Hyper-Representations for Pre-Training and Transfer Learning

Konstantin Schiirholt! Boris Knyazev

Abstract

Learning representations of neural network
weights given a model zoo is an emerging and
challenging area with many potential applications
from model inspection, to neural architecture
search or knowledge distillation. Recently, an
autoencoder trained on a model zoo was able
to learn a hyper-representation, which captures
intrinsic and extrinsic properties of the models
in the zoo. In this work, we extend hyper-
representations for generative use to sample new
model weights as pre-training. We propose layer-
wise loss normalization which we demonstrate
is key to generate high-performing models and a
sampling method based on the empirical density
of hyper-representations. The models generated
using our methods are diverse, performant and
capable to outperform conventional baselines for
transfer learning. Our results indicate the poten-
tial of knowledge aggregation from model zoos
to new models via hyper-representations thereby
paving the avenue for novel research directions.

1. Introduction

Pre-training is a key element to transfer learning. What if
we could encode the knowledge of an entire population of
neural networks for transfer learning to a new domain or
dataset? Recent work (Unterthiner et al., 2020; Schiirholt
et al., 2021; Martin et al., 2021) demonstrated the capability
to predict properties of individual neural networks captured
by such population of neural networks (often also referred
to as model z00).

In particular, (Schiirholt et al., 2021) proposed to learn a
lower-dimensional representation of a model zoo able to

'AIML Lab, School of Computer Science, University of St.
Gallen, St. Gallen, Switzerland “Samsung - SAIT Al Lab, Mon-
treal, Canada *Image Processing Group, Universitat Politécnica
de Catalunya, Barcelona, Spain. Correspondence to: Konstantin
Schiirholt <konstantin.schuerholt@unisg.ch>.

First Workshop of Pre-training: Perspectives, Pitfalls, and Paths
Forward at ICML 2022, Baltimore, Maryland, USA, PMLR 162,
2022. Copyright 2022 by the author(s).

2

Xavier Giré-i-Nieto> Damian Borth '

capture the underlying manifold of all neural network mod-
els populating the model zoo. In their work, they trained so
called hyper-presentations with a transformer autoencoder
directly from the weights of a zoo and used them to predict
several model properties such as accuracy, hyperparameters
or architecture configurations of individual neural networks.

Instead of using hyper-presentations for model proper-
ties prediction only, in this work, we propose to exploit
the knowledge encoded in hyper-representations as pre-
training for subsequent transfer learning. We train hyper-
representations of model zoos and use them in combina-
tion with the decoder as a generative model i.e., to sample
model weights as pre-trained models in a single forward
pass through the decoder. To that end, we introduce layer-
wise loss normalization improving the quality of decoded
neural network weights significantly and demonstrate that
conditioning the proposed sampling methods on particular
properties of the topology of the hyper-representation makes
a difference for transfer learning. Our results show that the
proposed approach is potent enough to be used as another
form of pre-training able to out-perform conventional base-
lines in transfer learning.

Previous work on generating model weights proposed
(Graph) HyperNetworks (Ha et al., 2016; Zhang et al., 2020;
Knyazev et al., 2021), Bayesian HyperNetworks (Deutsch,
2018), HyperGANs (Ratzlaff and Fuxin, 2019) and
HyperTransformers (Zhmoginov et al., 2022) for neural ar-
chitecture search, model compression, ensembling, transfer-
or meta-learning. These methods learn representations from
the images and labels of the target domain. In contrast, our
approach only uses model weights and does not need access
to the underlying data samples and labels rendering it more
compact to the original data. In addition to the ability to
generate novel and diverse model weights, compared to
previous works our approach (a) can generate novel weights
conditionally on model zoos for unseen datasets and (b)
can be conditioned on the latent factors of the underlying
hyper-representation. Notably, both (a) and (b) can be done
without the need to retrain hyper-representations.

The results suggest our approach (Figure 1) to be a promis-
ing step towards the use of hyper-representation as genera-
tive models able to encapsulate knowledge of model zoos
for transfer learning.

Hyper-Representations for Pre-Training and Transfer Learning

Model Zoos Hyper-Representation Training

pod

Lw™,W")

- - - -

Wy

MNIST 88, Y
(¢ 5]~ i]
Sogassdie
%o w,
SVHN I Wi W
01218~ i <[
-
%
%

dim,

dim; dim,

Layer-wise loss normalization

@

Draw samples in z

Pre-trained Model Sampling Transfer Learning

o o0 00
gono&goooﬁ;gooo

oo o0 oo

.0 0.0 00 o0

W;W; W o VL o VL o

i 'k 000 mip 000 ==p %000

J oo %% %o

00 00 00
900ty 9050 LLy 2550

o'o o'o oo

Accuracy

Epochs

Finetuning and transfer learning

Generate Weights

Figure 1. Outline of our approach: Model zoos are trained on image classification tasks. Hyper-representations are trained with
self-supervised learning on the weights of the model zoos using layer-wise loss normalization in the reconstruction loss. We sample
new embeddings in hyper-representation space and decode them to neural network weights. Generated models are diverse and able to
be used as pre-trained models for subsequent transfer learning on new datasets.

2. Hyper-Representation Training

The first stage of our method that corresponds to learn-
ing a hyper-representation of a population of neural net-
works, called a model zoo (Schiirholt et al., 2021). In
this context, a model zoo consists of models of the same
architecture trained on the same task such as CIFAR-10
image classification (Krizhevsky, 2009). Specifically, a
hyper-representation is learned using an autoencoder w; =
h(g(w;)) on a zoo of M models {w;}}, where w; is the
flattened vector of dimension NV of all the weights of the
i-th model. The encoder g compresses vector w; to fixed-
size hyper-representation z; = g(w;) of lower dimension.
The decoder h decompresses the hyper-representation to
the reconstructed vector w;. Both encoder and decoder are
built on a self-attention blocks. The samples from model
zoos are understood as sequences of convolutional or fully
connected neurons. Each of the these is encoded as a token
embedding and concatenated to a sequence. The sequence
is passed through several layers of multi-head self-attention.
Afterwards, a special compression token summarizing the
entire sequence is linearly compressed to the bottleneck.
The output is fed through a tanh-activation to achieve a
bounded latent space z; for the hyper-representation. The
decoder is symmetric to the encoder, the embeddings are
linearly decompressed from hyper-representations z; and
position encodings added.

Training is done in a multi-task fashion, minimizing the
composite loss £ = 8Ly sk + (1 — 8)L., where L, is a
contrastive loss and £ ;s is a weight reconstruction loss
(see details in (Schiirholt et al., 2021)). We can write the
latter in a layer-wise way to facilitate our discussion in § 3.1:

1 M L .
Luse = 3y Zi:1 Zl:l e = will3,)

where vAvEl), wgl) are reconstructed and original weights

for the [-th layer of the i-th model in the zoo; L is the total
number of layers. The contrastive loss L. leverages two

types of data augmentation at train time to impose structure
on the latent space: permutation exploiting inherent
symmetries of the weight space and random erasing.

3. Methods

3.1. Layer-Wise Loss Normalization

We observed that hyper-representations as proposed
by (Schiirholt et al., 2021) decode to dysfunctional models,
with performance around random guessing. To alleviate that,
we propose a novel layer-wise loss normalization (LWLN),
which we motivate and detail in the following.

w
W
Layer 1 Layer 4 Layer 5 0.2 0.4 0.6

Layer 3
Accuracy

Figure 2. Comparison of the distributions of SVHN zoo weights w
(blue) and reconstructed weights W (orange) as well as their accuracy
on the SVHN test set. Top: Baseline hyper-representation as pro-
posed by (Schiirholt et al., 2021), the weights of layers 3, 4 collapse
to the mean. These layers form a weak link in reconstructed models.
The accuracy of reconstructed models drops to random guessing.
Bottom: Hyper-representation trained with layer-wise loss normal-
ization (LWLN). The normalized distributions are balanced, all layers
are evenly reconstructed, and the accuracy of reconstructed models
is significantly improved.

Weights

Weights

Layer 2

Due to the MSE training loss, the reconstruction error can
generally be expected to be uniformly distributed over
all weights and layers of the weight vector w. However,
the weight magnitudes of many of our zoos are unevenly
distributed across different layers. In these zoos, the even
distribution of reconstruction errors lead to undesired effects.
Layers with broader distributions and large weights are
reconstructed well, while layers with narrow distributions
and small weights are disregarded. The latter can become a
weak link in the reconstructed models, causing performance

Hyper-Representations for Pre-Training and Transfer Learning

to drop significantly down to random guessing. The top
row of Figure 2 shows an example of a baseline hyper-
representation learned on the zoo of SVHN models (Netzer
et al., 2011). Common initialization schemes (He et al.,
2015; Glorot and Bengio, 2010) produce distributions
with different scaling factors per layer, so the issue is not
an artifact of the zoos, but can exist in real world model
populations. Similarly, recent work on generating models
normalizes weights to boost performance (Knyazev et al.,
2021). In order to achieve equally accurate reconstruction
across the layers, we introduce a layer-wise loss normaliza-
tion (LWLN) with the mean y; and standard deviation o; of
all weights in layer [estimated over the train split of the zoo:

‘CA4SE =

1 M L

3.2. Sampling from Hyper-Representations

We introduce methods to draw diverse and high-quality
samples z* ~ p(z) from the learned hyper-representation
space to generate model weights w* = h(z*). Assuming
the smoothness and robustness of the learned hyper-
representation space, we follow (Liu et al., 2019; Guo
et al., 2019; Ghosh et al., 2020) in estimating the density
to draw samples from a regularized autoencoder. We
propose to draw samples from the density of the train set
in representation space. We use the embeddings of the
train set as anchor samples {z; } to model the density. The
dimensionality D of hyper-representations z in (Schiirholt
et al., 2021), as well as in our work, is relatively high
due to the challenge of compressing weights w. We
make a conditional independence assumption to facilitate
sampling: p(z) |z, w) = p(z9)|w), where zU) is the
j-th dimensionality of the embedding z. To model the
distribution of each j-th dimensionality, we choose kernel
density estimation (KDE), as it is a powerful yet simple,
non-parametric and deterministic method with a single
hyperparameter. We fit a KDE to the M anchor samples
{z; (@)} M| of each dimension 7, and draw samples z(/) from

Z()_Z(J)
that distribution: z() ~ p(z)) = ;- SM K(Z !),

where K (z) = (27)" /2 exp (— % L-) is the Gaussian kernel
and A is a bandwidth hyperparameter. The samples of
each dimension z(/) are concatenated to form samples
z* = [z, 2 ... (D)) This method is denoted as
Skpe- We observe that many anchor samples from {z; } cor-
respond to the models with relatively poor accuracy (Figure
2). To improve the quality of sampled weights, we consider
the variants of Skpg using only those embeddings of
training samples corresponding to the top 30% performing
models. We denote that sampling method as Skpg3o-

4. Experiments
4.1. Experimental Setup

We train and evaluate our approaches on four image classifi-
cation datasets: MNIST (Lecun et al., 1998), SVHN (Net-
zer et al., 2011), CIFAR-10 (Krizhevsky, 2009) and STL-
10 (Coates et al., 2011). For each dataset, there is a model
z0o that we use to train an autoencoder.

Model zoos: In each image dataset, a zoo contains
M = 1000 convolutional networks of the same architecture
with three convolutional layers and two fully-connected lay-
ers (L = 5). Varying only in the random seeds, all models
of the zoo are trained for 50 epochs with the same hyper-
parameters following (Schiirholt et al., 2021). To integrate
higher diversity in the zoo, initial weights are uniformly
sampled from a wider range of values rather than using well-
tuned initializations of (Glorot and Bengio, 2010; He et al.,
2015). Each zoo is split in the train (70%), validation (15%)
and test (15%) splits. To incorporate the learning dynamics,
we train autoencoders on the models trained for 21-25
epochs following (Schiirholt et al., 2021). Here the models
have already achieved high performance, but have not fully
converged. The development in the remaining epochs of
each model is treated as hold-out data to compare against.
We use the MNIST and SVHN zoos from (Schiirholt et al.,
2021) and based on them create the CIFAR-10 and STL-10
z00s. Details on the zoos can be found in Appendix A.

Self-Supervised Hyper-Representation Training: We
train separate hyper-representations on each of the model
zoos and use the checkpoint with lowest reconstruction error
on the validation set. Using the proposed sampling meth-
ods (§ 3.2), we generate new embeddings and decode them
to weights. We evaluate sampled populations as initializa-
tions (epoch 0) and by fine-tuning for up to 25 epochs. We
distinguish between in-dataset and transfer-learning. For
in-dataset, the same image dataset is used for training and
evaluating our hyper-representations and baselines. For
transfer-learning, pre-trained models Br and the hyper-
representation model are trained on a source dataset. Subse-
quently, the pre-trained models Br and the samples Skpg
are fine-tuned on the target domain. The baseline (Br)
contains models trained from scratch on the target domain.

Baselines: As the first baseline, we consider the autoen-
coder of (Schiirholt et al., 2021), which is same as ours but
without the proposed layer-wise loss-normalization (LWLN,
§ 3.1). We combine this autoencoder with the Skpg3g sam-
pling method and, hence, denote it as Bxpg3o. We consider
two other baselines based on training models with stochastic
gradient descent (SGD): training from scratch on the target
classification task B, and training on a source followed by
fine-tuning on the target task Br. The latter remains one of
the strongest transfer learning baselines (Chen et al., 2019;

Hyper-Representations for Pre-Training and Transfer Learning

Table 1. Mean and std accuracy (%) of sampled populations with
LWLN (Skpeso) and without (Bkpgso) compared to models trained
from scratch Br.

Method Ep. MNIST SVHN CIFAR-10 STL-10
Br 0 ~10% (random guessing)
BkpEso 0 63.2(7.2) 10.1(3.2) 15.5(3.4) 12.7 (3.4)
SKDE 0 66.4(7.3) 46.7(8.3) 24.8 (5.1) 18.9 (2.1)
SKDE30 0 68.6 (6.7) 51.5(5.9) 26.9 (4.9) 19.7 (2.1)
Br 1 20.6 (1.6) 19.4(0.6) 27.5(2.1) 15.4(1.8)
BxkpEso 1 83.2(1.2) 67.4(2.0) 39.7 (0.6) 26.4 (1.6)
SKDE 1 80.4(3.2) 66.2(8.2) 43.3(1.3) 24.1(2.1)
SKDE30 1 83.7(1.3) 69.9(1.6) 44.0 (0.5) 259(1.6)
Br 25 83.3(2.6) 66.7(8.5) 46.1(1.3) 35.0(1.3)
Bxkpeso 25 93.2(0.6) 75.4(0.9) 48.1(0.6) 38.4(0.9)
SKDE 25 925(0.8) 71.8(7.7) 48.0(1.2) 37.4(1.3)
SKDE30 25 93.0(0.7) 742(1.4) 48.6 (0.5) 38.1(1.1)
Br 50 91.1(2.6) 70.7(8.8) 48.7(1.4) 39.0(1.0)

Dhillon et al., 2019; Kolesnikov et al., 2020).

4.2. Results

Evaluation of layer-wise loss normalization: We compare
SkpE3o that is based on our autoencoder with layer-wise loss
normalization (LWLN) to the baseline autoencoder using
the same sampling method (Bkpg3o) without fine-tuning.
On all datasets except for MNIST, Skpgso considerably out-
perform Bgpgso with the latter performing just above 10%
(random guessing), see Table 1 (rows with epoch 0). We
attribute the success of LWLN to two main factors. First,
LWLN prevents the collapse of reconstruction to the mean
(compare Figure 2-top to Figure 2-bottom). Second, by
fixing the weak links, the reconstructed models perform sig-
nificantly better. We also evaluated input-to-output feature
normalization, s.t. encoder and decoder operate on normal-
ized weights, but empirically found it did not work as well
as a normalization just for the loss.

Sampling for in-dataset fine-tuning: When fine-tuning,
our Skpgso and baseline Bgpgsg appear to gradually con-
verge to similar performance (Table 1). While unfortunate,
this result aligns well with previous findings that longer
training and enough data make initialization less impor-
tant (Mishkin and Matas, 2015; He et al., 2019; Rasmus
et al., 2015). Comparing Skpg and Skpgsp, We observe
that conditioning the samples on the better models in the
zoo improves the performance. We also compare Skpg and
Skpe3o to training models from scratch (Br). On all four
datasets, both ours and the baseline hyper-representations
outperform Bp when generated weights are fine-tuned for
the same number of epochs as Br. Notably, on MNIST and
SVHN generated weights fine-tuned for 25 epochs are even
better than B run for 50 epochs. The comparison to B
trained for 50 epochs on the image dataset is interesting,
since the hyper-representations were trained on model
weights trained for up to 25 epochs, and so their overall
training epochs on the image dataset is equal. On CIFAR-10

and STL-10, all populations are limited by the architecture
and saturate below 50 and 40 % accuracy. These findings
show that the models initialized with generated weights can
learn faster and in some cases achieve higher performance
in 25 epochs than B in 50 epochs.

Sampling for Cross-dataset Initialization We investi-
gate the effectiveness of our method in a transfer-learning
setup across image datasets. Here, a zoo is trained on
a source dataset, e.g., SVHN. A hyper-representation is
trained on that zoo and models are generated from it. These
models are transferred to a target dataset, e.g., MNIST. We
report transfer learning results from SVHN to MNIST and
from STL-10 to CIFAR-10 as two representative scenarios.
Results on all datasets can be found in Appendix B.

Table 2. Transfer-learning results (mean and std accuracy in %).
Note that for STL-10 to CIFAR-10 the performance of all methods
saturate quickly due to the limited capacity of models in the zoo
making further improvements challenging.

Method Ep. SVHN to MNIST STL-10 to CIFAR-10

Br 0 ~10% (random guessing)

Bp 0 33.4(5.4) 153 (2.3)
SKDE30 0 31.8(5.6) 14.5(1.9)

Br 1 20.6 (1.6) 27.5(2.1)

Bp 1 84.4(7.4) 29.4(1.9)
SKDE30 1 86.9 (1.4) 29.6 (2.0)

Br 50 91.1(1.0) 48.7 (1.4)

Bp 50 95.0(0.8) 49.2(0.7)
SKDE30 50 95.5(0.7) 48.8(0.9)

In transfer learning from SVHN to MNIST, the sampled
populations on average learn faster and achieve significantly
higher performance than the Br baseline and generally
compares favorably to Br (Table 2). In the STL-10 to
CIFAR-10 experiment, all populations appear to saturate
with only small differences in their performances (Table 2).
We found that all datasets are useful sources for all targets
(see Appendix B). This might be explained by the ability
of hyper-representations to capture a generic inductive prior
useful across different domains.

5. Conclusion

In this paper, we propose to use hyper-representations as
pre-training for transfer learning. We extend the training
objective of hyper-representations by a novel layer-wise loss
normalization which is key to the capability of generating
functional models. Our method allows us to generate
populations of model weights in a single forward pass.
We evaluate sampled models both in-dataset as well as in
transfer learning and find them capable to outperform both
models trained from scratch, as well as pre-trained and
fine-tuned models. Our work might serve as a building
block for transfer learning from different domains, meta
learning or continual learning.

Hyper-Representations for Pre-Training and Transfer Learning

References

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot
classification. arXiv preprint arXiv:1904.04232, 2019. 3

Adam Coates, Honglak Lee, and Andrew Y Ng. An Anal-
ysis of Single-Layer Networks in Unsupervised Feature
Learning. In Proceedings of the 14th International Con-
Ference on Artificial Intelligence and Statistics (AIS-
TATS), page 9, 2011. 3

Lior Deutsch. Generating Neural Networks with Neural
Networks. arXiv:1801.01952 [cs, stat], April 2018. 1

Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran,
and Stefano Soatto. A baseline for few-shot image classi-
fication. arXiv preprint arXiv:1909.02729, 2019. 4

Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari,
Michael Black, and Bernhard Scholkopf. From Varia-
tional to Deterministic Autoencoders. arXiv:1903.12436
[cs, stat], May 2020. 3

Xavier Glorot and Yoshua Bengio. Understanding the dif-
ficulty of training deep feedforward neural networks.
page 8, 2010. 3

Yong Guo, Qi Chen, Jian Chen, Qingyao Wu, Qinfeng Shi,
and Mingkui Tan. Auto-embedding generative adversar-
ial networks for high resolution image synthesis. /EEE
Transactions on Multimedia, 21(11):2726-2737, 2019. 3

David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks.
arXiv:1609.09106 [cs], December 2016. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification.
arXiv:1502.01852 [cs], February 2015. 3

Kaiming He, Ross Girshick, and Piotr Doll4r. Rethinking
imagenet pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
4918-4927, 2019. 4

Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and
Adriana Romero-Soriano. Parameter Prediction for Un-
seen Deep Architectures. arXiv:2110.13100 [cs, stat],
October 2021. 1, 3

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual representation
learning. In European conference on computer vision,
pages 491-507. Springer, 2020. 4

Alex Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. page 60, 2009. 2, 3

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, November 1998.
ISSN 1558-2256. doi: 10.1109/5.726791. 3

Jinlin Liu, Yuan Yao, and Jiangiang Ren. An acceleration
framework for high resolution image synthesis. arXiv
preprint arXiv:1909.03611, 2019. 3

Charles H Martin, Tongsu Serena Peng, and Michael W
Mahoney. Predicting trends in the quality of state-of-the-
art neural networks without access to training or testing
data. Nature Communications, 12(1):1-13, 2021. 1

Dmytro Mishkin and Jiri Matas. All you need is a good init.
arXiv preprint arXiv:1511.06422, 2015. 4

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading Digits in
Natural Images with Unsupervised Feature Learning. In
NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, page 9, 2011. 3

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri
Valpola, and Tapani Raiko. Semi-supervised learning
with ladder networks. Advances in neural information
processing systems, 28, 2015. 4

Neale Ratzlaff and Li Fuxin. HyperGAN: A Generative
Model for Diverse, Performant Neural Networks. In
Proceedings of the 36th International Conference on Ma-
chine Learning, pages 5361-5369. PMLR, May 2019.
1

Konstantin Schiirholt, Dimche Kostadinov, and Damian
Borth. Self-Supervised Representation Learning on Neu-
ral Network Weights for Model Characteristic Prediction.
In NeurlPS), volume 35, page 13, 2021. 1,2, 3,7

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier
Bousquet, and Ilya Tolstikhin. Predicting Neural Network
Accuracy from Weights. arXiv:2002.11448 [cs, stat],
February 2020. 1

Chris Zhang, Mengye Ren, and Raquel Urtasun.
Graph HyperNetworks for Neural Architecture Search.
arXiv:1810.05749 [cs, stat], December 2020. 1

Andrey Zhmoginov, Mark Sandler, and Max Vladymyrov.
HyperTransformer: Model Generation for Supervised and
Semi-Supervised Few-Shot Learning. arXiv:2201.04182
[cs], January 2022. 1

Hyper-Representations for Pre-Training and Transfer Learning

A. Model Zoo Details

All model zoos share one general CNN architecture, outlined in Table A. The hyperparameter choices for each of the
population are listed in Table A. The hyperparameters are chosen to generate zoos with smooth, continuous development
and spread in performance. The models in the zoos trained on MNIST, SVHN and USPS have one input channel and 2464
learnable parameters. Due to the three input channels in the CIFAR-10 and STL-10 zoos, their models have 2864 learnable
parameters.

%
Model Zoo | Hyperparameter | Value
input channels 1
activation tanh
Layer | Component | Value MNIST weight decay 0
- h | 3 learning rate 3e-4
g:ﬁ;;tccﬁzﬁfl;ls 3 initialization uniform
. timi Ad
Conv 1 1;&1;321 size ? Sfeilmlzer [1—?360]
padding 0 input channels 1
. - activation tanh
Max Pooling | kernel size | 2 SVHN weight decay 0
Activation | tanh/ gelu \ learning rate 3e-3
input channels 3 initialization uniform
s timi P
output channels | 6 (S)geilmlzer ?1 _::111800]
Conv 2 kernel size 5
stride 1 input channels 1
padding 0 activation tanh
. . USPS weight decay le-3
Max Pooling | kernel size | 2 learning rate lod
Activation | tanh/ gelu | initialization kaiming_uniform
timi d
input channels 6 Sgegmzer ?1 -aln(;OO]
output channels | 4
Conv 3 kernel size 2 input channels 3
stride 1 activation gelu
padding 0 CIFAR-10 | weight decay le-2
. learning rate le-4
Activation | tanh/ gelu | initialization kaiming-uniform
Linear 1 input channels 36 optimizer adam
output channels | 20 seed [1-1000]
Activation | tanh/ gelu | input channels 3
; activation tanh
Linear 2 input chﬁnnelsl %8 STL-10 weight decay le-3
output channels learning rate le-4
initialization kaiming-uniform
Table 3. CNN architecture details for the models in model zoos. optimizer adam
seed [1-1000]

Table 4. Hyperparameter choices for the model zoos.

Hyper-Representations for Pre-Training and Transfer Learning

B. Cross Dataset Initialization Results

In Table 5 we report the remaining results on cross dataset initialization. On MNIST to SVHN, the sampled population
outperforms both baselines. On CIFAR-10 to STL-10, much like the other way around, all populations saturate.

Table 5. Transfer-learning results (mean and std accuracy in
%). Note that for CIFAR-10 to STL-10 the performance of all
methods saturate quickly due to the limited capacity of models
in the zoo making further improvements challenging.

Method Ep. MNIST to SVHN CIFAR-10 to STL-10

Br 0 ~10% (random guessing)

Bp 0 14.9 (2.8) 25.2(1.1)
SKDE30 0 15.9 (2.7) 13.7 (2.0)

Br 1 19.4 (0.6) 15.4(1.8)

Bp 1 21.9 (4.1) 26.0 (1.1)
SKDE30 1 20.8 (2.7) 19.2(1.2)

Br 50 70.7 (8.8) 39.0(1.0)

Bp 50 76.1(1.4) 42.7 (1.2)
SKDE30 50 77.1(1.5) 41.1(0.9)

Limitations of Zoos with Small Models To thoroughly investigate different methods and make experiments feasible, we
chose to use the model zoos of the same scale as in (Schiirholt et al., 2021). While on MNIST and SVHN, the architectures
of such model zoos allowed us to achieve a reasonably high performance, on CIFAR-10 and STL-10, the performance of all
populations is limited by the low capacity of the models architecture. The models saturate at around 50% and 40% accuracy,
respectively. We hypothesize that due to the high remaining loss, the weight updates are correspondingly large without
converging or improving performance. This may cause the weights to contain relatively little signal and high noise. Indeed,
learning hyper-representations on the CIFAR-10 and STL-10 zoos was difficult and never reached similar reconstruction
performance as in the MNIST and SVHN zoos. That in turn additionally limits the performance of the sampled populations.
Future work will therefore focus on architectures with higher capacity.

