TriQDef uses a single shared backbone with parameters θ (e.g., a ResNet trunk), and a
set of bit-width-specific quantization modules Q = {Qb | b ∈ B} inserted at standard quantization
points (activations after nonlinearities / selected blocks and all weight tensors). During a forward
pass under bit-width b, the same backbone weights θ are evaluated through the quantizers Qb

using QAT with STE. Thus, all bit-widths share θ, while observers/scales/zero-points and any
quantizer-specific buffers are maintained per b.

4 RESULTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our proposed methods on two widely used benchmark datasets: CIFAR-
10 (Krizhevsky, 2009) and ImageNet Krizhevsky et al. (2017).
Model Architectures. Our experiments cover a broad spectrum of architectures: ResNet-56,
ResNet-34, ResNet-20, and ResNet-18 (He et al., 2016), VGG-16 and VGG-19 (Simonyan & Zis-
serman, 2015), AlexNet (Krizhevsky et al., 2017), Inception-v3 (Szegedy et al., 2016), DenseNet-
121 (Huang et al., 2017). Swin-S (Liu et al., 2021b) and DeiT-B (Touvron et al., 2021) (used only
to evaluate patch transferability).
Patch-Based Attacks. To assess vulnerability to structured adversarial perturbations, we evaluate
against several state-of-the-art patch-based attacks: LAVAN Karmon et al. (2018), Adversarial Patch
(GAP) (Brown et al., 2017), Deformable Patch Representation (DPR) (Chen et al., 2022), and the
black-box PatchAttack (Yang et al., 2020).
Implementation Details. All experiments are conducted using PyTorch on NVIDIA A100 GPUs.
We use a batch size of 128 and train models with SGD (momentum 0.9, weight decay 1 × 10−4).
The learning rate is initialized to 0.1 and decayed by a factor of 10 at 50% and 75% of training.
Models are trained for 200 epochs on CIFAR-10 and 120 epochs on ImageNet.
Patch generation strategy. Unless otherwise specified, TriQDef employs an offline pool of adver-
sarial patches generated on the full-precision model. The pool contains diverse variations in patch
size, position, and target class, and a patch P is randomly sampled and applied to each mini-batch
during training. This approach balances efficiency with robustness, and aligns with our focus on
transferability across quantization levels.
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For ablation studies and adaptive settings, we also consider an on-the-fly patch generation
procedure. Here, P is updated for K inner steps using Expectation over Transformation
(EOT) with random location and geometric jitter. At each step, a bit-width b ∼ Bt is
sampled, and gradients are backpropagated through the shared backbone and Qb: P ←
ΠP

(
P + η · sign

(
∇P

1
K

∑K
k=1 LCE

(
fbk(x

(k)
adv), y

)))
, where ΠP projects P into the valid patch

domain. This prevents overfitting to a single bit-width and strengthens robustness under adaptive
attacks.
Quantization Setup. We use fake-quantization QAT with straight-through estimation (STE) for
integer-only deployment Esser et al. (2020). We apply uniform symmetric quantizers: per-channel
for weights and per-tensor for activations; zero-points are fixed to 0, and scales are estimated via
moving-average observers. Target bit-widths are B = {32, 8, 5, 4, 2}; Q32 is the identity. Lower-bit
Qb are progressively enabled via BACT with brief calibration before joint optimization.
FDP and GPDP Hyperparameters. The regularization coefficients are set as follows: λFDP = 0.8,
and λGPDP = 0.5. The used hyperparameters were selected based on ablation studies on their sensi-
tivity (see Appendix C). We also discuss compute and memory cost in Appendix D.

4.2 CLEAN ACCURACY UNDER TRIQDEF ACROSS BIT-WIDTHS

Table 4: Clean accuracy (%) of ResNet-56
(CIFAR-10) and ResNet-34 (ImageNet).

Defense Dataset Clean Accuracy (%)
32bit 5bit 4bit 2bit

Standard QAT CIFAR-10 89.4 85.1 80.5 78.2
PBAT CIFAR-10 88.2 81.6 77.8 75.5

TriQDef (Ours) CIFAR-10 89.4 83.3 78.2 75.8
Standard QAT ImageNet 85.2 79.3 77.5 73.9

PBAT ImageNet 84.1 77.3 74.2 71.8
TriQDef (Ours) ImageNet 85.2 78.1 75.1 72.5

A critical goal of TriQDef is to improve robust-
ness without sacrificing clean accuracy. Table 4
shows the clean performance of models trained
with TriQDef compared to Standard QAT and
PBAT across multiple bit-widths. While ad-
versarial training introduces a slight accuracy
drop, TriQDef maintains competitive perfor-
mance, closely matching QAT and outperform-
ing PBAT across both CIFAR-10 and Ima-
geNet. Notably, TriQDef avoids the overfit-
ting and degradation seen in PBAT at lower bit-
widths, demonstrating its effectiveness in preserving model expressiveness while enhancing robust-
ness.

4.3 EFFECT OF BIT-WIDTH ON ADVERSARIAL ROBUSTNESS

We evaluate TriQDef’s robustness across multiple quantization levels (32bit, 5bit, 4bit, 2bit) using
three representative patch-based attacks: LAVAN, GAP, and the more adaptive black-box PatchAt-
tack. For each attack, results are reported on CIFAR-10 and ImageNet, and we compare against two
strong baselines: PBAT and DWQ. In addition to the seen-patch setting, where patches are drawn
from the same distribution used during training, we also evaluate on unseen patches, defined as
patch configurations (size, location, generation bit-width) that were not encountered during train-
ing. This allows us to measure generalization and robustness against patch overfitting. The reported
ASR values reflect an average across diverse variations in patch size, spatial placement, and attack
generation settings. Across all attacks and quantization levels, TriQDef consistently achieves the
lowest ASR. Even under aggressive 2-bit quantization, TriQDef reduces ASR by over 20% com-
pared to PBAT and by more than 50% compared to DWQ. On unseen patches, TriQDef maintains
strong generalization, with only a marginal increase in ASR (e.g., +2.1% on CIFAR-10 under GAP),
compared to PBAT’s much larger degradation (often exceeding +15%). Importantly, TriQDef also
shows resilience against the more challenging PatchAttack, which dynamically adapts patches in
a black-box manner. Here, TriQDef achieves up to a 40–50% reduction in ASR relative to PBAT
and DWQ, confirming that our perceptual misalignment regularization prevents cross-bitwidth patch
transfer even when the attacker does not share access to the training pipeline. These results demon-
strate that TriQDef is not only effective against standard patch generation methods (LAVAN, GAP),
but also extends its robustness to adaptive, transferable, and black-box patch attacks across extreme
quantization levels. Additional experiments on alternative architectures and diverse attack variants
are provided in Appendix C.
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Table 5: ASR (%) under LAVAN (6×6 patches on CIFAR-10, 50×50 patches on ImageNet), GAP,
and PatchAttack across bit-widths and patch generalization settings. Lower is better.

Defense Dataset LAVAN GAP PatchAttack
32bit 5bit 4bit 2bit 32bit 5bit 4bit 2bit 32bit 5bit 4bit 2bit

PBAT CIFAR-10 51.4 46.7 43.2 39.7 48.7 43.5 40.1 37.9 61.2 57.5 53.1 49.7
DWQ CIFAR-10 87.9 82.4 77.2 76.4 85.4 80.9 75.6 73.5 89.6 84.3 79.8 78.2

TriQDef CIFAR-10 32.4 30.2 28.4 26.2 29.7 22.1 19.3 17.2 43.2 25.4 22.8 20.7
PBAT (Unseen) CIFAR-10 77.2 73.7 67.8 65.3 75.3 71.2 66.9 63.2 82.3 78.5 72.6 70.1
DWQ (Unseen) CIFAR-10 87.8 82.6 77.9 76.3 86.1 80.3 75.2 72.3 89.4 84.1 79.2 77.3

TriQDef (Unseen) CIFAR-10 35.6 33.3 29.1 27.3 32.5 30.8 27.3 25.5 46.1 28.2 25.7 23.5
PBAT ImageNet 53.4 49.2 41.8 37.1 50.2 46.1 39.8 35.4 63.8 59.4 54.3 50.1
DWQ ImageNet 86.7 71.3 63.5 61.2 85.3 70.5 61.4 59.5 88.5 72.6 65.1 62.7

TriQDef ImageNet 35.0 33.1 31.1 28.5 33.2 28.1 26.3 23.1 47.2 30.5 27.6 25.1
PBAT (Unseen) ImageNet 78.5 73.7 67.2 64.6 76.5 71.3 65.7 62.1 82.7 76.3 70.5 67.8
DWQ (Unseen) ImageNet 86.9 72.3 62.4 60.2 84.3 70.1 61.7 58.2 87.9 72.0 64.2 61.5

TriQDef (Unseen) ImageNet 37.1 35.3 32.5 30.7 39.4 37.3 34.5 32.9 49.5 33.6 30.2 28.4

4.4 TRIQDEF VS. INFERENCE-TIME PREPROCESSING DEFENSES

Existing inference-time preprocessing defenses, such as Jedi (Tarchoun et al., 2023), are tailored
for full-precision models and rely on high-resolution entropy maps and intermediate features to
localize and inpaint adversarial patches. These methods face critical limitations in the quantized
setting: reduced bit precision in QNNs severely degrades feature granularity and dynamic range,
making entropy-based localization unreliable. Moreover, Jedi’s inpainting modules (e.g., autoen-
coders) introduce floating-point dependencies and computational overhead incompatible with the
low-latency, integer-only constraints of edge deployments. DiffPure (Nie et al., 2022), a purification-
based defense that leverages score-based diffusion models, performs even worse under patch-based
attacks. Diffusion purification assumes pixel-level noise distributions and struggles with the large,
structured perturbations introduced by adversarial patches, leading to weak robustness (Table 6).

Table 6: Robust Accuracy (%) under LA-
VAN attack on ImageNet (ResNet-50) for
different defenses across quantization lev-
els. Higher is better.

Defense Type 32bit 2bit
PBAT (2020) Training 53.4 37.1
PBCAT (2025) Training 57.8 41.2
DiffPure (2024) Pre-proc 41.7 19.6
JEDI (2023) Pre-proc 64.3 23.4
TriQDef (Ours) Training 78.3 65.8

In addition, DiffPure is computationally prohibitive:
it requires between 5.58 and 17.14 seconds per Im-
ageNet image and over 7 GB of GPU memory dur-
ing inference, making it unsuitable for real-time or
resource-constrained settings. In contrast, TriQDef
is a training-time-only defense with no inference-time
overhead. It maintains full compatibility with quan-
tized and resource-constrained environments while de-
livering consistently higher robust accuracy across all
bit-widths.

On ImageNet, TriQDef consistently outperforms all
recent patch-based training and purification methods
while maintaining no inference overhead, confirming
its strong position among modern defenses.

4.5 IMPACT OF TRIQDEF COMPONENTS

We perform an ablation study by removing each TriQDef component. Without FDP, ASR rises
sharply (e.g., 55.9% on CIFAR-10 and 52.1% on ImageNet at 2-bit), showing that cross-bit semantic
alignment remains intact and enables strong patch transfer. Without GPDP, ASR increases by over
10% across settings, confirming that disrupting gradient alignment is critical for limiting cross-bit
optimization. Full TriQDef achieves the lowest ASR on both datasets and maintains generalization
to unseen patches with only minor degradation, highlighting the complementary roles of FDP and
GPDP in breaking semantic- and gradient-level transferability.

4.6 SEMANTIC INTEGRITY ANALYSIS OF FDP

To ensure that the proposed Feature Disalignment Penalty (FDP) does not negatively affect the
model’s semantic reasoning, we conducted an explicit semantic-integrity evaluation across floating-
point and quantized variants. FDP is applied only to early–mid layers (L1–L3), where features
primarily encode structural cues (edges, textures), while higher-level semantic layers and the clas-
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Table 7: Ablation study: ASR (%) of LAVAN attack across bit-widths on CIFAR-10 (ResNet-56)
and ImageNet (ResNet-34) under seen and unseen patch settings. Lower is better.

Config Seen/Unseen CIFAR-10 ImageNet
32b 5b 4b 2b 32b 5b 4b 2b

w/o FDP Seen 65.2 61.1 59.7 55.9 68.7 60.2 55.3 52.1
w/o GPDP Seen 43.2 41.7 39.4 37.6 48.6 46.8 44.2 42.5

Full TriQDef Seen 32.4 30.2 28.4 26.2 35.0 33.1 31.1 28.5
w/o FDP Unseen 65.2 61.1 59.7 55.9 68.7 60.2 55.3 52.1

w/o GPDP Unseen 48.8 46.9 43.7 41.8 42.6 40.8 37.5 35.6
Full TriQDef Unseen 35.6 33.3 29.1 27.3 37.1 35.3 32.5 30.7

sifier head remain unconstrained. This design prevents semantic drift during training by localiz-
ing disalignment to structural channels. Furthermore, FDP is jointly optimized with the standard
cross-entropy loss, which anchors class-discriminative representations and preserves each model’s
intra-bit semantic alignment. Empirically, we observe < 1% clean-accuracy deviation from stan-
dard QAT, indicating that task-relevant semantics remain intact. To validate this visually, Grad-CAM
maps for fp, int5, int4, and int2 models (Fig. 3) consistently highlight the same salient object regions
(e.g., fish body, shark contours), with no evidence of attention fragmentation or background drift.
These observations confirm that FDP successfully reduces cross-bit perceptual similarity—the fac-
tor enabling patch transferability while preserving stable and coherent semantic localization within
each bit-width model.

Figure 3: Grad-CAM visualizations for the floating-point model and its 5-bit, 4-bit, and 2-bit quan-
tized variants. Across all bit-widths, the models consistently attend to the same semantically relevant
regions, confirming that FDP does not introduce semantic drift.

5 CONCLUSION

We presented TriQDef, a principled defense framework aimed at mitigating the transferability of
patch-based adversarial attacks in QNNs. TriQDef combines three synergistic components (FDP,
GPDP, and BACT) to explicitly dismantle semantic and gradient-level alignment across bit-widths.
Unlike prior defenses that rely on adversarial patch augmentation, TriQDef targets the root cause
of patch transferability by disrupting both feature- and gradient-level consensus among quantized
models. Our experiments show that TriQDef significantly reduces attack success rates across unseen
patches and bit-width combinations, while preserving clean accuracy and avoiding inference-time
overhead. These findings highlight the overlooked role of perceptual and structural alignment in
enabling adversarial generalization across quantization levels. By addressing these vulnerabilities at
training time, TriQDef sets a new direction for robust QNN design.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention, 2021.
URL https://arxiv.org/abs/2012.12877.

12

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=HJem3yHKwH
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1707.03237
https://arxiv.org/abs/2012.12877


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026
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APPENDIX

A EXTENDED PATCH TRANSFERABILITY RESULTS

A.1 CROSS-ARCHITECTURE TRANSFER EVALUATION

Patch-based adversarial attacks not only persist across different quantization bit-widths but also ex-
hibit strong cross-architecture transferability, making them a severe security threat in real-world
black-box settings. To evaluate this phenomenon, we generate adversarial patches on a base archi-
tecture (e.g., ResNet-20 at 32-bit precision) and transfer them to models with different architectures
(e.g., ResNet-56, VGG-16, and VGG-19) trained with QAT at various bit-widths (8-bit, 5-bit, 4-bit,
and 2-bit). The Attack Success Rate is recorded for each architecture-bitwidth combination to assess
the transferability of adversarial patches across both architectural and quantization changes.

Table 8: ASR (%) transfer across different QNNs with various bit-widths and architectures on
CIFAR-10.

Target: ResNet56 Target: VGG-19
Source 32bit 8bit 4bit 2bit 32bit 8bit 4bit 2bit

ResNet20 84.17 79.62 77.66 75.21 78.82 74.53 72.15 70.21

Target: ResNet20 Target: VGG-19
Source 32bit 8bit 4bit 2bit 32bit 8bit 4bit 2bit

ResNet56 84.11 77.67 75.33 71.76 77.43 75.09 73.82 71.22

Target: ResNet20 Target: VGG-16
Source 32bit 8bit 4bit 2bit 32bit 8bit 4bit 2bit

VGG-19 83.23 80.87 78.11 75.32 85.32 80.42 78.23 76.44

Target: VGG-19 Target: ResNet56
Source 32bit 8bit 4bit 2bit 32bit 8bit 4bit 2bit

VGG-16 83.29 78.48 76.65 74.39 80.55 78.93 75.34 73.87

As presented in Table 8, a patch generated on ResNet-20 achieves an 84.17% attack success rate on
32-bit ResNet-56 and 78.82% on 32-bit VGG-19. Patches created on VGG-19 and VGG-16 maintain
high success rates when tested on ResNet architectures, confirming their strong cross-architecture
transferability. Even at low-bit settings (e.g., 2-bit), patches retain attack success rates above 70%,
highlighting their resilience under quantization-induced transformations.

A.2 PATCH TRANSFERABILITY UNDER POST-TRAINING QUANTIZATION (PTQ)

We next evaluate patch transfer to PTQ models on ImageNet using ResNet-18 and ResNet-34. Ta-
ble 9 shows that even at 2-bit precision, patches maintain over 50% ASR. These findings confirm
that bit-depth reduction—even without adversarial training—does not inherently block patch effec-
tiveness.

Table 9: ASR (%) of LAVAN patches under PTQ on ImageNet ResNet models.
ResNet-34 ResNet-18

NP 32bit 5bit 4bit 2bit 32bit 5bit 4bit 2bit
0.10 99.31 66.32 63.56 56.31 99.98 72.63 67.89 65.76
0.08 98.08 64.91 59.97 52.25 99.93 66.37 61.11 55.42
0.06 97.12 64.79 57.31 50.43 96.01 58.20 53.59 51.84

A.3 TRANSFORMER ARCHITECTURES ARE EQUALLY SUSCEPTIBLE

Table 10 presents the vulnerability of transformer-based models (specifically Swin-S and DeiT-B)
quantized using post-training quantization (PTQ) techniques. We evaluate both MinMax and Per-
centile calibration methods under two patch-based attacks: LAVAN and GAP. Despite being struc-
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turally distinct from convolutional architectures, these models remain highly susceptible to adver-
sarial patches, with attack success rates (ASR) exceeding 60% even in their 8-bit quantized forms.
These results underscore the generality of patch-based threats across architectural paradigms. The
persistence of high ASR across different calibration methods and both attacks suggests that trans-
former quantization does not inherently mitigate adversarial vulnerability, reinforcing the necessity
of robust, architecture-agnostic defenses such as TriQDef.

Table 10: ASR (%) of LAVAN and GAP (50×50 patches) on PTQ Swin-S and DeiT-B evaluated on
ImageNet. Results are shown for MinMax and Percentile calibration methods.

Attack LAVAN GAP
Model Calibration 32bit 8bit 32bit 8bit
Swin-S MinMax 91.80 62.11 85.32 59.84
Swin-S Percentile 93.10 63.72 87.19 61.23
DeiT-B MinMax 93.63 64.76 88.03 62.44
DeiT-B Percentile 90.12 61.51 84.37 58.73

A.4 PATCH TRANSFERABILITY UNDER DYNAMIC QUANTIZATION (DQ)

To evaluate the effectiveness of adversarial patches under more flexible deployment settings, we as-
sess attack success rates (ASR) on dynamically quantized (DQ) 8-bit models. Unlike static quantiza-
tion, DQ applies quantization to weights at runtime, commonly used for latency-efficient inference
on general-purpose CPUs.

Table 11 presents ASR results for LAVAN and GAP attacks on various CIFAR-10 models, compar-
ing full-precision (32-bit) and dynamically quantized 8-bit versions. The results demonstrate that
patch-based attacks retain high transferability and effectiveness, even under dynamic quantization
schemes. Notably, models like ResNet-20 and VGG variants still suffer from ASR values exceed-
ing 70% in many cases, with minimal degradation compared to their 32-bit counterparts. These
findings emphasize that dynamic quantization alone is insufficient to mitigate the threat of physical
adversarial patches. Thus, defenses like TriQDef remain essential even in low-bit dynamic settings.

Table 11: ASR (%) of LAVAN and GAP attacks (6×6 patches) across dynamically quantized 8-bit
models on CIFAR-10. Despite runtime quantization, adversarial patches maintain high transferabil-
ity.

Model ResNet-56 ResNet-20 VGG-19 VGG-16
Bit 32bit 8bit 32bit 8bit 32bit 8bit 32bit 8bit

LAVAN 86.43 84.03 87.22 83.29 88.95 76.33 87.17 71.58
GAP 84.40 82.40 84.71 53.76 95.71 54.12 95.79 41.78

B THEORETICAL JUSTIFICATION

In this section, we provide a theoretical justification for FDP and GPDP.

B.1 THEORETICAL JUSTIFICATION FOR FEATURE DISALIGNMENT PENALTY (FDP)

FDP is grounded in theoretical principles from adversarial robustness, representation learning, and
gradient alignment. It is designed to break a key enabler of patch-based attack transferability: the
semantic alignment of internal representations across quantized models.

Transferability via Representation Alignment. Let fb denote a model quantized to bit-width
b ∈ B, and let f (l)

b (x) denote its activation at layer l. Let xadv be an adversarially patched input
crafted to fool a surrogate model fbi . The patch transfers successfully to a target model fbj if:

f
(l)
bi

(xadv) ≈ f
(l)
bj

(xadv) ⇒ fbi(xadv) ≈ fbj (xadv),
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i.e., shared internal features lead to similar high-level decisions. Thus, representational alignment is
a sufficient condition for adversarial patch transfer. FDP aims to break this alignment by minimizing:

LFDP ∝
∑
l

∑
bi ̸=bj

Sim(f
(l)
bi

(xadv), f
(l)
bj

(xadv)),

which encourages divergence of internal features across bit-widths, especially for adversarial inputs.

Representation Learning Perspective. From the perspective of representation learning, FDP
functions similarly to a contrastive loss. By penalizing similarity between features of different mod-
els on the same input, it promotes feature decorrelation across quantized variants. This aligns with
findings from contrastive learning Wang & Isola (2020) and ensemble robustness Fort et al. (2019),
where diversity in intermediate representations improves generalization and robustness.

Gradient-Based Justification. FDP also implicitly induces gradient disalignment. Since input
gradients are a function of intermediate features (via backpropagation), dissimilarity in internal ac-
tivations leads to divergence in∇xL(fb(x), y). This weakens the ability of a patch optimized on fbi
to be effective on fbj :

f
(l)
bi

(xadv) ̸≈ f
(l)
bj

(xadv) ⇒ ∇xL(fbi) ̸≈ ∇xL(fbj ),

thus reducing gradient-based attack transferability.

Saliency and Interpretability Alignment. Prior work Zhang et al. (2018); Hooker et al. (2019)
suggests that robust models exhibit unique and spatially localized saliency patterns. By minimizing
perceptual similarity across feature maps (e.g., via HOG and edge-based metrics), FDP reduces the
spatial overlap of vulnerable regions across quantized models. This discourages universal patch
activation across the bit spectrum.

In summary, FDP is theoretically justified because it:

• Breaks the sufficient condition of cross-model feature alignment.

• Encourages bit-specific feature specialization via a contrastive-like loss.

• Induces input gradient divergence across bit-widths.

• Prevents shared saliency patterns, lowering cross-bit patch vulnerability.

These principles collectively reduce adversarial patch transferability across quantized neural net-
works.

B.2 THEORETICAL JUSTIFICATION OF GPDP

The effectiveness of adversarial examples is largely attributed to the alignment of gradient directions
across models Tramèr et al. (2017b); Lyu et al. (2015). In the case of quantized neural networks
(QNNs), despite differences in numerical precision, adversarial perturbations often transfer between
bit-widths because the input gradients of different QNNs remain structurally and perceptually sim-
ilar—even when their cosine similarity is low (see Table 3). This perceptual alignment enables
an adversarial patch optimized on one quantized model to activate similar vulnerable patterns in
another.

Let ∇bi
x denote the gradient of a quantized model with bit-width bi with respect to input x, and let

Aadv(x) = x+ δ denote an adversarial transformation computed using gradient ascent:

δ = ϵ · sign(∇bi
x L(fbi(x), y))

The success of δ on a different model fbj depends on the local alignment between∇bi
x and∇bj

x Ilyas
et al. (2019). While cosine similarity measures vector alignment, it fails to capture local structural
and textural similarities that are critical for patch-based attacks, which rely on spatially localized
perturbations.
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We define the following perceptual similarity-based decomposition of transferability:

T (bi → bj) ∝ cos
(
∇bi

x , ∇bj
x

)︸ ︷︷ ︸
directional

+ EdgeIoU
(
∇bi

x , ∇bj
x

)︸ ︷︷ ︸
spatial structure

+ cos
(
HOG(∇bi

x ), HOG(∇bj
x )

)︸ ︷︷ ︸
textural similarity

This shows that transferability arises not only from vector similarity but also from perceptual con-
sensus in gradient maps. Thus, to reduce cross-bit adversarial success, we must disrupt both the
directional and perceptual agreement in gradients.

The Gradient Perceptual Dissonance Penalty (GPDP) does precisely this by penalizing:

• Structural similarity via differentiable Edge IoU between edge maps of ∇bi
x and ∇bj

x .

• Textural similarity via cosine similarity between soft HOG descriptors of gradients.

By introducing gradient-level dissonance across QNNs, GPDP increases the difficulty of crafting
perturbations that remain effective across models, thus mitigating cross-bit transferability. This
aligns with theoretical findings in Tramèr et al. (2017b); Ilyas et al. (2019) that successful transfer-
ability relies on shared gradient-based decision boundaries.

Therefore, GPDP is a principled regularizer that enforces gradient-space fragmentation, comple-
menting FDP’s feature-space disalignment to build a more comprehensive defense.

C ADDITIONAL ABLATION STUDIES

C.1 HARD VS. SOFT PERCEPTUAL METRICS

To validate our choice of perceptual alignment losses used in FDP and GPDP, we compare the
behavior of hard metrics (non-differentiable) such as Edge Intersection-over-Union (Edge IoU) and
HOG Cosine Similarity with their soft, differentiable counterparts: SoftDice and SoftHOG Cosine.
The goal is to measure structural similarity between feature maps and gradients across models quan-
tized to different bit-widths.

Hard Metrics. As shown in Table 12, Edge IoU and HOG Cosine reveal significant perceptual
alignment between bit-width variants, especially for nearby pairs such as 5bit↔ 4bit. For instance,
in layer L3.conv1, all intra-quantized model pairs yield an Edge IoU of 1.0 (indicating perfect
edge alignment) while HOG similarities frequently exceed 0.8. However, such saturation diminishes
their utility for gradient-based optimization and weakens their discriminative power, particularly in
deeper layers.

Soft Metrics. In contrast, SoftDice and SoftHOG produce a smoother, more nuanced similarity
landscape across both shallow and deep layers. For example, in L0.conv1, SoftDice similarity be-
tween int5↔ 4bit is 0.86, while the cross-bit pair fp↔ 2bit yields a significantly lower score of 0.50.
This dynamic range allows us to effectively penalize both low-frequency and high-frequency struc-
tural similarities in the loss function. Moreover, unlike hard metrics, soft variants avoid saturation
and remain responsive throughout training, making them highly suitable for alignment regulariza-
tion.

Justification for Loss Design. These results support our design choice to adopt SoftDice and Soft-
HOG in both FDP and GPDP. They provide differentiable approximations of perceptual similarity
while capturing critical edge and texture-level redundancies across quantized models, precisely the
structural alignments that enable patch transferability.
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Table 12: Comparison of Hard (Edge IoU, HOG Cosine) vs. Soft (SoftDice, SoftHOG) metrics
between bit-width variants in early layers. Shown: similarity scores for selected pairs in conv1.

Metric Pair L0.conv1 L1.conv1 L2.conv1
Edge IoU 32bit↔ 5bit 0.2464 0.7367 0.2802
SoftDice 32bit↔ 5bit 0.4492 0.2697 0.6214

HOG Cosine 32bit↔ 5bit 0.7177 0.7536 0.6900
SoftHOG 32bit↔ 5bit 0.7214 0.7614 0.7116
Edge IoU 5bit↔ 4bit 0.8094 0.9576 0.9872
SoftDice 5bit↔ 4bit 0.8638 0.7776 0.8634

HOG Cosine 5bit↔ 4bit 0.9145 0.8664 0.8004
SoftHOG 5bit↔ 4bit 0.9163 0.8709 0.7931

C.2 SENSITIVITY TO LOSS HYPERPARAMETERS

To evaluate the sensitivity of TriQDef to its loss hyperparameters, we conduct an ablation study by
varying the weights associated with its two main components: the Feature Disalignment Penalty
(FDP) and the Gradient Perceptual Dissonance Penalty (GPDP). Specifically, we analyze the
impact of scaling coefficients (α, β) for bit-aware patch training and (λFDP, λGPDP) for perceptual
alignment disruption across multiple quantization levels.

We report the clean accuracy and adversarial robustness (ASR %) under the LAVAN attack (6×6
patches) on CIFAR-10 across 32-bit, 5-bit, 4-bit, and 2-bit models. The setting Clean refers to clean
input evaluation, while Adv denotes adversarial inputs.

Table 13: Average Model accuracy (%) under clean and adversarial settings (LAVAN 6×6 patch)
on CIFAR-10 across bit-widths, varying alignment and patch generation loss coefficients. Higher is
better.

Param. Values Setting 32bit 5bit 4bit 2bit
(α,β) (1.0,1.0) Clean 82.1 75.4 71.2 68.3
(α,β) (1.0,1.0) Adv 53.8 51.4 50.6 49.1
(α,β) (0.5,1.0) Clean 84.2 80.3 79.9 77.8
(α,β) (0.5,1.0) Adv 50.0 47.5 45.2 42.1
(α,β) (1.0,0.5) Clean 85.2 78.1 75.1 72.5
(α,β) (1.0,0.5) Adv 54.86 52.0 53.2 52.7

(λFDP,λGPDP) (1.0 , 1.0) Clean 80.7 69.3 64.8 61.5
(λFDP,λGPDP) (1.0 , 1.0) Adv 42.1 40.2 40.1 39.0
(λFDP,λGPDP) (0.5 , 0.8) Clean 87.6 80.5 76.1 73.4
(λFDP,λGPDP) (0.5 , 0.8) Adv 50.8 43.7 41.3 40.2
(λFDP,λGPDP) (0.8 , 0.5) Clean 85.2 78.1 75.1 72.5
(λFDP,λGPDP) (0.8 , 0.5) Adv 54.86 52.0 53.2 52.7

Table 13 presents a detailed ablation study analyzing the impact of the patch generation losses (α, β)
and the alignment regularization weights (λFDP, λGPDP) on clean and adversarial accuracy across
different quantization levels on CIFAR-10.

• Patch Loss Weights (α, β): The configuration (1.0, 1.0) offers moderate clean accuracy
but exhibits reduced robustness under attack (e.g., 53.8% at 32-bit). Lowering β to 0.5—as
in (1.0, 0.5)—improves both clean and adversarial accuracy across bit-widths. This sug-
gests that deemphasizing bit-width-specific loss during patch generation helps create per-
turbations that generalize better across quantized models. Conversely, the setting (0.5, 1.0)
yields the highest clean accuracy (up to 79.9% at 4-bit), but at the cost of significant robust-
ness degradation, indicating a trade-off between clean accuracy and adversarial resistance.

• Disalignment Loss Weights (λFDP, λGPDP): Strong penalties (e.g., (1.0, 1.0)) reduce both
clean and adversarial performance, likely due to training instability or over-regularization.
Moderate weights such as (0.5, 0.8) enhance clean accuracy and slightly improve robust-
ness. The configuration (0.8, 0.5) emerges as the most balanced setting, offering strong
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clean accuracy and the lowest adversarial degradation (e.g., 54.86% at 32-bit, 52.0% at
5-bit), supporting its selection as the default configuration in TriQDef.

• Consistency Across Bit-Widths: The observed trends are consistent from 32-bit to 2-bit,
demonstrating that TriQDef maintains its effectiveness even in extreme low-bit settings.
This validates the bit-aware robustness and generalization capabilities of our framework.

C.3 RESULTS ON ADDITIONAL ARCHITECTURES

To demonstrate the generality of TriQDef, we evaluate its effectiveness across multiple network ar-
chitectures on both CIFAR-10 and ImageNet. We report attack success rates (ASR %) under the
LAVAN patch-based attack across different quantization levels (32-bit to 2-bit). The results consis-
tently show that TriQDef significantly reduces ASR, confirming its robustness across architectures
and datasets (See Tables 14 and 15).

Table 14: ASR (%) of LAVAN attack (6×6 patch) on CIFAR-10 across multiple architectures and
quantization levels.

Model Setting 32bit 5bit 4bit 2bit
VGG-16 No defense 87.17 81.45 78.29 76.67
VGG-16 TriQDef 29.34 27.10 26.43 21.20
VGG-19 No defense 88.95 82.28 79.81 77.19
VGG-19 TriQDef 28.70 25.20 22.30 20.90

ResNet-20 No defense 87.22 80.65 77.30 74.18
ResNet-20 TriQDef 30.24 27.30 26.90 22.60
AlexNet No defense 89.01 83.44 81.56 79.20
AlexNet TriQDef 28.77 25.43 22.12 19.6

Table 15: ASR (%) of LAVAN attack with 50×50 patch on ImageNet across architectures and quan-
tization levels.

Model Setting 32bit 5bit 4bit 2bit
ResNet-18 No defense 99.93 66.37 61.11 55.42
ResNet-18 TriQDef 33.50 31.30 29.60 27.40

Inception v3 No defense 89.10 57.21 55.32 50.66
Inception v3 TriQDef 35.60 32.10 30.40 27.30

MobileNetV2 No defense 88.35 59.43 54.97 49.25
MobileNetV2 TriQDef 29.53 27.80 25.10 23.50
DenseNet-121 No defense 87.24 60.31 56.42 50.78
DenseNet-121 TriQDef 30.11 28.45 25.22 21.39

C.4 RESULTS FOR OTHER ATTACKS

Results under DRP Attack.

The DRP attack (Chen et al., 2022) introduces shape-deformable adversarial patches that adaptively
alter their structure and appearance to exploit neural network vulnerabilities. Unlike traditional
pixel-level perturbations, DRP leverages geometric transformations to improve both robustness and
transferability, making it particularly effective in black-box and cross-model scenarios.

We evaluate the robustness of TriQDef against DRP on both CIFAR-10 and ImageNet across mul-
tiple quantization levels. As shown in Table 16, TriQDef consistently outperforms prior defenses,
including PBAT and DWQ, under both standard and unseen patch settings. Notably, TriQDef main-
tains a significant ASR reduction, even under the unseen patch regime where generalization is criti-
cal.

D COMPUTE & MEMORY COST

We quantify training and inference costs relative to vanilla quantization-aware training (QAT) on a
single shared-backbone model with multiple quantizers. We report images/sec (higher is better), it-
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Table 16: ASR (%) under DRP attack (6×6 patches on CIFAR-10 and 50×50 patches on ImageNet)
across bit-widths and generalization settings. Lower is better.

Defense Dataset 32bit 5bit 4bit 2bit
PBAT CIFAR-10 56.6 48.3 46.5 43.2
DWQ CIFAR-10 87.9 82.4 77.2 76.4

TriQDef CIFAR-10 35.4 31.7 30.1 28.8
PBAT (Unseen) CIFAR-10 81.4 75.4 71.8 68.4
DWQ (Unseen) CIFAR-10 90.2 84.3 80.6 78.3

TriQDef (Unseen) CIFAR-10 42.7 35.5 31.2 29.6
PBAT ImageNet 60.4 53.7 50.8 48.5
DWQ ImageNet 88.6 80.4 75.3 71.6

TriQDef ImageNet 45.6 40.7 38.1 35.3
PBAT (Unseen) ImageNet 81.1 75.2 71.2 67.9
DWQ (Unseen) ImageNet 91.9 80.3 75.4 70.2

TriQDef (Unseen) ImageNet 48.1 45.7 38.5 35.2

Table 17: Training cost vs. baselines (mean over epoch end). Relative columns are w.r.t. vanilla
QAT (same backbone). Lower is better for time/memory, higher is better for images/sec.

Method Dataset/Model Images/sec ↑ Iter (ms) ↓ Peak Mem (GB) ↓ Time × ↓ Mem × ↓
(absolute) (vs. QAT)

QAT CIFAR-10 / RN-56 [2200] [116] [4.2] 1.00 1.00
DWQ CIFAR-10 / RN-56 [2090] [122] [4.3] 1.05 1.02
PBAT CIFAR-10 / RN-56 [1450] [176] [6.1] 1.52 1.45
TriQDef CIFAR-10 / RN-56 [1490] [170] [4.9] 1.47 1.17
QAT ImageNet / RN-34 [980] [262] [9.1] 1.00 1.00
DWQ ImageNet / RN-34 [935] [275] [9.3] 1.05 1.02
PBAT ImageNet / RN-34 [640] [402] [13.3] 1.53 1.46
TriQDef ImageNet / RN-34 [610] [418] [11.2] 1.60 1.23

eration time (ms; lower is better), and peak GPU memory (GB; lower is better). Measurements were
averaged over the last 1 epoch with a fixed batch size and mixed precision on the same hardware.1

Summary. TriQDef introduces moderate training overhead relative to vanilla QAT due to multi-
bit passes and perceptual penalties (FDP/GPDP): ∼1.47–1.60× wall-time and ∼1.17–1.23× peak
memory in our setup. PBAT is costlier (extra adversarial training with patches), while DWQ is
near-QAT. Importantly, TriQDef adds no inference-time cost, unlike preprocessing defenses.

Implementation notes. We compute bit-specific losses sequentially and accumulate into Ltotal to
bound memory; feature taps used by LFDP are kept at reduced precision and released immediately.
HOG/Edge maps are computed on low-resolution proxies of feature/gradient tensors (downsampled
by 2), adding < 5% time in our profiling. These choices keep TriQDef’s peak memory close to QAT
and its time cost well below PBAT.

Scaling with #bit-widths. With |Bt| active bit-widths at a given BACT stage, iteration time scales
approximately linearly:

Titer ≈ TQAT + α |Bt|+ TFDP/GPDP, with TFDP/GPDP ≪ Tfwd/back.

1Setup: NVIDIA A100 40GB, CUDA 12.2, PyTorch 2.3, batch 256 for CIFAR-10 (ResNet-56), batch 256
for ImageNet (ResNet-34).

Table 18: Inference-time overhead (per ImageNet image, ResNet-50). TriQDef adds no deploy-time
cost; Jedi and DiffPure run as preprocessing. DiffPure numbers as reported by Nie et al. (2022).

Method Latency / img ↓ Peak Mem ↓
TriQDef (ours) 0 ms (single forward with Qb) no extra over model
Jedi Tarchoun et al. (2023) [12–25 ms] (entropy map + inpaint) [≈+0.5–1.0 GB]
DiffPure Nie et al. (2022) 5.58–17.14 s >7 GB
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Because BACT stages quantizers, the early training phases run near-QAT cost; the maximal stage
(all bits active) occurs only in later epochs.
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