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ABSTRACT

Diffusion models have recently emerged as powerful generative models capable
of producing highly realistic images. Despite their success, a persistent challenge
remains: models that generate high-quality samples often assign poor likelihoods
to data, and vice versa. This trade-off arises because perceptual quality depends
more on modeling high-noise regions, while likelihood is dominated by sensi-
tivity to low-level image statistics. In this work, we propose a simple yet ef-
fective method to overcome this trade-off by merging two pretrained diffusion
experts, one focused on perceptual quality and the other on likelihood, within a
Mixture-of-Experts framework. Our approach applies the image-quality expert
during high noise levels and uses the likelihood expert in low noise levels. Empir-
ically, our merged model consistently improves over both experts: on CIFAR-10,
it achieves better likelihood and sample quality than either baseline. On Ima-
geNet32, it matches the likelihood of the likelihood expert while surpassing the
image-quality expert in FID, effectively breaking the likelihood–quality trade-off
in diffusion models.

1 INTRODUCTION

Diffusion models (DMs) are a class of probabilistic generative models that learn to approximate
a data distribution by reversing a forward noising process through a learned denoising proce-
dure (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal, 2021). They have recently
achieved state-of-the-art results, e.g., in image generation (Dhariwal & Nichol, 2021; Tang et al.,
2024; Kim et al., 2024), density estimation (Kingma et al., 2021), and in text-to-image and text-to-
video generation tasks (Esser et al., 2024; Polyak et al., 2024).

For image data, likelihood-based metrics and perceptual image quality often exhibit a disconnect
in practice (Theis et al., 2015); that is, strong performance on one does not necessarily imply good
performance on the other. In particular, Kim et al. (2021) highlights an inverse correlation between
likelihood (typically measured via Negative Log-Likelihood, or NLL) and sample quality (com-
monly measured via Frechet Inception Distance, or FID). As a result, models optimized for NLL,
such as Kingma et al. (2021), employ likelihood-weighted training objectives, whereas models tar-
geting low FID scores (Nichol & Dhariwal, 2021; Kingma & Gao, 2024) adopt alternative weighting
schemes. Consequently, a trade-off emerges: models with excellent sample quality often perform
poorly on likelihood, and vice versa. Since NLL and FID reflect complementary aspects of model
performance, addressing both is essential for building robust diffusion models that capture the data
distribution and produce high-quality samples.

In this paper, we aim to overcome the NLL–FID trade-off by designing a model that can generate
images with both high perceptual quality and strong likelihood. To do this, we start from two
key empirical observations reported in the literature: (1) Higher noise levels are associated with
perceptual image quality. DDPM (Ho et al., 2020) used a simplified objective that down-weights the
loss at lower noise levels, allowing the model to focus on more challenging denoising steps at higher
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Figure 1: Diagram of our proposed merged model where at time η = 0.5 we switch between
denoisers. Note that the likelihood model is only used for almost imperceptible noise levels. This
significantly improves the likelihood, which is sensitive to low-level color statistics, while leaving
the FID unaffected.

noise levels. Similarly, Kim et al. (2021) showed that accurate score prediction at high noise levels
is crucial for generating realistic samples, and that overly small truncation harms sample fidelity. (2)
Likelihood is highly sensitive to low-level statistics, such as exact pixel values (Zheng et al., 2023b;
Kim et al., 2021), while we are typically more interested in the overall structure of the image rather
than exact pixel-level details. Supporting this, Kingma & Dhariwal (2018); Kingma & Gao (2024)
showed that training on 5-bit images, which effectively discards fine details, can lead to better visual
quality.

Motivated by these insights, our approach is simple: we merge two pretrained diffusion ex-
perts—one specialized in image quality, and the other in likelihood. For high noise levels, we
use an expert on good image-quality model (EDM, Karras et al. 2022). For the low-noise steps, we
switch to a likelihood expert trained for accurate density modeling (VDM, Kingma et al. 2021). An
overview of the merged model is shown in Fig. 1. Starting from pure noise, we first denoise using
the image-quality expert to obtain a clean, high-fidelity sample. Then, at a chosen intermediate step,
we switch to the likelihood expert to refine the sample further, aiming to improve likelihood while
maintaining perceptual quality. By carefully choosing the switching point, we achieve strong per-
formance on both FID and NLL, effectively breaking the trade-off between likelihood and quality.

In Section 2, we provide the necessary background and discuss the underlying causes of the like-
lihood–quality trade-off. Section 3 reviews related work that has attempted to address this issue.
In Section 4, we introduce our proposed method in detail, including modifications to the sampling
procedure and likelihood evaluation. Section 5 presents our experimental setup and results. Finally,
in Sections 6 and 7, we discuss the limitations of our approach and conclude the paper.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) are a type
of generative models that learn to reverse a diffusion process that gradually adds noise to data.
Following the variational diffusion models (VDM) framework (Kingma et al., 2021), let x ∈ Rd

denote a data point, and let {zt(i)}i=T
i=0 be the latent variables in Rd over which the noising process

is defined. This stochastic process is defined as a forward-time process from t = 0 to t = 1 such that
the transition kernel q(zt(i)|zs(i)) is linear Gaussian, with t(i) = i

T and s(i) = i−1
T .1 The marginals

of this process can be directly parameterized as q (zt | x) = N
(
zt;αtx, σ

2
t I
)
, where αt, σt ∈ R>0

are smooth scalar-valued functions of t, named noise schedule parameters. We assume that the
signal-to-noise ratio SNR(t) = α2

t /σ
2
t is strictly monotonically decreasing w.r.t. t, and we will

consider the variance preserving (VP) process which entails α2
t + σ2

t = 1 for all t.

1In the following, we will often omit the argument i to avoid clutter.
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The forward process can be reversed when conditioning on the data, and the distribution q(zs |
zt,x) is Gaussian and available in closed form. The reverse process (generative) is then defined as
p (zs | zt) = q (zs | zt,x = x̂θ(zt, t)), i.e., as the ground-truth conditional reverse process where
we replace the data x—unavailable at inference time—with the output of a model that predicts x
from its noisy version zt = αtx+σtϵ where ϵ ∼ N (0, I). The model is learned by maximizing the
Variational Lower Bound (VLB) of the marginal likelihood:

− log p(x) ≤ −VLB(x) = DKL(q(z1 | x)∥p(z1)︸ ︷︷ ︸
Prior loss

+Eq(z0|x)[− log p(x | z0)]︸ ︷︷ ︸
Reconstruction loss

+ LT (x)︸ ︷︷ ︸
Diffusion loss

, (1)

LT (x) =

T∑
i=1

Ezt(i)∼q(zt(i)|x)DKL
[
q(zs(i) | zt(i),x)∥pθ(zs(i) | zt(i))

]
(2)

In the continuous-time limit (T → ∞), and when rewriting LT in terms of a noise-prediction model
(as opposed to a data-prediction one), Kingma et al. (2021) showed that LT simplifies as:

L∞(x) =
1

2
Eϵ∼N (0,I),t∼U(0,1)

[
dγt
dt

· ∥ϵ− ϵ̂θ (zt; t)∥22

]
, γt = − log(SNRt) (3)

where γt = − log(SNRt) and zt = αtx+σtϵ. The continuous-time case can be equivalently defined
directly in continuous time starting from a linear stochastic differential equation (SDE) (Song et al.,
2020b; 2021):

dzt = f(t)zt dt+ g(t)dwt, z0 ∼ q (z0 | x) , (4)
where wt ∈ Rd is the standard Wiener process, and f(t) and g2(t) are defined as:

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (5)

Sampling can be achieved through the Backward Process by solving the Diffusion SDE from time
t = 1 to t = 0 in terms of noise-prediction model:

dzt =

[
f(t)zt +

g2(t)

σt
ϵθ (zt, t)

]
dt+ g(t)dwt, z1 ∼ N

(
0, σ̃2I

)
(6)

Song et al. (2020b) proved that for all diffusion processes, there exists a corresponding deterministic
process whose trajectories share the same marginal probability densities {pt}t=1

t=0 named as proba-
bility flow ODE, which can be used for sampling similar to Diffusion SDE. When parameterized by
a noise-prediction model, Diffusion ODE satisfies:

dzt
dt

= hθ (zt, t) := f(t)zt +
g2(t)

2σt
ϵθ (zt, t) , z1 ∼ N

(
0, σ̃2I

)
(7)

The above formula allows us to compute the exact likelihood on any input data via the instantaneous
change of variables formula as proposed in (Chen et al., 2018). Following Sahoo et al. (2023); Song
et al. (2020b); Zheng et al. (2023b), the log-likelihood of pθ(z0) can be computed using Eq. (8),
where we are integrating the divergence of the drift function:

log pθ (z0) = log pθ (z1)−
∫ t=1

t=0

tr (∇zt
hθ (zt, t)) dt (8)

2.2 HOW DO DIFFERENT WEIGHTINGS OF LOSS AFFECT THE FID-NLL?

In this section, we briefly include a previous study that shows how the different weighting of the loss
function can influence the likelihood and image quality. VDM++ (Kingma & Gao, 2024) proved
how various diffusion model objectives in the literature can be understood as a special case of a
weighted loss (Kingma et al., 2021) in Eq. (9), with different choices of weighting. Using the
uniform weighting, w(γt) = 1, that corresponds to ELBO objective Eq. (3) and results in a good
data-likelihood model, while setting the weighting term w(γt) = dt/dγt, produces good sample-
quality outputs like Lsimple in IDDPM (Nichol & Dhariwal, 2021).

Lw(x) =
1

2
Et∼U(0,1),ϵ∼N (0,I)

[
w (γt) ·

dγt
dt

· ∥ϵ̂θ (zt; γt)− ϵ∥22

]
, γt = − log(SNRt) (9)
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3 RELATED WORK

Likelihood experts. Several methods focus on improving likelihood. VDM (Kingma et al., 2021)
and ScoreFlow (Song et al., 2021) directly optimize (a bound on) the data log-likelihood. i-
DODE (Zheng et al., 2023b) introduces velocity-prediction and proposes an improved likelihood
estimation technique. Other works (Sahoo et al., 2023; Nielsen et al., 2023; Bartosh et al., 2024)
explore learnable forward processes, whereas our study focuses on standard diffusion models with
fixed linear forward noise schedules.

Sample quality experts. Many studies improve the perceptual quality of generated samples by
introducing better or more efficient samplers (Song et al., 2020a;b; Lu et al., 2022; Zheng et al.,
2023a; Zhao et al., 2024; Karras et al., 2022; Zhou et al., 2024), addressing exposure bias (Ning
et al., 2023), or applying alternative loss weighting strategies (Kingma & Gao, 2024; Ho et al.,
2020). GMEM (Tang et al., 2024) enhances both quality and efficiency by incorporating an ex-
ternal memory bank into a transformer-based model, achieving state-of-the-art FID on CIFAR-10.
PaGoDA (Kim et al., 2024), a distillation-based approach, achieves the best-known FID on Ima-
geNet32. In this work, we focus on UNet-based diffusion models trained with simpler objectives
such as noise prediction, and exclude distillation-based methods from our scope.

Experts on both metrics. Soft Truncation (Kim et al., 2021) proposes a training strategy that
softens fixed truncation into a random variable, adjusting loss weighting across diffusion times to
address the likelihood–quality trade-off. While aligned in motivation with our work, their approach
requires training from scratch. In contrast, our method directly leverages existing pretrained mod-
els. CTM (Kim et al., 2023) uses a combination of loss terms, including an additional GAN loss,
along with data augmentation to improve both metrics. In contrast, we address the trade-off from a
different perspective, by merging experts trained with the standard denoising objective.

Mixture-of-Experts. Mixture-of-Experts (MoE) frameworks have been applied to diffusion mod-
els in contexts such as zero-shot text-to-image generation (Balaji et al., 2022; Feng et al., 2023) and
controllable image synthesis (Bar-Tal et al., 2023). More recently, MDM (Kang et al., 2024) pro-
posed a MoE strategy where each expert is trained on a specific time interval. While effective, their
method employs identical architectures across experts and primarily targets training efficiency and
sample quality. To the best of our knowledge, we are the first to address this trade-off by merging
pretrained experts specialized separately in likelihood and sample quality.

4 MERGING EXPERTS

In this section, we present our method, which is based on the negative log Signal-to-Noise, defined
as γt = − log(SNRt) (Kingma et al., 2021). As previously mentioned, the Signal-to-Noise Ratio
decreases as we move from the data distribution toward pure noise. Since γt is a monotonically
increasing function of time, values close to the data distribution correspond to smaller γt, while
values near the noise correspond to larger γt.

We proposed to merge two pretrained diffusion models, each specialized in one of the two key
generative modeling aspects: perceptual image quality or data likelihood. For the high γt region
(corresponding to high noise levels), we use an expert model focused on image quality; for the low
γt region (low noise), we use an expert model focused on likelihood (see Fig. 1). This design is
supported by previous findings (Zheng et al., 2023b; Kim et al., 2021), which show that likelihood
benefits from focusing on small time steps, while perceptual quality is improved by modeling large
time steps effectively.

In our implementation, we use EDM (Karras et al., 2022) as the expert on perceptual quality in
the high-noise region, and VDM (Kingma et al., 2021) as the expert on likelihood in the low-noise
region. Let τ1 and τ2 represent the time step intervals corresponding to low and high noise, respec-
tively. Given a threshold time step η over the full γ range of τ1∪ τ2, our merged model fθ(t)(zt, γt),
which serves as a denoising autoencoder, is defined as:

θ(t) =

{
θVDM, t ≤ η,

θEDM, t > η.
(10)
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4.1 SAMPLING

Given a sample from pure noise, we perform denoising in two stages. For the high-noise region (i.e.,
large γt), we apply the expert model trained for perceptual image quality (EDM). Once we reach
the threshold time step η ∈ (0, 1), we switch to the expert model trained for likelihood (VDM)
and continue denoising in the low-noise region (i.e., small γt) until we reach γmin. The values of
γt follow a fixed linear noise schedule, ranging from γmax (corresponding to pure noise) to γmin

(corresponding to clean data), and η determines the time at which we switch from one expert to the
other. Algorithms 1 – 2 detail the full sampling procedure. These are modified versions of samplers
from Zheng et al. (2023b) and Kingma et al. (2021), respectively. The final step in both algorithms
includes the reconstruction term (Kingma et al., 2021), which maps the latent sample back to the
data space.

Algorithm 1 Sampling with PF-ODE
1: procedure ODE SAMPLER WITH AN ADAPTIVE STEP

SIZE
2: Input: Threshold η ∈ (0, 1); Smallest time step

γmin; Largest time step γmax;
3: zT ∼ N

(
0, σ2

T I
)

4: Compute intermediate time step using the fixed linear
noise schedule

γη = γmin + η · (γmax − γmin)
5: zη ← PF-ODEEDM (γmax, γη, zT )
6: z0 ← PF-ODEVDM (γη, γmin, zη)
7: x ∼ p(x | z0)
8: end procedure

Algorithm 2 Ancestral Sampling
1: procedure VDM ANCESTRAL
2: Input: Threshold η ∈ (0, 1); T ;
3: Initial zT ∼ N

(
0, σ2

T I
)

4: for t = T . . . 1 do
5: if t/T ≤ η then
6: zt−1 ← θVDM (zt, γt)
7: else if t/T > η then
8: zt−1 ← θEDM (zt, γt)
9: end if

10: end for
11: x ∼ p(x | z0)
12: end procedure

4.2 LIKELIHOOD EVALUATION

We consider two approaches for evaluating the likelihood of our model: (1) the variational lower
bound (VLB) (Kingma et al., 2021), and (2) exact likelihood computation using the probability flow
ODE (Zheng et al., 2023b; Song et al., 2020b; 2021; Sahoo et al., 2023).

Variational Lower Bound (VLB). The VLB consists of three terms (Kingma et al., 2021), as
shown in Eq. (2). The prior and reconstruction losses are model-independent and computed from
γ values, while the diffusion loss depends on which expert is used. For each time step t, we apply
θVDM if t ≤ η, and θEDM otherwise, following Eq. (3) and the switching rule in Eq. (10).

Exact Likelihood via Probability Flow ODE. As an alternative, we compute the exact likelihood
using the probability flow ODE defined in Eq. (11). In our merged setup Eq. (10), this results in two
sequential ODE integrations—one for each expert. Starting from an almost clean sample z0, we
integrate from γmin to γη using PF-ODEVDM, and then from γη to γmax using PF-ODEEDM.

5 EXPERIMENTS

In this section, we compare our model against state-of-the-art baselines in terms of both sample
quality and data likelihood.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our model on the test sets of CIFAR-10 (Krizhevsky & Hinton, 2009) and
ImageNet32 (Deng et al., 2009). As two versions of ImageNet32 exist in the literature, we use
the older version (denoted with an asterisk ∗ in comparisons) to remain consistent with prior work.
For CIFAR-10, we reproduce results using available training details. For ImageNet32, due to time
constraints, we did not tune hyperparameters extensively, resulting in sub-optimal base models. Our
primary focus is on CIFAR-10, with ImageNet32 results included to test whether similar trends hold.

5
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Table 1: Likelihood (ODE) in bits/dimension (BPD) on the test set of CIFAR-10 and ImageNet32

Threshold

EDM ηmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ηmax VDM

CIFAR10 NLL 3.21 3.09 2.83 2.69 2.63 2.62 2.62 2.63 2.63 2.63 2.64 2.64
NFE 204 232 234 236 253 259 254 251 257 273 274 248

ImageNet32 NLL 4.04 3.96 3.80 3.76 3.74 3.72 3.72 3.72 3.72 3.72 3.72 3.72
NFE 195 185 192 186 180 180 196 210 220 232 236 205

Table 2: Image Quality in FID@50k on CIFAR-10 and ImageNet32 datasets using VDM Ancestral
and ODE samplers. We wrote them in abbreviation to save some space.

Threshold

EDM ηmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ηmax VDM

CIFAR10 VDM 3.37 3.45 3.46 3.42 3.39 3.53 4.51 7.07 9.26 9.87 9.91 9.32

ODE 2.02 2.04 2.05 2.03 2.01 2.14 2.82 4.75 6.86 7.67 7.73 9.37
NFE 125 145 147 159 169 173 193 221 239 226 238 206

ImageNet32 VDM 8.50 8.60 8.60 8.50 8.31 7.94 7.65 8.61 9.84 9.99 10.01 9.89

ODE 7.38 7.43 7.44 7.39 7.26 6.98 6.58 6.72 7.15 7.15 7.11 9.85
NFE 120 140 144 150 166 169 180 204 207 189 189 158

Baselines. We compare our merged model with its constituent components—VDM and EDM—as
baselines, each evaluated over their full native noise ranges. We also include results from related
methods listed in Table 3; additional comparisons can be found in Table 6 in the Appendix.

Metrics and evaluation setup. We evaluate sample quality using Fréchet Inception Distance
(FID) (Heusel et al., 2017), comparing 50k generated samples with reference statistics for each
dataset using the evaluation code from Karras et al. (2022). For data likelihood, we use bits per di-
mension (BPD). As exact likelihood computation generally yields better results than the variational
lower bound (VLB), we report exact likelihoods in our main experiments. For VLB results, refer to
Table 5 in Appendix C.

Our experiments use the Variance-Preserving (VP) setting, where σ2
t = sigmoid(γt) and α2

t =
1 − σ2

t , operating directly on pixel space. We exclude distillation-based methods and latent-space
models. For likelihood evaluation, we re-implemented the PyTorch version of Truncated-Normal
dequantization and the ODE sampler from the i-DODE repository2 (Zheng et al., 2023b), which
follows the γ-based formulation defined in Eq. (11). See Appendix A.1.1 for our derivation.

The time step range for VDM is γVDM ∈ [−13.3, 5], while for EDM it is γEDM ∈ [−12.43, 8.764].
We define the merged model range as γMerged ∈ [−13.3, 8.764], and select threshold values η at
{3.94%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 82.94%} of this range. The smallest thresh-
old, η = 3.94%, corresponds to γ = −12.43 (ηmin), and the largest, η = 82.94%, corresponds to
γ = 5 (ηmax). Note that η = 0.0 and η = 1.0 correspond to pure EDM and VDM baselines, respec-
tively, without any expert switching. Further implementation details are provided in Appendix B.

5.2 RESULTS

5.2.1 EFFECT OF VARYING THE TIME THRESHOLD η

We evaluate the impact of different threshold values η in our merged model. Table 1 reports NLL
(in BPD) using Truncated-Normal dequantization without importance weighting (K = 1). Table 2
shows corresponding FID scores and the number of function evaluations (NFE) for unconditional
generation. For VDM Ancestral sampling, we use 256 steps. ImageNet32 results are provided in
Appendix C.

Figure 2 summarizes performance across different thresholds η. As shown, a clear trade-off exists
between likelihood and sample quality. On CIFAR-10, our method achieves the best balance at

2https://github.com/thu-ml/i-DODE
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Figure 2: Our merged model’s performance using dif-
ferent time step thresholds η on CIFAR-10. The EDM
and VDM baselines are the η ∈ {0.0, 1.0}.

Figure 3: Qualitative results of our
merged model performance using differ-
ent time step thresholds η.

η = 0.3, while η = 0.4 yields even better likelihood than the VDM baseline, with only a minor
FID drop (2.14 vs. 2.02). For full VLB values and a larger version of the plot, see Appendix C. On
ImageNet32, η = 0.5 matches the VDM baseline in likelihood while surpassing EDM in FID. All
baseline evaluations use their respective native γ ranges. Importantly, we are able to identify a
single threshold η that outperforms both base models across metrics, demonstrating that our
method effectively breaks the likelihood–quality trade-off.

Figure 3 shows qualitative results on CIFAR-10 using the ODE sampler. When using only the EDM
model (left column), we observe high-quality samples but poor likelihood. As we begin to switch
to the VDM model (e.g., ηmin or η = 0.3), the likelihood improves while the sample quality re-
mains nearly unchanged. This exactly showcases the intuition behind our proposed method. At
higher thresholds, likelihood continues to improve, but visual quality starts to degrade. Remarkably,
despite differences in architecture and training, both base models produce nearly identical outputs
from the same noise input, both individually and within our merged model, highlighting a strong
generalization effect (Kadkhodaie et al., 2023).

5.2.2 COMPARING TO OTHER METHODS

Table 3 reports our results using Truncated-Normal dequantization and the adaptive-step ODE sam-
pler, compared with existing methods from the literature. We focus on exact likelihood and ODE-
based sampling, as they offer more consistent and favorable evaluations in our setting.

Among related approaches, we outperform Soft Truncation, which also aims to balance both like-
lihood and perceptual quality. i-DODE achieves strong likelihood by combining velocity parame-
terization with an error-bounded high-order Flow Matching objective. CTM improves both metrics
using a mix of loss functions, including GAN-based losses, along with data augmentation. In con-
trast, our approach uses only standard denoising objectives, without any data augmentation for VDM
and using default settings for EDM.

NFDM, MuLAN, and DiffEnc rely on learnable forward processes. Despite using a fixed linear
schedule, our method achieves results competitive with DiffEnc and NFDM-OT. GMEM, PaGoDA,
and SiD prioritize sample quality, often using distillation or transformer-based architectures. By
contrast, we use a standard UNet architecture and focus on combining pretrained models.
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Table 3: The comparison table for comparing our results with different models. By default, the
evaluation of NLL is by Truncated Normal Dequantization, otherwise marked with other signs;
Uniform Deq.†, Variational Deq.‡, VLB∨, Data Augmentation⊎., ImageNet32(old version)∗.

Model CIFAR10 ImageNet32
NLL(↓) FID(↓) NFE NLL(↓) FID(↓) NFE

Main Baselines
VDM (Kingma et al., 2021) 2.65∨ 7.41 - 3.72∗∨ - -
EDM (w/ Heun Sampler) (Karras et al., 2022) - 1.97 35 - - -

Focused on both FID-NLL
Soft Truncation (Kim et al., 2021) 3.01† 3.96 - 3.90∗† 8.42∗ -
CTM (⊎ - randomflip) (Kim et al., 2023) 2.43† 1.87 2 - - -

Focused on FID
GMEM (Transformer-based) (Tang et al., 2024) - 1.22 50 - - -
PaGoDA (distillation-based) (Kim et al., 2024) - - - - 0.79 1
SiD (distillation-based) (Zhou et al., 2024) - 1.923 1 - - -

Focused on NLL
i-DODE (VP) (Zheng et al., 2023b) 2.57 10.74 126 3.43/3.70∗ 9.09 152
i-DODE (VP, ⊎) (Zheng et al., 2023b) 2.42 3.76 215 - - -
Flow Matching (Lipman et al., 2022) 2.99† 6.35 142 3.53† 5.02 122
DiffEnc (Nielsen et al., 2023) 2.62∨ 11.1 - 3.46∨ - -
NFDM (Gaussian q, ⊎ - horizontalflip) (Bartosh et al., 2024) 2.49† 21.88 12 3.36 24.74 12
NFDM-OT(⊎ - horizontalflip) (Bartosh et al., 2024) 2.62† 5.20 12 3.45 4.11 12
MuLAN (w/o importance sampling k=1) (Sahoo et al., 2023) 2.59 - - 3.71 - -

Ours
VDM (our evaluation, γ ∈[-13.3, 5]) (Kingma et al., 2021) 2.64/2.66∨ 9.37 206 3.72∗/3.72∗∨ 9.85∗ 158
EDM (our evaluation, γ ∈[-12.43, 8.764]) (Karras et al., 2022) 3.21 2.02 125 4.04∗ 7.38∗ 120
Ours NLL (η = 0.4, CIFAR10) 2.62 2.14 173 - - -
Ours (η = 0.3, CIFAR10) 2.63 2.01 169 - - -
Ours (η = 0.5, ImageNet32) - - - 3.72∗ 6.58∗ 180

We do not claim state-of-the-art across all benchmarks, but we demonstrate that merging two pre-
trained diffusion models, one specialized in image quality and the other in likelihood, consistently
improves both metrics over using either model individually.

6 LIMITATIONS AND FUTURE WORK

Our method depends on the specific models being merged. We focus exclusively on pixel-space
diffusion models with fixed linear noise schedules and standard denoising objectives, excluding
distillation-based and latent-space methods. We also note that FID scores could likely improve
further by integrating more advanced samplers such as Heun (Karras et al., 2022) or DPM-Solver-
v3 (Zheng et al., 2023a). Additionally, selecting the optimal switching threshold η currently requires
a search procedure. Exploring automated threshold selection, alternative architectures, and more
advanced samplers are promising directions for future work.

7 CONCLUSION

We proposed a simple yet effective method to address the trade-off between sample quality and data
likelihood in diffusion models. By merging two pretrained experts, one focused on image quality
and the other on likelihood, we show that it is possible to improve both metrics compared to using
each model individually.

On CIFAR-10, our merged model achieves better likelihood and sample quality than both baselines.
On ImageNet32, it matches the likelihood of the likelihood expert while surpassing the image-
quality expert in FID, effectively breaking the trade-off between the two objectives.

Our approach requires no retraining, works with existing pretrained models, and can be easily ex-
tended. While selecting the switching threshold currently requires a search, future work may explore
automated selection, improved samplers, and alternative architectures.
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A APPENDIX

A.1 PROOFS AND DERIVATIONS

A.1.1 PROBABILITY-FLOW ODE

Here, we put the derivation of the PF-ODE in terms of γt = − log(SNRt):
dzt
dγt

= −1

2
· Sigmoid(γt) · zt +

1

2
· σt · ϵθ(zt, γt) (11)

Let us simplify g2(t) in terms of λt := log (αt/σt) = − 1
2γt from Eq. (5):

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t

g2(t) =
dσ2

t

dt
− 2

d logαt

dt
σ2
t = 2σ2

t

(
d log σt

dt
− d logαt

dt

)
= −2σ2

t

dλt

dt
(12)

Please note that the above λt is half-log(SNR) (Lu et al., 2022), and is half of λVDM++ (Kingma &
Gao, 2024). Moreover, our model input is based on γt, and since there is a bijection between t and
γt, we can use ϵθ(zt, γt) instead of ϵθ(zt, t). Here are the steps to go from PF-ODE Eq. (7) in terms
of time step variable t to time step variable γ:

dzt
dt

= hθ (zt, γt) := f(t)zt +
g2(t)

2σt
ϵθ (zt, γt) , zT ∼ N

(
0, σ̃2I

)
Substituting equations f(t) and g2(t) the above equation yields:

dzt
dt

= f(t)zt +
g2(t)

2σt
ϵθ(zt, γt)

=
d logαt

dt
zt − σt

dλt

dt
ϵθ(zt, γt)

Using the Chain Rule dz
dγ = dz

dt · dt
dγ and VP-formula αt = Sigmoid(−γt)

1/2, we can re-write the
equation above as:

dz

dγ
=

[
f(t)zt +

g2(t)

2σt
ϵθ(zt, γt)

]
· dt
dγ

=

[
d logαt

dt
zt − σt

dλt

dt
ϵθ(zt, γt)

]
· dt
dγ

=
d logαt

dγ
zt − σt

dλt

dγ
ϵθ(zt, γt)

=
d logαt

dγ
zt +

1

2
σt · ϵθ(zt, γt)

=
d

dγ
· log(Sigmoid(−γt))

1/2 · zt +
1

2
σt · ϵθ(zt, γt)

=
1

2

d

dγ
· log(Sigmoid(−γt)) · zt +

1

2
σt · ϵθ(zt, γt)

=
1

2
· 1

Sigmoid(−γt)

d

dγ
· Sigmoid(−γt) · zt +

1

2
σt · ϵθ(zt, γt)

=
1

2
· −1

Sigmoid(−γt)
· Sigmoid(−γt) · (1− Sigmoid(−γt)) · zt +

1

2
σt · ϵθ(zt, γt)

= −1

2
· (1− Sigmoid(−γt)) · zt +

1

2
σt · ϵθ(zt, γt)

= −1

2
· Sigmoid(γt) · zt +

1

2
σt · ϵθ(zt, γt) = hθ (zt, γt)

The integration bounds in Eq. (8) would be [γ0, γ1] with the above drift function.

log pθ (z0) = log pθ (z1)−
∫ γ1

γ0

tr (∇zthθ (zt, γt)) dγ (13)
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A.1.2 DEQUANTIZATION

Real-world image datasets typically consist of discrete data X with 8-bit integer values from 0
to 255. These are commonly normalized to the continuous range [−1, 1], denoted by x (Zheng
et al., 2023b; Sahoo et al., 2023). Dequantization methods assume that we train a continuous model
distribution pθ over x, and define the discrete model distribution as:

Pθ (x) =

∫
u∈[− 1

256 ,
1

256 ]
d
pϵ(x+ u)du (14)

where pϵ is Diffusion ODE defined at ϵ. To train Pθ(x) by maximum likelihood estimation, varia-
tional dequantization (Ho et al., 2020; Zheng et al., 2023b) introduces a dequantization distribution
q(u|x) and jointly trains pϵ and q(u|x) by maximizing the variational lower bound:

logPθ (x) ≥ Eq(u|x) [log pϵ (x+ u)− log q (u | x)] (15)
The term log pϵ(x+u) can be evaluated using the instantaneous change-of-variables formula (Chen
et al., 2018), as shown in Eq. (13).

Zheng et al. (2023b) propose Truncated-Normal Dequantization for better likelihood estimation
by testing pϵ on x̂ϵ = αϵx + σϵϵ̂, where ϵ̂ follows the Truncated-normal distribution (a normal
distribution with mean 0, covariance I, and bounds [− 1

256 ,
1

256 ] along each dimension):

ϵ̂ ∼ T N
(
0, I,− 1

256
,

1

256

)
(16)

In this setting, Eq. (15) simplifies to the expression below (see Zheng et al. (2023b), Appendix),
where u := σϵ

αϵ
ϵ̂ ∈

[
− 1

256 ,
1

256

]
, and Z := erf(τ/

√
2):

logPθ(x) ≥ Eϵ̂∼T N (0,I,−τ,τ) [log pϵ (x̂ϵ)]

+
d

2

(
1 + log

(
2πσ2

ϵ

))
+ d logZ − d

τ√
2πZ

exp

(
−1

2
τ2
)

(17)

Using γϵ = 13.3 leads to τ ≈ 3, so the truncated normal distribution T N (0, I,−τ, τ) becomes
nearly identical to the standard normal N (0, I) due to the 3-σ principle, resulting in a negligible
train-test gap. Similarly, the term log pϵ(x̂ϵ) is equivalent to log pϵ(z0), and can be evaluated using
Eq. (13).

A.1.3 LIKELIHOOD COMPUTATION

Computing the trace of the Jacobian of the drift function, tr(∇zt
hθ(zt, γt)), as required in Eq. (13),

is computationally expensive. In practice, it is commonly estimated using the Skilling–Hutchinson
trace estimator (Skilling, 1989; Hutchinson, 1989). Following prior works (Zheng et al., 2023b;
Chen et al., 2018; Sahoo et al., 2023), we approximate this quantity as:

tr (∇zt
hθ (zt, t)) = Ep(ϵ)

[
ϵ⊤∇zt

hθ (zt, t) ϵ
]

where the random variable ϵ satisfying Ep(ϵ)[ϵ] = 0 and Covp(ϵ)[ϵ] = I. Common choices for p(ϵ)
include the Rademacher or Gaussian distribution. Importantly, the term tr(∇zt

hθ(zt, t))ϵ can be
efficiently computed using Jacobian-vector products supported by deep learning frameworks.

In our implementation, we use the Rademacher distribution for p(ϵ) and adopt the same solver
settings as prior work (Sahoo et al., 2023; Song et al., 2020b; Zheng et al., 2023b). Specifically, we
use RK45 ODE solver (Dormand & Prince, 1980) with atol=1e-5 and rtol=1e-5 to compute
the integral in Eq. (13) using scipy.integrate.solve ivp.

B IMPLEMENTATION DETAILS

B.1 TRAINING BASE MODELS

CIFAR-10. We used the publicly available EDM checkpoint for CIFAR-10 (Krizhevsky & Hinton,
2009)4. For VDM, we trained the PyTorch re-implementation5 based on the architecture described

4https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-unc
ond-vp.pkl

5https://github.com/addtt/variational-diffusion-models
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in Kingma et al. (2021). The model was trained for 10 million steps on 8×A100 GPUs (40GB),
with no data augmentation, a fixed linear γ schedule, and a batch size of 128. Our trained VDM
model achieved 2.64 BPD on the test set (exact likelihood) and 2.66 BPD under VLB evaluation.
For comparison, the original paper reported 2.65 BPD (VLB).

ImageNet32. As multiple versions of ImageNet32 (Deng et al., 2009) exist in the literature, we
followed the i-DODE setup (Zheng et al., 2023b), converting their TensorFlow records to PNG
format with separate train and val folders. The VDM model was trained similarly to CIFAR-10,
but with 256 channels and a total batch size of 512, on 8×A100 GPUs (80GB), following Kingma
et al. (2021). Training was performed for 2 million steps.

Since no pretrained EDM model exists for ImageNet32, we trained one ourselves using the of-
ficial EDM repository, with parameters --cond 0 --arch ddpmpp --duration 1000.
The model was trained for 1000M images on 4×A100 GPUs (40GB) with a total batch size of
1024. No hyperparameter tuning was performed, so the resulting model is considered sub-optimal.

B.2 EVALUATION SETTINGS

For all evaluations, we used the Exponential Moving Average (EMA) version of each model. FID
scores were computed using the procedure from Karras et al. (2022), with reference statistics calcu-
lated from the training sets of CIFAR-10 and ImageNet32 and stored in .npz format.

B.3 MODEL INTEGRATION AND COMPATIBILITY

Noise formulation in VDM and EDM. VDM (Kingma et al., 2021) is a noise-prediction model
where the latent variable is defined as zt = αt · x+ σt · ϵ, while EDM (Karras et al., 2022) uses an
image-denoising formulation zt = x+ σedm · ϵ, with ϵ ∼ N (0, I) in both cases.

Rescaling between models. To enable compatibility between the two models in our Merged
Model, we must rescale zt to match the input format expected by each model. Specifically, to
map from VDM to EDM format:

zt = αt · x+ σt · ϵ (Divide by αt)

⇒ zt
αt

= x+
σt

αt
· ϵ (Input format to EDM, σedm =

σt

αt
)

(18)

Sampling implementation. Given this mapping, the following PyTorch code implements the con-
ditional sampling logic p(zs | zt,x) for VDM ancestral sampling, incorporating model switching at
threshold η (the number in the comment indicates the equation number in (Kingma et al., 2021)):

1 def sample_p_s_t(model, z, t, s, threshold_eta):
2 gamma_t = model.gamma(t)
3 gamma_s = model.gamma(s)
4 c = -expm1(gamma_s - gamma_t) # eq 34
5 alpha_t = torch.sqrt(torch.sigmoid(-gamma_t)) # eq 4
6 alpha_s = torch.sqrt(torch.sigmoid(-gamma_s))
7 sigma_t = torch.sqrt(torch.sigmoid(gamma_t)) # eq 3
8 sigma_s = torch.sqrt(torch.sigmoid(gamma_s))
9

10 # use VDM model
11 if t <= threshold_eta:
12 pred_noise = model.model1(z, gamma_t)
13 # use EDM model
14 else:
15 class_labels = None # unconditional
16 pred_img = model.model2(z/alpha_t, sigma_t/alpha_t, class_labels)
17 pred_noise = (z - alpha_t * pred_img) / sigma_t
18

19 mean = alpha_s / alpha_t * (z - c * sigma_t * pred_noise) # eq 32
20

21 scale = sigma_s * torch.sqrt(c) # eq 33
22 return mean + scale * torch.randn_like(z) # eq 34
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EDM noise range in γ space. When using ODE solvers based on γt = − log SNRt =

− log
(

α2
t

σ2
t

)
, we must identify the γ ranges corresponding to EDM time steps. According to Karras

et al. (2022), EDM operates over the time interval t ∈ [0.002, 80.0], which corresponds to the γ
range shown in Table 4:

αedm σedm γ
tmin 1 0.002 -12.43
tmax 1 80 8.764

Table 4: Defined γt values for EDM model

Possible switching thresholds. In our experiments, we used the combined range γMerged ∈
[−13.3, 8.764]. The normalized formulation of the threshold is:

γ = 22.064 · η − 13.3 or η =
γ + 13.3

22.064
.

Substituting the limits γ = −12.43 and γ = 5 yields ηmin = 0.0394307 and ηmax = 0.829405.

C ADDITIONAL RESULTS AND VISUALIZATIONS

C.1 EXTRA EVALUATIONS OF OUR METHOD

VLB evaluation. Table 5 reports likelihood evaluations of our Merged Model using the Variational
Lower Bound (VLB). We ran each experiment 10 times with a batch size of 512 and report the mean
and standard deviation.

Table 5: VLB evaluation in terms of bpd on CIFAR-10 and ImageNet32 datasets

Threshold CIFAR10 ImageNet32
Mean(↓) Std Mean(↓) Std

0.0 3.21 0.06 4.01 0.004
tmin 3.12 0.005 3.98 0.004
0.1 2.86 0.009 3.82 0.004
0.2 2.71 0.008 3.78 0.004
0.3 2.65 0.007 3.75 0.005
0.4 2.64 0.008 3.73 0.005
0.5 2.65 0.009 3.73 0.004
0.6 2.65 0.007 3.73 0.005
0.7 2.65 0.008 3.73 0.007
0.8 2.65 0.009 3.73 0.005
tmax 2.65 0.008 3.73 0.002
1.0 2.65 0.005 3.73 0.004

Comparison across all metrics. Fig. 4 – Fig. 5 show our model’s performance across all metrics
on CIFAR-10 and ImageNet32 using both samplers (ODE and ancestral) along with VLB and ODE-
based likelihood (with Truncated-Normal dequantization). Metrics are shown on a log10 scale. The
EDM and VDM baselines correspond to η = 0.0 and η = 1.0, respectively, and do not involve
expert switching.
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Figure 4: Performance on CIFAR-10 across all metrics. The EDM and VDM baselines are the
η = 0.0 and η = 1.0, respectively, and they do not mean a switching threshold.

Figure 5: Performance on ImageNet32 across all metrics. The EDM and VDM baselines are the
η = 0.0 and η = 1.0, respectively, and they do not mean a switching threshold
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C.2 DATASETS AND VISUALIZATIONS

This section presents qualitative visualizations of generated samples from our Merged Model on the
ImageNet32 dataset. Using a fixed random seed, we generate samples across different switching
thresholds η, as shown in Fig. 6.

In the leftmost column of the figure (corresponding to EDM with η = 0.0), the samples exhibit
strong perceptual quality but poor likelihood. As η increases from its minimum possible value
ηmin, likelihood improves while image quality remains largely unchanged. At η = 0.5, the model
achieves the same likelihood as the VDM expert while surpassing the EDM baseline in FID. This
is visually reflected in several rows; for instance, in the fourth row (flower category), the object
becomes progressively less sharp as η increases, eventually appearing blurred when only the VDM
expert is used.

Figure 6: Visualization of generated images using different thresholds η on ImageNet32 dataset

We also present randomly generated samples (without fixed seeds) from our proposed method and
baseline models, shown in Fig. 7 through Fig. 10. These visualizations include generations on
CIFAR-10 using both the ODE and VDM ancestral samplers across a range of η values.
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Figure 7: Random samples on CIFAR-10 using ODE sampler (with different η).

Figure 8: Random samples on CIFAR-10 using VDM ancestral sampler (with different η).
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Figure 9: Random samples on ImageNet32 using ODE sampler (with different η).

Figure 10: Random samples on ImageNet32 using VDM ancestral sampler (with different η).
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C.3 FULL COMPARISON TABLE

Table 6 provides an extended version of Table 3, including additional methods from the literature.

Table 6: The full comparison table for comparing our results with different models. By default,
the evaluation of NLL is by Truncated Normal Dequantization, otherwise marked with other signs;
Uniform Deq.†, Variational Deq.‡, VLB∨, Data Augmentation⊎., ImageNet32(old version)∗.

Model CIFAR10 ImageNet32
NLL(↓) FID(↓) NFE NLL(↓) FID(↓) NFE

Main Baselines
VDM (Kingma et al., 2021) 2.65∨ 7.41 - 3.72∗∨ - -
EDM (w/ Heun Sampler) (Karras et al., 2022) - 1.97 35 - - -

Focused on both FID-NLL
Soft Truncation (Kim et al., 2021) 3.01† 3.96 - 3.90∗† 8.42∗ -
CTM (⊎ - randomflip) (Kim et al., 2023) 2.43† 1.87 2 - - -
ScoreSDE (⊎ - randomflip) (Song et al., 2020b) 2.99† 2.92 - - - -
LSGM (FID) (Vahdat et al., 2021) 3.43 2.10 - - - -
DDPM++ cont. (deep, sub-VP) (Song et al., 2020b) 2.99† 2.92 - - - -
Reflected Diffusion Models (Lou & Ermon, 2023) 2.68 2.72 - 3.74 - -

Focused on FID
GMEM (Transformer-based) (Tang et al., 2024) - 1.22 50 - - -
PaGoDA (distillation-based) (Kim et al., 2024) - - - - 0.79 1
SiD (distillation-based) (Zhou et al., 2024) - 1.923 1 - - -
ScoreFlow (VP, FID) (Song et al., 2021) 3.04‡ 3.98 - 3.84∗‡ 8.34∗ -
PNDM (Liu et al., 2022) - 3.26 - - - -

Focused on NLL
i-DODE (VP) (Zheng et al., 2023b) 2.57 10.74 126 3.43/3.70∗ 9.09 152
i-DODE (VP, ⊎) (Zheng et al., 2023b) 2.42 3.76 215 - - -
Flow Matching (Lipman et al., 2022) 2.99† 6.35 142 3.53† 5.02 122
DiffEnc (Nielsen et al., 2023) 2.62∨ 11.1 - 3.46∨ - -
NDM (⊎ - horizontalflip) (Bartosh et al., 2023) 2.70† - - 3.55 - -
NFDM (Gaussian q, ⊎ - horizontalflip) (Bartosh et al., 2024) 2.49† 21.88 12 3.36 24.74 12
NFDM (non-Gaussian q, ⊎ - horizontalflip) (Bartosh et al., 2024) 2.48† - - 3.34 - -
NFDM-OT(⊎ - horizontalflip) (Bartosh et al., 2024) 2.62† 5.20 12 3.45 4.11 12
ScoreFlow (deep, sub-VP, NLL) (Song et al., 2021) 2.81‡ 5.40 - 3.76∗‡ 10.18∗ -
Stochastic Interp. (Albergo & Vanden-Eijnden, 2022) 2.99† 10.27 - 3.48† 8.49 -
MuLAN (w/o importance sampling k=1) (Sahoo et al., 2023) 2.59 - - 3.71 - -
MuLAN (w/ importance sampling k=20) (Sahoo et al., 2023) 2.55 - - 3.67 - -
Improved DDPM (Lvlb) (Nichol & Dhariwal, 2021) 2.94∨ 11.47 - - - -
FFJORD (Grathwohl et al., 2018) 3.4 - - - - -
Improved DDPM (Lvlb) (Nichol & Dhariwal, 2021) 2.94∨ 11.47 - - - -
ARDM-Upscale 4(autoregressive) (Hoogeboom et al., 2021) 2.64 - - - - -
Efficient-VDVAE (Hazami et al., 2022) 2.87∨ - - 3.58 - -
DenseFlow-74-10 (Grcić et al., 2021) 2.98‡ 34.90 - 3.63 - -

Ours
VDM (our evaluation, γ ∈[-13.3, 5]) (Kingma et al., 2021) 2.64/2.66∨ 9.37 206 3.72∗/3.72∗∨ 9.85∗ 158
EDM (our evaluation, γ ∈[-12.43, 8.764]) (Karras et al., 2022) 3.21 2.02 125 4.04∗ 7.38∗ 120
Ours NLL (η = 0.4, CIFAR10) 2.62 2.14 173 - - -
Ours (η = 0.3, CIFAR10) 2.63 2.01 169 - - -
Ours (η = 0.5, ImageNet32) - - - 3.72∗ 6.58∗ 180
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