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ABSTRACT

Time series forecasting (TSF) has advanced rapidly through benchmark-driven
competition. However, we find that state-of-the-art models struggle to predict even
a simple long-period sine wave, despite ample training data. One reason is that
existing benchmarks underrepresent the non-stationary characteristics prevalent
in real-world time series, leading to misleading evaluations. Moreover, standard
stationarization methods inherently introduce substantial information loss during
the stationarization process. To investigate this, we introduce controlled datasets
that expose information loss incurred by standard z-normalization-based station-
arization methods, widely used in TSF models. To address this limitation, we
propose Hipeen, a hierarchical periodic stationarization method that achieves sta-
tionarization through representing the value into multiple periodic components,
minimizing information loss. Hipeen, with a linear backbone, successfully fore-
casts highly non-stationary signals— controlled datasets and large-scale stock
datasets—substantially outperforming current SOTA models (8 stationarization
methods and 8 baselines), while maintaining strong performance on conventional
benchmarks. Our results highlight the importance of preserving critical information
during stationarization and provide a new approach for robust TSF in non-stationary
environments. All code and models will be released in the final version.

1 INTRODUCTION

Time series forecasting (TSF) has advanced rapidly through benchmark-driven competition on
datasets designed to represent real-world signals (Wu et al., 2023). Yet, our analysis reveals that even
the latest state-of-the-art (SOTA) models perform unexpectedly poorly on a seemingly simple case:
forecasting a long-period sine wave with Gaussian noise (Figure 1A), despite the ample training data
covering multiple full cycles. This raises two natural questions: Why do benchmark-leading models
fail on such simple signals, and do current benchmarks adequately reflect real-world time series?

To address these questions, we examine the stationarity in time series. Changes in a data’s distribution
over time—known as distribution shift or non-stationarity—cause train and test distributions to
diverge, reducing model performance (Li et al., 2023). Fan et al. (2023) further demonstrated that non-

Figure 1: (A) Latest SOTA models, including Timemixer (Wang et al., 2024b), CycleNet (Lin et al.,
2024), and Peri-midformer (Wu et al., 2024), fail on the long-range sine wave forecasting. (B) The
out-range rate is shown as an intuitive proxy for the degree of non-stationarity. (C) Four types of
datasets are positioned according to their Train/Test and Look-back/Horizon out-range rates.
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Figure 2: (A) Visualization of the Exponential task. At each look-back position (blue, green), the right
figures show how the TimeMixer and Hipeen(Ours) forecast the following signal. (B) Visualization
of the Threshold task. same as (A). (C) Visualization of the Sine wave task. (D) Hipeen stationarizes
not only across train-test splits but also within each sample between look-back and horizon.

stationarity within a sample—between look-back and horizon windows—also impairs performance.
In line with this research, we introduce the “out-range rate” as an intuitive proxy to quantify the
degree of non-stationarity in a dataset (Figure 1B). This metric measures the percentage of values in
a sequence B that fall outside the [min(A),max(A)] range of another sequence A.

Figure 1C reveals a stark contrast between TSF benchmarks (red) and the long-periodic sine wave
(blue; Sine1). In this figure, the x and y-axis represent the train/test and look-back/horizon out-range
rate, respectively, mapping the space where all time series data can be positioned. While the Sine1 and
real-world stock datasets (S&P500 and Nifty50) span broader regions, the benchmarks are clustered
narrowly around the origin. This suggests that current benchmarks underrepresent non-stationary
real-world time series, making it plausible that models optimized for these benchmarks would fail to
predict even a simple long-periodic sine wave that exhibits high look-back/horizon non-stationarity.

This leads to further questions. Are current SOTA models incapable of handling non-stationarity?
And why does their performance falter on non-stationary data? The first question can be answered
in the negative. As will be detailed in related works, stationarization methods such as RevIN (Kim
et al., 2021), Dish-TS (Fan et al., 2023), and SAN (Liu et al., 2024b) employ z-normalization to
align distributions effectively, yielding low out-range rates after processing. Indeed, most SOTA
models incorporate RevIN as a default component Wang et al. (2024b), ensuring that even highly
non-stationary signals are supplied in a stationarized form. Therefore, in response to the second
question, we argue that the critical issue lies not in how well stationarization aligns distributions,
but in the extent of information loss it introduces.

To substantiate our claim, we introduce a controlled dataset where forecasting requires informa-
tion—gradients or absolute values—that z-normalization discards. First, the Exponential (Exp.)
dataset contains exponential functions that flip when reaching a specific gradient (Figure 2A). Sec-
ond, the Threshold (Thr.) dataset involves a strictly increasing function whose slope lies within a
prescribed range and resets to zero upon reaching a predetermined threshold (Figure 2B). Finally,
the Sine wave (Sine) requires both absolute value and gradient information to ascertain its current
position within the long-range pattern (Figure 2C). As can be seen in Figure 1C, these datasets exhibit
substantially higher look-back/horizon out-range rates compared to the benchmark. Our experi-
ments show that the latest SOTA models (as well as older models that do not use z-normalization)
all fail to predict these controlled datasets, thereby confirming that the information essential for
forecasting—specifically gradients and absolute values—is indeed lost in practice.

Many real-world systems, such as battery charging or HVAC systems, rely on gradient or threshold
dynamics, making their loss during stationarization problematic. Furthermore, as demonstrated with
the sine wave, current models perform poorly in identifying long-range periodic patterns. To address
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these shortcomings, we propose a novel Hierarchical Periodic Ensemble (Hipeen) stationarization
method, which does not rely on z-normalization and thus mitigates the loss of essential information.
Analogous to representing a single real number as multiple digits in a decimal expansion, Hipeen
performs stationarization by projecting a signal’s value into multiple hierarchical periodic components,
transforming non-stationary value variations into stationary, fixed-range periodic motions, achieving
high stationarity (Figure 2D). Remarkably, Hipeen, when paired with a simple linear backbone, is the
sole method to succeed in forecasting our controlled dataset.

We further extend our experiments to a broad real-world stock datasets characterized by simultane-
ously high look-back/horizon and train/test out-range rates. We show that Hipeen, with only a linear
backbone, outperforms current SOTA models on these datasets, clearly demonstrating both the limita-
tions of existing stationarization approaches and the effectiveness of Hipeen on real-world datasets.
Finally, despite being designed to address pronounced non-stationarity, Hipeen also demonstrates
more favorable performance compared to other stationarization methods on the stationary benchmark
dataset. To sum up, Hipeen is the first method capable of processing highly non-stationary signals
without significant information loss, paving the way for future advancements in stationarization. It
achieves state-of-the-art performance on non-stationary signals (both controlled and stock datasets)
while also demonstrating robust capabilities on the stationary benchmarks.

In summary, our main contributions are as follows:

• Revealing the benchmark gap: We show that widely used TSF benchmarks underrepresent
non-stationary characteristics found in simple signals (e.g., long-period sine wave) and
real-world data (e.g., stocks), explaining why existing SOTA models fail on such tasks.

• Controlled datasets for analysis: We introduce new controlled datasets (Exponential, Thresh-
old, and Sine wave) that isolate gradient and absolute-value information. These datasets
expose information loss in current stationarization approaches.

• Hipeen method: It minimizes information loss while achieving high stationarity. Hipeen,
even with a linear backbone, outperforms SOTA models on both highly non-stationary
datasets (controlled and stock) and is comparable on the standard stationary benchmarks.

2 RELATED WORKS

Addressing non-stationarity in TSF models. Real-world time series are often non-stationary, with
distribution shifts over time due to changing environments, hindering their predictability (Wu et al.,
2023; Kim et al., 2025a; 2021). While early methods rely on domain adaptation (e.g., DDG-DA (Li
et al., 2022)) or distribution matching (e.g., AdaRNN (Du et al., 2021)), the most widely used
approach today is to apply normalization and de-normalization around the forecaster. The pivotal
method, RevIN (Kim et al., 2021), applies instance-wise normalization by removing the time-domain
mean and variance, then restoring them after forecasting. This line of research evolved to handle
distribution shifts more dynamically: Dish-TS (Fan et al., 2023) predicts future statistics, while
SAN (Liu et al., 2024b) introduced slice-level normalization to capture local distributional changes.

Recognizing the limitations of purely time-domain statistics, the latest approaches leverage the
frequency domain. FAN (Ye et al., 2024) employs the Fourier transform to identify and normalize
instance-wise dominant frequency components, explicitly modeling evolving trends and seasonalities.
Similarly, DDN (Dai et al., 2024) utilizes wavelet transforms to dynamically capture and normalize
multi-scale non-stationary factors in both the time and frequency domains.

Although these frameworks are widely adopted across SOTA TSF and foundation models (Wang
et al., 2024a;b; Das et al., 2024; Goswami et al., 2024), they all share a fundamental limitation:
normalization discards critical information. Specifically, the original signal’s absolute magnitude,
gradient, and higher-order statistics are lost in the process of achieving stationarity. Other attempts to
bypass this, such as NST (Liu et al., 2022b) incorporating non-stationary dynamics into its architecture
or DLinear (Zeng et al., 2023) using the raw signal. However, these methods either still depend on
the lossy statistics or lack robust mechanisms for raw signal. Our approach, Hipeen, is fundamentally
different in that it achieves stationarity representationally—not through normalization—by projecting
values into a hierarchical periodic space. This process preserves the critical absolute value and
gradient information that normalization-based methods inherently discard. For a detailed discussion
on recent TSF models, please refer to Appendix A.
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3 METHODS

Problem Statement. We follow the standard multivariate TSF formulation (Wu et al., 2023; Liu
et al., 2024a). At time t, the length L look-back window Xt = {xt−L+1, · · · ,xt} ∈ RL×N is given
to predict consecutive length K horizon Yt = {xt+1, · · · ,xt+K} ∈ RK×N , where N denotes the
number of channels. Section 3.1 describes how Hipeen transforms Xt and Yt into projections, and
conducts training in this projection space. Section 3.2 explains how projections are converted back to
signal values via a loss-minimizing estimator during inference.

Figure 3: Conceptual visualization of
Hipeen: representing each value as dig-
its projects a simple increasing function
into diverse periodic patterns.

Motivation behind Hipeen (Conceptual). First, “pe-
riodicity” in Hipeen is not about the signal’s repeating
patterns over time (temporal periodicity), but about embed-
ding value into periodic digit-based representation. There-
fore, this is a concept entirely different from approaches
that leverage the temporal periodicity of time series (e.g.
DDN (Dai et al., 2024), CycleNet (Lin et al., 2024)).

Hipeen is a function that converts a scalar into a vector
by decomposing its decimal digits; for example, 1.6712
becomes [1,6,7,1,2]. This allows stationarization without
the information loss associated with normalization.

Stationarity is achieved as follows: For low-order digits,
even small changes in the original value cause rapid fluc-
tuations, with digits 0-9 appearing at a uniform frequency,
thus achieving high stationarity. For the high-order digits, they naturally remain stationary for a long
period. For the middle digits, we add random angular bias to achieve stationarity.

Consider a signal with a long-range pattern beyond the look-back window. With a small window,
you’d only observe a non-periodic segment of the signal (Figure 3). Hipeen addresses this by
decomposing a simple monotonic value change into multiple hierarchical periodic signals. The lower-
order digits undergo multiple periodic cycles (as the digit wraps around 0 to 9 multiple times) with
small changes in original value, thereby encoding fine-grained gradient variations through frequency
changes. Also, high-order digits capture global trends and absolute values of the signal. These
hierarchical projections serve as multiple views of a single value, effectively forming an ensemble.

Technical note: In reality, Hipeen follows a binary representation with hierarchical radii based on
powers of 2. And the transformation is not a simple quantified split, but rather something analogous
to: 1.6712...→ [0.167, 0.671, 0.712, 0.12, ...]

3.1 HIPEEN PROJECTION

Hipeen replaces traditional normalization-based stationarization (Kim et al., 2021; Fan et al., 2023;
Liu et al., 2024b)—which typically loses the original signal’s mean and variance information—by
projecting the input values into multiple periodic components organized in a hierarchical structure.

Figure 4(A) illustrates the schematic process of the Hipeen projection, where a raw value is mapped
as V ∈ R → θ ∈ [0, 2π)H → P ∈ [−1, 1]2H . Here, V denotes a real-valued scalar, θ =
(θ1, . . . , θH) denotes its H-dimensional angular representation (H=number of hierarchy levels).
Each angle θh is then expressed as its sine–cosine pair, thereby producing the projection vector
P = (sin θ1, cos θ1, . . . , sin θH , cos θH) ∈ [−1, 1]2H .

Specifically, the Hipeen projection is defined by three components: the scale parameter M ∈ R,
the number of hierarchy levels H , and a bias matrix B ∈ [0, 2π)N×H sampled from the uniform
distribution U(0, 2π). These components are fixed before training. For each hierarchy level h ∈
{1, . . . ,H}, we set the radius as rh = M · 2h. This exponential growth of radii allows the projection
to capture both fine-scale and large-scale variations of the signal simultaneously, providing a multi-
resolution view of the input. Let V be the value from the n-th channel at a particular time step. Its
angular representation at hierarchy level h is obtained as follows:

θh =

(
V

rh
+Bn,h

)
mod 2π, θ = (θ1, . . . , θH) ∈ [0, 2π)H , (1)
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Figure 4: (A) Top: Time series value is converted into multiple periodic angles θ with exponentially
increasing r, then into sine S and cosine C. Bottom: Example of this transformation on weather data
(V to S). (B) Overview of the model’s training and inference process (sg: stop gradient).

where Bn,h denotes the (n, h)-th entry of the bias matrix B.

This angular representation θh effectively transforms unbounded real values into periodic coordinates.
Each θh is converted into a sine–cosine pair, forming the Hipeen projection vector P .

P[2h:2h+1] = [sin(θh), cos(θh)], P ∈ [−1, 1]2H . (2)

As a result, the Hipeen projection is a 2H-dimensional bounded vector P for each scalar input V .
This transformation resolves the discontinuity at 0 and 2π of the angular representation. It preserves
both the continuity and differentiability properties of the original time series.

Moreover, since the projection involves no learnable parameters, it is computationally efficient and
can be seamlessly integrated into any TSF model architecture, making it inherently model-agnostic.

Training phase. Since the reverse mapping of the Hipeen projection does not admit a closed-
form solution, training is performed in the projection space (Figure 4(B)). To this end, both the
look-back X ∈ RL×N and the horizon Y ∈ RK×N are projected using Hipeen, resulting in
Xhip ∈ [−1, 1]L×N×2H and Yhip ∈ [−1, 1]K×N×2H . For notational simplicity, we omit the time
index t in both X and Y . The projection dimensions can be interpreted as channels with strong
interdependencies, and the backbone TSF model f(·) learns to map Xhip to Yhip.

To train the model in the projection space, we define the loss between the prediction Ŷhip := f(Xhip)
and the target Yhip. To capture hierarchical periodicity, we optimize each of the H (sin, cos) pairs
independently with cosine distance, rather than all 2H dimensions jointly:

L =
1

KNH

K∑
k=1

N∑
n=1

H∑
h=1

2 · dcos
(
Ŷ k,n

hip[2h:2h+1], Y
k,n

hip[2h:2h+1]

)
, (3)

where dcos(a, b) = 1− a·b
∥a∥∥b∥ denotes the cosine distance, and Y k,n

hip[2h:2h+1] denotes the sine–cosine

pair of the n-th channel at horizon step k and level h, with Ŷ k,n
hip[2h:2h+1] its prediction. This ensures

that each sub-period is aligned in phase, effectively capturing hierarchical periodicity.

Since cos(θ) approximates 1−0.5·θ2 when θ is small, minimizing the loss is equivalent to minimizing
the squared angular difference. A loss before averaging: Q ∈ RK×N×H is maintained in memory
for the estimation phase. This tensor is progressively updated throughout training via exponential
moving averaging (EMA). We fixed the smoothing factor of the EMA to 0.005 for all experiments.

Inference phase. The model prediction Ŷhip in the Hipeen projection space is transformed back to
the original space Ŷ ∈ RK×N using the Hipeen estimator, described in the following section.

5
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Figure 5: The Hipeen estimator sequentially ensembles projections of various periods along the H
dimension. It calculates the number of full rotations (2πp) to add to θ based on the previous Vest, and
calculates Vh with p. Then updates Vest to have minimal variance utilizing the Vh and stored loss.

3.2 HIPEEN ESTIMATOR

The initial reverse mapping from P to the θ can be efficiently computed using the two-argument
arctangent function, atan2, which preserves quadrant information.

P → θ : θh = atan2(P2h, P2h+1), θ ∈ [0, 2π)H . (4)
However, analytically retrieving the most probable value from a vector of angles (θ → V ) requires
solving a degree-H polynomial equation, which is intractable. To address this, we leverage the
hierarchical structure of Hipeen and perform a chain of estimations to progressively reconstruct the
final value Vest, as illustrated in Figure 5. This hierarchical estimation procedure, the Hipeen estimator,
performs inverse mapping from θ to V during inference with O(H) computational complexity.

θ → V estimation starts from the assumption that the absolute value of Vest is less than π · rH . Since
the data is normalized with training data statistics (Wu et al., 2023), and rH increases exponentially
with H , the assumption holds with a reasonable choice of H . An initial estimate Vest is computed
from θH , mapping θH −Bn,H to [−π, π]. And initial variance vest comes from the QH .

Init : rH · ((θH −Bn,H + π) mod 2π − π)→ Vest, QH · (rH)2 → vest. (5)
The angular squared loss QH is scaled by the squared radius to reflect variance in the length.
Subsequently, Vest is iteratively refined descending through the H dimension. The challenge with
smaller radii r lies in the ambiguity of how many full rotations (2πp) are missing in the angle θ.
Therefore, we first determine the number of cycles p that makes Vh closest to Vest (step 3 in Figure 5).

Calculate p : ph = round((1/2π)× (Vest/rh − (θh −Bn,H))). (6)
Then, based on p, the new Vh is calculated. To minimize the variance of Vest, we apply inverse-
variance weighting to compute a weighted average of the observations. The corresponding variance
estimate, vest, is updated accordingly (step 4,5 in Figure 5).

Update Vest, vest : rh((2πph + θh −Bn,h)→ Vh, Qh · (rh)2 → vh, (7)

(Vest ∗ vnh + Vh ∗ vest)/(vest + vh)→ Vest, (vest ∗ vh)/(vest + vh)→ vest. (8)
The final estimate Vest is obtained by iteratively applying Equations (7)–(9), offering a simple yet
accurate method for estimating V . Computation takes less than 1ms/step in real-world practice,
making it negligible. Refer to Appendix C.1 for further details on the Hipeen projection and estimator.

Backbone TSF model is a linear architecture, deliberately chosen to isolate and highlight the effec-
tiveness of the Hipeen stationarization, excluding improvements that could arise from architectural
advancements. Convolutional layers without non-linear activations were used to minimize the num-
ber of learnable parameters. To enhance the expressiveness of Hipeen under this linear mapping
constraint, we introduce an extra ensemble that generates multiple Hipeen projections per sample,
offering diverse views. This is achieved by multiplying a scaling factor W ∼ U(0.5, 1.5) to the
radius r, resulting in period-adjusted windows. All extra ensemble views share the same backbone
model, and no additional parameters are introduced. Moreover, these extra ensemble dimensions are
merged into the batch dimension, allowing efficient parallel computation. For more details on the
backbone architecture and extra ensemble, please refer to Appendix C.2.
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Table 1: Results on the three controlled datasets. 16 recent baseline models were compared with
Hipeen. We report the average performance across four forecasting horizons {96, 192, 336, 720} and
three random seeds. The best results are highlighted in red and the second-best in blue. The extended
table and standard deviation results are provided in Appendix E.1.

Models
Exponential Threshold Sine wave

300-350 400-450 500-550 Rank 5-20(e-4) 10-40(e-4) 15-60(e-4) Rank 2k-3k 3k-4k 4k-5k 5k-6k 6k-7k Rank

St
at

io
na

ri
za

tio
n

m
et

ho
ds

NST
(2022b)

MSE 0.566 0.372 0.802 8.0 1.412 2.177 1.713 14.7 .1291 .0272 .0183 .0039 .0071 5.4
MAE 0.505 0.376 0.529 7.7 0.715 1.029 0.956 11.3 .1908 .0862 .0703 .0413 .0526 6.8

DLinear
(2023)

MSE 1.327 0.631 0.627 13.7 0.689 0.736 0.737 2.6 .1586 .1032 .0859 .0425 .0374 13.2
MAE 0.710 0.535 0.534 14.0 0.608 0.664 0.680 2.6 .2550 .1922 .1911 .1338 .1288 13.6

RLinear
(2023)

MSE 0.633 0.571 0.526 10.3 1.317 1.419 1.216 9.3 .1076 .0429 .0166 .0135 .0072 7.2
MAE 0.526 0.460 0.404 9.7 0.774 0.897 0.836 9.3 .1619 .1047 .0678 .0655 .0499 7.8

Dish-TS
(2023)

MSE 2.146 1.463 0.660 14.7 0.795 1.016 0.936 3.0 .5572 1.499 2.632 .2635 .2596 15.0
MAE 1.120 0.861 0.586 15.0 0.672 0.800 0.801 3.0 .5004 .7361 1.114 .3819 .3314 15.0

SAN
(2024b)

MSE 0.482 0.425 0.392 2.7 1.285 1.273 1.134 4.0 .1000 .0363 .0118 .0079 .0045 3.6
MAE 0.481 0.429 0.387 5.0 0.824 0.912 0.849 13.0 .1468 .0913 .0561 .0506 .0413 3.4

Leddam
(2024)

MSE 0.474 0.493 0.482 3.0 1.256 1.458 1.272 11.7 .0774 .0359 .0162 .0134 .0069 4.4
MAE 0.462 0.428 0.390 4.0 0.796 0.958 0.895 15.3 .1350 .0915 .0655 .0642 .0481 4.6

DDN
(2024)

MSE 0.792 0.709 0.614 13.7 1.356 1.549 1.207 11.7 .2346 .0864 .0276 .0165 .0196 14.0
MAE 0.651 0.601 0.512 13.7 0.779 0.922 0.818 10.7 .2924 .1737 .1015 .0796 .0856 13.8

FAN
(2024)

MSE 1.340 0.599 0.557 13.0 0.515 0.835 0.656 2.3 .0663 .0359 .0162 .0134 .0069 9.8
MAE 0.682 0.485 0.496 12.7 0.486 0.780 0.629 2.3 .4207 .0915 .0655 .0642 .0481 10.0

L
at

es
tS

O
TA

ba
se

lin
es

TimMixer
(2024b)

MSE 0.553 0.512 0.483 4.7 1.356 1.410 1.197 8.0 .0600 .0390 .0199 .0141 .0081 7.8
MAE 0.466 0.413 0.371 2.7 0.764 0.883 0.814 4.7 .1157 .0934 .0692 .0631 .0488 5.0

iTransformer
(2024a)

MSE 0.579 0.559 0.524 8.7 1.327 1.437 1.212 11.0 .1511 .0730 .0319 .0244 .0149 11.4
MAE 0.536 0.473 0.424 11.7 0.760 0.897 0.839 8.3 .1989 .1367 .0923 .0840 .0670 11.4

PatchTST
(2023)

MSE 0.548 0.514 0.485 5.0 1.323 1.413 1.199 8.3 .0719 .0398 .0170 .0130 .0078 6.8
MAE 0.478 0.430 0.390 6.0 0.779 0.898 0.825 9.7 .1310 .0999 .0683 .0646 .0516 7.4

TiDE
(2023)

MSE 0.637 0.574 0.529 11.3 1.322 1.424 1.223 10.7 .1099 .0454 .0172 .0125 .0074 7.8
MAE 0.532 0.464 0.409 10.7 0.779 0.900 0.841 12.0 .1664 .1086 .0689 .0630 .0505 7.8

TimesNet
(2023)

MSE 0.664 0.623 0.589 12.7 1.437 1.617 1.339 14.3 .3088 .1431 .0698 .0439 .0311 13.6
MAE 0.601 0.523 0.486 12.7 0.852 0.987 0.899 14.3 .3566 .2318 .1626 .1196 .1066 13.4

CycleNet
(2024)

MSE 0.583 0.542 0.505 8.0 1.315 1.411 1.195 6.0 .0716 .0368 .0165 .0128 .0072 4.8
MAE 0.491 0.441 0.388 6.7 0.768 0.888 0.815 6.3 .1282 .0939 .0663 .0636 .0497 5.0

Peri-midformer
(2024)

MSE 0.614 0.575 0.521 10.0 1.329 1.423 1.211 10.3 .1756 .0526 .0263 .0422 .0191 11.8
MAE 0.511 0.454 0.397 8.7 0.772 0.891 0.830 8.3 .2026 .1126 .0787 .1022 .0691 11.6

FRNet
(2024)

MSE 0.564 0.537 0.490 6.3 1.313 1.410 1.197 5.7 .0645 .0367 .0171 .0139 .0073 6.2
MAE 0.475 0.431 0.374 4.7 0.765 0.887 0.816 6.0 .1227 .0941 .0672 .0654 .0501 6.2

Hipeen
(Ours)

MSE 0.436 0.183 0.238 1.0 0.394 0.560 0.624 1.0 .0072 .0040 .0019 .0016 .0015 1.0
MAE 0.438 0.284 0.293 1.0 0.354 0.510 0.572 1.0 .0488 .0390 .0309 .0294 .0292 1.0

4 EXPERIMENTS

Section 4.1 describes the controlled dataset, which requires gradient and raw value information for
forecasting, and shows that only Hipeen can forecast it effectively. Section 4.2 evaluates Hipeen on
over 500 real-world stock datasets, achieving SOTA, and demonstrates its comparable performance
also on current benchmarks. Hipeen does not require a hyperparameter search. For controlled and
Stock datasets, we fixed M=0.25, H=10, and the learning rate at 0.001. The look-back window was
fixed at 96 throughout this study. Training details and baseline models are provided in Appendix D.

4.1 EXPERIMENTS ON THE CONTROLLED DATASETS

To validate that current stationarization methods discard gradient and raw value information, we
constructed three controlled datasets specifically designed to require this information for successful
prediction. Exponential (requires grad. info.): New flipped exponential function begins when
reaching a specific gradient. To prevent value-based prediction, the value of each flip point was varied.
Experiments were conducted using three flipping intervals: [300, 350], [400, 450], and [500, 550].
Threshold (requires raw value info.): An increasing function with a gradient within a specified range
that resets to 0 upon reaching 1. Owing to the discontinuous nature of the signals, which cannot be
modeled by a linear backbone, two additional non-linear layers were introduced only for this dataset.
We evaluated the function using three gradient ranges: [0.0005, 0.002], [0.001, 0.004], and [0.0015,
0.006]. Sine wave (requires both): To infer the current position on the long-range pattern, both the
raw value and gradient information are required. We evaluated the model using five different periods:
[2k, 3k], [3k, 4k], . . . , [6k, 7k]. All controlled datasets above consist of five independently generated
channels of length 10k. The data is split into train, validation, and test sets in a 7:1:2 ratio (Wu et al.,
2023; Wang et al., 2024c). For more details on controlled datasets, refer to Appendix B.1.
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Figure 6: Ground truth (orange) and predictions (blue) for the Exponentials and Threshold tasks. All
models except Hipeen failed, including various stationarization approaches. Additional illustrations,
including Sine wave, are provided in Appendix E.1.

Table 1 demonstrates that Hipeen achieves the best performance on the controlled datasets with a
significant margin. Notably, on the Sine wave dataset, Hipeen attains an MSE that is eight times lower
than the second-best model. This substantial performance gap supports our hypothesis that conven-
tional stationarization discards critical information—namely, gradients and raw values—necessary
for forecasting. Figure 6 further illustrates this point: while Hipeen makes predictions based on both
gradients and values, existing models fail to capture critical points altogether.

4.2 EXPERIMENTS ON REAL-WORLD DATASETS

Table 2: S&P500 dataset experiment, we
reported the average rank of each model.
Forecasting horizon = 96, averaged over
three random seeds. The extended table
is presented in Appendix E.2.

Subsets All MSE≤2 MSE≤1
(430) (402) (364)

Metric
MSE
Rank

MAE
Rank

MSE
Rank

MAE
Rank

MSE
Rank

MAE
Rank

Hipeen 5.23 3.50 4.98 3.28 4.98 3.32
Hipeen (H:9) 5.02 4.62 4.85 4.48 4.86 4.58
Hipeen (H:8) 5.46 6.13 5.34 6.06 5.38 6.12
NST 16.84 16.71 16.94 16.80 16.87 16.76
Dlinear 11.79 12.92 11.57 12.73 11.50 12.68
Rlinear 9.43 9.33 9.71 9.52 9.87 9.65
Dish-TS 14.46 15.17 14.53 15.21 14.56 15.21
SAN 6.89 7.72 6.53 7.44 6.26 7.24
Leddam 5.95 6.06 5.91 6.00 5.86 5.94
TimeMixer 14.29 13.57 14.46 13.75 14.58 13.88
iTransformer 10.41 10.62 10.33 10.53 10.33 10.52
PatchTST 9.67 8.93 9.90 9.11 9.87 9.05
TiDE 7.13 7.26 7.02 7.15 6.94 7.05
TimesNet 11.59 11.64 11.83 11.87 12.01 12.01
CycleNet 9.82 9.08 10.09 9.34 10.22 9.47
Peri-midformer 9.05 8.85 9.20 8.94 9.28 8.97
FRNet 6.98 6.44 7.06 6.52 7.00 6.48

We used the S&P500 dataset (MVD, 2025) (Jan. 4, 2010
– Dec. 19, 2024) and the Nifty50 dataset (Rao, 2021) (Jan.
1, 2000 – Apr. 30, 2021), both of which feature high
look-back/horizon and train/test out-of-range rates. refer
to Appendix B.1.2 for more details.

S&P500. After removing entries with missing values,
430 stocks remain. Since unpredictable non-stationary
data (e.g., random walks) can yield high MSE, we applied
three conditions: minimum baseline MSE ≤ 1, ≤ 2, and
all datasets. Hipeen consistently achieves the best per-
formance under all three criteria, showing a substantial
average rank gap over the second-best baseline (Table 2).
This robustness persists even when the default H = 10 is
varied to 9 or 8. These results suggest that Hipeen outper-
forms existing models on real-world non-stationary time
series and that its solution to the limitations of conven-
tional stationarization also holds in practical scenarios.

Nifty50. To build a compact and predictable dataset, we
applied an inclusion criterion of MSE ≤ 2 to Nifty50.
For fairness, inclusion was based on the baseline models
(excluding Hipeen). Table 3 shows that Hipeen achieves
the best performance on Nifty50 across MAE, MAPE, and RMSE, attaining first rank on MAE in
over 66% of the 48 combinations. We further assess the models in a trading scenario, including
SMamba (Shi, 2024) and Stock-Transformer; STF (Mozaffari & Zhang, 2024) designed for stock
forecasting. Hipeen achieves SOTA in Revenue, Sharpe, Sortino, and Calmar scores, delivering
high returns with strong risk-adjusted performance. As Drawdown measures peak-to-trough decline,
lower-return models often show better Drawdown. Trading methodology is provided in Appendix E.2.

Table 3: Results on the Nifty50 dataset (inclusion criteria: MSE≤2) averaged over 12 stocks, {12, 24,
48, 96} horizons and three seeds. The weakest models (NST, Dish-TS, and iTransformer) are omitted.
Descriptions for each metric and the full table are provided in Appendix E.2. (R.: averaged rank)

Models Hipeen Dlinear RLinear SAN Leddam DDN FAN TimeMixer PatchTST TiDE TimesNet CycleNet Peri-midf. FRNet SMamba STF
MAE 0.198 0.294 0.205 0.212 0.210 0.248 0.252 0.213 0.209 0.217 0.242 0.212 0.206 0.206 0.912 0.818

MAPE 0.402 0.538 0.456 0.438 0.437 0.527 0.467 0.418 0.418 0.471 0.488 0.445 0.447 0.416 0.882 1.008
RMSE 0.274 0.386 0.282 0.288 0.287 0.330 0.336 0.291 0.288 0.293 0.324 0.288 0.283 0.282 1.021 0.928

Revenue R. 5.38 9.60 9.81 8.42 9.02 9.73 8.63 8.21 5.92 10.71 10.52 7.69 10.21 8.50 7.48 6.19
Drawdown R. 7.19 11.06 7.71 9.13 6.21 9.46 10.23 9.08 8.00 8.38 8.54 7.17 9.60 7.40 8.42 8.44

Sharpe R. 5.63 9.29 9.83 8.38 8.92 9.77 8.27 8.25 6.10 11.65 10.67 7.71 10.04 8.52 6.69 6.29
Sortino R. 5.65 9.54 9.75 8.35 9.02 9.83 8.29 8.21 6.10 11.54 10.75 7.67 9.98 8.35 6.77 6.19
Calmar R. 5.58 9.60 9.81 8.46 8.98 9.44 9.02 7.83 6.00 10.81 10.67 7.81 9.94 8.42 7.33 6.29
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Table 4: Benchmark results on stationarization methods, averaged across 4 horizon lengths:{96, 192,
336, 720} and 3 seeds. The last row shows the number of inherent learnable parameters beyond the
backbone (in Traffic 96; Note that the total number of parameters in DLinear is 19k in this case). The
extended Table and standard deviation results are provided in Appendix E.3

Model Hipeen(Ours) NST DLinear RLinear* Dish-TS*† SAN*† Leddam*† DDN*† FAN*†

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange 0.335 0.397 0.461 0.454 0.354 0.414 0.412 0.431 0.511 0.507 0.330 0.398 0.398 0.420 0.499 0.454 0.423 0.450
Weather 0.224 0.261 0.288 0.314 0.265 0.315 0.244 0.268 0.239 0.303 0.251 0.296 0.240 0.270 0.268 0.302 0.241 0.292

Solar 0.205 0.257 0.350 0.390 0.330 0.401 0.260 0.304 0.208 0.286 0.313 0.338 0.254 0.281 0.292 0.348 0.255 0.280
ETTm1 0.388 0.393 0.481 0.456 0.404 0.408 0.393 0.400 0.500 0.496 0.404 0.404 0.390 0.397 0.413 0.421 0.408 0.416
ETTm2 0.301 0.332 0.306 0.347 0.354 0.402 0.283 0.333 1.364 0.779 0.284 0.340 0.289 0.329 0.288 0.333 0.323 0.373
ETTh1 0.452 0.431 0.570 0.537 0.461 0.458 0.442 0.439 0.613 0.570 0.579 0.527 0.448 0.441 0.451 0.437 0.478 0.468
ETTh2 0.435 0.428 0.526 0.516 0.563 0.519 0.410 0.422 3.176 1.248 0.395 0.420 0.385 0.406 0.432 0.434 0.508 0.489
ECL 0.197 0.294 0.193 0.296 0.225 0.319 0.203 0.302 0.237 0.344 0.270 0.364 0.191 0.294 0.260 0.356 0.205 0.301

Traffic 0.630 0.317 0.624 0.340 0.625 0.383 0.601 0.386 0.619 0.417 0.604 0.376 0.571 0.375 0.645 0.409 0.569 0.373

Inh. Param. 0 0 0 0 15081k 114k 3415k 5539k 59k

∗ Replaced the backbone with a linear model to evaluate each stationarization, removing architectural influence.
† However, some methods inherently contain multiple non-linear layers, offering extra architectural gains.

Conventional Benchmark. Hipeen also maintains competitive performance on relatively stationary
benchmarks. Table 4 compares Hipeen with major stationarization methods. Using a learning-
free stationarization module with no internal parameters, Hipeen outperforms other learning-free
approaches such as NST, DLinear, and RLinear (RevIN). However, as shown in the last row, some
methods incorporate multiple layers and non-linear activations within their stationarization modules,
gaining architectural advantages that hinder a fair comparison. Notably, Leddam contains 180× more
parameters than DLinear (excluding the backbone), raising concerns about practicality. Even so,
Hipeen achieves strong performance, demonstrating its effectiveness on relatively stationary signals.

Analysis. Conceptually, scale parameter M sets the smallest decimal place and hierarchy level H the
total number of digits; e.g., M = 0.1 and H = 2 can represent values from 0.1 to 9.9. Experiments
on benchmark datasets varying H and M show that Hipeen is robust across a wide range of H
if M is small enough (Figure 7), analogous to that representing 1.63 as 01.630 does not enhance
representational accuracy. We also analyzed the bias term B in Equation 1. Comparing Hipeen with
no bias, bias on N -dim. ([0, 2π)N×1), and on H-dim. ([0, 2π)1×H ). Table 5 shows that adding a
bias term is crucial, and channel-wise bias (N -dim) is especially important.
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Figure 7: Hipeen performance with varying hierarchy level H and
scale M . Red: Fix rH , Blue: Fix r1

Table 5: Experiments on differ-
ent bias settings, averaged over 3
datasets and 3 seeds. Each value
represents the MSE. Full results
are provided in Appendix E.4.

Horizon Ours N-dim. H-dim. No B
96 0.207 0.207 0.216 0.382
192 0.269 0.274 0.354 0.936
336 0.374 0.382 0.510 1.023
720 0.516 0.534 0.885 4.778

5 CONCLUSION

We demonstrate that widely used TSF benchmarks underrepresent real-world non-stationarity and
that conventional stationarization methods can cause critical information loss. To address this, we
introduce Hipeen, a novel stationarization method that preserves essential gradient and absolute value
information by projecting signals into a hierarchical periodic representation. Hipeen is the only
model to succeed on our controlled datasets designed to highlight this information loss. Moreover, it
substantially outperforms state-of-the-art models on highly non-stationary real-world stock datasets
while remaining competitive on standard benchmarks, underscoring the importance of information-
preserving stationarization for robust time series forecasting. Limitation & Future Work. While
we have identified the limitations of existing TSF benchmarks, we do not provide representative
non-stationary datasets to address these shortcomings. Future work should focus on systematically
evaluating the extent of non-stationarity in current benchmarks and on developing datasets that better
reflect the complexities of real-world non-stationary signals.
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A DETAILED RELATED WORKS

A.1 TIME SERIES MODELING.

Deep learning has substantially advanced time series forecasting by introducing architectures that
more effectively capture temporal dynamics and inter-variable dependencies (Hyndman & Athana-
sopoulos, 2018; Liu et al., 2024a; Wang et al., 2024b;a). Recent models can be broadly categorized
into several key paradigms: Transformer-based, CNN-based, and MLP/linear-based architectures,
with a growing trend towards general-purpose foundation models (Kim et al., 2025b).

Transformer-based models have become prominent due to their capacity to model long-range de-
pendencies. Autoformer (Wu et al., 2021) and FEDformer (Zhou et al., 2022) both incorporate
decomposition into trend and seasonal components, with the latter enhancing efficiency through
Fourier-based attention. PatchTST (Nie et al., 2023) introduces a patching strategy that segments time
series into fixed-length patches for Transformer input, while modeling each variable independently
to improve generalization. Crossformer (Zhang & Yan, 2022) proposes cross-dimension attention
to jointly capture temporal and feature-wise dependencies. The Non-stationary Transformer (Liu
et al., 2022b) introduces a two-part framework comprising series stationarization and de-stationary
attention, which normalizes input statistics and restores non-stationary information lost in traditional
attention mechanisms, thereby improving robustness to distribution shifts. iTransformer (Liu et al.,
2024a) reformulates the input structure by treating each variable as a token, offering an inverted
perspective on Transformer-based time series modeling.

CNN-based approaches exploit multi-scale feature extraction to capture temporal patterns.
SCINet (Liu et al., 2022a) adopts a recursive downsample–convolve–interact design to model complex
temporal dynamics through hierarchical resolution. TimesNet (Wu et al., 2023) transforms time series
into 2D representations based on learned periods and applies inception-style convolutional blocks to
capture both intra- and inter-period variations, achieving strong performance on various forecasting
benchmarks.

Simpler architectures based on MLPs and linear layers have also demonstrated competitive perfor-
mance. DLinear (Zeng et al., 2023) applies lightweight linear projections to decomposed components
for efficient forecasting. TimeMixer (Wang et al., 2024b) extends this design with shift-based mixing
and channel-wise MLPs, enabling scalable modeling without attention. TiDE (Das et al., 2023)
employs a dense MLP-based encoder–decoder to effectively handle covariates and non-linear rela-
tionships, showing strong results in long-horizon forecasting tasks. Some models aim for broader
applicability beyond forecasting. TimeMixer++ (Wang et al., 2024a) generalizes time series modeling
through the Time Series Pattern Machine, which transforms sequences into multi-resolution temporal
images and integrates axis-aware decomposition with multi-scale feature fusion, supporting tasks
such as classification, imputation, and anomaly detection alongside forecasting.

A.2 STOCK PRICE PREDICTION.

Despite the rapid progress of general time series forecasting, stock price prediction research remains
comparatively conservative, with many studies still grounded in traditional or narrowly focused deep
learning models. For instance, (Mozaffari & Zhang, 2024) evaluate LSTM against a Transformer-
based model for stock index prediction and show that Transformers provide gains mainly by better
capturing temporal dependencies. To mitigate non-stationarity, decomposition-based hybrids have
been proposed. SVMD–LSTM (Agarwal et al., 2025) decomposes stock series into intrinsic mode
functions before applying LSTMs, demonstrating more stable forecasts than standalone recurrent
models. However, the predictive head still follows a relatively simple architecture.

Other works explores modern sequence modeling approaches. SMamba (Shi, 2024) adapts
Mamba (Gu & Dao, 2024) to stock data, showing improved accuracy through efficient long-range
dependency modeling. PMANet (Zhu et al., 2024) enhances attention mechanisms and multi-scale
convolution to better handle long input sequences and anomaly points, yet it remains a domain-specific
design optimized for hand-crafted financial features.

Overall, while time series forecasting architectures diversify, stock price prediction remains grounded
in narrowly scoped, task-specific designs rather than the unified and scalable approaches emerging
in the broader field. Also, existing TSF models are largely benchmark-driven and have not been
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thoroughly evaluated on stock datasets. Using stocks as a representative non-stationary dataset, we
show that Hipeen achieves superior performance in MAE, RMSE, and MAPE. Furthermore, when
used for prediction-based trading, Hipeen attains the highest returns and risk-adjusted performance,
demonstrating its applicability to the stock domain.

B DATASETS, BASELINE MODELS, AND IMPLEMENTATION DETAILS

B.1 DATASETS

Table 6: Detailed descriptions of datasets. The look-back window for all data is 96. The dataset size
is organized in (Train, Validation, Test).

Tasks Dataset Dim Horizon Length Dataset Size Frequency Non-stationarity∗ Information

Sine1 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.92/0.00 Synthetic
Sine2 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.91/0.00 Synthetic
Sine3 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.90/0.00 Synthetic
Sine4 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.87/0.00 Synthetic
Sine5 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.86/0.00 Synthetic

Controlled Exp.1 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.75/0.14 Synthetic
Exp.2 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.86/0.05 Synthetic
Exp.3 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.92/0.09 Synthetic

Thr.1 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.83/0.00 Synthetic
Thr.2 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.62/0.00 Synthetic
Thr.3 5 {96, 192, 336, 720} (6905, 1001, 2001) 1 step 0.46/0.00 Synthetic

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min 0.16/0.00 Temperature

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min 0.21/0.01 Temperature

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.21/0.00 Temperature

Benchmark ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.22/0.01 Temperature

Datasets Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min 0.36/0.00 Weather

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min 0.09/0.00 Electricity

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly 0.08/0.00 Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly 0.04/0.00 Transportation

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily 0.69/0.27 Finance

ADANIPORTS 9 {12, 24, 48, 96} (2230, 334, 665) Daily 0.32/0.00 Stock

BAJAJ-AUTO 9 {12, 24, 48, 96} (2146, 322, 641) Daily 0.32/0.21 Stock

HDFC 9 {12, 24, 48, 96} (3619, 532, 1062) Daily 0.32/0.00 Stock

HEROMOTOCO 9 {12, 24, 48, 96} (3619, 532, 1062) Daily 0.31/0.38 Stock

Nifty50 HINDALCO 9 {12, 24, 48, 96} (3619, 532, 1062) Daily 0.34/0.00 Stock

Stock LT 9 {12, 24, 48, 96} (2833, 421, 837) Daily 0.34/0.00 Stock

Datasets MARUTI 9 {12, 24, 48, 96} (3003, 445, 886) Daily 0.37/0.77 Stock

NTPC 9 {12, 24, 48, 96} (2766, 411, 818) Daily 0.27/0.00 Stock

POWERGRID 9 {12, 24, 48, 96} (2256, 338, 672) Daily 0.27/0.09 Stock

TATASTEEL 9 {12, 24, 48, 96} (3619, 532, 1062) Daily 0.35/0.02 Stock

TECHM 9 {12, 24, 48, 96} (2449, 365, 728) Daily 0.37/0.00 Stock

TITAN 9 {12, 24, 48, 96} (3619, 532, 1062) Daily 0.37/0.00 Stock

∗ The Non-stationarity is obtained by measuring the out-range rate between the look-back/horizon and train/test.

A summary of the entire training dataset is provided in Table 6. This table presents the number of
channels (Dim) in the data, the lengths of the trained horizons, the sizes of the train, validation, and
test sets, the sampling frequency, the degree of non-stationarity, and the types of data.
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Figure 8: The full 10k timesteps of the Sine wave datasets are shown. Each color represents a
channel that was independently generated. To enhance visual clarity, each channel was plotted with a
different amplitude; however, since the data undergo global normalization based on training statistics
during preprocessing, this has the same effect as using identical amplitudes across channels.

B.1.1 CONTROLLED DATASETS

All controlled datasets are multivariate time series consisting of 5 channels and 10k timesteps. Each
channel is independently generated from a specified distribution.

The Sine wave dataset represents the most basic form of time series, generated by adding Gaussian
noise to long-period Sine waves. The standard deviation of the added Gaussian noise is sampled from
Uniform[0.01, 0.02], and the period length is sampled from the following ranges: (1) Uniform[2k,
3k], (2) Uniform[3k, 4k], (3) Uniform[4k, 5k], (4) Uniform[5k, 6k], and (5) Uniform[6k, 7k]. In this
way, five types of Sine wave datasets were created. The resulting five datasets are visualized in
Figure 8.

The Exponentials dataset is designed to model systems in which changes in the time series are
triggered by reaching a certain gradient (rate of change). To simulate such behavior, exponential
decay functions are generated, and once a function reaches a predefined gradient, a new exponential
decay function—flipped vertically—is initiated. While the trigger gradient for flipping is fixed for
each function, the initial gradient of the new function after the flip is randomly sampled within a
range. This makes the value of each flipping point vary and prevents the model from learning the
flip timing based on value rather than gradient. The base of the exponential function is sampled
from Uniform[1.004, 1.007] and is kept constant throughout the series. For each exponential decay
segment, the end value is fixed at +200 to ensure consistent flipping gradients, but the start value
varies to induce diverse initial slopes. These flipped segments are concatenated to form the entire
time series. The duration of each segment (i.e., the flipping interval defined as start value - end value)
is sampled from: (1) Uniform[300, 350], (2) Uniform[400, 450], and (3) Uniform[500, 550]. The
resulting three datasets are visualized in Figure 9.

The Threshold dataset is designed to simulate systems in which changes are triggered when the
time series value reaches a specific value. Once an increasing function with a certain gradient range
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(A) 300-350 (B) 400-450

(C) 500-550

Figure 9: The full 10k timesteps of the Exponentials datasets are shown. Each color represents
a channel that was independently generated. As the length of each exponential segment increases, the
frequency of flipping decreases.

(C) 5-20(e-4) 

(B) 10-40(e-4) (A) 15-60(e-4) 

Figure 10: The full 10k timesteps of the Threshold datasets are shown. Each color represents a
channel that was independently generated. As the gradient of linear segment decreases, the frequency
of reaching Threshold decreases.

reaches the value 1, the value is reset by subtracting 1, and the process repeats. The increasing
function is composed of piecewise linear segments, where each segment has an x-length sampled
from Uniform[50, 100] and a gradient sampled from a specified range. To control the period at
which the function reaches the threshold, we sample gradients for each segment from the following
ranges: (1) Uniform[0.0005, 0.002], (2) Uniform[0.001, 0.004], and (3) Uniform[0.0015, 0.006]. The
resulting three datasets are visualized in Figure 10.

All controlled datasets are created from csv file using the Dataset_Custom class from the Time Series
Library (Wu et al., 2023; Wang et al., 2024c), following the same procedures used for processing
benchmark datasets such as Weather and Traffic. This class includes a default preprocessing
step of global normalization based on training set statistics, which is applied uniformly across both
custom and benchmark datasets. For a summary of each dataset, refer to the “Scenarios” section of
Table 6.
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B.1.2 REAL-WORLD STOCK DATASETS

Feature Description

Prev Close Closing price of the previous day
Open Opening price of the day
High Highest price of the day
Low Lowest price of the day
Last Last traded price of the day
Close Official closing price
VWAP Volume Weighted Avg. Price
Volume Shares traded
Turnover Volume × Price

Table 7: Stock feature descriptions

We utilized a publicly available S&P500 (MVD,
2025) and NIFTY50 (Rao, 2021) Stock Market
dataset under the CC0 (Public Domain) license. The
dataset comprises daily price and trading volume in-
formation for the 500 constituent stocks of the S&P
500 index, which represents large-cap companies
listed on U.S. stock exchanges, and for the 50 con-
stituent stocks of the NIFTY 50 index, sourced from
the National Stock Exchange (NSE) of India. Each
stock’s data is stored in a separate .csv file, along
with a metadata file containing high-level information
about each company. Given the high non-stationarity
typically observed in stock market time series, most
tasks focus on short-term forecasting over several months. Due to this and the limited sequence
lengths of many stocks, we set the prediction horizon to 96.

1. S&P 500 dataset.

The dataset spans from January 4, 2010, to December 19, 2024, and contains six columns: Adj Close,
Close, High, Low, Open, and Volume, providing comprehensive daily price and trading volume
information for each stock. After excluding any rows with missing values, a total of 430 stocks were
used in the analysis.

2. NIFTY 50 dataset.

The data spans over two decades, from January 1, 2000, to April 30, 2021. To ensure data quality, we
excluded stocks with less than 3000 days of historical records, as they produce an insufficient amount
of data for the validation set with the conventional 7:1:2 dataset split. Additionally, to eliminate stocks
where past data offers little predictive value (i.e., nearly random series), we excluded those where
all 16 recent baseline models (except Hipeen) yielded test MSEs greater than 2.0. After filtering, 12
stocks remained: ADANIPORTS, BAJAJ-AUTO, HDFC, HEROMOTOCO, HINDALCO, LT, MARUTI,
NTPC, POWERGRID, TATASTEEL, TECHM, and TITAN. These showed an average minimum MSE
of 1.1 across the 9 models, compared to 101.9 for the excluded group. Each time series is multivariate
with 9 input channels: Stock market data contains multiple price and volume-related features that
reflect daily trading behavior. To help interpret the multivariate inputs used in our models, Table 7
summarizes the meaning of each feature.

Dataset construction followed the same procedure as with the controlled data. Specifically, we
used the Dataset_Custom class from the Time Series Library (Wang et al., 2024c), which is also
employed for handling benchmark datasets such as Weather and Traffic. Please refer to the
"Stock Datasets" section of Table 6 for detailed characteristics of each dataset.

B.1.3 REAL-WORLD BENCHMARK DATASETS

We used nine public benchmarks that are widely adopted in time series forecasting research:
Weather, Solar-Energy, Electricity, Traffic, Exchange, ETTh1, ETTh2, ETTm1,
and ETTm2. (There is an ongoing debate about whether exchange datasets should be used as
benchmarks (Bergmeir, 2024), and recent studies differ in whether they include them.; As an ex-
ample, while the CycleNet (Lin et al., 2024) excluded these datasets, they were included in the
Peri-Midformer (Wu et al., 2024) paper. However, we included them to enable a more comprehensive
comparison.) The datasets were sourced from the Time Series Library (Wang et al., 2024c) and
the TimeMixer++ paper (Wang et al., 2024a). Data splitting and preprocessing were conducted
using the Dataset_ETT_minute class (for ETTm1 and ETTm2), Dataset_ETT_hour class (for ETTh1
and ETTh2), and Dataset_Custom class (for the remaining datasets) provided by the Time Series
Library (Wang et al., 2024c). Please refer to the “Benchmark Datasets” section of Table 6 for the
characteristics of each dataset.
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B.2 BASELINE MODELS

To evaluate and demonstrate the effectiveness of Hipeen across the diverse sets of forecasting tasks, we
compare it against 16 state-of-the-art baseline models and 2 stock forecasting models encompassing
a broad spectrum of architectural paradigms. These include Transformer-based models such as
iTransformer (Liu et al., 2024a), PatchTST (Nie et al., 2023), Peri-midformer (Wu et al., 2024), and
Non-Stationary Transformer (Liu et al., 2022b); CNN-based models including TimesNet (Wu et al.,
2023); MLP-based models such as TimeMixer (Wang et al., 2024b), CycleNet (Lin et al., 2024),
TiDE (Das et al., 2023), and DLinear (Zeng et al., 2023); hybrid architectures like FRNet (Zhang
et al., 2024), and RLinear (Zeng et al., 2023); Stationarization methods such as Dish-TS (Fan et al.,
2023), SAN (Liu et al., 2024b), Leddam (Yu et al., 2024), DDN (Dai et al., 2024), and FAN (Ye et al.,
2024); Stock forecasting models such as SMamba (Shi, 2024) and STF Mozaffari & Zhang (2024).
These baselines represent the current best-performing models in time series forecasting and serve as
a strong foundation for comparative evaluation.

B.3 IMPLEMENTATION DETAILS

All code implementations are based on the Time Series Library (Wu et al., 2023; Wang et al.,
2024c). Using the dataset classes provided by the library, we preprocessed all the controlled datasets,
benchmark, and stock data. We also utilized the model architecture, training, and evaluation pipelines
provided by the library for all baseline models, ensuring consistency and reproducibility across
experiments. For the benchmark datasets, we adopted the default hyperparameters specified by
the library for each baseline model. In cases where the library did not provide hyperparameter
settings—such as for non-benchmark datasets—we used the hyperparameters from ETTh1 as the
default configuration. Additional experiments to determine more suitable hyperparameters for these
datasets are underway, and their results will be incorporated into the final version of the manuscript.

C HIPEEN AND LINEAR BACKBONE

C.1 HIPEEN PROJECTION AND ESTIMATOR

C.1.1 EMA MEMORY IN THE TRAINING PHASE

During the training process of Hipeen, the training loss is stored in an internal memory. Each loss is
computed by treating a pair of S and C as a vector representing θ, and calculating the cosine distance
between the model’s prediction and the Hipeen projection of the label. The resulting loss values form
a tensor of shape B ×K ×N ×H , where B denotes the batch dimension. This tensor is averaged
over the batch dimension to yield a K ×N ×H tensor Q, which is then stored in memory for use in
the estimation phase. The memory is updated using an exponential moving average (EMA) defined
as:

Qmemory = (1− sm) ·Qmemory + sm ·Qnew,

where sm is the smoothing factor. At the initial stage of training, Qmemory is simply set to Q. Through
this process, training progressively accumulates meaningful loss statistics across all time dimensions
K, channel dimensions N , and hierarchy dimensions H over the entire training set. For simplicity,
we fix the smoothing factor to 0.005 throughout all experiments. However, it is advisable to adjust
this value according to the number of training samples. As a first choice, we recommend setting the
smoothing factor to (training batch size)/(training sample size)

C.1.2 HIPEEN ESTIMATOR PEAK FILTERING

In addition to the estimation method in the main text, we applied a simple peak filtering technique to
the Hipeen estimator to enhance its robustness. This method is designed to prevent the final result V
from being significantly affected by one or two outliers during the ensemble process of H estimations
along the hierarchy dimension. In Equation 7 of the main text, the number of rotations ph added to
θh is determined by finding the peak closest to the previous Vest. We consider a peak to be an outlier
if its distance from the previous Vest exceeds 1

2πrh. (Since the distance between adjacent peaks is
2πrh, the distance to the nearest peak from Vest can range from 0 to πrh.) For such outliers, the h-th
Vh and vh is excluded from the update, and the process moves on to the next h+ 1. This filtering
helps mitigate the performance degradation caused by outliers in the ensemble process.
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C.2 LINEAR BACKBONE ARCHITECTURE AND EXTRA ENSEMBLE

C.2.1 LINEAR BACKBONE USED IN HIPEEN

The backbone architecture used in Hipeen, referred to as Linear_model, is designed to process
multivariate time-series data. We decompose the 2H ensemble dimension into H × 2; consequently,
the input has the shape (B,L,C,H, 2), where B is the batch size, L is the input sequence length, C
is the number of channels (features), H is the hierarchy level (half of the ensemble dimension), and
the last dimension of size 2 represents a sine and cosine projection. The model uses a simple 3-layer
convolutional architecture and includes neither non-linear activation functions nor dropout.

The model is composed of the following three consecutive layers:

• Temporal Mixing layer (Time_mix): Applies 3D convolutions along the temporal and
ensemble axes while preserving the channel structure.

• Channel Mixing layer (Channel_mix): Applies 3D convolutions across the channel and
ensemble axes while preserving the temporal structure.

• Final Temporal Mixing layer (Time_mix_fin): Converts the sequence from input look-
back window length L to output horizon K. This layer shares the module with Time_mix.

Input/Output Shape Summary

• Input: (B,L,C,H, 2)

• Output: (B,K,C,H, 2)

Linear_model Architecture The full model is summarized as follows:

x← x+ Time_mix(x)

x← x+ Channel_mix(x)

x← Time_mix_fin(x)

This architecture resembles the simplest version of TSMixer (Ekambaram et al., 2023) without
activation and dropout, composed of spatial/channel-wise feature mixing, and finally projects to the
desired output length.

Time_mix Module This module applies a 3D convolution across the (L,H, 2) dimensions after
normalizing each spatial unit using GroupNorm:

• Normalization: GroupNorm fuctions as LayerNorm on the (L,H, 2) axes.

• 3D Convolution: The input and output length (Lin, Lout) are fully connected to each
other. And a convolutional kernel of size (9, 3) is used, with padding to preserve the spatial
resolution; 9 along the H dimension and 3 along the final dimension of length 2.

The output has shape (B,Lout, C,H, 2), preserving the channel structure.

Channel_mix Module This block focuses on channel-level interactions:

• Layer Normalization: LayerNorm is applied directly to the (C,H, 2) dimensions without
reshaping.

• 3D Convolution: The input and output channel (C; identical dimension) are fully connected
to each other. And a convolutional kernel of size (9, 3) is used with padding to preserve the
spatial resolution of ensemble; 9 on H dimension and 3 on the last dimension of length 2.

The output shape remains (B,L,C,H, 2), preserving the temporal structure.

All convolutions use appropriate zero-padding to maintain spatial alignment. The temporal mapping
layer, Time_mix_fin, which uses the Time_mix module, changes the input-sequence length from
L to the desired forecasting horizon K, enabling the model to predict future values.
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Figure 11: Performance as a function of the extra ensemble dimension. Results are reported for
the Sine Wave (4k–5k), Exponential (400–450), and Threshold (0.001–0.004) datasets as the extra
ensemble dimension increases from 1 to 32. The dashed line denotes the performance of the second-
best model.

C.2.2 EXTRA ENSEMBLE

To enhance Hipeen’s representational capacity without increasing the number of learnable parameters,
we propose an extra ensemble mechanism. This approach preserves Hipeen’s original non-learning
nature and supports efficient parallel computation. The extra ensemble mechanism enables Hipeen
to incorporate additional periodic diversity at each hierarchical level of its original projection. This
enhances the model’s ability to capture richer and more varied temporal patterns within each frequency
hierarchy.

In the original Hipeen formulation, a scalar value V is projected to an H-dimensional vector θ ∈ RH

using a fixed radius vector r ∈ RH . In contrast, our extra ensemble introduces an additional ensemble
dimension E by rescaling the radius vector r with W ∈ [0.5, 1.5]E×H resulting in an expanded
radius matrix rext ∈ RE×H .

rh = M × 2h ;h ∈ {1, ...,H}, rexte,h = rh ·We,h, where We,h ∼ Uniform(0.5, 1.5)

Then angular tensor θ is calculated using rext and extended bias Bext ∈ [0, 2π)N×E×H

V → θ : θne,h =

(
V n

rexte,h

+Bn
e,h

)
mod 2π, θn ∈ [0, 2π)E×H

This results in an angular projection output with extra ensemble dimension θ ∈ [0, 2π)E×H . The
extra ensemble introduces period variations within the same hierarchy level. The ensemble dimension
E is folded into the batch dimension, enabling all E projections to be processed in parallel without
modifying the backbone model or increasing its parameters. During inference, predictions from the
E ensembles are averaged to obtain the final estimation:

This strategy may be similar in spirit to batch ensembles (Wen et al., 2020) but is more efficient
due to zero additional learnable parameters. It enables Hipeen to model a wider range of periodic
components more flexibly and expressively. We fix E = 16 for all experiments, except for Traffic,
ECL, and Solar-Energy datasets when the horizon is 720, where E = 8 is used to reduce the
computation. Although this mechanism enhances expressiveness when a linear backbone is used, it is
not mandatory when Hipeen is paired with more expressive backbones.

Figure 11 shows how performance varies as the number of extra ensemble components increases from
1 to 32. Across all datasets, Hipeen consistently outperforms the second-best model. The performance
curve exhibits a U-shaped trend—initially decreasing and then improving as the ensemble size grows.
In practice, selecting 4–8 ensembles appears to be a good balance. Notably, these extra ensembles
add no learnable parameters and are computed efficiently along the batch dimension.

D TRAINING AND HYPERPARAMETER SEARCH

D.1 COMPUTATION RESOURCE AND ENVIRONMENT

All experiments were conducted on either a single NVIDIA L40 GPU (48 GB VRAM) or an NVIDIA
A100 GPU (80 GB VRAM). We used PyTorch (Paszke, 2019) 2.7.0 in a Python 3.11 environment,
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along with the following additional packages, identical to those used in the Time Series Library (Wu
et al., 2023; Wang et al., 2024c): einops, local-attention, matplotlib, numpy, pandas, patool, reformer-
pytorch, scikit-learn, scipy, sktime, sympy, tqdm, and PyWavelets. All auxiliary packages were
employed in their most recent versions available at the time of experimentation.

D.2 TRAINING & EVALUATION DETAILS

The training and evaluation of the model were based on the training and evaluation code from the
Time Series Library (Wu et al., 2023; Wang et al., 2024c). The evaluation metrics used in the
experiments—Mean Squared Error (MSE) and Mean Absolute Error (MAE)—follow the standard
metrics commonly used in time series forecasting (TSF) literature (Liu et al., 2024a; Nie et al., 2023;
Zeng et al., 2023) and are consistent with those implemented in the Time Series Library. During
training, the optimizer Adam (Kingma & Ba, 2014) with default hyperparameter was used. A custom
learning-rate schedule was employed: the initial learning rate was kept for the first three epochs
and then multiplied by 0.8 at each subsequent epoch to ensure a gradual decrease. A batch size of
32 was used during training, which is the default setting in the Time Series Library, except for the
720-horizon training of the Traffic, Electricity, and Solar-Energy datasets, where a batch size of 16
was used. Training was conducted for up to 30 epochs with early stopping based on the validation
MSE loss. The best model was not saved during the first three epochs. (Training was configured to
run for a minimum of four epochs.)

D.3 HYPERPARAMETER SEARCH

We conducted a hyperparameter search only for the benchmark dataset and used the fixed hyperpa-
rameters for the rest of the experiments. The search was performed on only two parameters: (1)
the learning rate and (2) combinations of the scale M and hierarchy level H . The full search space
for the learning rate is [0.002, 0.001, 0.0005], and the search space for combinations of M and
H is [1,8], [0.5,9], [0.25,10]. Since Hipeen’s performance is not highly sensitive to the choice of
hyperparameters, M and H can be fixed at 0.25 and 10, respectively, without significant loss in
performance, although a search can still be performed if desired.

For each hyperparameter setting, we averaged the validation loss over three random seeds and selected
the configuration with the lowest average validation loss. Due to computational constraints, the
hyperparameter search space was further reduced to the subspace of the defined search space, based
on a sequence length of 96. We plan to explore the full search space and conduct additional tuning in
extended search regions in the final version. Table 8 presents the selected hyperparameters for each
experiment.

For the Controlled and Stock datasets, we did not perform hyperparameter searches, following the
protocol of other baseline models to ensure a fair comparison. For the baselines, hyperparameters
were fixed based on the non-stationarity values, aligning with similar datasets from the Benchmark
set. When an exchange setting was provided, we used it; otherwise, we followed the order of Weather
and ETTm1, as specified by the Time Series Library (Wu et al., 2023; Wang et al., 2024c). For
Hipeen, the learning rate was fixed at 0.001, with M=0.25 and H=10 across all cases.

E RESULTS IN DETAILS

E.1 CONTROLLED DATASETS

We present a detailed overview of the experimental results obtained on the controlled datasets.
Figures 12 and 14 present the extended visualizations of the time series ground truth and model
predictions, following the initial overview shown in Figure 1 of the main text. Specifically,
Figure 12 illustrates predictions on the Sine wave dataset when the look-back window corre-
sponds to the ascending, plateau, and descending phases of a long-period sine wave. Accu-
rately forecasting such long-term patterns—especially those that extend beyond the look-back
window—requires a solid understanding of the global shape of the time series. Notably,
only Hipeen successfully captures the long-term trend of the time series, whereas the baseline mod-
els clearly fail to represent the global shape. In the Exponential and Threshold tasks as well, Figure 14
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Table 8: Hyperparameter search results for each dataset and horizon length.

Tasks Dataset Horizon Learning Rate M&H
Sine wave {96, 192, 336, 720} 0.001 (0.25,10)

Scenarios Exponentials {96, 192, 336, 720} 0.001 (0.25,10)
Threshold {96, 192, 336, 720} 0.001 (0.25,10)

ETTh1 96 0.001 (1,8)
192 0.001 (1,8)
336 0.001 (1,8)
720 0.001 (1,8)

ETTh2 96 0.0005 (0.5,9)
192 0.0005 (0.5,9)
336 0.0005 (0.5,9)
720 0.0005 (1,8)

ETTm1 96 0.001 (1,8)
192 0.001 (1,8)
336 0.001 (1,8)
720 0.001 (1,8)

ETTm2 96 0.0005 (0.5,9)
192 0.001 (0.5,9)
336 0.0005 (0.25,10)

Benchmark 720 0.0005 (0.25,10)
Datasets Weather 96 0.001 (0.5,9)

192 0.002 (0.5,9)
336 0.002 (0.5,9)
720 0.002 (0.5,9)

Solar-Energy 96 0.0005 (1,8)
192 0.0005 (1,8)
336 0.0005 (1,8)
720 0.001 (1,8)

Electricity 96 0.001 (1,8)
192 0.0005 (1,8)
336 0.0005 (1,8)
720 0.001 (1,8)

Traffic 96 0.001 (1,8)
192 0.001 (1,8)
336 0.001 (1,8)
720 0.001 (1,8)

Exchange 96 0.0005 (0.25,10)
192 0.001 (0.25,10)
336 0.001 (0.25,10)
720 0.0005 (0.25,10)

All Stock Datasets {12, 24, 48, 96} 0.001 (0.25,10)
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B. Plateau Part
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Figure 12: (Part 1) Sine wave dataset, 4k-5k period, 720 horizon. Performance comparison across
three phases of long-period sine wave: (A) Ascending, (B) Plateau, and (C) Descending. Each row
shows results from Hipeen and baseline models. Orange line is ground truth and blue line is model
prediction. Cont’d to Table 13
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C. Descending Part
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Figure 13: (Part 2 of Table 12). Sine wave dataset, 4k-5k period, 720 horizon. (C) Descending.
Each row shows results from Hipeen and baseline models. Orange line is ground truth and blue line
is model prediction.

shows that Hipeen achieves more accurate predictions than the baselines by effectively leveraging
both gradient and absolute value cues.

Table 9 and 10 presents the full results corresponding to Table 1 in the main text. In addition to the Sine
wave datasets (2k–3k and 3k–4k), it includes all horizon values in {96,192,336,720}. Consistent with
the main-text results, Hipeen outperforms the baseline models, demonstrating superior performance
on our realistic controlled datasets. In addition, the standard deviations (std) across three random
seeds for each experiment are reported in Table 11 and 12. Hipeen shows a lower standard deviation
than TimeMixer, indicating more stable performance.

E.2 REAL-WORLD STOCK DATASETS

E.2.1 S&P 500 DATASETS

Table 2 reports the forecasting performance on the S&P500 dataset. In the extended Table 13, for
brevity, we present only the top 30 stocks in alphabetical order from the full set of 500. The proposed
Hipeen consistently achieved superior performance compared to both classical linear approaches and
recent transformer-based architectures. In particular, Hipeen delivered the lowest error values across
the majority of stocks, with especially strong robustness on highly volatile equities such as AMD,
AMAT, and AES, where traditional baselines (e.g., DLinear, RLinear) exhibited significant error
inflation. While transformer variants such as iTransformer and PatchTST occasionally performed
competitively on technology-related stocks (e.g., AAPL, ADBE, AMZN), their results were less
stable across the broader set. Simpler models like DLinear showed reasonable accuracy on stable,
low-volatility stocks (e.g., ABT, ADP, AMGN), but their generalization deteriorated sharply under
complex dynamics. Overall, these results highlight the advantage of Hipeen, demonstrating both
strong predictive accuracy and greater consistency across heterogeneous stock behaviors, making it a
more reliable solution for large-scale financial time series forecasting.

E.2.2 Nifty 50 DATASETS

We extended the prediction horizons in the Nifty50 experiments to {12, 24, 48, 96}. We also
simulated actual trading based on the model predictions and expanded the evaluation to include
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B. Exponentials 400-450
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Figure 14: (Part 1). Prediction patterns of Hipeen and the baselines in the transition regions of time
series under the Exponentials and Threshold scenario tasks. Orange indicates the ground
truth, and blue represents the model predictions. (Cont’d in Table 15)
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C. Threshold 0.0005-0.002
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Figure 15: (Part 2 of Table 14.) Prediction patterns of Hipeen and the baselines in the transition
regions of time series under the Exponentials and Threshold scenario tasks. Orange indicates
the ground truth, and blue represents the model predictions.
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advanced, return-related metrics. This experiment was conducted using the following 12 stock
datasets, listed in alphabetical order, as described in Appendix B.1.2: ADANIPORTS, BAJAJ-AUTO,
HDFC, HEROMOTOCO, HINDALCO, LT, MARUTI, NTPC, POWERGRID, TATASTEEL, TECHM, and
TITAN. For details on the inclusion criteria, please refer to Appendix B.1.2.

In addition to the MAE, MAPE, and RMSE used in TSF benchmarks, we compute the profit generated
by executing trades based on the model’s predictions. Trading is conducted as follows: for a model
with horizon length K, the model predicts the next K future values at each timestep. If the predicted
value at t+K is greater than the current value, we open a long position with 1/K of the capital for
K days. Conversely, if the predicted value at t+K is lower than the current value, we open a short
position with 1/K of the capital for K days. Detailed definitions of each metric are provided below.

Mean Absolute Error (MAE). MAE measures the average magnitude of prediction errors. Lower
values indicate better predictive accuracy.

MAE =
1

N

N∑
t=1

|yt − ŷt|.

Mean Absolute Percentage Error (MAPE). MAPE evaluates the relative prediction error as a
percentage of the true value and is scale-independent. For stability, datasets where baseline models
produced a MAPE larger than 10 were excluded from analysis.

MAPE =
100

N

N∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ .
Root Mean Squared Error (RMSE). RMSE penalizes large prediction errors by squaring the
deviations before averaging. Lower values are preferred.

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2.

Revenue (Cumulative Return). Revenue represents the cumulative return obtained from a trading
strategy built on model predictions. Higher values indicate better performance.

Revenue =

N∏
t=1

(1 + rt)− 1,

where rt denotes the daily strategy return.

Drawdown. Average drawdown measures the mean decline from the historical peak of the equity
curve, reflecting the overall risk exposure of the strategy. Lower values are better.

AvgDD =
1

K

K∑
k=1

(
Ptk − P ∗

tk

P ∗
tk

)
,

where Pt is the equity curve and P ∗
t = maxτ≤t Pτ .

Sharpe Ratio. The Sharpe ratio quantifies the excess return per unit of total volatility. Higher values
indicate better risk-adjusted performance.

Sharpe =
E[ rt − rf ]

σ(rt)
,

assuming a risk-free rate rf = 0.

Sortino Ratio. The Sortino ratio is similar to the Sharpe ratio but uses downside volatility instead of
total volatility, penalizing only negative deviations. Higher values are preferred.

Sortino =
E[ rt − rf ]

σ(rt | rt < 0)
.
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Calmar Ratio. The Calmar ratio measures the annualized return relative to the maximum drawdown,
capturing the trade-off between growth and extreme losses. Higher values are better.

Calmar =
AnnualReturn

|MaxDrawdown|
.

Tables 14, 15, and 16 present extended results for the MAE, MAPE, and RMSE experiments. Table 17
reports the results of the trading simulation, evaluated using Revenue, Drawdown, Sharpe Ratio,
Sortino Ratio, and Calmar Ratio.

The results show that Hipeen achieves the best predictive performance on real-world stock datasets and
attains state-of-the-art performance even in real-world trading scenarios based on these predictions.

Another noteworthy observation is that stock forecasting models such as SMamba and STF exhibit
relatively low performance on the standard forecasting metrics (MAE, MAPE, RMSE), yet achieve
strong results in the trading simulations.

E.3 BENCHMARK DATASETS

Table 18 provides the complete results corresponding to Table 4 in the main text, including all horizon
values in {96,192,336,720}. Only the benchmark dataset experiment was obtained using a prototype
estimation approach, where Q was not stored during training and Vest was computed by assuming
that vh equals vest in each estimation step. In the final version of the manuscript, these results will be
updated using the latest estimation method that incorporates the stored Q values.

E.4 ANALYSIS

Figure 16 presents the full results corresponding to Figure 7 in the main text. We analyzed how per-
formance changes with varying hierarchy levels H on three benchmark datasets: ETTh1, Weather,
and Exchange. When fixing rH , performance generally declined as H decreased. In contrast, when
fixing r1, performance was maintained or even improved up to a certain point, after which it sharply
deteriorated.

Table 19 provides the full results corresponding to Table 5 in the main text. Similarly, we conducted
experiments on ETTh1, Weather, and Exchange datasets to evaluate the impact of varying the
bias term added to θ. Our results indicate that adding random angular bias to both the channel
dimension N and the hierarchy dimension H is crucial for improving performance.

E.5 COMPUTATIONAL COST

As shown in Table 20, Hipeen demonstrates strong computational efficiency, ranking among the top
methods across both runtime and memory usage. Despite incorporating an ensemble dimension,
Hipeen maintains lightweight training (5.1 ms per step) and inference (3.3 ms per step), with VRAM
consumption comparable to the most efficient baselines. This efficiency advantage arises from
its design, which scales batch size without introducing additional parameters, allowing Hipeen to
retain near-linear efficiency while offering substantially stronger predictive accuracy. In contrast,
transformer-based architectures incur significantly higher computational costs, highlighting Hipeen’s
favorable trade-off between scalability and accuracy for large-scale time series forecasting.

F LLM USAGE CLARIFICATION

During the preparation of this manuscript, we utilized Google’s Gemini (https://gemini.google.com)
and OpenAI’s ChatGPT (https://chat.openai.com), both Large Language Models, for proofreading and
refining the writing. Our interactions with these tools were iterative and limited solely to enhancing
the clarity and quality of the text. We confirm that the LLMs functioned only as assistive tools and
did not contribute to the research ideas, experimental design, or data analysis in this paper. The final
scientific content and all conclusions remain entirely the responsibility of the authors.
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Figure 16: continued in the next figure (1/2)
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Figure 6 (continued; 2/2): We evaluated performance on the ETTh1 (A), Exchange (B), and Weather
(C) datasets across horizons of 96, 192, 336, and 720 by varying the hierarchy level H . The red line
indicates the case where rH is fixed, and the blue line indicates the case where r1 is fixed. Solid
lines represent MSE, while dashed lines represent MAE. The model consistently maintained high
performance over a relatively wide range of H , while performance degradation was observed when
H became too small.
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Table 14: MAE (Mean Absolute Error) results on the Nifty50 dataset, averaged over three random
seeds. For brevity, stocks are represented by the first three letters of their alphabetical names.

Stock Horizon Hipeen DLinear RLinear SAN Leddam DDN FAN TimeMixer PatchTST TiDE TimesNet CycleNet Peri-mid. FRNet Smamba STF

ADA. 12 0.083 0.190 0.095 0.087 0.103 0.117 0.120 0.094 0.099 0.101 0.176 0.104 0.088 0.096 0.421 0.190
ADA. 24 0.122 0.213 0.141 0.122 0.169 0.169 0.152 0.134 0.154 0.141 0.216 0.160 0.127 0.141 0.403 0.216
ADA. 48 0.180 0.232 0.197 0.180 0.208 0.215 0.195 0.206 0.214 0.196 0.200 0.217 0.194 0.202 0.385 0.266
ADA. 96 0.212 0.235 0.228 0.228 0.226 0.262 0.206 0.258 0.258 0.232 0.248 0.257 0.230 0.230 0.355 0.329
ADA. Avg. 0.149 0.218 0.165 0.154 0.177 0.191 0.168 0.173 0.181 0.168 0.210 0.185 0.160 0.167 0.391 0.250

BAJ. 12 0.160 0.313 0.165 0.158 0.183 0.260 0.204 0.171 0.165 0.188 0.264 0.174 0.166 0.167 0.823 0.605
BAJ. 24 0.220 0.366 0.232 0.225 0.244 0.296 0.257 0.236 0.254 0.267 0.292 0.240 0.236 0.233 0.847 0.622
BAJ. 48 0.308 0.470 0.327 0.327 0.321 0.392 0.348 0.330 0.327 0.378 0.369 0.337 0.333 0.329 0.897 0.718
BAJ. 96 0.401 0.597 0.428 0.423 0.436 0.442 0.434 0.452 0.421 0.464 0.486 0.453 0.437 0.432 0.948 0.823
BAJ. Avg. 0.272 0.437 0.288 0.283 0.296 0.347 0.311 0.297 0.292 0.324 0.353 0.301 0.293 0.290 0.878 0.692

HDF. 12 0.084 0.166 0.087 0.092 0.090 0.125 0.107 0.095 0.092 0.095 0.125 0.097 0.086 0.089 0.548 0.467
HDF. 24 0.113 0.196 0.116 0.124 0.120 0.154 0.161 0.129 0.121 0.123 0.154 0.126 0.115 0.121 0.527 0.439
HDF. 48 0.158 0.256 0.167 0.188 0.170 0.192 0.207 0.181 0.171 0.173 0.187 0.180 0.166 0.170 0.527 0.450
HDF. 96 0.211 0.336 0.239 0.269 0.245 0.257 0.307 0.259 0.254 0.244 0.265 0.257 0.239 0.242 0.536 0.346
HDF. Avg. 0.141 0.238 0.152 0.168 0.156 0.182 0.196 0.166 0.160 0.159 0.183 0.165 0.151 0.155 0.535 0.426

HER. 12 0.150 0.253 0.149 0.147 0.155 0.200 0.191 0.149 0.149 0.163 0.192 0.152 0.145 0.150 1.557 1.208
HER. 24 0.201 0.287 0.196 0.196 0.199 0.234 0.244 0.198 0.202 0.209 0.228 0.203 0.195 0.197 1.581 1.369
HER. 48 0.263 0.339 0.258 0.264 0.262 0.281 0.305 0.260 0.269 0.277 0.288 0.258 0.256 0.258 1.625 1.512
HER. 96 0.353 0.437 0.352 0.363 0.349 0.374 0.410 0.346 0.355 0.358 0.379 0.350 0.353 0.352 1.634 1.613
HER. Avg. 0.242 0.329 0.239 0.243 0.241 0.272 0.288 0.238 0.244 0.252 0.272 0.241 0.237 0.239 1.599 1.426

HIN. 12 0.025 0.052 0.026 0.027 0.026 0.041 0.038 0.026 0.025 0.029 0.039 0.028 0.026 0.026 0.075 0.132
HIN. 24 0.036 0.065 0.034 0.035 0.036 0.043 0.044 0.035 0.037 0.037 0.042 0.036 0.034 0.035 0.083 0.142
HIN. 48 0.050 0.070 0.048 0.049 0.048 0.060 0.056 0.052 0.049 0.050 0.052 0.050 0.046 0.048 0.087 0.142
HIN. 96 0.072 0.084 0.063 0.065 0.063 0.070 0.069 0.065 0.066 0.076 0.071 0.067 0.062 0.063 0.095 0.144
HIN. Avg. 0.046 0.068 0.043 0.044 0.043 0.053 0.052 0.045 0.044 0.048 0.051 0.045 0.042 0.043 0.085 0.140

LT 12 0.067 0.128 0.070 0.069 0.076 0.106 0.087 0.074 0.069 0.073 0.108 0.077 0.069 0.069 0.219 0.135
LT 24 0.104 0.155 0.100 0.102 0.108 0.131 0.114 0.113 0.106 0.104 0.128 0.113 0.101 0.100 0.233 0.169
LT 48 0.141 0.195 0.143 0.147 0.156 0.167 0.159 0.152 0.161 0.146 0.165 0.168 0.143 0.142 0.248 0.183
LT 96 0.207 0.262 0.185 0.197 0.195 0.202 0.244 0.194 0.206 0.244 0.207 0.218 0.191 0.185 0.286 0.243
LT Avg. 0.130 0.185 0.125 0.129 0.134 0.152 0.151 0.133 0.136 0.142 0.152 0.144 0.126 0.124 0.247 0.183

MAR. 12 0.278 0.624 0.292 0.306 0.306 0.531 0.408 0.297 0.285 0.311 0.409 0.294 0.285 0.287 4.323 3.828
MAR. 24 0.377 0.719 0.394 0.405 0.401 0.521 0.539 0.425 0.412 0.407 0.514 0.401 0.387 0.394 4.401 4.095
MAR. 48 0.543 0.864 0.565 0.599 0.572 0.668 0.749 0.619 0.567 0.581 0.609 0.563 0.568 0.575 4.506 4.380
MAR. 96 0.751 1.141 0.786 0.933 0.777 0.838 1.245 0.798 0.789 0.789 0.845 0.757 0.840 0.785 4.628 4.684
MAR. Avg. 0.487 0.837 0.509 0.561 0.514 0.639 0.735 0.535 0.513 0.522 0.595 0.504 0.520 0.510 4.465 4.247

NTP. 12 0.138 0.188 0.116 0.117 0.117 0.167 0.155 0.120 0.115 0.121 0.156 0.110 0.114 0.118 0.449 0.241
NTP. 24 0.160 0.226 0.152 0.171 0.150 0.171 0.215 0.154 0.152 0.158 0.181 0.149 0.154 0.152 0.478 0.270
NTP. 48 0.217 0.279 0.195 0.238 0.190 0.211 0.276 0.201 0.202 0.201 0.212 0.194 0.196 0.198 0.516 0.386
NTP. 96 0.302 0.385 0.256 0.318 0.255 0.284 0.407 0.294 0.295 0.263 0.280 0.256 0.266 0.266 0.592 0.641
NTP. Avg. 0.204 0.269 0.180 0.211 0.178 0.208 0.263 0.192 0.191 0.186 0.207 0.177 0.182 0.183 0.509 0.385

POW. 12 0.203 0.332 0.216 0.208 0.225 0.305 0.291 0.216 0.211 0.237 0.301 0.216 0.214 0.218 1.417 0.807
POW. 24 0.269 0.368 0.280 0.274 0.290 0.359 0.345 0.285 0.281 0.308 0.345 0.282 0.284 0.282 1.438 1.065
POW. 48 0.357 0.421 0.368 0.368 0.405 0.441 0.459 0.370 0.372 0.387 0.393 0.368 0.369 0.368 1.501 1.314
POW. 96 0.443 0.469 0.445 0.444 0.465 0.484 0.548 0.450 0.450 0.470 0.476 0.451 0.445 0.448 1.584 1.588
POW. Avg. 0.318 0.397 0.327 0.323 0.346 0.397 0.411 0.330 0.329 0.351 0.379 0.329 0.328 0.329 1.485 1.193

TAT. 12 0.113 0.222 0.126 0.118 0.132 0.193 0.147 0.128 0.128 0.136 0.170 0.131 0.125 0.124 0.352 0.202
TAT. 24 0.161 0.258 0.178 0.172 0.185 0.232 0.203 0.187 0.186 0.188 0.212 0.181 0.177 0.176 0.368 0.259
TAT. 48 0.242 0.321 0.262 0.250 0.259 0.304 0.277 0.285 0.264 0.263 0.290 0.262 0.264 0.267 0.391 0.352
TAT. 96 0.364 0.400 0.390 0.388 0.386 0.471 0.379 0.413 0.383 0.405 0.410 0.395 0.393 0.393 0.415 0.435
TAT. Avg. 0.220 0.300 0.239 0.232 0.241 0.300 0.252 0.253 0.240 0.248 0.271 0.242 0.240 0.240 0.381 0.312

TEC. 12 0.044 0.094 0.048 0.047 0.052 0.071 0.060 0.047 0.046 0.053 0.084 0.050 0.047 0.047 0.158 0.177
TEC. 24 0.063 0.115 0.071 0.066 0.072 0.089 0.081 0.067 0.077 0.079 0.099 0.069 0.068 0.066 0.168 0.188
TEC. 48 0.101 0.134 0.104 0.099 0.104 0.115 0.111 0.103 0.096 0.113 0.108 0.103 0.099 0.101 0.175 0.248
TEC. 96 0.148 0.181 0.162 0.155 0.172 0.166 0.152 0.160 0.149 0.169 0.160 0.157 0.161 0.155 0.181 0.295
TEC. Avg. 0.089 0.131 0.096 0.092 0.100 0.110 0.101 0.094 0.092 0.104 0.113 0.095 0.094 0.092 0.170 0.227

TIT. 12 0.045 0.088 0.053 0.058 0.050 0.080 0.061 0.053 0.049 0.061 0.084 0.059 0.049 0.050 0.184 0.403
TIT. 24 0.059 0.105 0.075 0.080 0.072 0.100 0.074 0.079 0.065 0.079 0.114 0.080 0.072 0.072 0.194 0.365
TIT. 48 0.083 0.128 0.108 0.120 0.111 0.133 0.095 0.112 0.098 0.105 0.115 0.135 0.109 0.111 0.195 0.271
TIT. 96 0.114 0.166 0.151 0.167 0.144 0.166 0.152 0.158 0.149 0.150 0.173 0.183 0.150 0.145 0.221 0.310
TIT. Avg. 0.075 0.122 0.096 0.106 0.094 0.120 0.096 0.100 0.090 0.099 0.121 0.114 0.095 0.094 0.199 0.337
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Table 15: MAPE (Mean Absolute Percentage Error) results on the Nifty50 dataset, averaged over
three random seeds. For brevity, stocks are represented by the first three letters of their alphabetical
names.

Stock Horizon Hipeen DLinear RLinear SAN Leddam DDN FAN TimeMixer PatchTST TiDE TimesNet CycleNet Peri-mid. FRNet Smamba STF

BAJ. 12 0.154 0.282 0.15 0.139 0.182 0.23 0.193 0.157 0.16 0.162 0.25 0.166 0.151 0.148 0.482 0.352
BAJ. 24 0.22 0.322 0.223 0.212 0.247 0.279 0.253 0.23 0.242 0.247 0.283 0.237 0.227 0.227 0.498 0.384
BAJ. 48 0.308 0.382 0.313 0.3 0.317 0.361 0.324 0.328 0.32 0.346 0.349 0.324 0.317 0.317 0.529 0.441
BAJ. 96 0.405 0.444 0.404 0.379 0.418 0.417 0.391 0.422 0.411 0.423 0.452 0.41 0.411 0.408 0.571 0.503
BAJ. avg 0.272 0.358 0.273 0.257 0.291 0.322 0.29 0.284 0.283 0.295 0.334 0.284 0.276 0.275 0.52 0.42

HDF. 12 0.08 0.157 0.082 0.086 0.085 0.114 0.099 0.09 0.088 0.089 0.117 0.092 0.082 0.084 0.468 0.484
HDF. 24 0.107 0.183 0.109 0.116 0.113 0.151 0.147 0.122 0.115 0.117 0.144 0.119 0.109 0.113 0.44 0.46
HDF. 48 0.15 0.232 0.156 0.172 0.159 0.184 0.188 0.17 0.16 0.163 0.176 0.167 0.156 0.159 0.435 0.479
HDF. 96 0.198 0.294 0.219 0.24 0.224 0.24 0.266 0.238 0.229 0.224 0.244 0.232 0.219 0.223 0.442 0.318
HDF. avg 0.134 0.216 0.142 0.153 0.145 0.172 0.175 0.155 0.148 0.148 0.17 0.153 0.141 0.145 0.446 0.436

HER. 12 0.063 0.11 0.063 0.061 0.066 0.084 0.082 0.062 0.062 0.067 0.083 0.063 0.061 0.061 0.528 0.4
HER. 24 0.087 0.126 0.084 0.084 0.087 0.1 0.106 0.084 0.087 0.089 0.1 0.087 0.084 0.084 0.536 0.457
HER. 48 0.117 0.149 0.114 0.116 0.117 0.124 0.134 0.113 0.118 0.121 0.128 0.113 0.113 0.114 0.551 0.509
HER. 96 0.156 0.19 0.156 0.159 0.154 0.165 0.179 0.152 0.155 0.158 0.167 0.154 0.156 0.155 0.555 0.545
HER. avg 0.106 0.144 0.104 0.105 0.106 0.118 0.125 0.103 0.106 0.109 0.119 0.104 0.103 0.104 0.542 0.478

HIN. 12 0.052 0.11 0.054 0.055 0.054 0.086 0.084 0.054 0.054 0.06 0.082 0.056 0.054 0.053 0.147 0.305
HIN. 24 0.073 0.134 0.071 0.072 0.073 0.086 0.094 0.072 0.077 0.075 0.087 0.074 0.07 0.071 0.163 0.311
HIN. 48 0.1 0.14 0.1 0.099 0.099 0.124 0.115 0.103 0.1 0.103 0.104 0.1 0.096 0.098 0.17 0.295
HIN. 96 0.139 0.159 0.125 0.127 0.128 0.139 0.136 0.131 0.132 0.145 0.143 0.135 0.124 0.126 0.182 0.291
HIN. avg 0.091 0.136 0.088 0.088 0.088 0.109 0.107 0.09 0.091 0.096 0.104 0.091 0.086 0.087 0.165 0.3

LT 12 0.173 0.299 0.188 0.181 0.204 0.272 0.214 0.201 0.19 0.194 0.281 0.209 0.181 0.191 0.527 0.329
LT 24 0.256 0.345 0.267 0.265 0.29 0.359 0.272 0.309 0.286 0.273 0.329 0.311 0.265 0.277 0.561 0.419
LT 48 0.333 0.41 0.383 0.362 0.418 0.464 0.354 0.427 0.448 0.396 0.445 0.463 0.382 0.388 0.571 0.447
LT 96 0.432 0.484 0.494 0.507 0.525 0.505 0.482 0.533 0.57 0.593 0.553 0.611 0.507 0.497 0.565 0.448
LT avg 0.299 0.385 0.333 0.329 0.359 0.4 0.331 0.367 0.373 0.364 0.402 0.399 0.334 0.338 0.556 0.411

MAR. 12 0.049 0.113 0.051 0.054 0.054 0.094 0.073 0.052 0.05 0.055 0.072 0.051 0.05 0.05 0.688 0.603
MAR. 24 0.067 0.131 0.069 0.071 0.071 0.092 0.097 0.076 0.073 0.071 0.092 0.071 0.068 0.069 0.701 0.648
MAR. 48 0.098 0.158 0.101 0.108 0.103 0.121 0.136 0.111 0.101 0.103 0.11 0.101 0.101 0.102 0.719 0.696
MAR. 96 0.139 0.211 0.145 0.171 0.144 0.154 0.227 0.147 0.145 0.145 0.155 0.14 0.155 0.144 0.745 0.754
MAR. avg 0.088 0.153 0.091 0.101 0.093 0.115 0.134 0.096 0.092 0.094 0.107 0.091 0.093 0.091 0.713 0.675

NTP. 12 0.569 0.792 0.508 0.45 0.459 0.778 0.586 0.457 0.511 0.505 0.706 0.455 0.478 0.504 1.95 0.709
NTP. 24 0.685 0.943 0.67 0.69 0.643 0.747 0.818 0.649 0.686 0.675 0.833 0.666 0.697 0.655 2.166 0.91
NTP. 48 1.06 1.126 0.989 1.051 0.945 1.094 1.143 0.998 0.979 0.966 1.031 0.971 0.982 1.002 2.479 1.317
NTP. 96 1.371 1.345 1.28 1.328 1.287 1.423 1.442 1.463 1.501 1.324 1.342 1.294 1.345 1.363 3.014 2.666
NTP. avg 0.921 1.052 0.862 0.88 0.834 1.01 0.997 0.892 0.919 0.868 0.978 0.847 0.876 0.881 2.402 1.4

POW. 12 0.085 0.144 0.091 0.087 0.095 0.129 0.124 0.091 0.088 0.1 0.128 0.091 0.09 0.092 0.514 0.293
POW. 24 0.114 0.16 0.119 0.116 0.123 0.151 0.151 0.12 0.12 0.131 0.148 0.12 0.119 0.119 0.524 0.388
POW. 48 0.155 0.184 0.158 0.158 0.176 0.187 0.207 0.159 0.159 0.166 0.172 0.158 0.158 0.158 0.555 0.486
POW. 96 0.198 0.205 0.197 0.195 0.204 0.213 0.249 0.2 0.2 0.209 0.21 0.2 0.197 0.198 0.599 0.602
POW. avg 0.138 0.173 0.141 0.139 0.15 0.17 0.182 0.142 0.142 0.152 0.165 0.142 0.141 0.142 0.548 0.442

TAT. 12 0.557 1.111 0.709 0.637 0.71 0.984 0.74 0.783 0.616 0.824 0.833 0.75 0.744 0.688 1.423 1.184
TAT. 24 0.937 1.282 1.052 0.965 0.937 1.127 1.366 1.066 0.936 1.11 1.365 0.937 1.041 1.023 1.46 1.673
TAT. 48 1.484 1.348 1.593 1.684 1.456 1.974 1.774 1.369 1.587 1.567 1.64 1.446 1.661 1.668 1.54 2.189
TAT. 96 1.838 1.816 2.075 2.129 1.748 2.969 2.006 2.166 1.967 2.332 2.21 1.961 2.052 2.071 1.807 2.355
TAT. avg 1.204 1.389 1.357 1.354 1.213 1.764 1.472 1.346 1.277 1.458 1.512 1.273 1.374 1.363 1.557 1.85

TEC. 12 0.554 1.012 0.561 0.601 0.537 0.7 0.625 0.52 0.543 0.612 0.894 0.586 0.523 0.531 1.185 4.244
TEC. 24 0.716 1.273 0.775 0.638 0.711 0.899 0.795 0.676 0.896 0.916 1.108 0.695 0.679 0.674 1.407 3.887
TEC. 48 0.956 1.485 1.28 1.005 1.166 1.16 1.05 0.811 0.879 1.132 0.83 1.045 1.021 0.915 1.634 3.5
TEC. 96 1.308 2.171 2.434 1.88 2.302 1.923 1.385 1.04 1.032 2.262 1.311 2.071 2.313 1.092 1.871 2.99
TEC. avg 0.884 1.485 1.262 1.031 1.179 1.171 0.964 0.762 0.837 1.23 1.036 1.099 1.134 0.803 1.524 3.655

TIT. 12 0.171 0.325 0.195 0.207 0.182 0.29 0.236 0.198 0.18 0.226 0.304 0.219 0.183 0.184 0.667 1.193
TIT. 24 0.226 0.376 0.274 0.277 0.263 0.361 0.296 0.289 0.244 0.287 0.413 0.291 0.263 0.263 0.698 1.127
TIT. 48 0.311 0.441 0.395 0.417 0.41 0.493 0.376 0.413 0.365 0.385 0.417 0.489 0.399 0.404 0.729 0.845
TIT. 96 0.418 0.549 0.569 0.599 0.54 0.637 0.552 0.562 0.523 0.566 0.645 0.66 0.566 0.544 0.812 0.911
TIT. avg 0.282 0.423 0.358 0.375 0.349 0.445 0.365 0.365 0.328 0.366 0.444 0.415 0.353 0.349 0.726 1.019
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Table 16: RMSE (Root Mean Squared Error) results on the Nifty50 dataset, averaged over three
random seeds. For brevity, stocks are represented by the first three letters of their alphabetical names.

Stock Horizon Hipeen DLinear RLinear SAN Leddam DDN FAN TimeMixer PatchTST TiDE TimesNet CycleNet Peri-mid. FRNet Smamba STF

ADA. 12 0.126 0.282 0.144 0.132 0.149 0.167 0.175 0.134 0.139 0.151 0.258 0.146 0.131 0.142 0.558 0.258
ADA. 24 0.182 0.324 0.205 0.178 0.241 0.252 0.225 0.19 0.23 0.196 0.324 0.222 0.192 0.206 0.544 0.295
ADA. 48 0.276 0.368 0.302 0.265 0.307 0.307 0.302 0.309 0.312 0.29 0.282 0.306 0.296 0.304 0.513 0.359
ADA. 96 0.343 0.38 0.366 0.359 0.361 0.384 0.342 0.379 0.387 0.364 0.373 0.374 0.369 0.361 0.474 0.445
ADA. avg 0.232 0.339 0.254 0.234 0.264 0.278 0.261 0.253 0.267 0.25 0.309 0.262 0.247 0.253 0.522 0.339

BAJ. 12 0.235 0.425 0.234 0.222 0.26 0.358 0.286 0.24 0.239 0.257 0.362 0.243 0.236 0.231 1.01 0.856
BAJ. 24 0.327 0.493 0.336 0.323 0.353 0.414 0.371 0.347 0.362 0.372 0.407 0.342 0.341 0.337 1.029 0.848
BAJ. 48 0.446 0.607 0.465 0.456 0.461 0.535 0.487 0.473 0.47 0.515 0.501 0.475 0.471 0.468 1.072 0.912
BAJ. 96 0.572 0.742 0.592 0.577 0.601 0.598 0.58 0.632 0.587 0.621 0.644 0.607 0.602 0.596 1.096 0.97
BAJ. avg 0.395 0.567 0.407 0.394 0.419 0.476 0.431 0.423 0.415 0.441 0.478 0.417 0.412 0.408 1.052 0.897

HDF. 12 0.124 0.221 0.126 0.13 0.128 0.172 0.15 0.136 0.131 0.135 0.173 0.134 0.125 0.128 0.716 0.556
HDF. 24 0.169 0.262 0.171 0.177 0.175 0.222 0.224 0.187 0.174 0.179 0.215 0.177 0.17 0.177 0.688 0.52
HDF. 48 0.24 0.336 0.247 0.264 0.251 0.279 0.291 0.266 0.251 0.253 0.267 0.26 0.246 0.252 0.687 0.522
HDF. 96 0.325 0.429 0.348 0.369 0.355 0.362 0.408 0.371 0.368 0.353 0.379 0.367 0.348 0.351 0.692 0.447
HDF. avg 0.215 0.312 0.223 0.235 0.227 0.259 0.268 0.24 0.231 0.23 0.259 0.234 0.222 0.227 0.696 0.511

HER. 12 0.194 0.317 0.193 0.192 0.201 0.255 0.244 0.193 0.196 0.207 0.246 0.197 0.188 0.196 1.698 1.364
HER. 24 0.264 0.361 0.256 0.255 0.263 0.301 0.312 0.259 0.266 0.27 0.296 0.264 0.255 0.256 1.725 1.529
HER. 48 0.344 0.429 0.338 0.346 0.343 0.364 0.39 0.339 0.354 0.357 0.381 0.337 0.337 0.338 1.775 1.669
HER. 96 0.467 0.55 0.464 0.479 0.461 0.484 0.525 0.455 0.461 0.469 0.502 0.461 0.465 0.463 1.793 1.781
HER. avg 0.317 0.414 0.313 0.318 0.317 0.351 0.368 0.312 0.319 0.326 0.356 0.315 0.311 0.313 1.748 1.586

HIN. 12 0.034 0.069 0.036 0.036 0.036 0.057 0.054 0.036 0.035 0.039 0.053 0.037 0.036 0.035 0.095 0.186
HIN. 24 0.05 0.086 0.048 0.049 0.049 0.058 0.062 0.049 0.051 0.051 0.059 0.05 0.048 0.049 0.105 0.182
HIN. 48 0.069 0.094 0.069 0.069 0.068 0.083 0.079 0.072 0.069 0.071 0.072 0.07 0.067 0.068 0.11 0.167
HIN. 96 0.097 0.111 0.092 0.093 0.093 0.101 0.096 0.094 0.095 0.108 0.104 0.097 0.091 0.093 0.119 0.17
HIN. avg 0.062 0.09 0.061 0.062 0.061 0.075 0.073 0.063 0.063 0.067 0.072 0.064 0.06 0.061 0.107 0.176

LT 12 0.094 0.169 0.098 0.096 0.105 0.142 0.12 0.103 0.099 0.102 0.144 0.108 0.097 0.098 0.272 0.18
LT 24 0.143 0.205 0.139 0.138 0.148 0.184 0.158 0.156 0.15 0.142 0.17 0.158 0.139 0.14 0.291 0.226
LT 48 0.198 0.258 0.198 0.197 0.211 0.232 0.219 0.211 0.221 0.202 0.221 0.224 0.197 0.198 0.316 0.241
LT 96 0.288 0.353 0.27 0.27 0.278 0.295 0.323 0.275 0.289 0.332 0.287 0.293 0.274 0.269 0.378 0.328
LT avg 0.181 0.246 0.176 0.175 0.185 0.213 0.205 0.186 0.19 0.195 0.206 0.196 0.177 0.176 0.314 0.244

MAR. 12 0.376 0.821 0.393 0.416 0.412 0.689 0.548 0.398 0.397 0.409 0.541 0.394 0.383 0.386 4.484 4.02
MAR. 24 0.519 0.948 0.539 0.552 0.548 0.686 0.727 0.577 0.562 0.548 0.684 0.542 0.531 0.533 4.562 4.278
MAR. 48 0.75 1.138 0.778 0.821 0.774 0.883 1.005 0.828 0.773 0.784 0.817 0.771 0.78 0.784 4.669 4.56
MAR. 96 1.005 1.478 1.069 1.237 1.035 1.102 1.616 1.083 1.055 1.06 1.092 1.029 1.146 1.055 4.789 4.854
MAR. avg 0.662 1.096 0.695 0.757 0.692 0.84 0.974 0.722 0.697 0.7 0.783 0.684 0.71 0.689 4.626 4.428

NTP. 12 0.177 0.239 0.155 0.158 0.16 0.21 0.198 0.163 0.16 0.162 0.203 0.154 0.153 0.159 0.545 0.314
NTP. 24 0.211 0.285 0.201 0.226 0.202 0.222 0.272 0.207 0.206 0.207 0.235 0.203 0.202 0.201 0.574 0.344
NTP. 48 0.28 0.348 0.256 0.307 0.254 0.274 0.345 0.264 0.269 0.262 0.276 0.258 0.258 0.259 0.61 0.492
NTP. 96 0.376 0.47 0.326 0.398 0.327 0.353 0.491 0.367 0.372 0.333 0.352 0.33 0.336 0.337 0.682 0.763
NTP. avg 0.261 0.336 0.235 0.272 0.236 0.265 0.326 0.25 0.252 0.241 0.266 0.236 0.237 0.239 0.603 0.478

POW. 12 0.28 0.422 0.297 0.288 0.305 0.393 0.372 0.296 0.294 0.318 0.39 0.296 0.292 0.298 1.54 0.93
POW. 24 0.364 0.469 0.377 0.375 0.388 0.471 0.438 0.386 0.381 0.402 0.449 0.378 0.381 0.38 1.557 1.184
POW. 48 0.475 0.547 0.486 0.486 0.515 0.584 0.581 0.487 0.498 0.506 0.511 0.487 0.488 0.485 1.614 1.433
POW. 96 0.593 0.622 0.593 0.594 0.612 0.638 0.721 0.608 0.6 0.62 0.629 0.598 0.594 0.597 1.687 1.69
POW. avg 0.428 0.515 0.438 0.436 0.455 0.522 0.528 0.444 0.443 0.462 0.494 0.44 0.439 0.44 1.599 1.309

TAT. 12 0.159 0.287 0.176 0.166 0.185 0.252 0.202 0.182 0.182 0.189 0.224 0.187 0.174 0.172 0.494 0.274
TAT. 24 0.228 0.335 0.245 0.239 0.257 0.304 0.27 0.256 0.262 0.255 0.281 0.256 0.241 0.243 0.505 0.344
TAT. 48 0.335 0.419 0.355 0.339 0.355 0.399 0.366 0.38 0.36 0.356 0.386 0.358 0.357 0.36 0.529 0.456
TAT. 96 0.494 0.535 0.519 0.507 0.522 0.601 0.496 0.546 0.51 0.531 0.543 0.529 0.523 0.524 0.558 0.556
TAT. avg 0.304 0.394 0.323 0.313 0.33 0.389 0.333 0.341 0.329 0.333 0.359 0.333 0.324 0.325 0.521 0.407

TEC. 12 0.064 0.125 0.068 0.065 0.072 0.098 0.083 0.067 0.064 0.073 0.111 0.067 0.067 0.065 0.193 0.248
TEC. 24 0.093 0.153 0.1 0.094 0.1 0.124 0.112 0.094 0.105 0.109 0.133 0.095 0.097 0.093 0.204 0.254
TEC. 48 0.143 0.179 0.144 0.137 0.143 0.157 0.153 0.147 0.134 0.155 0.147 0.141 0.14 0.141 0.212 0.308
TEC. 96 0.2 0.233 0.213 0.202 0.222 0.217 0.206 0.215 0.199 0.22 0.208 0.204 0.212 0.213 0.22 0.356
TEC. avg 0.125 0.173 0.131 0.125 0.134 0.149 0.139 0.131 0.126 0.139 0.15 0.127 0.129 0.128 0.207 0.291

TIT. 12 0.066 0.111 0.073 0.079 0.07 0.102 0.084 0.073 0.069 0.081 0.106 0.08 0.069 0.071 0.237 0.596
TIT. 24 0.088 0.133 0.1 0.108 0.097 0.126 0.103 0.103 0.092 0.105 0.139 0.105 0.097 0.097 0.248 0.522
TIT. 48 0.116 0.162 0.139 0.155 0.14 0.165 0.127 0.141 0.13 0.136 0.146 0.165 0.14 0.141 0.249 0.364
TIT. 96 0.152 0.212 0.189 0.213 0.181 0.205 0.194 0.199 0.196 0.188 0.209 0.23 0.189 0.182 0.28 0.401
TIT. avg 0.105 0.155 0.125 0.139 0.122 0.149 0.127 0.129 0.122 0.128 0.15 0.145 0.124 0.122 0.254 0.471
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Table 17: Trading-based metrics results on the Nifty50 dataset, averaged over {12, 24, 48,96}
horizon lengths and three random seeds. The scales differ substantially across horizons, and due to
the nature of risk-adjusted return metrics—which can sometimes yield infinite values—we report the
results using rank-based averaging. For brevity, stock names are abbreviated to the first three letters
of their alphabetical names.

Stock Metric Hipeen DLinear RLinear SAN Leddam DDN FAN TimeMixer PatchTST TiDE TimesNet CycleNet Peri-mid. FRNet Smamba STF

ADA. Revenue 3.3 10.5 11.3 4.5 9.3 7.5 5.0 10.8 6.5 5.5 14.0 11.8 9.5 10.5 8.5 7.8
ADA. Drawdown 2.5 11.5 8.8 6.3 6.3 11.5 4.3 12.3 11.5 5.0 10.8 13.5 9.8 8.5 7.0 6.8
ADA. Sharpe 3.3 8.8 11.0 3.5 11.3 8.3 4.5 10.5 7.3 5.8 14.3 12.3 9.3 11.8 6.5 8.0
ADA. Sortino 3.3 8.8 11.3 3.8 11.0 7.8 4.5 10.8 7.5 5.8 14.5 12.3 9.5 10.8 6.8 8.0
ADA. Calmar 3.5 9.0 11.0 4.0 10.0 7.0 5.8 10.3 6.3 5.3 14.3 12.8 9.0 10.3 10.0 7.8

BAJ. Revenue 1.3 11.0 7.5 4.8 8.5 11.0 3.0 11.5 6.5 13.0 9.5 9.8 11.8 8.3 10.3 8.5
BAJ. Drawdown 3.0 11.8 5.8 6.3 3.5 10.3 5.8 11.5 9.3 13.0 7.3 9.3 10.8 7.0 12.5 9.3
BAJ. Sharpe 1.8 9.3 7.0 4.8 6.5 10.5 3.0 11.5 8.3 14.3 9.3 9.8 13.0 9.0 9.5 8.8
BAJ. Sortino 1.5 9.5 7.0 4.8 6.3 11.3 3.0 11.5 8.3 14.3 9.5 9.5 12.5 9.0 9.5 8.8
BAJ. Calmar 1.3 10.0 7.3 5.5 7.5 11.0 3.3 11.3 6.8 14.3 10.5 10.0 12.0 7.5 9.8 8.3

HDF. Revenue 2.8 15.5 8.8 9.8 6.5 3.0 10.8 12.3 8.0 9.3 9.8 9.8 8.5 10.0 10.3 1.3
HDF. Drawdown 6.8 16.0 8.3 9.8 4.0 4.3 13.3 11.5 9.5 7.3 10.3 8.5 7.0 6.5 11.3 2.0
HDF. Sharpe 2.8 14.3 9.8 10.3 6.3 3.0 9.5 12.0 8.3 10.8 10.0 10.8 8.5 10.5 8.3 1.3
HDF. Sortino 2.8 15.3 9.5 10.3 6.3 3.0 10.0 11.8 8.3 10.8 9.8 10.3 8.5 10.3 8.3 1.3
HDF. Calmar 2.8 15.3 10.0 10.0 6.5 3.0 10.3 11.0 7.5 11.0 10.0 9.3 8.5 11.0 8.8 1.3
HER. Revenue 11.3 15.3 7.5 13.5 7.5 12.5 13.8 2.0 4.5 10.3 10.5 6.3 6.8 4.5 7.3 2.8
HER. Drawdown 8.5 11.8 8.8 11.8 5.5 8.0 14.3 3.8 7.5 6.8 6.5 4.3 8.8 5.5 13.3 11.3
HER. Sharpe 10.8 14.8 7.0 13.3 7.3 13.3 13.8 2.0 5.0 11.0 10.8 6.0 6.5 4.8 6.8 3.3
HER. Sortino 11.0 15.0 7.3 13.5 7.5 13.3 14.0 2.0 5.0 10.5 10.8 6.3 6.5 4.3 6.5 2.8
HER. Calmar 11.0 15.3 7.8 13.3 7.3 12.8 13.8 1.3 5.0 10.5 10.3 5.5 7.0 5.0 7.5 3.0

HIN. Revenue 3.3 8.0 14.8 8.3 9.8 10.3 11.0 6.0 4.8 12.0 14.0 5.5 10.5 13.3 1.3 3.5
HIN. Drawdown 10.3 10.8 7.5 11.5 2.8 9.8 13.3 7.8 6.3 9.8 10.8 4.8 6.0 10.5 2.0 12.5
HIN. Sharpe 3.3 7.8 15.0 8.8 9.5 10.8 9.3 6.5 4.0 12.8 13.8 5.0 10.5 13.5 1.3 4.5
HIN. Sortino 3.3 7.8 15.3 8.5 10.0 10.8 9.3 6.3 3.8 12.5 14.0 5.5 10.5 13.5 1.3 4.0
HIN. Calmar 4.3 8.3 14.8 9.0 9.8 10.3 11.3 4.8 4.0 11.8 13.8 5.3 10.3 13.5 1.3 4.0

LT Revenue 8.0 4.8 10.3 1.8 14.5 13.3 4.5 9.8 6.3 12.8 12.5 14.5 10.5 6.8 3.3 2.8
LT Drawdown 15.3 9.0 4.5 5.8 10.8 10.0 10.5 11.0 6.3 6.5 7.3 14.0 11.5 6.0 4.8 3.0
LT Sharpe 7.8 4.8 11.3 2.0 13.8 12.5 4.5 10.0 6.3 13.5 13.5 13.8 10.0 6.8 3.3 2.5
LT Sortino 7.5 4.8 10.8 1.8 14.0 12.8 4.5 9.8 6.3 14.0 13.5 13.5 10.0 7.0 3.3 2.8
LT Calmar 7.8 5.0 11.5 1.5 14.5 13.0 6.3 9.8 5.5 12.0 13.0 14.0 10.0 6.8 2.8 2.8

MAR. Revenue 8.3 13.5 8.8 12.8 3.5 8.5 15.5 6.3 6.3 10.0 8.0 8.0 6.5 5.8 7.3 7.3
MAR. Drawdown 6.0 14.5 9.5 13.5 4.0 8.5 13.8 7.8 5.3 5.0 7.0 5.8 8.0 7.5 10.0 10.0
MAR. Sharpe 9.5 13.5 8.0 12.5 3.5 8.5 15.0 5.8 6.3 11.3 8.3 8.5 6.8 5.8 6.5 6.5
MAR. Sortino 9.5 13.8 8.0 12.8 3.5 8.5 15.0 5.8 6.3 11.0 8.3 8.3 6.8 5.8 6.5 6.5
MAR. Calmar 8.5 13.5 8.3 12.8 3.5 8.5 15.3 5.8 6.3 10.0 8.3 9.0 6.3 5.8 7.3 7.3

NTPC Revenue 13.3 9.5 5.3 15.8 2.5 9.5 14.3 7.0 6.8 8.0 8.0 2.8 8.0 7.8 11.8 6.0
NTPC Drawdown 13.5 13.0 3.3 15.8 1.8 9.0 13.8 8.5 8.8 5.8 7.5 5.5 5.3 4.0 12.8 8.0
NTPC Sharpe 13.0 9.5 5.0 15.3 2.5 10.5 13.8 8.0 6.8 8.8 8.3 3.0 7.0 7.5 11.3 6.0
NTPC Sortino 13.0 9.5 4.5 15.3 2.8 10.3 13.5 7.5 7.0 8.5 8.5 3.5 6.8 8.0 11.5 6.0
NTPC Calmar 13.0 9.8 4.8 15.5 2.0 9.3 14.0 7.5 7.8 7.8 8.5 3.0 6.8 7.8 12.3 6.5

POW. Revenue 2.0 5.8 5.0 9.0 9.3 9.8 11.3 8.3 8.3 12.8 3.8 5.3 10.3 4.5 16.0 15.0
POW. Drawdown 4.3 7.8 4.8 7.8 6.3 9.5 13.0 9.3 9.5 8.3 4.5 5.5 11.5 3.3 16.0 15.0
POW. Sharpe 3.5 7.8 4.8 9.0 6.3 10.8 12.3 8.0 8.8 11.5 4.3 5.0 11.0 2.3 16.0 15.0
POW. Sortino 4.3 8.3 4.0 8.5 6.5 11.5 12.5 8.0 8.3 11.3 4.5 4.8 10.5 2.3 16.0 15.0
POW. Calmar 4.3 7.3 3.3 8.5 7.3 10.3 12.8 7.5 9.5 11.5 4.3 5.5 10.5 2.8 16.0 15.0

TAT. Revenue 3.3 10.3 10.8 5.0 10.8 10.5 4.8 12.8 8.0 10.0 12.8 8.3 11.0 9.5 6.3 2.3
TAT. Drawdown 2.8 12.0 7.3 6.5 5.8 12.3 6.0 13.5 14.5 11.0 10.3 6.5 8.5 8.3 4.5 6.5
TAT. Sharpe 3.3 10.3 12.3 5.3 12.3 9.0 4.3 13.3 6.8 12.0 13.3 9.0 10.0 9.3 3.3 2.8
TAT. Sortino 3.0 10.0 12.3 5.5 11.5 9.3 3.8 13.3 7.3 11.8 13.8 9.0 10.0 9.0 4.0 2.8
TAT. Calmar 3.5 9.8 11.8 5.3 12.5 9.0 5.0 13.0 7.8 10.0 13.5 8.8 9.5 9.3 5.0 2.5
TEC. Revenue 6.8 5.0 14.0 6.8 14.8 9.5 7.5 5.0 2.8 11.8 11.8 4.3 13.5 9.3 1.8 11.8
TEC. Drawdown 11.8 6.5 9.3 4.8 13.5 8.5 12.0 5.3 5.5 10.0 8.8 3.5 12.3 10.0 1.5 13.0
TEC. Sharpe 7.5 4.8 13.8 7.0 15.5 9.3 7.3 4.3 3.3 13.3 10.3 3.5 14.0 9.0 1.8 11.8
TEC. Sortino 7.5 5.0 14.3 7.0 15.5 9.0 7.3 4.5 3.0 13.5 10.8 3.3 13.5 9.0 1.8 11.3
TEC. Calmar 6.0 6.0 13.5 7.3 15.0 8.5 8.3 5.0 3.3 12.3 10.0 4.3 13.8 9.8 1.5 11.8

TIT. Revenue 1.3 6.3 14.0 9.3 11.5 11.5 2.3 7.0 2.5 13.3 11.8 6.3 15.8 12.0 6.0 5.5
TIT. Drawdown 1.8 8.3 15.0 10.0 10.5 12.0 3.0 7.0 2.3 12.3 11.8 5.0 16.0 11.8 5.5 4.0
TIT. Sharpe 1.3 6.3 13.3 9.0 12.5 11.0 2.3 7.3 2.5 15.0 12.3 6.0 14.0 12.3 6.0 5.3
TIT. Sortino 1.3 7.0 13.0 8.8 13.5 10.8 2.3 7.5 2.5 14.8 11.3 6.0 14.8 11.5 6.0 5.3
TIT. Calmar 1.3 6.3 14.0 9.0 12.0 10.8 2.5 7.0 2.5 13.5 11.8 6.5 15.8 11.8 6.0 5.5
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Table 19: Ablation study on the bias term conducted on the ETTh1, Exchange, and Weather datasets.
We compare Hipeen without a bias term, with a bias applied along the N-dimension (N × 1), and
along the H-dimension (1×H).

Horizon 96 192 336 720

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

Ours 0.383 0.385 0.435 0.416 0.480 0.441 0.509 0.486
N-dim 0.387 0.399 0.444 0.434 0.493 0.464 0.530 0.510
H-dim 0.407 0.415 0.506 0.485 0.671 0.592 0.892 0.702
No bias 0.808 0.698 1.043 0.816 1.062 0.820 1.247 0.877

Exchange

Ours 0.087 0.206 0.196 0.314 0.332 0.417 0.705 0.643
N-dim 0.081 0.201 0.166 0.294 0.356 0.441 0.635 0.615
H-dim 0.090 0.209 0.307 0.378 0.542 0.520 1.259 0.849
No bias 0.185 0.279 1.319 0.732 1.765 0.902 11.270 2.543

Weather

Ours 0.149 0.198 0.191 0.238 0.243 0.280 0.313 0.330
N-dim 0.153 0.203 0.195 0.249 0.250 0.295 0.320 0.340
H-dim 0.150 0.202 0.196 0.250 0.244 0.291 0.312 0.336
No bias 0.153 0.213 0.203 0.265 0.260 0.319 0.332 0.373

Table 20: Training and inference efficiency comparison across models. Reported are average time per
step (ms) and maximum VRAM usage (MB), with corresponding ranks. *With an extra ensemble
dimension of 1, the method scales only the batch size without adding learnable parameters, yielding
high efficiency.

Model Train Avg. Time (ms) Infer Avg. Time (ms) Train Max VRAM (MB) Infer Max VRAM (MB)

Value Rank Value Rank Value Rank Value Rank

CycleNet 2.7 4 0.7 4 21.7 4 20.3 4
DLinear 2.0 1 0.7 3 19.0 1 18.4 2
FEDformer 261.1 17 62.9 15 2071.4 15 469.9 14
FRNet 14.1 8 3.5 8 53.9 7 34.6 8
iTransformer 10.6 6 2.5 5 26.5 5 21.2 6
NST 63.5 12 24.0 13 2093.2 16 828.0 17
PatchTST 16.5 9 4.6 9 427.5 11 213.5 12
PerimidFormer 88.3 14 65.1 16 969.7 13 433.2 13
TiDE 27.4 10 8.1 11 193.2 10 60.0 10
TimeMixer 31.6 11 7.0 10 80.5 8 33.0 7
TimesNet 134.7 16 18.7 12 582.9 12 62.2 11
RLinear 2.5 3 0.6 2 19.2 3 18.1 1
DishTS 110.2 15 94.8 17 3418.1 17 709.1 16
SAN 2.1 2 0.6 1 19.0 1 18.4 2
Leddam 11.8 7 3.0 6 91.2 9 57.8 9
Hipeen* 5.1 5 3.3 7 52.6 6 20.5 5
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