Under review as a conference paper at ICLR 2026

HIERARCHICAL PERIODIC STATIONARIZATION FOR
NON-STATIONARY TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

1

ABSTRACT

Time series forecasting (TSF) has advanced rapidly through benchmark-driven
competition. However, we find that state-of-the-art models struggle to predict even
a simple long-period sine wave, despite ample training data. One reason is that
existing benchmarks underrepresent the non-stationary characteristics prevalent
in real-world time series, leading to misleading evaluations. Moreover, standard
stationarization methods inherently introduce substantial information loss during
the stationarization process. To investigate this, we introduce controlled datasets
that expose information loss incurred by standard z-normalization-based station-
arization methods, widely used in TSF models. To address this limitation, we
propose Hipeen, a hierarchical periodic stationarization method that achieves sta-
tionarization through representing the value into multiple periodic components,
minimizing information loss. Hipeen, with a linear backbone, successfully fore-
casts highly non-stationary signals— controlled datasets and large-scale stock
datasets—substantially outperforming current SOTA models (8 stationarization
methods and 8 baselines), while maintaining strong performance on conventional
benchmarks. Our results highlight the importance of preserving critical information
during stationarization and provide a new approach for robust TSF in non-stationary
environments. All code and models will be released in the final version.

INTRODUCTION

Time series forecasting (TSF) has advanced rapidly through benchmark-driven competition on
datasets designed to represent real-world signals (Wu et al.| [2023). Yet, our analysis reveals that even
the latest state-of-the-art (SOTA) models perform unexpectedly poorly on a seemingly simple case:
forecasting a long-period sine wave with Gaussian noise (Figure[TJA), despite the ample training data
covering multiple full cycles. This raises two natural questions: Why do benchmark-leading models
fail on such simple signals, and do current benchmarks adequately reflect real-world time series?

To address these questions, we examine the stationarity in time series. Changes in a data’s distribution
over time—known as distribution shift or non-stationarity—cause train and test distributions to
diverge, reducing model performance (Li et al.; 2023)). [Fan et al.| (2023) further demonstrated that non-
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Figure 1: (A) Latest SOTA models, including Timemixer (Wang et al., [2024b)), CycleNet (Lin et al.,
2024), and Peri-midformer (Wu et al.| [2024)), fail on the long-range sine wave forecasting. (B) The
out-range rate is shown as an intuitive proxy for the degree of non-stationarity. (C) Four types of
datasets are positioned according to their Train/Test and Look-back/Horizon out-range rates.
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Figure 2: (A) Visualization of the Exponential task. At each look-back position (blue, green), the right
figures show how the TimeMixer and Hipeen(Ours) forecast the following signal. (B) Visualization
of the Threshold task. same as (A). (C) Visualization of the Sine wave task. (D) Hipeen stationarizes
not only across train-test splits but also within each sample between look-back and horizon.

stationarity within a sample—between look-back and horizon windows—also impairs performance.
In line with this research, we introduce the “out-range rate” as an intuitive proxy to quantify the
degree of non-stationarity in a dataset (Figure [IB). This metric measures the percentage of values in
a sequence B that fall outside the [min(A), max(A)] range of another sequence A.

Figure[1|C reveals a stark contrast between TSF benchmarks (red) and the long-periodic sine wave
(blue; Sinel). In this figure, the x and y-axis represent the train/test and look-back/horizon out-range
rate, respectively, mapping the space where all time series data can be positioned. While the Sinel and
real-world stock datasets (S&P500 and Nifty50) span broader regions, the benchmarks are clustered
narrowly around the origin. This suggests that current benchmarks underrepresent non-stationary
real-world time series, making it plausible that models optimized for these benchmarks would fail to
predict even a simple long-periodic sine wave that exhibits high look-back/horizon non-stationarity.

This leads to further questions. Are current SOTA models incapable of handling non-stationarity?
And why does their performance falter on non-stationary data? The first question can be answered
in the negative. As will be detailed in related works, stationarization methods such as RevIN (Kim!
et al.} |2021), Dish-TS (Fan et al., [2023)), and SAN (Liu et al.| 2024b) employ z-normalization to
align distributions effectively, yielding low out-range rates after processing. Indeed, most SOTA
models incorporate RevIN as a default component|Wang et al.|(2024b), ensuring that even highly
non-stationary signals are supplied in a stationarized form. Therefore, in response to the second
question, we argue that the critical issue lies not in how well stationarization aligns distributions,
but in the extent of information loss it introduces.

To substantiate our claim, we introduce a controlled dataset where forecasting requires informa-
tion—gradients or absolute values—that z-normalization discards. First, the Exponential (Exp.)
dataset contains exponential functions that flip when reaching a specific gradient (Figure[2]A). Sec-
ond, the Threshold (Thr.) dataset involves a strictly increasing function whose slope lies within a
prescribed range and resets to zero upon reaching a predetermined threshold (Figure 2B). Finally,
the Sine wave (Sine) requires both absolute value and gradient information to ascertain its current
position within the long-range pattern (Figure[2C). As can be seen in Figure[TIC, these datasets exhibit
substantially higher look-back/horizon out-range rates compared to the benchmark. Our experi-
ments show that the latest SOTA models (as well as older models that do not use z-normalization)
all fail to predict these controlled datasets, thereby confirming that the information essential for
forecasting—specifically gradients and absolute values—is indeed lost in practice.

Many real-world systems, such as battery charging or HVAC systems, rely on gradient or threshold
dynamics, making their loss during stationarization problematic. Furthermore, as demonstrated with
the sine wave, current models perform poorly in identifying long-range periodic patterns. To address
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these shortcomings, we propose a novel Hierarchical Periodic Ensemble (Hipeen) stationarization
method, which does not rely on z-normalization and thus mitigates the loss of essential information.
Analogous to representing a single real number as multiple digits in a decimal expansion, Hipeen
performs stationarization by projecting a signal’s value into multiple hierarchical periodic components,
transforming non-stationary value variations into stationary, fixed-range periodic motions, achieving
high stationarity (Figure 2D). Remarkably, Hipeen, when paired with a simple linear backbone, is the
sole method to succeed in forecasting our controlled dataset.

We further extend our experiments to a broad real-world stock datasets characterized by simultane-
ously high look-back/horizon and train/test out-range rates. We show that Hipeen, with only a linear
backbone, outperforms current SOTA models on these datasets, clearly demonstrating both the limita-
tions of existing stationarization approaches and the effectiveness of Hipeen on real-world datasets.
Finally, despite being designed to address pronounced non-stationarity, Hipeen also demonstrates
more favorable performance compared to other stationarization methods on the stationary benchmark
dataset. To sum up, Hipeen is the first method capable of processing highly non-stationary signals
without significant information loss, paving the way for future advancements in stationarization. It
achieves state-of-the-art performance on non-stationary signals (both controlled and stock datasets)
while also demonstrating robust capabilities on the stationary benchmarks.

In summary, our main contributions are as follows:

* Revealing the benchmark gap: We show that widely used TSF benchmarks underrepresent
non-stationary characteristics found in simple signals (e.g., long-period sine wave) and
real-world data (e.g., stocks), explaining why existing SOTA models fail on such tasks.

* Controlled datasets for analysis: We introduce new controlled datasets (Exponential, Thresh-
old, and Sine wave) that isolate gradient and absolute-value information. These datasets
expose information loss in current stationarization approaches.

* Hipeen method: It minimizes information loss while achieving high stationarity. Hipeen,
even with a linear backbone, outperforms SOTA models on both highly non-stationary
datasets (controlled and stock) and is comparable on the standard stationary benchmarks.

2 RELATED WORKS

Addressing non-stationarity in TSF models. Real-world time series are often non-stationary, with
distribution shifts over time due to changing environments, hindering their predictability (Wu et al.,
2023} |Kim et al.} 2025a;2021). While early methods rely on domain adaptation (e.g., DDG-DA (Li
et al.l 2022))) or distribution matching (e.g., AdaRNN (Du et al.l [2021)), the most widely used
approach today is to apply normalization and de-normalization around the forecaster. The pivotal
method, RevIN (Kim et al., [2021]), applies instance-wise normalization by removing the time-domain
mean and variance, then restoring them after forecasting. This line of research evolved to handle
distribution shifts more dynamically: Dish-TS (Fan et al.| 2023) predicts future statistics, while
SAN (Liu et al.;[2024b) introduced slice-level normalization to capture local distributional changes.

Recognizing the limitations of purely time-domain statistics, the latest approaches leverage the
frequency domain. FAN (Ye et al.l 2024) employs the Fourier transform to identify and normalize
instance-wise dominant frequency components, explicitly modeling evolving trends and seasonalities.
Similarly, DDN (Dai et al., |2024)) utilizes wavelet transforms to dynamically capture and normalize
multi-scale non-stationary factors in both the time and frequency domains.

Although these frameworks are widely adopted across SOTA TSF and foundation models (Wang
et al., [2024azb; [Das et al.l 2024} |(Goswami et al., 2024)), they all share a fundamental limitation:
normalization discards critical information. Specifically, the original signal’s absolute magnitude,
gradient, and higher-order statistics are lost in the process of achieving stationarity. Other attempts to
bypass this, such as NST (Liu et al.,|2022b)) incorporating non-stationary dynamics into its architecture
or DLinear (Zeng et al., 2023)) using the raw signal. However, these methods either still depend on
the lossy statistics or lack robust mechanisms for raw signal. Our approach, Hipeen, is fundamentally
different in that it achieves stationarity representationally—not through normalization—by projecting
values into a hierarchical periodic space. This process preserves the critical absolute value and
gradient information that normalization-based methods inherently discard. For a detailed discussion
on recent TSF models, please refer to Appendix [A]
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3 METHODS

Problem Statement. We follow the standard multivariate TSF formulation (Wu et al., 2023}, [Liu
et al., 2024a). At time t, the length L look-back window X; = {x;_ 141, -+, @} € REXN is given
to predict consecutive length K horizon Y; = {xsy1, - , @i} € REXN where N denotes the
number of channels. Section[3.1]describes how Hipeen transforms X, and Y; into projections, and
conducts training in this projection space. Section [3.2] explains how projections are converted back to
signal values via a loss-minimizing estimator during inference.

Motivation behind Hipeen (Conceptual). First, “pe- M [ [
riodicity” in Hipeen is not about the signal’s repeating m —
patterns over time (temporal periodicity), but about embed- ——— >

ding value into periodic digit-based representation. There- P ( . L

fore, this is a concept entirely different from approaches N e
that leverage the temporal periodicity of time series (e.g. NG q P
DDN (Dai et al., [2024)), CycleNet (Lin et al., 2024)).

Hipeen is a function that converts a scalar into a vector /\/\/\/\/\/\NVVVW
by decomposing its decimal digits; for example, 1.6712 AAE
becomes [1,6,7,1,2]. This allows stationarization without
the information loss associated with normalization.

v -
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-
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Figure 3: Conceptual visualization of
Hipeen: representing each value as dig-
Stationarity is achieved as follows: For low-order digits, 1its projects a simple increasing function
even small changes in the original value cause rapid fluc- into diverse periodic patterns.

tuations, with digits 0-9 appearing at a uniform frequency,

thus achieving high stationarity. For the high-order digits, they naturally remain stationary for a long
period. For the middle digits, we add random angular bias to achieve stationarity.

Consider a signal with a long-range pattern beyond the look-back window. With a small window,
you’d only observe a non-periodic segment of the signal (Figure [3). Hipeen addresses this by
decomposing a simple monotonic value change into multiple hierarchical periodic signals. The lower-
order digits undergo multiple periodic cycles (as the digit wraps around O to 9 multiple times) with
small changes in original value, thereby encoding fine-grained gradient variations through frequency
changes. Also, high-order digits capture global trends and absolute values of the signal. These
hierarchical projections serve as multiple views of a single value, effectively forming an ensemble.

Technical note: In reality, Hipeen follows a binary representation with hierarchical radii based on
powers of 2. And the transformation is not a simple quantified split, but rather something analogous
to: 1.6712... — [0.167,0.671,0.712,0.12, ...]

3.1 HIPEEN PROJECTION

Hipeen replaces traditional normalization-based stationarization (Kim et al., 2021} |Fan et al., 2023}
Liu et al}2024b)—which typically loses the original signal’s mean and variance information—by
projecting the input values into multiple periodic components organized in a hierarchical structure.

Figure @A) illustrates the schematic process of the Hipeen projection, where a raw value is mapped
asV € R — 0 € [0,2r) — P € [-1,1)?". Here, V denotes a real-valued scalar, § =

(61,...,0q) denotes its H-dimensional angular representation (H=number of hierarchy levels).
Each angle 6}, is then expressed as its sine—cosine pair, thereby producing the projection vector
P = (sinfy,cos0y,...,sinfy,cos0g) € [-1,1]24,

Specifically, the Hipeen projection is defined by three components: the scale parameter M € R,
the number of hierarchy levels H, and a bias matrix B € [0, 2m)"*# sampled from the uniform
distribution ¢/(0, 27r). These components are fixed before training. For each hierarchy level h €
{1,..., H}, we set the radius as 7, = M - 2", This exponential growth of radii allows the projection
to capture both fine-scale and large-scale variations of the signal simultaneously, providing a multi-
resolution view of the input. Let V' be the value from the n-th channel at a particular time step. Its
angular representation at hierarchy level & is obtained as follows:

0, = (V + Bn,h> mod 27, 6= (61,...,0n) € [0,2m)", 1
Th
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where B,, , denotes the (n, h)-th entry of the bias matrix B.

This angular representation 6}, effectively transforms unbounded real values into periodic coordinates.
Each 6}, is converted into a sine—cosine pair, forming the Hipeen projection vector P.

Piopon+1) = [sin(0y), cos(6y)], P € [—1,1*7. )

As a result, the Hipeen projection is a 2H-dimensional bounded vector P for each scalar input V.
This transformation resolves the discontinuity at 0 and 27 of the angular representation. It preserves
both the continuity and differentiability properties of the original time series.

Moreover, since the projection involves no learnable parameters, it is computationally efficient and
can be seamlessly integrated into any TSF model architecture, making it inherently model-agnostic.

Training phase. Since the reverse mapping of the Hipeen projection does not admit a closed-
form solution, training is performed in the projection space (Figure @B)). To this end, both the
look-back X € RL*N and the horizon Y € RE*N are projected using Hipeen, resulting in
Xpip € [—1, 1]FXN>2H and Yy, € [—1, 1]5 %N *2H | For notational simplicity, we omit the time
index ¢ in both X and Y. The projection dimensions can be interpreted as channels with strong
interdependencies, and the backbone TSF model f(-) learns to map Xy, to Yyip.

To train the model in the projection space, we define the loss between the prediction f’},ip = f(X hip)
and the target Y1, To capture hierarchical periodicity, we optimize each of the H (sin, cos) pairs
independently with cosine distance, rather than all 2H dimensions jointly:

K N H
1 Srk,n kn
L= KNH Z Z Z 2 deos (YLip[Zh:Qthl]’Y;ﬁp[2hz2h+1]) ) 3
k=1n=1h=1
where dgos(a,b) =1 — m denotes the cosine distance, and Yh]fp[’; hi2h41] denotes the sine—cosine

pair of the n-th channel at horizon step k and level &, with f’;’fpf; hi2h+1] its prediction. This ensures
that each sub-period is aligned in phase, effectively capturing hierarchical periodicity.

Since cos(#) approximates 1—0.5-62 when 6 is small, minimizing the loss is equivalent to minimizing
the squared angular difference. A loss before averaging: @ € RE*N>*H is maintained in memory

for the estimation phase. This tensor is progressively updated throughout training via exponential
moving averaging (EMA). We fixed the smoothing factor of the EMA to 0.005 for all experiments.

Inference phase. The model prediction f’}lip in the Hipeen projection space is transformed back to
the original space Y € RX*" using the Hipeen estimator, described in the following section.
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Figure 5: The Hipeen estimator sequentially ensembles projections of various periods along the I
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calculates V}, with p. Then updates V4 to have minimal variance utilizing the V}, and stored loss.

3.2 HIPEEN ESTIMATOR

The initial reverse mapping from P to the @ can be efficiently computed using the two-argument
arctangent function, atan2, which preserves quadrant information.

P—60: 0, =atan2(Pay, Papy1), 6 €[0,2n)7. 4)

However, analytically retrieving the most probable value from a vector of angles (8 — V') requires
solving a degree-H polynomial equation, which is intractable. To address this, we leverage the
hierarchical structure of Hipeen and perform a chain of estimations to progressively reconstruct the
final value V., as illustrated in FigureEl This hierarchical estimation procedure, the Hipeen estimator,
performs inverse mapping from 6 to V' during inference with O(H ) computational complexity.

6 — V estimation starts from the assumption that the absolute value of V¢ is less than 7 - 7. Since
the data is normalized with training data statistics (Wu et al.,[2023)), and ry increases exponentially
with H, the assumption holds with a reasonable choice of H. An initial estimate V. is computed
from 6, mapping 0 — By, i to [—m, 7]. And initial variance ves, comes from the Q .

Init : ra - ((0g — Bpw +m)mod 2m — 1) = Ve, Qu - (11)? = Vest- )

The angular squared loss (g is scaled by the squared radius to reflect variance in the length.
Subsequently, V. is iteratively refined descending through the H dimension. The challenge with
smaller radii r lies in the ambiguity of how many full rotations (27p) are missing in the angle 6.
Therefore, we first determine the number of cycles p that makes V}, closest to Vi (step 3 in Figure E])

Calculate p : pp, = round((1/2m) X (Vest/rn — (On — Bir)))- (6)

Then, based on p, the new V}, is calculated. To minimize the variance of V., we apply inverse-
variance weighting to compute a weighted average of the observations. The corresponding variance
estimate, ey, is updated accordingly (step 4,5 in Figure3).

Update Ve, Vest : ru((27pn + 0n — Bup) — Vi,  Qn - (rn)? — v, @)

(%st * 'U}? + Vi * 'Uest)/(vest + Uh) — Vest ('Uest * Uh)/(vest + Uh) —7 Uest- ®)

The final estimate V. is obtained by iteratively applying Equations (7)—(9), offering a simple yet
accurate method for estimating V. Computation takes less than 1ms/step in real-world practice,
making it negligible. Refer to Appendix [C:I]for further details on the Hipeen projection and estimator.

Backbone TSF model is a linear architecture, deliberately chosen to isolate and highlight the effec-
tiveness of the Hipeen stationarization, excluding improvements that could arise from architectural
advancements. Convolutional layers without non-linear activations were used to minimize the num-
ber of learnable parameters. To enhance the expressiveness of Hipeen under this linear mapping
constraint, we introduce an extra ensemble that generates multiple Hipeen projections per sample,
offering diverse views. This is achieved by multiplying a scaling factor W ~ 4/(0.5,1.5) to the
radius 7, resulting in period-adjusted windows. All extra ensemble views share the same backbone
model, and no additional parameters are introduced. Moreover, these extra ensemble dimensions are
merged into the batch dimension, allowing efficient parallel computation. For more details on the
backbone architecture and extra ensemble, please refer to Appendix [C.2]
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Table 1: Results on the three controlled datasets. 16 recent baseline models were compared with
Hipeen. We report the average performance across four forecasting horizons {96, 192, 336, 720} and
three random seeds. The best results are highlighted in red and the second-best in blue. The extended
table and standard deviation results are provided in Appendix E}

Models | Exponential | Threshold | Sine wave
) | 300-350 400-450 500-550 Rank | 5-20(e-4) 10-40(e-4) 15-60(e-4) Rank | 2k-3k  3k-4k  4k-5k  5k-6k 6k-7k Rank
NST MSE | 0.566 0.372 0.802 8.0 | 1412 2.177 1.713  14.7|.1291 .0272 .0183 .0039 .0071 5.4
_(2022b) MAE | 0.505 0.376 0.529 7.7 | 0.715 1.029 0956 11.3].1908 .0862 .0703 .0413 .0526 6.8
DLinear MSE | 1.327 0.631 0.627 13.7| 0.689 0.736  0.737 2.6 |.1586 .1032 .0859 .0425 .0374 13.2
4 (023) MAE| 0.710 0.535 0.534 14.0| 0.608 0.664 0.680 2.6 |.2550 .1922 .1911 .1338 .1288 13.6
3 )
< RLinear MSE | 0.633 0.571 0.526 10.3‘ 1.317 1419 1216 93 ‘.1076 .0429 .0166 .0135 .0072 7.2
E 2023) MAE | 0.526 0.460 0.404 9.7 | 0.774  0.897 0.836 9.3 |.1619 .1047 .0678 .0655 .0499 7.8
£ Dish-TS MSE | 2.146  1.463 0.660 14.7‘ 0.795 1.016 0936 3.0 ‘.5572 1.499 2.632 .2635 .2596 15.0
£ 2023) MAE| 1.120 0.861 0.586 15.0] 0.672 0.800  0.801 3.0 |.5004 .7361 1.114 .3819 .3314 15.0
<
S SAN MSE | 0.482 0425 0392 2.7 | 1.285 1.273 1.134 4.0 |.1000 .0363 .0118 .0079 .0045 3.6
57(2024[)\) MAE| 0481 0429 0387 5.0 | 0824 0912 0.849 13.0|.1468 .0913 .0561 .0506 .0413 3.4
2 Leddam MSE | 0.474 0493 0482 3.0 | 1.256 1458 1.272  11.7|.0774 .0359 .0162 .0134 .0069 4.4
I (024) MAE| 0462 0428 0390 4.0 | 0.796  0.958 0.895 15.3|.1350 .0915 .0655 .0642 .0481 4.6
7 )
DDN MSE ‘ 0.792 0.709 0.614 13.7‘ 1.356  1.549 1.207 11.7‘.2346 .0864 .0276 .0165 .0196 14.0
2024) MAE| 0.651 0.601 0512 13.7] 0.779 0922  0.818 10.7|.2924 .1737 .1015 .0796 .0856 13.8
FAN MSE | 1.340 0.599 0.557 13.0|] 0.515 0.835 0.656 2.3 |.0663 .0359 .0162 .0134 .0069 9.8
2024) MAE| 0.682 0485 0496 12.7| 0486 0.780  0.629 2.3 |.4207 .0915 .0655 .0642 .0481 10.0
TimMixer MSE | 0.553 0.512 0483 4.7 | 1356 1410 1.197 8.0 |.0600 .0390 .0199 .0141 .0081 7.8
_(2024b) MAE | 0466 0.413 0371 2.7 | 0.764  0.833 0.814 4.7 | 1157 .0934 .0692 .0631 .0488 5.0
iTransformer  MSE ‘ 0.579 0.559 0.524 8.7 ‘ 1.327 1437 1.212 11.0‘ 1511 .0730 .0319 .0244 .0149 114
» (2024a) MAE| 0.536 0473 0424 11.7| 0.760  0.897 0.839 8.3 [.1989 .1367 .0923 .0840 .0670 11.4
I B W G F E kL
E 2023) MAE | 0. . X X . E B . . .
T R
< (2023) MAE . . A A . A A . . .
5 TimesNet MSE ‘ 0.664 0.623 0.589 12.7‘ 1.437  1.617 1.339 14.3‘ 3088 .1431 .0698 .0439 .0311 13.6
2 (2023) MAE| 0.601 0.523 0.486 12.7| 0.852  0.987 0.899 14.3|.3566 .2318 .1626 .1196 .1066 13.4
$ CycleNet MSE ‘ 0.583 0.542 0.505 8.0 ‘ 1.315 1411 1.195 6.0 ‘ 0716 .0368 .0165 .0128 .0072 4.8
3 (0024 MAE | 0491 0.441 0.388 6.7 | 0.768  0.888 0.815 6.3 [.1282 .0939 .0663 .0636 .0497 5.0
T T e I L R R T
2024) MAE | 0. 3 .3 . E . E . B . .
FRNet MSE ‘ 0.564 0.537 0490 6.3 ‘ 1.313 1410 1.197 5.7 ‘ 0645 .0367 .0171 .0139 .0073 6.2
2024} MAE| 0475 0431 0374 4.7 | 0765 0.887 0.816 6.0 [.1227 .0941 .0672 .0654 .0501 6.2
Hipeen MSE | 0436 0.183 0.238 1.0 | 0.394 0.560  0.624 1.0 |.0072 .0040 .0019 .0016 .0015 1.0
(Ours) MAE| 0.438 0.284 0.293 1.0 | 0.354 0510  0.572 1.0 |.0488 .0390 .0309 .0294 .0292 1.0

4 EXPERIMENTS

Section 4. 1] describes the controlled dataset, which requires gradient and raw value information for
forecasting, and shows that only Hipeen can forecast it effectively. Sectiond.2]evaluates Hipeen on
over 500 real-world stock datasets, achieving SOTA, and demonstrates its comparable performance
also on current benchmarks. Hipeen does not require a hyperparameter search. For controlled and
Stock datasets, we fixed M=0.25, H=10, and the learning rate at 0.001. The look-back window was
fixed at 96 throughout this study. Training details and baseline models are provided in Appendix

4.1 EXPERIMENTS ON THE CONTROLLED DATASETS

To validate that current stationarization methods discard gradient and raw value information, we
constructed three controlled datasets specifically designed to require this information for successful
prediction. Exponential (requires grad. info.): New flipped exponential function begins when
reaching a specific gradient. To prevent value-based prediction, the value of each flip point was varied.
Experiments were conducted using three flipping intervals: [300, 350], [400, 450], and [500, 550].
Threshold (requires raw value info.): An increasing function with a gradient within a specified range
that resets to 0 upon reaching 1. Owing to the discontinuous nature of the signals, which cannot be
modeled by a linear backbone, two additional non-linear layers were introduced only for this dataset.
We evaluated the function using three gradient ranges: [0.0005, 0.002], [0.001, 0.004], and [0.0015,
0.006]. Sine wave (requires both): To infer the current position on the long-range pattern, both the
raw value and gradient information are required. We evaluated the model using five different periods:
[2k, 3k], [3k, 4k], ..., [6k, 7k]. All controlled datasets above consist of five independently generated
channels of length 10k. The data is split into train, validation, and test sets in a 7:1:2 ratio (Wu et al.,
2023 |Wang et al.l 2024c). For more details on controlled datasets, refer to Appendix
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Figure 6: Ground truth (orange) and predictions (blue) for the Exponentials and Threshold tasks. All
models except Hipeen failed, including various stationarization approaches. Additional illustrations,
including Sine wave, are provided in Appendix [E.T}

Table [T]demonstrates that Hipeen achieves the best performance on the controlled datasets with a
significant margin. Notably, on the Sine wave dataset, Hipeen attains an MSE that is eight times lower
than the second-best model. This substantial performance gap supports our hypothesis that conven-
tional stationarization discards critical information—namely, gradients and raw values—necessary
for forecasting. Figure[6] further illustrates this point: while Hipeen makes predictions based on both

gradients and values, existing models fail to capture critical points altogether.

4.2 EXPERIMENTS ON REAL-WORLD DATASETS

We used the S&P500 dataset (MVD, 2025) (Jan. 4, 2010
—Dec. 19, 2024) and the Nifty50 dataset (Rao}, |2021}) (Jan.
1, 2000 — Apr. 30, 2021), both of which feature high
look-back/horizon and train/test out-of-range rates. refer
to Appendix [B.T.2|for more details.

Table 2: S&P500 dataset experiment, we
reported the average rank of each model.
Forecasting horizon = 96, averaged over
three random seeds. The extended table
is presented in Appendix @

S&P500. After removing entries with missing values, All MSE<2  MSE<1
. . : : Subsets 430) (402) (364)
430 stocks remain. Since unpredictable non-stationary

: : : MSE MAE|MSE MAE|MSE MAE
data (e.g., r.a.ndom Wal}(s) can ylelq high MSE, we applied Metric  Ronk Rank | Ronk Ronk | Renk Rank
three condltlong. minimum baseline MSE <1,<2,and Hipeen 523 350|498 3.28 498 332
all datasets. Hipeen consistently achieves the best per-  Hipeen (H:9) [5.02 4.62 |4.85 4.48 |4.86 4.58
formance under all three criteria, showing a substantial ~ Hipeen (H:8) | 546 6.13|5.34 6.06]538 6.12
K h d-best baseline (Tabl NST 16.84 16.71|16.94 16.80|16.87 16.76
average rank gap over the second-best base ine (Ta GEI)- Dlinear 11.79 12.9211.57 12.73|11.50 12.68
This robustness persists even when the default / = 10is  Rlinear 943 9.3319.71 9.5219.87 9.65
: : Dish-TS 14.46 15.1714.53 15.21|14.56 15.21
varied to .9 or 8. These results suggest that Hlpeen outper- gy 689 77| 653 744|626 794
forms existing models on real-world non-stationary time  Leddam 595 6.06|591 6.00|5.86 5.94
series and that its solution to the limitations of conven-  TimeMixer  |14.29 13.5714.46 13.75/14.58 13.88
. 1 . . . 1so holds i ical . iTransformer |10.41 10.62|10.33 10.53{10.33 10.52
tional stationarization also holds in practical scenarios. PatchTST 9.67 8931990 9.1119.87 9.05
. . . TiDE 7.13 7.26(7.02 7.15|6.94 7.05
Nifty50. To build a compact and predictable dataset, we  TimesNet 11.59 11.64{11.83 11.87/12.01 12.01
applied an inclusion criterion of MSE < 2 to Nifty50. gysleNgltc g‘gg zgg 190;)09 ggi 190‘2282 g;‘;

. . . . cri-midrormer A . . . B .

For fairness, inclusion was based on the baseline models  ppne 698 644|706 652|700 648

(excluding Hipeen). Table [3|shows that Hipeen achieves

the best performance on Nifty50 across MAE, MAPE, and RMSE, attaining first rank on MAE in
over 66% of the 48 combinations. We further assess the models in a trading scenario, including
SMamba (Shil [2024) and Stock-Transformer; STF (Mozaffari & Zhang} |2024) designed for stock
forecasting. Hipeen achieves SOTA in Revenue, Sharpe, Sortino, and Calmar scores, delivering
high returns with strong risk-adjusted performance. As Drawdown measures peak-to-trough decline,
lower-return models often show better Drawdown. Trading methodology is provided in Appendix [E-2]

Table 3: Results on the Nifty50 dataset (inclusion criteria: MSE<2) averaged over 12 stocks, {12, 24,
48, 96} horizons and three seeds. The weakest models (NST, Dish-TS, and iTransformer) are omitted.
Descriptions for each metric and the full table are provided in Appendix @ (R.: averaged rank)

Models  Hipeen Dlinear RLinear SAN Leddam DDN FAN TimeMixer PatchTST TiDE TimesNet CycleNet Peri-midf. FRNet SMamba STF
MAE 0.198 0.294 0.205 0.212 0.210 0.2480.252 0.213 0.209 0217 0242 0212 0.206 0.206 0912 0.818
MAPE 0.402  0.538 0.456 0.438 0.437 0.5270.467 0.418 0418 0471 0488  0.445 0447 0416 0.882 1.008
RMSE 0.274 0.386 0.282 0.2838 0.287 0.3300.336  0.291 0.288 0.293 0.324  0.288 0.283 0.282 1.021 0.928
RevenueR. 538 9.60 9.81 842 9.02 9.73 8.63 8.21 592 10.71 10.52 7.69 1021 850 748 6.19
DrawdownR. 7.19 1106 7.71 9.13 6.21 9.46 1023 9.08 800 8.38 .54 717 9.60 740 842 844
SharpeR.  5.63 929 983 838 892 9.77 827 8.25 6.10 11.65 10.67 771 10.04 852 6.69 629
SortinoR.  5.65 954 975 835 9.02 9.83 829 8.21 10 11.54 10.75 7.67 9.98 835 677 6.19
CalmarR. 558 9.60 981 846 898 944 9.02 7.83 6.00 10.81 10.67 7.81 994 842 733 629
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Table 4: Benchmark results on stationarization methods, averaged across 4 horizon lengths: {96, 192,
336, 720} and 3 seeds. The last row shows the number of inherent learnable parameters beyond the
backbone (in Traffic 96; Note that the total number of parameters in DLinear is 19k in this case). The
extended Table and standard deviation results are provided in Appendix @

Model ‘ Hipeen(Ours) NST DLinear RLinear*  Dish-TS*} SAN*} Leddam*f DDN*t FAN*t
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

Exchange |0.335 0.397 |0.461 0.454|0.354 0.414|0.412 0.431|0.511 0.507]0.330 0.398|0.398 0.420|0.499 0.454|0.423 0.450
Weather |0.224 0.261 {0.288 0.314{0.265 0.315|0.244 0.2680.239 0.303]0.251 0.296|0.240 0.270|0.268 0.302|0.241 0.292
Solar 0.205 0.257 {0.350 0.390{0.330 0.401|0.260 0.304|0.208 0.286{0.313 0.338|0.254 0.281]0.292 0.348|0.255 0.280
ETTml [0.388 0.393 |0.481 0.456|0.404 0.408|0.393 0.400|0.500 0.496|0.404 0.404{0.390 0.397|0.413 0.421{0.408 0.416
ETTm2 [0.301 0.332 {0.306 0.347|0.354 0.402|0.283 0.333|1.364 0.779]0.284 0.340(0.289 0.329|0.288 0.333|0.323 0.373
ETThl |0.452 0.431 |0.570 0.537|0.461 0.458|0.442 0.439/0.613 0.570|0.579 0.527{0.448 0.441|0.451 0.437|0.478 0.468
ETTh2 10.435 0.428 |0.526 0.516(0.563 0.519(0.410 0.422{3.176 1.248]0.395 0.420|0.385 0.406|0.432 0.434|0.508 0.489
ECL 0.197 0.294 |0.193 0.296(0.225 0.319|0.203 0.302|0.237 0.344|0.270 0.364|0.191 0.294]0.260 0.356{0.205 0.301
Traffic  |0.630 0.317 |0.624 0.340|0.625 0.383]0.601 0.386|0.619 0.417|0.604 0.376|0.571 0.375|0.645 0.409|0.569 0.373

Inh.Param| O | O | O | 0 | 15081k | 1l4k | 3415k | 5539k | 5%

* Replaced the backbone with a linear model to evaluate each stationarization, removing architectural influence.
1 However, some methods inherently contain multiple non-linear layers, offering extra architectural gains.

Conventional Benchmark. Hipeen also maintains competitive performance on relatively stationary
benchmarks. Table [4] compares Hipeen with major stationarization methods. Using a learning-
free stationarization module with no internal parameters, Hipeen outperforms other learning-free
approaches such as NST, DLinear, and RLinear (RevIN). However, as shown in the last row, some
methods incorporate multiple layers and non-linear activations within their stationarization modules,
gaining architectural advantages that hinder a fair comparison. Notably, Leddam contains 180x more
parameters than DLinear (excluding the backbone), raising concerns about practicality. Even so,
Hipeen achieves strong performance, demonstrating its effectiveness on relatively stationary signals.

Analysis. Conceptually, scale parameter M sets the smallest decimal place and hierarchy level H the
total number of digits; e.g., M = 0.1 and H = 2 can represent values from 0.1 to 9.9. Experiments
on benchmark datasets varying H and M show that Hipeen is robust across a wide range of H
if M is small enough (Figure[7), analogous to that representing 1.63 as 01.630 does not enhance
representational accuracy. We also analyzed the bias term B in Equation[I] Comparing Hipeen with
no bias, bias on N-dim. ([0,27)V*1), and on H-dim. ([0, 27)'**"). Table[5]shows that adding a
bias term is crucial, and channel-wise bias (/NV-dim) is especially important.

w - woiw w . .
2, — FiXTH-MSE L2 8 £ Table 5: Experiments on differ-
8 — Fix I'1 -MSE |§ = P = ; ;
° wee FiXTH - MAE| S & » €nt bias settings, averaged over 3
(=1 ix "1 - ©
o3 Fix T1 “MAE |5 gio 3 datasets and 3 seeds. Each value
=] s o
o § g o g represents the MSE. Full results
9% §’M 8 ¥ are provided in Appendix [E.4]
N =3¢ 3 25
s 10 '; 5 7 6 5 2 3 23 s oﬁ o 8 7 6 5 43 23° Horizon | Ours N-dim. H-dim. No B
Weather(Avg) - Hierarchy Level (H) Exchange(Avg) - Hierarchy Level (H) 96 0.207 0207 0.216 0.382

192 10.269 0.274 0.354 0.936
Figure 7: Hipeen performance with varying hierarchy level H and 336 |0.374 0382 0.510 1.023

scale M. Red: Fix rg, Blue: Fix r; 720 ]0.516 0.534 0885 4.778

5 CONCLUSION

We demonstrate that widely used TSF benchmarks underrepresent real-world non-stationarity and
that conventional stationarization methods can cause critical information loss. To address this, we
introduce Hipeen, a novel stationarization method that preserves essential gradient and absolute value
information by projecting signals into a hierarchical periodic representation. Hipeen is the only
model to succeed on our controlled datasets designed to highlight this information loss. Moreover, it
substantially outperforms state-of-the-art models on highly non-stationary real-world stock datasets
while remaining competitive on standard benchmarks, underscoring the importance of information-
preserving stationarization for robust time series forecasting. Limitation & Future Work. While
we have identified the limitations of existing TSF benchmarks, we do not provide representative
non-stationary datasets to address these shortcomings. Future work should focus on systematically
evaluating the extent of non-stationarity in current benchmarks and on developing datasets that better
reflect the complexities of real-world non-stationary signals.
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A DETAILED RELATED WORKS

A.1 TIME SERIES MODELING.

Deep learning has substantially advanced time series forecasting by introducing architectures that
more effectively capture temporal dynamics and inter-variable dependencies (Hyndman & Athana-
sopoulos} 2018; [Liu et al.,|2024aj; [Wang et al.| 2024bja). Recent models can be broadly categorized
into several key paradigms: Transformer-based, CNN-based, and MLP/linear-based architectures,
with a growing trend towards general-purpose foundation models (Kim et al.l 2025b).

Transformer-based models have become prominent due to their capacity to model long-range de-
pendencies. Autoformer (Wu et al.l 2021) and FEDformer (Zhou et al., [2022) both incorporate
decomposition into trend and seasonal components, with the latter enhancing efficiency through
Fourier-based attention. PatchTST (Nie et al.; 2023) introduces a patching strategy that segments time
series into fixed-length patches for Transformer input, while modeling each variable independently
to improve generalization. Crossformer (Zhang & Yan, |[2022)) proposes cross-dimension attention
to jointly capture temporal and feature-wise dependencies. The Non-stationary Transformer (Liu
et al.,|2022b)) introduces a two-part framework comprising series stationarization and de-stationary
attention, which normalizes input statistics and restores non-stationary information lost in traditional
attention mechanisms, thereby improving robustness to distribution shifts. iTransformer (Liu et al.,
20244a)) reformulates the input structure by treating each variable as a token, offering an inverted
perspective on Transformer-based time series modeling.

CNN-based approaches exploit multi-scale feature extraction to capture temporal patterns.
SCINet (Liu et al.,|2022al) adopts a recursive downsample—convolve—interact design to model complex
temporal dynamics through hierarchical resolution. TimesNet (Wu et al.,2023) transforms time series
into 2D representations based on learned periods and applies inception-style convolutional blocks to
capture both intra- and inter-period variations, achieving strong performance on various forecasting
benchmarks.

Simpler architectures based on MLPs and linear layers have also demonstrated competitive perfor-
mance. DLinear (Zeng et al.,[2023) applies lightweight linear projections to decomposed components
for efficient forecasting. TimeMixer (Wang et al.,|2024b) extends this design with shift-based mixing
and channel-wise MLPs, enabling scalable modeling without attention. TiDE (Das et al.| [2023))
employs a dense MLP-based encoder—decoder to effectively handle covariates and non-linear rela-
tionships, showing strong results in long-horizon forecasting tasks. Some models aim for broader
applicability beyond forecasting. TimeMixer++ (Wang et al.l[2024a)) generalizes time series modeling
through the Time Series Pattern Machine, which transforms sequences into multi-resolution temporal
images and integrates axis-aware decomposition with multi-scale feature fusion, supporting tasks
such as classification, imputation, and anomaly detection alongside forecasting.

A.2 STOCK PRICE PREDICTION.

Despite the rapid progress of general time series forecasting, stock price prediction research remains
comparatively conservative, with many studies still grounded in traditional or narrowly focused deep
learning models. For instance, (Mozaffari & Zhang| |2024) evaluate LSTM against a Transformer-
based model for stock index prediction and show that Transformers provide gains mainly by better
capturing temporal dependencies. To mitigate non-stationarity, decomposition-based hybrids have
been proposed. SVMD-LSTM (Agarwal et al., 2025 decomposes stock series into intrinsic mode
functions before applying LSTMs, demonstrating more stable forecasts than standalone recurrent
models. However, the predictive head still follows a relatively simple architecture.

Other works explores modern sequence modeling approaches. SMamba (Shi, [2024) adapts
Mamba (Gu & Dao| [2024) to stock data, showing improved accuracy through efficient long-range
dependency modeling. PMANet (Zhu et al., [2024) enhances attention mechanisms and multi-scale
convolution to better handle long input sequences and anomaly points, yet it remains a domain-specific
design optimized for hand-crafted financial features.

Overall, while time series forecasting architectures diversify, stock price prediction remains grounded
in narrowly scoped, task-specific designs rather than the unified and scalable approaches emerging
in the broader field. Also, existing TSF models are largely benchmark-driven and have not been

13



Under review as a conference paper at ICLR 2026

thoroughly evaluated on stock datasets. Using stocks as a representative non-stationary dataset, we
show that Hipeen achieves superior performance in MAE, RMSE, and MAPE. Furthermore, when
used for prediction-based trading, Hipeen attains the highest returns and risk-adjusted performance,
demonstrating its applicability to the stock domain.

B DATASETS, BASELINE MODELS, AND IMPLEMENTATION DETAILS

B.1 DATASETS

Table 6: Detailed descriptions of datasets. The look-back window for all data is 96. The dataset size
is organized in (Train, Validation, Test).

Tasks | Dataset | Dim | Horizon Length | Dataset Size | Frequency | Non-stationarity | Information
Sinel 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.92/0.00 Synthetic
Sine2 5 | (96,192,336, 720} | (6905, 1001, 2001) 1 step 0.91/0.00 Synthetic
Sine3 5 | 196,192,336,720} | (6905, 1001, 2001) 1 step 0.90/0.00 Synthetic
Sine4 5 | 196.192.336,720) | (6905, 1001, 2001) 1 step 0.87/0.00 Synthetic
Sine5 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.86/0.00 Synthetic
Controlled | Exp. 1 5 | 196.192.336,720) | (6905, 1001, 2001) 1 step 0.75/0.14 Synthetic
Exp.2 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.86/0.05 Synthetic
Exp.3 5 | (96,192,336,720) | (6905, 1001, 2001) 1 step 0.92/0.09 Synthetic
Thr.1 5 | 196,192,336,720} | (6905, 1001, 2001) 1 step 0.83/0.00 Synthetic
Thr.2 5 | (96,192,336,720) | (6905, 1001, 2001) 1 step 0.62/0.00 Synthetic
Thr.3 5 | 196.192,336,720) | (6905, 1001, 2001) 1 step 0.46/0.00 Synthetic
| ETTh1 | 7 | 196.192.336,720) | (8545,2881,2881) | 15min |  0.16/0.00 | Temperatre
| ETTh2 | 7 ]196.192.336,720) | (8545,2881,2881) | 15min |  021/0.01 | Temperatre
| ETTm1 | 7 | 196.192,336,720} | (34465, 11521,11521) | 15min |  021/0.00 | Temperature
Benchmark | ETTm2 | 7 ]196.192.336,720) | (34465, 11521,11521) | 15min |  0.22/0.01 | Temperatre
Datasets | Weather | 21 | (96.192.336,720) | (36792,5271,10540) | 10min |  0.36/0.00 | Weather
| solar-Energy | 137 | (96,192,336,720) | (36601,5161,10417) | 10min |  0.09/0.00 | Electricity
| Electricity | 321 | (96,192,336,720) | (18317,2633,5261) | Hourly |  0.08/0.00 | Electicity
| Traffic | 862 | (96.192,336,720) | (12185,1757,3509) | Hourly |  0.04/0.00 | Transportation
| Exchange | 8 |196.192.336,720) | (5120,665,1422) | Daily |  0.69/027 | Finance
| ADANTPORTS | 9 | {12,24,48,96} | (2230,334,665) | Daily | 032000 | Stock
| BAOAJ-AUTO | 9 | {12,24,48,96} | (2146,322,641) | Daily | 032021 | Stock
| HDFC | 9 | t12.24.4896) | (3619.532,1062) | Daily |  0.32/000 |  Stock
| EEROMOTOCO | 9 | {12.24,48,96) | (3619,532,1062) | Daily | 031038 | Stock
Nifty50 | HINDALCO | 9 | t12.24,48,96) | (3619,532,1062) | Daily |  034/000 |  Stock
Stock | LT | 9 | t12.24,48,96) | (2833,421,837) | Daily |  034/000 |  Stock
Datasets | MARUTI | 9 | t12.24.48.96) | (3003,445,886) | Daily | 037/077 |  Stock
| NTPC | 9 | (12.24.48,96) | (2766,411,818) | Daily |  027/000 | Stock
| POWERGRID | 9 | {12,24,48,96} | (2256,338,672) | Daily | 027009 | Stock
| TATASTEEL | 9 | {12,24,48,96} | (3619,532,1062) | Daily | 035002 | Stock
| TECHM | 9 | t12.24.4896) | (2449.365,728) | Daily |  037/000 | Stock
| TITAN | 9 | (12.24.48,96) | (3619,532,1062) | Daily |  037/000 | Stock

(=%

* The Non-stationarity is obtained by measuring the out-range rate between the look-back/horizon and train/test.

A summary of the entire training dataset is provided in Table[6] This table presents the number of
channels (Dim) in the data, the lengths of the trained horizons, the sizes of the train, validation, and
test sets, the sampling frequency, the degree of non-stationarity, and the types of data.
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(B) 3k-4k

(E) 6k-7k

Figure 8: The full 10k timesteps of the Sine wave datasets are shown. Each color represents a
channel that was independently generated. To enhance visual clarity, each channel was plotted with a
different amplitude; however, since the data undergo global normalization based on training statistics
during preprocessing, this has the same effect as using identical amplitudes across channels.

B.1.1 CONTROLLED DATASETS

All controlled datasets are multivariate time series consisting of 5 channels and 10k timesteps. Each
channel is independently generated from a specified distribution.

The Sine wave dataset represents the most basic form of time series, generated by adding Gaussian
noise to long-period Sine waves. The standard deviation of the added Gaussian noise is sampled from
Uniform[0.01, 0.02], and the period length is sampled from the following ranges: (1) Uniform[2k,
3k], (2) Uniform[3k, 4k], (3) Uniform[4k, 5k], (4) Uniform[5k, 6k], and (5) Uniform[6k, 7k]. In this
way, five types of Sine wave datasets were created. The resulting five datasets are visualized in
Figure[8]

The Exponentials dataset is designed to model systems in which changes in the time series are
triggered by reaching a certain gradient (rate of change). To simulate such behavior, exponential
decay functions are generated, and once a function reaches a predefined gradient, a new exponential
decay function—flipped vertically—is initiated. While the trigger gradient for flipping is fixed for
each function, the initial gradient of the new function after the flip is randomly sampled within a
range. This makes the value of each flipping point vary and prevents the model from learning the
flip timing based on value rather than gradient. The base of the exponential function is sampled
from Uniform[1.004, 1.007] and is kept constant throughout the series. For each exponential decay
segment, the end value is fixed at +200 to ensure consistent flipping gradients, but the start value
varies to induce diverse initial slopes. These flipped segments are concatenated to form the entire
time series. The duration of each segment (i.e., the flipping interval defined as start value - end value)
is sampled from: (1) Uniform[300, 350], (2) Uniform[400, 450], and (3) Uniform[500, 550]. The
resulting three datasets are visualized in Figure[9]

The Threshold dataset is designed to simulate systems in which changes are triggered when the
time series value reaches a specific value. Once an increasing function with a certain gradient range
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Figure 9: The full 10k timesteps of the Exponentials datasets are shown. Each color represents
a channel that was independently generated. As the length of each exponential segment increases, the
frequency of flipping decreases.
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Figure 10: The full 10k timesteps of the Threshold datasets are shown. Each color represents a
channel that was independently generated. As the gradient of linear segment decreases, the frequency
of reaching Threshold decreases.

reaches the value 1, the value is reset by subtracting 1, and the process repeats. The increasing
function is composed of piecewise linear segments, where each segment has an x-length sampled
from Uniform[50, 100] and a gradient sampled from a specified range. To control the period at
which the function reaches the threshold, we sample gradients for each segment from the following
ranges: (1) Uniform[0.0005, 0.002], (2) Uniform[0.001, 0.004], and (3) Uniform[0.0015, 0.006]. The
resulting three datasets are visualized in Figure[I0]

All controlled datasets are created from csv file using the Dataset_Custom class from the Time Series
Library (Wu et al.| 2023} Wang et al.}[2024¢), following the same procedures used for processing
benchmark datasets such as Weather and Traf fic. This class includes a default preprocessing
step of global normalization based on training set statistics, which is applied uniformly across both
custom and benchmark datasets. For a summary of each dataset, refer to the “Scenarios” section of
Table
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B.1.2 REAL-WORLD STOCK DATASETS

We utilized a publicly available S&P500 (MVD, —
2025) and NIFTY50 (Rao, PO2T) Stock Market _reature  Description

dataset under the CCO (Public Domain) license. The  Prev Close  Closing price of the previous day

dataset comprises daily price and trading volume in- ~ Open Opening price of the day
formation for the 500 constituent stocks of the S&P ~ High Highest price of the day

500 index, which represents large-cap companies ~ LOW Lowest price of the day
listed on U.S. stock exchanges, and for the 50 con- ICJTSZe é?%tctiﬁd;gsli’gce :if;et:he day
stituent.stocks of the NIFTY 50 index, sourqed from VWAP Volume Weighgt eii Ave. Price
the National Stock Exchange (NSE) of India. Each v jume Shares traded

stock’s data is stored in a separate .csv file, along  Tumover  Volume x Price

with a metadata file containing high-level information
about each company. Given the high non-stationarity Table 7:
typically observed in stock market time series, most

tasks focus on short-term forecasting over several months. Due to this and the limited sequence
lengths of many stocks, we set the prediction horizon to 96.

1. S&P 500 dataset.

Stock feature descriptions

The dataset spans from January 4, 2010, to December 19, 2024, and contains six columns: Adj Close,
Close, High, Low, Open, and Volume, providing comprehensive daily price and trading volume
information for each stock. After excluding any rows with missing values, a total of 430 stocks were
used in the analysis.

2. NIFTY 50 dataset.

The data spans over two decades, from January 1, 2000, to April 30, 2021. To ensure data quality, we
excluded stocks with less than 3000 days of historical records, as they produce an insufficient amount
of data for the validation set with the conventional 7:1:2 dataset split. Additionally, to eliminate stocks
where past data offers little predictive value (i.e., nearly random series), we excluded those where
all 16 recent baseline models (except Hipeen) yielded test MSEs greater than 2.0. After filtering, 12
stocks remained: ADANIPORTS, BAJAJ-AUTO, HDFC, HEROMOTOCO, HINDALCO, LT, MARUTI,
NTPC, POWERGRID, TATASTEEL, TECHM, and TITAN. These showed an average minimum MSE
of 1.1 across the 9 models, compared to 101.9 for the excluded group. Each time series is multivariate
with 9 input channels: Stock market data contains multiple price and volume-related features that
reflect daily trading behavior. To help interpret the multivariate inputs used in our models, Table 7]
summarizes the meaning of each feature.

Dataset construction followed the same procedure as with the controlled data. Specifically, we
used the Dataset_Custom class from the Time Series Library (Wang et al.| [2024c)), which is also
employed for handling benchmark datasets such as Weather and Traffic. Please refer to the
"Stock Datasets" section of Table[@l for detailed characteristics of each dataset.

B.1.3 REAL-WORLD BENCHMARK DATASETS

We used nine public benchmarks that are widely adopted in time series forecasting research:
Weather, Solar-Energy, Electricity, Traffic, Exchange, ETThl, ETTh2, ETTml,
and ETTm2. (There is an ongoing debate about whether exchange datasets should be used as
benchmarks (Bergmeir, [2024), and recent studies differ in whether they include them.; As an ex-
ample, while the CycleNet (Lin et al., 2024) excluded these datasets, they were included in the
Peri-Midformer (Wu et al.l 2024) paper. However, we included them to enable a more comprehensive
comparison.) The datasets were sourced from the Time Series Library (Wang et al., 2024c)) and
the TimeMixer++ paper (Wang et al., [2024a)). Data splitting and preprocessing were conducted
using the Dataset ETT_minute class (for ETTm1 and ETTm2), Dataset_ ETT_hour class (for ETTh1
and ETTh?2), and Dataset_Custom class (for the remaining datasets) provided by the Time Series
Library (Wang et al.,|2024c). Please refer to the “Benchmark Datasets” section of Table @ for the
characteristics of each dataset.
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B.2 BASELINE MODELS

To evaluate and demonstrate the effectiveness of Hipeen across the diverse sets of forecasting tasks, we
compare it against 16 state-of-the-art baseline models and 2 stock forecasting models encompassing
a broad spectrum of architectural paradigms. These include Transformer-based models such as
iTransformer (Liu et al., |2024a)), PatchTST (Nie et al., 2023)), Peri-midformer (Wu et al., 2024}, and
Non-Stationary Transformer (Liu et al., 2022b); CNN-based models including TimesNet (Wu et al.|
2023)); MLP-based models such as TimeMixer (Wang et al., 2024b)), CycleNet (Lin et al.| |[2024),
TiDE (Das et al.,[2023)), and DLinear (Zeng et al., 2023)); hybrid architectures like FRNet (Zhang
et al.| 2024)), and RLinear (Zeng et al.| [2023); Stationarization methods such as Dish-TS (Fan et al.|
2023), SAN (Liu et al., [2024b)), Leddam (Yu et al., 2024}, DDN (Dai et al.| [2024), and FAN (Ye et al |
2024); Stock forecasting models such as SMamba (Shi, |2024) and STF Mozaffari & Zhang| (2024)).
These baselines represent the current best-performing models in time series forecasting and serve as
a strong foundation for comparative evaluation.

B.3 IMPLEMENTATION DETAILS

All code implementations are based on the Time Series Library (Wu et al., 2023} |Wang et al.,
2024c). Using the dataset classes provided by the library, we preprocessed all the controlled datasets,
benchmark, and stock data. We also utilized the model architecture, training, and evaluation pipelines
provided by the library for all baseline models, ensuring consistency and reproducibility across
experiments. For the benchmark datasets, we adopted the default hyperparameters specified by
the library for each baseline model. In cases where the library did not provide hyperparameter
settings—such as for non-benchmark datasets—we used the hyperparameters from ETTh1 as the
default configuration. Additional experiments to determine more suitable hyperparameters for these
datasets are underway, and their results will be incorporated into the final version of the manuscript.

C HIPEEN AND LINEAR BACKBONE

C.1 HIPEEN PROJECTION AND ESTIMATOR
C.1.1 EMA MEMORY IN THE TRAINING PHASE

During the training process of Hipeen, the training loss is stored in an internal memory. Each loss is
computed by treating a pair of S and C as a vector representing 6, and calculating the cosine distance
between the model’s prediction and the Hipeen projection of the label. The resulting loss values form
a tensor of shape B x K x N x H, where B denotes the batch dimension. This tensor is averaged
over the batch dimension to yield a K x IV x H tensor (), which is then stored in memory for use in
the estimation phase. The memory is updated using an exponential moving average (EMA) defined
as:
Qmemory = (1 - Sm) : Qmemory + sm - Qnewa

where sm is the smoothing factor. At the initial stage of training, Qmemory is simply set to (). Through
this process, training progressively accumulates meaningful loss statistics across all time dimensions
K, channel dimensions N, and hierarchy dimensions H over the entire training set. For simplicity,
we fix the smoothing factor to 0.005 throughout all experiments. However, it is advisable to adjust
this value according to the number of training samples. As a first choice, we recommend setting the
smoothing factor to (training batch size)/(training sample size)

C.1.2 HIPEEN ESTIMATOR PEAK FILTERING

In addition to the estimation method in the main text, we applied a simple peak filtering technique to
the Hipeen estimator to enhance its robustness. This method is designed to prevent the final result V/
from being significantly affected by one or two outliers during the ensemble process of [ estimations
along the hierarchy dimension. In Equation 7 of the main text, the number of rotations py, added to
0}, is determined by finding the peak closest to the previous V. We consider a peak to be an outlier
if its distance from the previous V. exceeds %m‘h. (Since the distance between adjacent peaks is
2mry, the distance to the nearest peak from Vg can range from O to 7r,.) For such outliers, the h-th
V3, and vy, is excluded from the update, and the process moves on to the next h + 1. This filtering
helps mitigate the performance degradation caused by outliers in the ensemble process.
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C.2 LINEAR BACKBONE ARCHITECTURE AND EXTRA ENSEMBLE

C.2.1 LINEAR BACKBONE USED IN HIPEEN

The backbone architecture used in Hipeen, referred to as Linear_model, is designed to process
multivariate time-series data. We decompose the 2H ensemble dimension into H x 2; consequently,
the input has the shape (B, L, C, H, 2), where B is the batch size, L is the input sequence length, C
is the number of channels (features), H is the hierarchy level (half of the ensemble dimension), and
the last dimension of size 2 represents a sine and cosine projection. The model uses a simple 3-layer
convolutional architecture and includes neither non-linear activation functions nor dropout.

The model is composed of the following three consecutive layers:
* Temporal Mixing layer (Time_mix): Applies 3D convolutions along the temporal and
ensemble axes while preserving the channel structure.

* Channel Mixing layer (Channel_mix): Applies 3D convolutions across the channel and
ensemble axes while preserving the temporal structure.

* Final Temporal Mixing layer (Time_mix_f£in): Converts the sequence from input look-
back window length L to output horizon K. This layer shares the module with Time_mix.

Input/Output Shape Summary

 Input: (B,L,C, H,2)
* Output: (B,K,C, H,?2)

Linear_model Architecture The full model is summarized as follows:

x4+ 2+ Time_mix(z)
Z < x + Channel_mix(x)
x + Time_mix_fin(x)
This architecture resembles the simplest version of TSMixer (Ekambaram et al.| 2023)) without

activation and dropout, composed of spatial/channel-wise feature mixing, and finally projects to the
desired output length.

Time_mix Module This module applies a 3D convolution across the (L, H, 2) dimensions after
normalizing each spatial unit using GroupNorm:
 Normalization: GroupNorm fuctions as LayerNorm on the (L, H, 2) axes.

* 3D Convolution: The input and output length (L;,, Loy:) are fully connected to each
other. And a convolutional kernel of size (9, 3) is used, with padding to preserve the spatial
resolution; 9 along the I dimension and 3 along the final dimension of length 2.

The output has shape (B, Loy, C, H, 2), preserving the channel structure.

Channel_mix Module This block focuses on channel-level interactions:
 Layer Normalization: LayerNormis applied directly to the (C, H, 2) dimensions without
reshaping.

* 3D Convolution: The input and output channel (C'; identical dimension) are fully connected
to each other. And a convolutional kernel of size (9, 3) is used with padding to preserve the
spatial resolution of ensemble; 9 on H dimension and 3 on the last dimension of length 2.

The output shape remains (B, L, C, H, 2), preserving the temporal structure.

All convolutions use appropriate zero-padding to maintain spatial alignment. The temporal mapping
layer, Time_mix_ fin, which uses the Time_mix module, changes the input-sequence length from
L to the desired forecasting horizon K, enabling the model to predict future values.
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Figure 11: Performance as a function of the extra ensemble dimension. Results are reported for
the Sine Wave (4k—5k), Exponential (400—450), and Threshold (0.001-0.004) datasets as the extra
ensemble dimension increases from 1 to 32. The dashed line denotes the performance of the second-
best model.

C.2.2 EXTRA ENSEMBLE

To enhance Hipeen’s representational capacity without increasing the number of learnable parameters,
we propose an extra ensemble mechanism. This approach preserves Hipeen’s original non-learning
nature and supports efficient parallel computation. The extra ensemble mechanism enables Hipeen
to incorporate additional periodic diversity at each hierarchical level of its original projection. This
enhances the model’s ability to capture richer and more varied temporal patterns within each frequency
hierarchy.

In the original Hipeen formulation, a scalar value V is projected to an H-dimensional vector 8 € R¥
using a fixed radius vector r € RH . In contrast, our extra ensemble introduces an additional ensemble
dimension E by rescaling the radius vector r with W € [0.5, 1.5]E># resulting in an expanded
radius matrix r¢** ¢ REXH
r,=Mx2":he{l,., H},

ext __
I'e,h =TIy

- We.n, where We j, ~ Uniform(0.5,1.5)

Then angular tensor 6 is calculated using r*** and extended bias B**! € [0, 27 )V *ExH

n
n [V
e,h — ext
re,h

This results in an angular projection output with extra ensemble dimension 8 € [0, 27)E>* . The
extra ensemble introduces period variations within the same hierarchy level. The ensemble dimension
FE is folded into the batch dimension, enabling all E projections to be processed in parallel without
modifying the backbone model or increasing its parameters. During inference, predictions from the
FE ensembles are averaged to obtain the final estimation:

V—-0: +B:,h> mod 2w, 0" € [O,Qﬂ')ExH

This strategy may be similar in spirit to batch ensembles (Wen et al.l [2020) but is more efficient
due to zero additional learnable parameters. It enables Hipeen to model a wider range of periodic
components more flexibly and expressively. We fix 2 = 16 for all experiments, except for Traffic,
ECL, and Solar-Energy datasets when the horizon is 720, where £ = 8 is used to reduce the
computation. Although this mechanism enhances expressiveness when a linear backbone is used, it is
not mandatory when Hipeen is paired with more expressive backbones.

Figure[TT]shows how performance varies as the number of extra ensemble components increases from
1 to 32. Across all datasets, Hipeen consistently outperforms the second-best model. The performance
curve exhibits a U-shaped trend—initially decreasing and then improving as the ensemble size grows.
In practice, selecting 4-8 ensembles appears to be a good balance. Notably, these extra ensembles
add no learnable parameters and are computed efficiently along the batch dimension.

D TRAINING AND HYPERPARAMETER SEARCH

D.1 COMPUTATION RESOURCE AND ENVIRONMENT

All experiments were conducted on either a single NVIDIA L40 GPU (48 GB VRAM) or an NVIDIA
A100 GPU (80 GB VRAM). We used PyTorch (Paszke, |2019) 2.7.0 in a Python 3.11 environment,
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along with the following additional packages, identical to those used in the Time Series Library (Wu
et al.| 2023} [Wang et al.| 2024c)): einops, local-attention, matplotlib, numpy, pandas, patool, reformer-
pytorch, scikit-learn, scipy, sktime, sympy, tqdm, and PyWavelets. All auxiliary packages were
employed in their most recent versions available at the time of experimentation.

D.2 TRAINING & EVALUATION DETAILS

The training and evaluation of the model were based on the training and evaluation code from the
Time Series Library (Wu et al.l 2023; Wang et al., [2024c). The evaluation metrics used in the
experiments—Mean Squared Error (MSE) and Mean Absolute Error (MAE)—follow the standard
metrics commonly used in time series forecasting (TSF) literature (Liu et al.,[2024a} Nie et al.| [2023]
Zeng et al.| 2023)) and are consistent with those implemented in the Time Series Library. During
training, the optimizer Adam (Kingma & Bal 2014) with default hyperparameter was used. A custom
learning-rate schedule was employed: the initial learning rate was kept for the first three epochs
and then multiplied by 0.8 at each subsequent epoch to ensure a gradual decrease. A batch size of
32 was used during training, which is the default setting in the Time Series Library, except for the
720-horizon training of the Traffic, Electricity, and Solar-Energy datasets, where a batch size of 16
was used. Training was conducted for up to 30 epochs with early stopping based on the validation
MSE loss. The best model was not saved during the first three epochs. (Training was configured to
run for a minimum of four epochs.)

D.3 HYPERPARAMETER SEARCH

We conducted a hyperparameter search only for the benchmark dataset and used the fixed hyperpa-
rameters for the rest of the experiments. The search was performed on only two parameters: (1)
the learning rate and (2) combinations of the scale M and hierarchy level H. The full search space
for the learning rate is [0.002, 0.001, 0.0005], and the search space for combinations of M and
H is [1,8], [0.5,9], [0.25,10]. Since Hipeen’s performance is not highly sensitive to the choice of
hyperparameters, M and H can be fixed at 0.25 and 10, respectively, without significant loss in
performance, although a search can still be performed if desired.

For each hyperparameter setting, we averaged the validation loss over three random seeds and selected
the configuration with the lowest average validation loss. Due to computational constraints, the
hyperparameter search space was further reduced to the subspace of the defined search space, based
on a sequence length of 96. We plan to explore the full search space and conduct additional tuning in
extended search regions in the final version. Table[§] presents the selected hyperparameters for each
experiment.

For the Controlled and Stock datasets, we did not perform hyperparameter searches, following the
protocol of other baseline models to ensure a fair comparison. For the baselines, hyperparameters
were fixed based on the non-stationarity values, aligning with similar datasets from the Benchmark
set. When an exchange setting was provided, we used it; otherwise, we followed the order of Weather
and ETTml, as specified by the Time Series Library (Wu et al.| 2023} [Wang et al.l [2024c)). For
Hipeen, the learning rate was fixed at 0.001, with M=0.25 and H=10 across all cases.

E RESULTS IN DETAILS

E.1 CONTROLLED DATASETS

We present a detailed overview of the experimental results obtained on the controlled datasets.
Figures [I2] and [I4] present the extended visualizations of the time series ground truth and model
predictions, following the initial overview shown in Figure |l of the main text. Specifically,
Figure [12] illustrates predictions on the Sine wave dataset when the look-back window corre-
sponds to the ascending, plateau, and descending phases of a long-period sine wave. Accu-
rately forecasting such long-term patterns—especially those that extend beyond the look-back
window—requires a solid understanding of the global shape of the time series. Notably,
only Hipeen successfully captures the long-term trend of the time series, whereas the baseline mod-
els clearly fail to represent the global shape. In the Exponential and Threshold tasks as well, Figure
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Table 8: Hyperparameter search results for each dataset and horizon length.

Tasks | Dataset | Horizon || Learning Rate | M&H
| Sine wave | {96, 192,336, 720} || 0.001 | (0.25,10)
Scenarios | Exponentials | {96,192, 336,720} || 0.001 | (0.25,10)
| Threshold | {96,192,336, 720} || 0.001 | (0.25,10)

ETThl 96 0.001 (1,8)

192 0.001 (1,8)

336 0.001 (1,8)

720 0.001 (1,8)

ETTh2 96 0.0005 (0.5,9)

192 0.0005 (0.5,9)

336 0.0005 (0.5,9)

720 0.0005 (1,8)

ETTml 96 0.001 (1,8)

192 0.001 (1,8)

336 0.001 (1,8)

720 0.001 (1,8)

ETTm2 96 0.0005 (0.5,9)

192 0.001 (0.5,9)
336 0.0005 (0.25,10)
Benchmark 720 0.0005 (0.25,10)
Datasets | Weather 96 0.001 (0.5,9)
192 0.002 (0.5,9)

336 0.002 (0.5,9)

720 0.002 (0.5,9)

Solar—-Energy 96 0.0005 (1,8)

192 0.0005 (1,8)

336 0.0005 (1,8)

720 0.001 (1,8)

Electricity 96 0.001 (1,8)

192 0.0005 (1,8)

336 0.0005 (1,8)

720 0.001 (1,8)

Traffic 96 0.001 (1,8)

192 0.001 (1,8)

336 0.001 (1,8)

720 0.001 (1,8)
Exchange 96 0.0005 (0.25,10)
192 0.001 (0.25,10)
336 0.001 (0.25,10)
720 0.0005 (0.25,10)
All Stock Datasets | {12,24,48,96} || 0.001 | (0.25,10)
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A. Ascending Part

RLinear Dish-TS

Hipeen (Ours) NST

PatchTST

CycleNet Peri-midformer

B. Plateau Part
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TimeMixer

TimesNet CycleNet Peri-midformer FRNet

Figure 12: (Part 1) Sine wave dataset, 4k-5k period, 720 horizon. Performance comparison across
three phases of long-period sine wave: (A) Ascending, (B) Plateau, and (C) Descending. Each row
shows results from Hipeen and baseline models. Orange line is ground truth and blue line is model
prediction. Cont’d to Table T3]
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C. Descending Part

. . w _ .
M| ¥
Hipeen (Ours) NST DLinear RLinear Dish-TS
SAN Leddam TimeMixer iTranformer PatchTST
TimesNet CycleNet Peri-midformer FRNet

Figure 13: (Part 2 of Table . Sine wave dataset, 4k-5k period, 720 horizon. (C) Descending.
Each row shows results from Hipeen and baseline models. Orange line is ground truth and blue line
is model prediction.

shows that Hipeen achieves more accurate predictions than the baselines by effectively leveraging
both gradient and absolute value cues.

Table[Q]and[I0|presents the full results corresponding to Table[T]in the main text. In addition to the Sine
wave datasets (2k—3k and 3k—4k), it includes all horizon values in {96,192,336,720}. Consistent with
the main-text results, Hipeen outperforms the baseline models, demonstrating superior performance
on our realistic controlled datasets. In addition, the standard deviations (std) across three random
seeds for each experiment are reported in Table[TT]and[12} Hipeen shows a lower standard deviation
than TimeMixer, indicating more stable performance.

E.2 REAL-WORLD STOCK DATASETS

E.2.1 S&P 500 DATASETS

Table 2] reports the forecasting performance on the S&P500 dataset. In the extended Table for
brevity, we present only the top 30 stocks in alphabetical order from the full set of 500. The proposed
Hipeen consistently achieved superior performance compared to both classical linear approaches and
recent transformer-based architectures. In particular, Hipeen delivered the lowest error values across
the majority of stocks, with especially strong robustness on highly volatile equities such as AMD,
AMAT, and AES, where traditional baselines (e.g., DLinear, RLinear) exhibited significant error
inflation. While transformer variants such as iTransformer and PatchTST occasionally performed
competitively on technology-related stocks (e.g., AAPL, ADBE, AMZN), their results were less
stable across the broader set. Simpler models like DLinear showed reasonable accuracy on stable,
low-volatility stocks (e.g., ABT, ADP, AMGN), but their generalization deteriorated sharply under
complex dynamics. Overall, these results highlight the advantage of Hipeen, demonstrating both
strong predictive accuracy and greater consistency across heterogeneous stock behaviors, making it a
more reliable solution for large-scale financial time series forecasting.

E.2.2 Nifty 50 DATASETS

We extended the prediction horizons in the Nifty50 experiments to {12, 24, 48, 96}. We also
simulated actual trading based on the model predictions and expanded the evaluation to include
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Figure 14: (Part 1). Prediction patterns of Hipeen and the baselines in the transition regions of time

series under the Exponentials and Threshold scenario tasks. Orange indicates the ground
truth, and blue represents the model predictions. (Cont’d in Table @
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Figure 15: (Part 2 of Table ) Prediction patterns of Hipeen and the baselines in the transition
regions of time series under the Exponentials and Threshold scenario tasks. Orange indicates
the ground truth, and blue represents the model predictions.
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advanced, return-related metrics. This experiment was conducted using the following 12 stock
datasets, listed in alphabetical order, as described in Appendixm ADANIPORTS, BAJAJ-AUTO,
HDFC, HEROMOTOCO, HINDALCO, LT, MARUTI, NTPC, POWERGRID, TATASTEEL, TECHM, and
TITAN. For details on the inclusion criteria, please refer to Appendix [B-1.2]

In addition to the MAE, MAPE, and RMSE used in TSF benchmarks, we compute the profit generated
by executing trades based on the model’s predictions. Trading is conducted as follows: for a model
with horizon length K, the model predicts the next K future values at each timestep. If the predicted
value at t + K is greater than the current value, we open a long position with 1/K of the capital for
K days. Conversely, if the predicted value at ¢t + K is lower than the current value, we open a short
position with 1/K of the capital for K days. Detailed definitions of each metric are provided below.

Mean Absolute Error (MAE). MAE measures the average magnitude of prediction errors. Lower
values indicate better predictive accuracy.

1 N
MAE = — — U l.
N;'yt yt‘

Mean Absolute Percentage Error (MAPE). MAPE evaluates the relative prediction error as a
percentage of the true value and is scale-independent. For stability, datasets where baseline models
produced a MAPE larger than 10 were excluded from analysis.

N

100

MAPE = —
N t=1

Y — Ui
Yt

Root Mean Squared Error (RMSE). RMSE penalizes large prediction errors by squaring the
deviations before averaging. Lower values are preferred.

N
1 .
RMSE = N ;(yt — )2

Revenue (Cumulative Return). Revenue represents the cumulative return obtained from a trading
strategy built on model predictions. Higher values indicate better performance.

N
Revenue = H(l +r) — 1,

t=1
where r; denotes the daily strategy return.

Drawdown. Average drawdown measures the mean decline from the historical peak of the equity
curve, reflecting the overall risk exposure of the strategy. Lower values are better.

K
1 P, — P
AvgDD = — STt
ve K ( Pt* > 7
k=1 k

where P is the equity curve and P = max,<; P;.

Sharpe Ratio. The Sharpe ratio quantifies the excess return per unit of total volatility. Higher values
indicate better risk-adjusted performance.
Elr, —
Sharpe = L7t = 7s]
o (rt)

assuming a risk-free rate ry = 0.

Sortino Ratio. The Sortino ratio is similar to the Sharpe ratio but uses downside volatility instead of
total volatility, penalizing only negative deviations. Higher values are preferred.

Elr, —

Sortino = M
g (T + | re < O)
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Calmar Ratio. The Calmar ratio measures the annualized return relative to the maximum drawdown,
capturing the trade-off between growth and extreme losses. Higher values are better.
AnnualReturn

Cal =—
amat |MaxDrawdown|

Tables[T4] [T3] and [T present extended results for the MAE, MAPE, and RMSE experiments. Table[I7]
reports the results of the trading simulation, evaluated using Revenue, Drawdown, Sharpe Ratio,
Sortino Ratio, and Calmar Ratio.

The results show that Hipeen achieves the best predictive performance on real-world stock datasets and
attains state-of-the-art performance even in real-world trading scenarios based on these predictions.

Another noteworthy observation is that stock forecasting models such as SMamba and STF exhibit
relatively low performance on the standard forecasting metrics (MAE, MAPE, RMSE), yet achieve
strong results in the trading simulations.

E.3 BENCHMARK DATASETS

Table [T8] provides the complete results corresponding to Table]in the main text, including all horizon
values in {96,192,336,720}. Only the benchmark dataset experiment was obtained using a prototype
estimation approach, where Q was not stored during training and V.s; was computed by assuming
that vy, equals ves; in each estimation step. In the final version of the manuscript, these results will be
updated using the latest estimation method that incorporates the stored () values.

E.4 ANALYSIS

Figure [I6] presents the full results corresponding to Figure[7]in the main text. We analyzed how per-
formance changes with varying hierarchy levels H on three benchmark datasets: ETTh1, Weather,
and Exchange. When fixing ry, performance generally declined as H decreased. In contrast, when
fixing 71, performance was maintained or even improved up to a certain point, after which it sharply
deteriorated.

Table[T9|provides the full results corresponding to Table [5in the main text. Similarly, we conducted
experiments on ETTh1, Weather, and Exchange datasets to evaluate the impact of varying the
bias term added to #. Our results indicate that adding random angular bias to both the channel
dimension /N and the hierarchy dimension H is crucial for improving performance.

E.5 COMPUTATIONAL COST

As shown in Table [20] Hipeen demonstrates strong computational efficiency, ranking among the top
methods across both runtime and memory usage. Despite incorporating an ensemble dimension,
Hipeen maintains lightweight training (5.1 ms per step) and inference (3.3 ms per step), with VRAM
consumption comparable to the most efficient baselines. This efficiency advantage arises from
its design, which scales batch size without introducing additional parameters, allowing Hipeen to
retain near-linear efficiency while offering substantially stronger predictive accuracy. In contrast,
transformer-based architectures incur significantly higher computational costs, highlighting Hipeen’s
favorable trade-off between scalability and accuracy for large-scale time series forecasting.

F LLM USAGE CLARIFICATION

During the preparation of this manuscript, we utilized Google’s Gemini (https://gemini.google.com)
and OpenAI’s ChatGPT (https://chat.openai.com), both Large Language Models, for proofreading and
refining the writing. Our interactions with these tools were iterative and limited solely to enhancing
the clarity and quality of the text. We confirm that the LLMs functioned only as assistive tools and
did not contribute to the research ideas, experimental design, or data analysis in this paper. The final
scientific content and all conclusions remain entirely the responsibility of the authors.
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Figure 16: continued in the next figure (1/2)
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Figure 6 (continued; 2/2): We evaluated performance on the ETTh1 (A), Exchange (B), and Weather
(C) datasets across horizons of 96, 192, 336, and 720 by varying the hierarchy level H. The red line
indicates the case where r g is fixed, and the blue line indicates the case where rq is fixed. Solid
lines represent MSE, while dashed lines represent MAE. The model consistently maintained high
performance over a relatively wide range of H, while performance degradation was observed when
H became too small.
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Table 14: MAE (Mean Absolute Error) results on the Nifty50 dataset, averaged over three random
seeds. For brevity, stocks are represented by the first three letters of their alphabetical names.

Stock Horizon|Hipeen|DLinear|RLinear| SAN |Leddam |DDN| FAN |TimeMixer |PatchTST | TiDE | TimesNet| CycleNet | Peri-mid. [FRNet| Smamba| STF

ADA. 12 ] 0.083 | 0.190 | 0.095 |0.087| 0.103 |0.117]0.120| 0.094 0.099 |0.101| 0.176 0.104 0.088 ]0.096| 0.421 0.190
ADA. 24 ]0.122] 0213 | 0.141 |0.122] 0.169 [0.169]0.152| 0.134 0.154 0.141| 0.216 0.160 0.127 ]0.141| 0.403 |0.216
ADA. 48 0.180 | 0.232 | 0.197 |0.180| 0.208 [0.215]0.195| 0.206 0214 0.196| 0.200 0.217 0.194 10.202| 0.385 |0.266
ADA. 96 |0212| 0235 | 0.228 |0.228| 0.226 |0.262]0.206| 0.258 0.258 10.232) 0.248 0.257 0.230 0.230| 0.355 |0.329

ADA. Avg. |0.149 | 0218 | 0.165 |0.154| 0.177 |0.191|0.168| 0.173 0.181 |0.168| 0.210 0.185 0.160 |0.167 | 0.391 |0.250

BAIJ. 121 0.160 | 0.313 | 0.165 [0.158| 0.183 |0.260(0.204| 0.171 0.165 |0.188| 0.264 0.174 0.166 ]0.167 | 0.823 |0.605
BAJ. 24 |0.220 | 0.366 | 0.232 |0.225| 0.244 ]0.296/0.257| 0.236 0254 10.267| 0.292 0.240 0.236 | 0.233| 0.847 |0.622
BAJ. 48 0.308 | 0.470 | 0.327 |0.327| 0.321 [0.392]0.348| 0.330 0.327 10.378| 0.369 0.337 0.333 10.329| 0.897 |0.718
BAJ. 96 | 0.401 | 0.597 | 0.428 |0.423| 0.436 |0.442/0.434| 0.452 0.421 10.464| 0.486 0.453 0.437 10.432| 0.948 |0.823
BAJ.  Avg. | 0.272 | 0437 | 0.288 |0.283] 0.296 |0.347|0.311| 0.297 0292 ]0.324] 0.353 0.301 0.293 ]0.290| 0.878 |0.692

HDF. 12 | 0.084 | 0.166 | 0.087 |0.092| 0.090 ]0.125]0.107| 0.095 0.092 10.095| 0.125 0.097 0.086 ]0.089| 0.548 |0.467
HDF. 24 | 0.113| 0.196 | 0.116 |0.124| 0.120 |0.154|0.161| 0.129 0.121 ]0.123| 0.154 0.126 0.115 ]0.121| 0.527 |0.439
HDF. 48 0.158 | 0.256 | 0.167 |0.188| 0.170 |0.192|0.207| 0.181 0.171 10.173| 0.187 0.180 0.166 |0.170| 0.527 |0.450
HDF. 96 | 0.211| 0.336 | 0.239 |0.269| 0.245 ]0.257|0.307| 0.259 0254 10.244| 0.265 0.257 0.239 10.242| 0.536 |0.346
HDE.  Avg. | 0.141 | 0.238 | 0.152 |0.168] 0.156 ]0.182|0.196| 0.166 0.160 ]0.159] 0.183 0.165 0.151 ]0.155| 0.535 |0.426

HER. 12 | 0.150 | 0.253 | 0.149 |0.147| 0.155 ]0.200]0.191| 0.149 0.149 10.163| 0.192 0.152 0.145 10.150| 1.557 |1.208
HER. 24 | 0.201 | 0.287 | 0.196 |0.196| 0.199 |0.234|0.244| 0.198 0.202 10.209| 0.228 0.203 0.195 10.197 | 1.581 |1.369
HER. 48 0.263 | 0.339 | 0.258 |0.264| 0.262 |0.281]0.305| 0.260 0269 10.277| 0.288 0.258 0.256 0.258 | 1.625 |1.512
HER. 96 | 0.353| 0.437 | 0.352 |0.363| 0.349 |0.374|0.410| 0.346 0.355 |0.358| 0.379 0.350 0.353 10.352| 1.634 |1.613
HER. Avg. | 0.242] 0.329 | 0.239 |0.243| 0.241 |0.272]0.288| 0.238 0.244 ]0.252] 0.272 0.241 0.237 0.239| 1.599 |1.426

HIN. 121 0.025 | 0.052 | 0.026 ]0.027| 0.026 |0.041|0.038| 0.026 0.025 10.029| 0.039 0.028 0.026 ]0.026| 0.075 |0.132
HIN. 24 |0.036 | 0.065 | 0.034 |0.035| 0.036 |0.043]|0.044| 0.035 0.037 10.037| 0.042 0.036 0.034 10.035| 0.083 |0.142
HIN. 48 0.050 | 0.070 | 0.048 |0.049] 0.048 |0.060/0.056| 0.052 0.049 0.050{ 0.052 0.050 0.046 |0.048 | 0.087 |0.142
HIN. 96 |0.072 | 0.084 | 0.063 |0.065| 0.063 |0.070|0.069| 0.065 0.066 10.076| 0.071 0.067 0.062 |0.063 | 0.095 |0.144
HIN. Avg. | 0.046 | 0.068 | 0.043 |0.044| 0.043 |0.053]0.052| 0.045 0.044 0.048] 0.051 0.045 0.042 ] 0.043| 0.085 |0.140

LT 121 0.067 | 0.128 | 0.070 ]0.069| 0.076 |0.106|0.087| 0.074 0.069 10.073| 0.108 0.077 0.069 10.069| 0.219 |0.135
LT 24 10.104 | 0.155 | 0.100 |0.102| 0.108 |0.131|0.114] 0.113 0.106 |0.104| 0.128 0.113 0.101 }0.100| 0.233 |0.169
LT 48 0.141 | 0.195 | 0.143 |0.147| 0.156 |0.167/0.159| 0.152 0.161 |0.146| 0.165 0.168 0.143 10.142| 0.248 |0.183
LT 96 | 0.207 | 0262 | 0.185 |0.197| 0.195 |0.202|0.244| 0.194 0.206 0.244| 0.207 0.218 0.191 ]0.185| 0.286 |0.243
LT  Avg. |0.130 | 0.185 | 0.125 |0.129] 0.134 |0.152]0.151| 0.133 0.136 |0.142] 0.152 0.144 0.126 | 0.124 | 0.247 |0.183

MAR. 12 | 0.278 | 0.624 | 0.292 ]0.306| 0.306 |0.531|0.408| 0.297 0.285 10.311| 0.409 0.294 0.285 10.287| 4.323 |3.828
MAR. 24 |0.377 | 0.719 | 0.394 10.405| 0.401 |0.521|0.539| 0.425 0.412 10.407| 0.514 0.401 0.387 10.394| 4.401 |4.095
MAR. 48 0.543 | 0.864 | 0.565 [0.599] 0.572 |0.668/0.749| 0.619 0.567 10.581| 0.609 0.563 0.568 |0.575| 4.506 |4.380
MAR. 96 |0.751 | 1.141 | 0.786 [0.933| 0.777 |0.838|1.245| 0.798 0.789 10.789| 0.845 0.757 0.840 |0.785| 4.628 |4.684
MAR. Avg. |0.487 | 0.837 | 0.509 |0.561| 0.514 |0.639|0.735] 0.535 0.513 ]0.522] 0.595 0.504 0.520 | 0.510| 4.465 |4.247

NTP. 12| 0.138 | 0.188 | 0.116 |0.117 0.117 ]0.167]0.155|  0.120 0.115 ]0.121] 0.156 | 0.110 0.114 10.118| 0.449 |0.241
NTP. 24 |0.160 | 0.226 | 0.152 |0.171| 0.150 {0.171]0.215| 0.154 0.152 |0.158| 0.181 0.149 0.154 10.152| 0.478 [0.270
NTP. 48 0.217 | 0.279 | 0.195 ]0.238| 0.190 |0.211(0.276| 0.201 0.202 10.201}] 0.212 0.194 0.196 |0.198 | 0.516 |0.386
NTP. 96 |0.302| 0.385 | 0.256 |0.318| 0.255 |0.284|0.407| 0.294 0.295 0.263| 0.280 0.256 0.266 |0.266 | 0.592 |0.641
NTP. Avg. | 0.204 | 0.269 | 0.180 |0.211] 0.178 |0.208]0.263| 0.192 0.191 ]0.186] 0.207 0.177 0.182 ]0.183| 0.509 |0.385

POW. 12 ]0.203 | 0.332 | 0.216 |0.208| 0.225 |0.305]0.291| 0.216 0211 ]0.237| 0.301 0.216 0.214 10.218| 1.417 |0.807
POW. 24 ]0.269 | 0.368 | 0.280 |0.274| 0.290 |0.359|0.345| 0.285 0.281 ]0.308| 0.345 0.282 0.284 10.282| 1.438 |1.065
POW. 48 0.357 | 0.421 | 0.368 |0.368| 0.405 [0.441]0.459| 0.370 0.372 |0.387| 0.393 0.368 0.369 |0.368 | 1.501 |1.314
POW. 96 | 0.443 | 0.469 | 0.445 |0.444| 0.465 |0.484]0.548| 0.450 0.450 0.470| 0.476 0.451 0.445 10.448 | 1.584 |1.588
POW. Avg. | 0318 | 0.397 | 0.327 |0.323] 0.346 |0.397|0.411| 0.330 0.329 ]0.351] 0.379 0.329 0.328 |0.329| 1.485 |1.193

TAT. 12| 0.113 | 0.222 | 0.126 |0.118] 0.132 ]0.193|0.147| 0.128 0.128 ]0.136] 0.170 0.131 0.125 10.124| 0.352 |0.202
TAT. 24 | 0.161 | 0.258 | 0.178 |0.172| 0.185 {0.232|0.203| 0.187 0.186 |0.188] 0.212 0.181 0.177 10.176 | 0.368 |0.259
TAT. 48 0.242 | 0.321 | 0.262 ]0.250| 0.259 |0.304|0.277| 0.285 0.264 0.263| 0.290 0.262 0.264 |0.267 | 0.391 |0.352
TAT. 96 | 0.364 | 0.400 | 0.390 |0.388] 0.386 [0.471]0.379| 0.413 0.383 |0.405| 0.410 0.395 0.393 10.393| 0415 |0.435
TAT. Avg. | 0.220 | 0.300 | 0.239 |0.232] 0.241 |0.300]0.252| 0.253 0.240 ]0.248| 0.271 0.242 0.240 ]0.240| 0.381 |0.312

TEC. 12 | 0.044 | 0.094 | 0.048 |0.047| 0.052 ]0.071]0.060 0.047 0.046 10.053| 0.084 0.050 0.047 10.047| 0.158 0.177
TEC. 24 |0.063| 0.115 | 0.071 |0.066| 0.072 ]0.089|0.081| 0.067 0.077 ]0.079| 0.099 0.069 0.068 |0.066| 0.168 |0.188
TEC. 48 0.101 | 0.134 | 0.104 ]0.099| 0.104 |0.115(0.111| 0.103 0.096 10.113| 0.108 0.103 0.099 |0.101| 0.175 |0.248
TEC. 96 |0.148 | 0.181 | 0.162 |0.155| 0.172 ]0.166|0.152| 0.160 0.149 10.169| 0.160 0.157 0.161 |0.155| 0.181 |0.295
TEC. Avg. | 0.089 | 0.131 | 0.096 |0.092| 0.100 |0.110]0.101| 0.094 0.092 ]0.104| 0.113 0.095 0.094 ]0.092| 0.170 |0.227

TIT. 121 0.045 | 0.088 | 0.053 ]0.058| 0.050 |0.080(0.061| 0.053 0.049 10.061| 0.084 0.059 0.049 10.050 | 0.184 ]0.403
TIT. 24 | 0.059 | 0.105 | 0.075 |0.080| 0.072 {0.100|0.074| 0.079 0.065 10.079| 0.114 0.080 0.072 10.072| 0.194 |0.365
TIT. 48 0.083 | 0.128 | 0.108 |0.120] 0.111 [0.133]0.095| 0.112 0.098 |0.105| 0.115 0.135 0.109 |0.111| 0.195 |0.271
TIT. 96 | 0.114 | 0.166 | 0.151 |0.167| 0.144 |0.166|0.152| 0.158 0.149 10.150) 0.173 0.183 0.150 |0.145| 0.221 |0.310
TIT. Avg. | 0.075] 0.122 | 0.096 |0.106] 0.094 |0.120]0.096| 0.100 0.090 ]0.099| 0.121 0.114 0.095 ]0.094| 0.199 |0.337
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Table 15: MAPE (Mean Absolute Percentage Error) results on the Nifty50 dataset, averaged over
three random seeds. For brevity, stocks are represented by the first three letters of their alphabetical
names.

Stock Horizon|Hipeen|DLinear|RLinear| SAN |Leddam |DDN| FAN |TimeMixer |PatchTST | TiDE | TimesNet| CycleNet | Peri-mid. [FRNet| Smamba| STF

BAJ. 121 0.154 | 0282 | 0.15 10.139| 0.182 |0.23 |0.193| 0.157 0.16 |0.162| 0.25 0.166 0.151 10.148| 0.482 |0.352
BAJ. 24 0.22 | 0322 | 0.223 [0.212| 0.247 |0.279|0.253|  0.23 0.242 10.247| 0.283 0.237 0.227 10227 | 0.498 |0.384
BAJ. 48 0.308 | 0.382 | 0.313 | 0.3 | 0.317 |0.361]0.324| 0.328 032 10.346| 0.349 0.324 0.317 ]0.317 | 0.529 |0.441
BAJ. 96 | 0.405 | 0.444 | 0.404 |0.379| 0.418 |0.417/0.391| 0.422 0411 ]0.423| 0.452 0.41 0.411 ]0.408| 0.571 |0.503
BAJ.  avg | 0272 0.358 | 0.273 |0.257| 0.291 |0.32210.29 | 0.284 0283 ]0.295| 0.334 0.284 0276 0.275| 0.52 |0.42

HDEF. 12 0.08 | 0.157 | 0.082 |0.086| 0.085 |0.114]0.099| 0.09 0.088 0.089] 0.117 0.092 0.082 10.084| 0.468 |0.484
HDF. 24 0.107 | 0.183 | 0.109 [0.116] 0.113 |0.151]0.147| 0.122 0.115 |0.117] 0.144 0.119 0.109 [0.113| 0.44 |0.46
HDE. 48 0.15 | 0.232 | 0.156 |0.172| 0.159 |0.184]0.188| 0.17 0.16 [0.163| 0.176 0.167 0.156 |0.159| 0435 |0.479
HDE. 96 0.198 | 0294 | 0.219 | 0.24 | 0.224 | 0.24 |0.266| 0.238 0229 0.224| 0.244 0.232 0.219 ]0.223| 0.442 |0.318
HDF. avg |0.134 | 0.216 | 0.142 |0.153] 0.145 |0.172]0.175| 0.155 0.148 ]0.148| 0.17 0.153 0.141 ]0.145| 0.446 |0.436

HER. 12 | 0.063 | 0.11 0.063 [0.061| 0.066 |0.084]0.082| 0.062 0.062 ]0.067| 0.083 0.063 0.061 10.061| 0.528 | 0.4

HER. 24 | 0.087 | 0.126 | 0.084 |0.084| 0.087 | 0.1 |0.106| 0.084 0.087 ]0.089| 0.1 0.087 0.084 |0.084| 0.536 |0.457
HER. 48 0.117 | 0.149 | 0.114 |0.116| 0.117 |0.124|0.134| 0.113 0.118 |0.121] 0.128 0.113 0.113 |0.114| 0.551 |0.509
HER. 96 |0.156 | 0.19 | 0.156 |0.159| 0.154 |0.165|0.179| 0.152 0.155 ]0.158| 0.167 0.154 6 |0.155] 0.555 10.545
HER. avg |0.106 | 0.144 | 0.104 |0.105| 0.106 |0.118]0.125| 0.103 0.106 ]0.109| 0.119 0.104 3 |0.104 ] 0.542 ]0.478

HIN. 12 10.052 | 0.11 | 0.054 ]0.055| 0.054 |0.086|0.084| 0.054 0.054 | 0.06 | 0.082 0.056
HIN. 24 |0.073 | 0.134 | 0.071 |0.072| 0.073 |0.086|0.094| 0.072 0.077 |0.075| 0.087 0.074
HIN. 48 0.1 0.14 0.1 10.099| 0.099 |0.124|0.115| 0.103 0.1 0.103| 0.104 0.1

HIN. 96 |0.139| 0.159 | 0.125 |0.127| 0.128 |0.139]0.136| 0.131 0.132 10.145| 0.143 0.135
HIN. avg |0.091| 0.136 | 0.088 |0.088| 0.088 |0.109|0.107|  0.09 0.091 ]0.096| 0.104 0.091 0.087 | 0.165 | 0.3

0.054
0.07
0.096
0.124
0.086
LT 121 0.173 | 0299 | 0.188 ]0.181| 0.204 |0.272|0.214| 0.201 0.19 10.194| 0.281 0.209 0.181 10.191| 0.527 |0.329
LT 24 10.256 | 0.345 | 0.267 |0.265| 0.29 |0.359|0.272| 0.309 0.286 |0.273| 0.329 0.311 0.265 |0.277 | 0.561 |0.419
0.382
0.507
0.334
0.05
0.068
0.101

0.053 | 0.147 10.305
0.071 | 0.163 |0.311
0.098 | 0.17 ]0.295
0.126 | 0.182 ]0.291

LT 48 0.333 | 041 | 0.383 ]0.362| 0.418 |0.464|0.354| 0.427 0.448 10.396| 0.445 0.463 0.388 | 0.571 ]0.447
LT 96 | 0.432 | 0.484 | 0.494 |0.507| 0.525 |0.505|0.482| 0.533 0.57 ]0.593| 0.553 0.611 0.497 | 0.565 ]0.448
LT avg | 0.299 | 0.385 | 0.333 |0.329| 0.359 | 0.4 |0.331] 0.367 0.373 |0.364| 0.402 0.399 0.338 | 0.556 |0.411

MAR. 12 | 0.049 | 0.113 | 0.051 |0.054| 0.054 |0.094|0.073| 0.052 0.05 10.055] 0.072 0.051 0.05 | 0.688 ]0.603
MAR. 24 |0.067 | 0.131 | 0.069 [0.071| 0.071 |0.092|0.097| 0.076 0.073 0.071] 0.092 0.071 0.069 | 0.701 ]0.648
MAR. 48 0.098 | 0.158 | 0.101 |0.108| 0.103 |0.121|0.136| 0.111 0.101 ]0.103| 0.11 0.101 0.102 | 0.719 ]0.696
MAR. 96 |0.139 | 0.211 | 0.145 |0.171| 0.144 10.154|0.227| 0.147 0.145 10.145| 0.155 0.14 0.155 ]0.144| 0.745 |0.754
MAR. avg | 0.088 | 0.153 | 0.091 |0.101| 0.093 |0.115]|0.134] 0.096 0.092 0.094| 0.107 0.091 0.093 ]0.091| 0.713 |0.675

NTP. 1210569 | 0.792 | 0.508 |0.45| 0.459 |0.778|0.586| 0.457 0.511 0.505| 0.706 0.455 0.478 10.504| 1.95 |0.709
NTP. 24 | 0.685| 0.943 | 0.67 |0.69| 0.643 |0.747|0.818| 0.649 0.686 10.675| 0.833 0.666 0.697 10.655| 2.166 |0.91
NTP. 48 1.06 | 1.126 | 0.989 |1.051| 0.945 |1.094|1.143] 0.998 0.979 10.966| 1.031 0.971 0.982 |1.002| 2.479 |1.317
NTP. 96 1.371 | 1.345 1.28 |1.328| 1.287 |1.423|1.442| 1.463 1.501 |1.324| 1.342 1.294 1.345 | 1.363 | 3.014 |2.666
NTP. avg |0.921| 1.052 | 0.862 | 0.88 | 0.834 | 1.01 |0.997| 0.892 0.919 ]0.868| 0.978 0.847 0.876 |0.881| 2.402 | 1.4

POW. 12 ]0.085| 0.144 | 0.091 [0.087| 0.095 |0.129(0.124| 0.091 0.088 | 0.1 | 0.128 0.091 0.09 [0.092| 0.514 |0.293

POW. 24 |0.114 | 0.16 | 0.119 |0.116] 0.123 |0.151|0.151|  0.12 0.12  10.131| 0.148 0.12 0.119 ]0.119| 0.524 |0.388
POW. 48 0.155 | 0.184 | 0.158 |0.158] 0.176 |0.187]0.207| 0.159 0.159 |0.166| 0.172 0.158 0.158 ]0.158| 0.555 |0.486
POW. 96 |0.198 | 0.205 | 0.197 |0.195| 0.204 |0.213|0.249 0.2 02 ]0.209| 0.21 0.2 0.197 10.198| 0.599 |0.602

POW. avg |0.138 | 0.173 | 0.141 |0.139] 0.15 |0.17 |0.182| 0.142 0.142 |0.152] 0.165 0.142 0.141 ]0.142| 0.548 |0.442

TAT. 121 0.557 | 1.111 | 0.709 10.637| 0.71 |0.984|0.74| 0.783 0.616 10.824| 0.833 0.75 0.744 10.688 | 1.423 |1.184
TAT. 24 | 0.937 | 1.282 | 1.052 |0.965| 0.937 |1.127|1.366| 1.066 0.936 | 1.11| 1.365 0.937 1.041 | 1.023| 146 |1.673
TAT. 48 1.484 | 1.348 | 1.593 |1.684| 1.456 |1.974|1.774| 1.369 1.587 |1.567| 1.64 1.446 1.661 |1.668| 1.54 |2.189
TAT. 96 1.838 | 1.816 | 2.075 |2.129| 1.748 |2.969|2.006| 2.166 1.967 |2.332| 2.21 1.961 2.052 2071 1.807 |2.355
TAT. avg | 1204 | 1.389 | 1.357 |1.354] 1.213 |1.764|1.472| 1.346 1.277 |1.458| 1.512 1.273 1.374 | 1.363| 1.557 | 1.85

TEC. 12 0.554 | 1.012 | 0.561 [0.601| 0.537 | 0.7 ]0.625| 0.52 0.543 10.612| 0.894 0.586 0.523 10.531| 1.185 |4.244

TEC. 24 0.716 | 1.273 | 0.775 |0.638| 0.711 [0.899/0.795| 0.676 0.896 10.916 0.695 0.679 |0.674 | 1.407 |3.887

TEC. 48 0.956 | 1.485 1.28 [1.005| 1.166 | 1.16 | 1.05 0.811 0.879 |1.132 1.045 1.021 [0915| 1.634 | 3.5

TEC. 96 1.308 | 2.171 | 2.434 | 1.88 | 2.302 |1.923|1.385 1.04 1032 |2.262| 1.311 2.071 2313 11.092| 1.871 |2.99

TEC. avg |0.884 | 1.485 | 1.262 |1.031] 1.179 |1.171]0.964| 0.762 0.837 | 1.23| 1.036 1.099 1.134 |0.803 | 1.524 |3.655
0.18

TIT. 121 0.171 | 0.325 | 0.195 ]0.207| 0.182 |0.29 |0.236| 0.198 0.226| 0.304 0.219 0.183 10.184| 0.667 |1.193
TIT. 24 10.226 | 0.376 | 0.274 10.277| 0.263 |0.361]|0.296| 0.289 0.244 10.287| 0.413 0.291 0.263 |0.263| 0.698 |[1.127
TIT. 48 0.311 | 0.441 | 0.395 |0.417| 0.41 |0.493|0.376| 0.413 0.365 10.385| 0.417 0.489 0.399 10.404 | 0.729 |0.845
TIT. 96 | 0.418 | 0.549 | 0.569 |0.599| 0.54 |0.637|0.552| 0.562 0.523 0.566| 0.645 0.66 0.566 |0.544| 0.812 (0911
TIT. avg | 0.282 ] 0.423 | 0.358 |0.375] 0.349 |0.445]0.365| 0.365 0.328 ]0.366| 0.444 0.415 0.353 ]0.349| 0.726 |1.019

37



Under review as a conference paper at ICLR 2026

Table 16: RMSE (Root Mean Squared Error) results on the Nifty50 dataset, averaged over three
random seeds. For brevity, stocks are represented by the first three letters of their alphabetical names.

Stock Horizon|Hipeen|DLinear|RLinear| SAN |Leddam |DDN| FAN |TimeMixer |PatchTST | TiDE | TimesNet| CycleNet | Peri-mid. [FRNet| Smamba| STF

ADA. 12 ]0.126 | 0.282 | 0.144 |0.132] 0.149 |0.167]0.175| 0.134 0.139 ]0.151] 0.258 0.146 0.131 ]0.142| 0.558 |0.258
ADA. 24 ]0.182 | 0.324 | 0.205 |0.178| 0.241 |0.252]0.225|  0.19 023 10.196| 0.324 0.222 0.192 10.206 | 0.544 |0.295
ADA. 48 0.276 | 0.368 | 0.302 |0.265| 0.307 [0.307]0.302| 0.309 0312 |0.29| 0.282 0.306 0.296 |0.304| 0.513 |0.359
ADA. 96 |0.343 | 0.38 | 0.366 |0.359| 0.361 |0.384/0.342| 0.379 0.387 10.364| 0.373 0.374 0.369 |0.361 | 0.474 |0.445
ADA. avg |0.232 ] 0.339 | 0.254 |0.234| 0.264 |0.278|0.261| 0.253 0267 |0.25] 0.309 0.262 0.247 ]0.253| 0.522 |0.339

BAIJ. 1210235 | 0.425 | 0234 |0.222| 0.26 |0.358|0.286| 0.24 0.239 10.257| 0.362 0.243 0.236 10.231| 1.01 |0.856
BAJ. 24 |0.327 | 0493 | 0.336 |0.323| 0.353 |0.414/0.371| 0.347 0.362 |0.372| 0.407 0.342 0.341 10.337 | 1.029 |0.848
BAJ. 48 0.446 | 0.607 | 0.465 |0.456| 0.461 |0.535|0.487| 0.473 047 10.515) 0.501 0.475 0.471 10.468 | 1.072 |0.912
BAJ. 96 | 0.572] 0.742 | 0.592 |0.577| 0.601 |0.598]0.58 | 0.632 0.587 10.621| 0.644 0.607 0.602 |0.596| 1.096 |0.97
BAJ. avg |0.395]| 0.567 | 0.407 |0.394] 0.419 |0.476|0.431| 0.423 0.415 |0.441] 0478 0.417 0.412 ]0.408| 1.052 |0.897

HDF. 12 | 0.124 | 0.221 | 0.126 | 0.13| 0.128 ]0.172]0.15| 0.136 0.131 ]0.135] 0.173 0.134 0.125 10.128 | 0.716 |0.556
HDE. 24 |0.169 | 0.262 | 0.171 |0.177| 0.175 ]0.222]0.224| 0.187 0.174 10.179 0.215 0.177 0.17 ]0.177 | 0.688 |0.52
HDFE. 48 0.24 | 0.336 | 0.247 |0.264| 0.251 |0.279|0.291| 0.266 0.251 ]0.253) 0.267 0.26 0.246 |0.252| 0.687 |0.522
HDF. 96 | 0.325| 0.429 | 0.348 |0.369| 0.355 ]0.362|0.408 0.371 0.368 |0.353| 0.379 0.367 0.348 10.351| 0.692 |0.447
HDE. avg | 0.215] 0.312 | 0.223 |0.235] 0.227 |0.259|0.268| 0.24 0.231 ]0.23] 0.259 0.234 0.222 0227 | 0.696 |0.511

HER. 12 | 0.194 | 0317 | 0.193 |0.192]| 0.201 ]0.255|0.244| 0.193 0.196 0.207| 0.246 0.197 0.188 ]0.196| 1.698 |1.364
HER. 24 | 0.264 | 0.361 | 0.256 |0.255| 0.263 |0.301|0.312| 0.259 0.266 |0.27 | 0.296 0.264 0.255 10.256| 1.725 |1.529
HER. 48 0.344 | 0.429 | 0.338 |0.346| 0.343 |0.364| 0.39 | 0.339 0.354 ]0.357| 0.381 0.337 0.337 10.338| 1.775 |1.669
HER. 96 |0.467| 0.55 | 0.464 |0.479| 0.461 |0.484|0.525| 0.455 0.461 0.469| 0.502 0.461 0.465 10.463| 1.793 |1.781
HER. avg | 0317 | 0.414 | 0.313 |0.318] 0.317 |0.351]0.368| 0.312 0.319 ]0.326] 0.356 0.315 0.311 |0.313| 1.748 |1.586

HIN. 121 0.034 | 0.069 | 0.036 ]0.036| 0.036 |0.057|0.054| 0.036 0.035 10.039| 0.053 0.037 0.036 ]0.035| 0.095 |0.186
HIN. 24 0.05 | 0.086 | 0.048 |0.049| 0.049 |0.058/0.062| 0.049 0.051 ]0.051| 0.059 0.05 0.048 10.049| 0.105 |0.182
HIN. 48 0.069 | 0.094 | 0.069 [0.069| 0.068 [0.083]0.079| 0.072 0.069 10.071| 0.072 0.07 0.067 10.068 | 0.11 |0.167
HIN. 96 |0.097 | 0.111 | 0.092 |0.093| 0.093 {0.101]0.096| 0.094 0.095 ]0.108 0.104 0.097 0.091 10.093| 0.119 [0.17
HIN. avg |0.062| 0.09 | 0.061 |0.062| 0.061 |0.075|0.073| 0.063 0.063 ]0.067| 0.072 0.064 0.06 |0.061| 0.107 |0.176

LT 121 0.094 | 0.169 | 0.098 ]0.096| 0.105 |0.142|0.12| 0.103 0.099 10.102| 0.144 0.108 0.097 10.098 | 0.272 |0.18
LT 24 10.143 | 0205 | 0.139 |0.138| 0.148 |0.184|0.158| 0.156 0.15 (0.142| 0.17 0.158 0.139 | 0.14 | 0.291 |0.226
LT 48 0.198 | 0.258 | 0.198 ]0.197| 0.211 |0.232|0.219| 0.211 0221 ]0.202| 0.221 0.224 0.197 10.198 | 0.316 |0.241
LT 96 | 0288 | 0.353 | 0.27 |0.27| 0.278 |0.295|0.323| 0.275 0.289 ]0.332] 0.287 0.293 0.274 10.269| 0.378 |0.328
LT avg | 0.181 | 0.246 | 0.176 |0.175| 0.185 |0.213|0.205| 0.186 0.19 |0.195| 0.206 0.196 0.177 ]0.176 | 0.314 |0.244

MAR. 12 | 0.376 | 0.821 | 0.393 ]0.416| 0.412 |0.689|0.548| 0.398 0.397 10.409| 0.541 0.394 0.383 10.386| 4.484 |4.02
MAR. 24 |0.519 | 0948 | 0.539 |0.552| 0.548 |0.686|0.727| 0.577 0.562 0.548| 0.684 0.542 0.531 ]0.533| 4.562 |4.278
MAR. 48 0.75 | 1.138 | 0.778 |0.821| 0.774 ]0.883(1.005| 0.828 0.773 |0.784| 0.817 0.771 0.78 10.784| 4.669 |4.56
MAR. 96 1.005 | 1.478 | 1.069 |1.237| 1.035 |1.102|1.616| 1.083 1.055 | 1.06 | 1.092 1.029 1.146 | 1.055| 4.789 |4.854
MAR. avg |0.662 | 1.096 | 0.695 |0.757| 0.692 | 0.84 |0.974| 0.722 0.697 | 0.7 | 0.783 0.684 0.71 |0.689 | 4.626 |4.428

NTP. 12| 0.177 | 0.239 | 0.155 |0.158| 0.16 |0.21]0.198| 0.163 0.16 10.162| 0.203 0.154 0.153 10.159| 0.545 |0.314
NTP. 24 |0.211| 0.285 | 0.201 |0.226| 0.202 {0.222]0.272| 0.207 0.206 |0.207| 0.235 0.203 0.202 |0.201| 0.574 |0.344
NTP. 48 0.28 | 0.348 | 0.256 |0.307| 0.254 |0.274|0.345| 0.264 0.269 |0.262| 0.276 0.258 0.258 10259 | 0.61 [0.492
NTP. 96 |0.376| 047 | 0.326 |0.398| 0.327 |0.353]|0.491| 0.367 0.372 |0.333] 0.352 0.33 0.336 | 0.337 | 0.682 |0.763
NTP. avg | 0.261 | 0.336 | 0.235 |0.272| 0.236 |0.265|0.326] 0.25 0252 |0.241| 0.266 0.236 0.237 ]10.239| 0.603 |0.478

POW. 12 0.28 | 0.422 | 0.297 |0.288| 0.305 |0.393]0.372| 0.296 0294 10.318| 0.39 0.296 0.292 10.298 | 1.54 |0.93
POW. 24 | 0.364 | 0469 | 0.377 |0.375| 0.388 [0.471]0.438| 0.386 0.381 ]0.402| 0.449 0.378 0.381 | 0.38 | 1.557 |1.184
POW. 48 0.475 | 0.547 | 0.486 |0.486| 0.515 |0.584/0.581| 0.487 0.498 10.506| 0.511 0.487 0.488 10.485| 1.614 |1.433
POW. 96 | 0.593 | 0.622 | 0.593 |0.594| 0.612 |0.638|0.721| 0.608 0.6 0.62 | 0.629 0.598 0.594 10597 | 1.687 |1.69
POW. avg | 0.428 | 0.515 | 0.438 |0.436| 0.455 |0.522]0.528| 0.444 0.443 10.462| 0.494 0.44 0.439 | 0.44 | 1.599 |1.309

TAT. 12| 0.159 | 0.287 | 0.176 |0.166] 0.185 ]0.252|0.202| 0.182 0.182 ]0.189] 0.224 0.187 0.174 10.172| 0.494 |0.274
TAT. 24 | 0.228 | 0.335 | 0.245 |0.239| 0.257 {0.304| 0.27 | 0.256 0.262 |0.255| 0.281 0.256 0.241 10243 | 0.505 [0.344
TAT. 48 0.335 | 0.419 | 0.355 |0.339| 0.355 [0.399/0.366| 0.38 036 [0.356| 0.386 0.358 0.357 | 0.36 | 0.529 |0.456
TAT. 96 | 0.494 | 0.535 | 0.519 |0.507| 0.522 |0.601/0.496| 0.546 0.51 ]0.531 0.543 0.529 0.523 ]0.524| 0.558 |0.556
TAT. avg |0.304 | 0.394 | 0.323 |0.313] 0.33 ]0.389]0.333| 0.341 0.329 ]0.333] 0.359 0.333 0.324 ]0.325| 0.521 |0.407

TEC. 12 ] 0.064 | 0.125 | 0.068 |0.065| 0.072 ]0.098]0.083| 0.067 0.064 10.073| 0.111 0.067 0.067 10.065| 0.193 0.248
TEC. 24 |0.093| 0.153 0.1 ]0.094| 0.1 0.124|0.112] 0.094 0.105 |0.109| 0.133 0.095 0.097 10.093| 0.204 |0.254
TEC. 48 0.143 | 0.179 | 0.144 |0.137| 0.143 |0.157]0.153| 0.147 0.134 0.155| 0.147 0.141 0.14 |0.141| 0.212 |0.308
TEC. 96 0.2 | 0233 | 0.213 |0.202| 0.222 |0.217]0.206| 0.215 0.199 1022 | 0.208 0.204 0212 10.213| 022 |0.356
TEC. avg |0.125]| 0.173 | 0.131 |0.125] 0.134 ]0.149|0.139| 0.131 0.126 ]0.139| 0.15 0.127 0.129 ]0.128 | 0.207 |0.291

TIT. 121 0.066 | 0.111 | 0.073 ]0.079| 0.07 |0.102|0.084| 0.073 0.069 |0.081| 0.106 0.08 0.069 10.071| 0.237 |0.596
TIT. 24 | 0.088 | 0.133 0.1 ]0.108| 0.097 |0.126|0.103| 0.103 0.092 10.105| 0.139 0.105 0.097 ]0.097 | 0.248 |0.522
TIT. 48 0.116 | 0.162 | 0.139 |0.155| 0.14 |0.165(0.127| 0.141 0.13  10.136| 0.146 0.165 0.14 |0.141| 0.249 |0.364
TIT. 96 | 0.152 | 0212 | 0.189 |0.213| 0.181 |0.205|0.194| 0.199 0.196 10.188| 0.209 0.23 0.189 10.182| 0.28 |0.401
TIT. avg |0.105] 0.155 | 0.125 |0.139] 0.122 |0.149/0.127| 0.129 0.122 ]0.128| 0.15 0.145 0.124 ]0.122| 0.254 |0.471
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|Hipeen |DLinear |[RLinear| SAN |Leddam|DDN|FAN| TimeMixer |PatchTST| TiDE | TimesNet| CycleNet |Peri-mid. |[FRNet| Smamba | STF

Metric

Stock

results using rank-based averaging. For brevity, stock names are abbreviated to the first three letters

of their alphabetical names.

horizon lengths and three random seeds. The scales differ substantially across horizons, and due to
the nature of risk-adjusted return metrics—which can sometimes yield infinite values—we report the

Table 17: Trading-based metrics results on the Nifty50 dataset, averaged over {12, 24, 48,96}
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Table 19: Ablation study on the bias term conducted on the ETTh1, Exchange, and Weather datasets.
We compare Hipeen without a bias term, with a bias applied along the N-dimension (/N x 1), and
along the H-dimension (1 x H).

Horizon 96 192 336 720
Metric MSE MAE MSE MAE MSE MAE MSE MAE
Ours | 0383 0.385 0.435 0416 0480 0.441 0509 0.486
Errhny | N-dim | 0387 0399 0444 0434 0493 0464 0530 0510
H-dim | 0407 0415 0506 0485 0671 0592 0892 0.702
Nobias | 0.808 0.698 1.043 0816 1.062 0.820 1247 0.877
Ours | 0.087 0206 0.196 0314 0332 0417 0705 0.643
Exch N-dim | 0.081 0201 0.166 0294 0356 0441 0.635 0.615
XChange | p dim | 0.090 0209 0307 0378 0.542 0520 1259 0.849
Nobias | 0.185 0279 1319 0.732 1.765 0902 11270 2.543
Ours | 0.149 0.198 0.191 0238 0.243 0280 0313 0.330
Weather | N-dim | 0153 0203 0.195 0249 0250 0295 0320 0.340
H-dim | 0.150 0202 0.196 0250 0244 0291 0312 0.336
Nobias | 0.153 0213 0203 0265 0260 0319 0332 0373

Table 20: Training and inference efficiency comparison across models. Reported are average time per
step (ms) and maximum VRAM usage (MB), with corresponding ranks. *With an extra ensemble
dimension of 1, the method scales only the batch size without adding learnable parameters, yielding
high efficiency.

Train Avg. Time (ms) Infer Avg. Time (ms) Train Max VRAM (MB) Infer Max VRAM (MB)

Model
Value Rank Value Rank Value Rank Value Rank

CycleNet 2.7 4 0.7 4 21.7 4 20.3 4
DLinear 2.0 1 0.7 3 19.0 1 18.4 2
FEDformer 261.1 17 62.9 15 2071.4 15 469.9 14
FRNet 14.1 8 35 8 53.9 7 34.6 8
iTransformer 10.6 6 2.5 5 26.5 5 21.2 6
NST 63.5 12 24.0 13 2093.2 16 828.0 17
PatchTST 16.5 9 4.6 9 427.5 11 213.5 12
PerimidFormer  88.3 14 65.1 16 969.7 13 433.2 13
TiDE 27.4 10 8.1 11 193.2 10 60.0 10
TimeMixer 31.6 11 7.0 10 80.5 8 33.0 7
TimesNet 134.7 16 18.7 12 582.9 12 62.2 11
RLinear 2.5 3 0.6 2 19.2 3 18.1 1
DishTS 110.2 15 94.8 17 3418.1 17 709.1 16
SAN 2.1 2 0.6 1 19.0 1 18.4 2
Leddam 11.8 7 3.0 6 91.2 9 57.8 9
Hipeen* 5.1 5 33 7 52.6 6 20.5 5
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