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Abstract

As large language models (LLMs) continue001
to demonstrate impressive reasoning capabili-002
ties, LLM- based multi-agent has become an003
increasingly compelling area of research. De-004
spite the potential, the field faces a notable gap:005
the scarcity of LLM-based simulators tailored006
for realistic, multi-agent interactions. Most ex-007
isting multi-agent simulators are missing tex-008
tual interfaces and quantitative evaluation met-009
rics, limiting the assessment of complex inter-010
actions between agents. Our proposed simu-011
lator, AutoDiner, replicates a detailed restau-012
rant management scenario requiring advanced013
communication and teamwork among agents,014
providing a uniquely realistic and complex re-015
search environment. AutoDiner not only fos-016
ters intricate agent interactions but also incor-017
porates varying levels of difficulty and perfor-018
mance metrics for comprehensive benchmark-019
ing. These features make AutoDiner an exem-020
plary platform for advancing the understanding021
and capabilities of LLM-based agents in navi-022
gating complex tasks and enhancing coopera-023
tive strategies in realistic settings.024

1 Introduction025

Large language models (LLMs) have shown ad-026

vanced reasoning and instruction-following skills,027

spurring more research into LLM-driven au-028

tonomous agents (Brown et al., 2020; OpenAI,029

2023; Wu et al., 2024). A key strength of LLM-030

based agents is their ability to communicate and031

collaborate, solving complex tasks, and forming032

communities (Park et al., 2023a; Qian et al., 2023).033

Most existing virtual multi-agent environ-034

ments (Bansal et al., 2017; Savva et al., 2019; Car-035

roll et al., 2020; Gong et al., 2023) are tailored for036

conventional reinforcement learning methods and037

do not feature text-based interfaces. Furthermore,038

the complexity of these environments (Wang et al.,039

2023; Zhu et al., 2023) is limited, with communi-040

cation between agents not being essential for the041

completion of tasks, and doesn’t reflect the real- 042

world need for agents with many different roles to 043

collaborate. Several work has explored along this 044

direction. Park et al., 2023b developed an LLM- 045

based simulator to study LLM social behaviors and 046

collaboration roles, whereas Qian et al., 2023 ex- 047

amined software engineering contexts. However, 048

these environments fall short of a overall quantita- 049

tive assessment of multi-agent capabilities. 050

To fill the gap, we introduce AutoDiner, a simu- 051

lator tailored for LLM multi-agent research. Unlike 052

earlier kitchen-focused environments from Car- 053

roll et al. (2020); Gong et al. (2023), AutoDiner 054

simulates a comprehensive restaurant management 055

scenario where agents work together handling cus- 056

tomer service from arrival to departure. Agents 057

must act as both players and NPCs, adapting strate- 058

gies for planning and coordination, not just to max- 059

imize profits but also to satisfy customer demands. 060

This more intricate and realistic setup evaluates 061

LLM decision-making and simulates human-like 062

teamwork. 063

Through our evaluation, we found that even 064

strong LLMs like GPT-3.5-Turbo struggle with task 065

repetition and lack effective collaboration skills, 066

while GPT-4, despite better planning, struggles 067

with resource management. Our contributions are: 068

• We develop an innovative simulator 069

AutoDiner, which is designed for LLM- 070

based agents to manage a restaurant. This 071

environment necessitates intricate communi- 072

cation and collaboration among mult-agents, 073

spurring multi-agent research. 074

• We propose a unified multi-agent framework 075

that allows models selection and prompt cus- 076

tomization. This allows for a fair comparison 077

across different LLMs and agent algorithms. 078

• Our environment offers a range of settings 079

and tasks with different levels of difficulty, 080

serving as a versatile platform for evaluating 081

LLM-based agents. 082
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Figure 1: Overview of AutoDiner. Left: Illustration of the proposed multi-agent framework, which encompasses
different characters. Memory of previous interactions, valid actions and few-shot exemplars are also provided to
agents. Right: Illustration of game scene, where each level requires players to maximize profit within limited time.

2 AutoDiner083

In AutoDiner, we present a simulation that lever-084

ages large language models to enable agents to col-085

laboratively manage a virtual restaurant, aiming to086

maximize profitability through improved customer087

satisfaction and reduced costs. This section is or-088

ganized into four parts: §2.1 introduces the agent089

roles within the simulation; §2.2 describes the en-090

vironment; §2.3 outlines the task settings; and091

§2.4 discusses varying difficulty levels designed092

for agent evaluation.093

2.1 Agents094

AutoDiner consists of four distinct types of agents:095

the chef, the waiter, the customer, and the manager.096

• Chef. The chef is tasked with the job of prepar-097

ing dishes. He must use appropriate ingredients098

and kitchen tools to make meals while producing099

a large amount of food in a restricted time frame,100

controlling expenses, and reducing waste.101

• Waiter. The waiter must actively communicate102

with customers to complete orders and serve103

food in a timely manner. The effectiveness of the104

waiter is directly related to customer satisfaction105

and the smooth running of the restaurant.106

• Customers. Customers are each equipped with107

their own needs, simulating complex and varied108

accommodations in reality.109

• Manager. The manager oversees the entire110

restaurant. He is responsible for determining111

the priority in attending to customers and mak-112

ing timely adjustments to staff behavior. This113

role involves strategic decision making to ensure114

restaurant efficiency and profitability.115

2.2 Environments116

The 2D restaurant environment in our simulation117

is crafted using Unity, offering a highly interactive118

and realistic setting split into two main areas: the 119

kitchen and the dining hall. The kitchen is equipped 120

with a variety of essential kitchen appliances and 121

utensils for meal preparation, while the dining hall 122

features tables and chairs arranged to accommo- 123

date the continuous influx of customers seeking to 124

dine. Agents within this environment must work 125

effectively to perform hosting tasks, ensuring that 126

customers are promptly seated, served, and satis- 127

fied with their dining experience. This setup not 128

only challenges agents to work together efficiently, 129

but also provides a dynamic backdrop for testing 130

and improving their decision-making and service 131

skills in a simulated real-world scenario. 132

Figure 1 shows the simulator operating in a flex- 133

ible multi-agent framework. This framework en- 134

compasses detailed character settings and statuses 135

that inform agents of their abilities and constraints, 136

as well as item properties that are specific to their 137

roles, for instance, chefs are aware of the state of 138

kitchen tools, while waiters are keyed into the din- 139

ing hall’s seating situation. 140

The range of actions available to agents includes 141

basic movements as well as more complex interac- 142

tions such as picking up plates, opening the oven 143

or communicating with customers. In addition, the 144

framework includes a memory system that allows 145

agents to draw on past experience to inform current 146

decisions, and we incorporate in-context learning 147

for agents, providing contextually relevant exam- 148

ples within their prompts to guide them towards 149

more accurate and standardised action generation. 150

Central to the framework is the Manager Sugges- 151

tion component, which equips the virtual manager 152

with the ability to guide and prioritize the actions 153

of the chef and waiter, similar to a human player 154

directing a team. 155

Moreover, we establish a streamlined program- 156

ming interface, simplifying the process of customiz- 157
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ing prompts and models. This interface is designed158

to be user-friendly and intuitive, enabling users to159

effortlessly tailor the simulation to their specific160

research or training needs. To further augment the161

usability and accessibility of the environment, a162

comprehensive User Interface (UI) has also been163

developed. Through this interface, users can not164

only modify agent behaviors and environmental165

parameters but also visually monitor the effects of166

these changes in real-time.167

2.3 Task Definition168

In our simulated environment, there are n agents,169

where the size of n varies with the number of cus-170

tomers. At each time step, all n agents take an171

action ai based on their current state si and ob-172

servation oi. These actions can include moving,173

interacting, or communicating. Chef, waiter, and174

the manager need to collaborate to enhance the ser-175

vice provided to each customer, thereby increasing176

the reward ri obtained from each customer. This,177

in turn, aims to improve the overall objective: the178

total revenue G of the restaurant.179

Specifically, the restaurant’s profit G is con-180

trolled by the income from serving customers,181 ∑
i ri, and the restaurant’s costs C, such that182

G =
∑

i ri − C. If customer i initiates j orders,183

with each order having a maximum waiting time of184

tj and a base income of pj , and the income from185

each order is related to the time τj taken from the186

order being placed to being served, denoted by the187

function f(τ), then ri =
∑

j f(τj). The function188

f(τj) is defined as, where α and γ are constants.189

f (τj) =


(1 + α)pj if τj ≤ γtj

pj if γtj < τj ≤ tj

0 otherwise

(1)190

2.4 Difficulty Level Setup191

To create a comprehensive evaluation framework,192

the simulation was structured into levels of pro-193

gressively increasing difficulty. Each level was194

designed with distinct parameters: allotted time195

for task completion, type of food, and number of196

customers.197

Additionally, to further challenge the agents and198

enhance the simulation’s realism, each level intro-199

duces a unique special condition. These special200

conditions are cumulative, meaning that with each201

advancement to a higher level, the agents are not202

only faced with the new conditions introduced at203

that stage but must also navigate the complexities 204

carried over from all previous levels. The detailed 205

configurations of these levels are documented in Ta- 206

ble 1. This structure not only challenges the agents 207

but also provides a dynamic framework for assess- 208

ing their problem-solving abilities, strategic plan- 209

ning, and collaborative efficiency in a controlled 210

yet varied setting. 211

3 Experiments 212

We use GPT-3.5-Turbo and GPT-4 to empower 213

agents in our environment. We set the tempera- 214

ture to zero to facilitate the reproduction of our 215

results. During each round of action, each agent 216

receives a scenario-specific prompt depending on 217

their respective roles. 218

3.1 Metrics 219

We evaluate agents’ performance within our en- 220

vironment using three metrics: Revenue, Order 221

Completion Rate, and Bonus. 222

• Revenue (Rev). Revenue represents the amount 223

of money earned during operation. Revenue is 224

awarded for fulfilling specific customer orders 225

and is deducted to account for the cost of ingre- 226

dients used in the preparation of food, as calcu- 227

lated in Equation 1. We assigns a selling price 228

for three types of dishes at 10, 20, and 30 units 229

respectively, with corresponding ingredient costs 230

at 3, 5, and 8 units. Additionally, beverages in 231

the simulation are priced at 5 units, providing 232

a simpler, yet integral component to the overall 233

revenue calculation. 234

• Order Completion Rate (OCR). The Order 235

Completion Rate metric quantifies the propor- 236

tion of customer orders that are completed satis- 237

factorily versus the total orders received. 238

• Bonus. Bonuses are awarded for exceptional 239

performance. As detailed in the description of 240

the function f(τ) in Section 2.3, if an order is 241

completed within a time frame of γtj , a bonus 242

of αpj is awarded. Here we set α = 0.2, γ = 243

0.5, tj = 120 seconds. 244

Both Revenue and Order Completion Rate mea- 245

sure the efficiency of agent collaboration, and the 246

Bonus metric further quantifies models’ ability to 247

go above and beyond in optimizing restaurant op- 248

erations and enhancing customer experience. 249
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Table 1: Comprehensive Breakdown of Simulation Levels.

Time (seconds) Dish Types Number of Customers Special Conditions

Level 1 120 1 7 None
Level 2 180 2 10 Customers may order drinks before meals
Level 3 210 3 15 Customers may seek recommendations before ordering
Level 4 270 3 - Continuous flow of customers

3.2 Results250

The experimental results for GPT-3.5-Turbo and251

GPT-4 at varying levels are presented in Table 2.252

A detailed analysis of the agent trajectories reveals253

that GPT-3.5-Turbo often produces redundant di-254

rections and shows weak management capabilities,255

resulting in the failure to successfully complete the256

collaborative tasks of cooking and serving. This257

led to a consistent score of zero at all levels for258

GPT-3.5-Turbo.259

In comparison, GPT-4 demonstrates superior260

planning capabilities. However, it struggles with261

certain real-life scenarios, such as remembering to262

use a plate to serve the cooked dishes. Also, GPT-4263

often shows performance degeneration when per-264

forming repetitive tasks, such as suceeding to make265

a beverage in first round of service yet struggles266

in the second round. Another issue observed is267

that GPT-4 has difficulty efficiently managing re-268

sources. For example, when the customers are still269

waiting for meal, the chef starts to wash dishes,270

wasting both time and resources. Despite the ad-271

vanced abilities of GPT-4, performing real-world272

task through collaboration proves challenging.273

Our evaluation results show that our simu-274

lated environments are challenging even for SOTA275

LLMs and emphasizes the importance of evaluat-276

ing LLM-based multi-agents in realistic settings.277

Table 2: Experimental Results Comparison Between
GPT-3.5-Turbo and GPT-4. OCR stands for the order
completion rates and Rev. denotes revenue metrics.
†The dash “-” for Level 4 is due to a continuous flow of
customers, thus omitting maximum metrics.

GPT-3.5-Turbo GPT-4 Max
Rev. OCR Bonus Rev. OCR Bonus Rev.

Level 1 0 0 / 7 0 13 2 / 7 2 63
Level 2 0 0 / 10 0 26 3 / 10 3 250
Level 3 0 0 / 15 0 37 2 / 15 4 510
Level 4 0 0 / - 0 43 3 / - † 4 -

4 Related Work278

LLM-Based Multi-Agent. Multi-agent interac-279

tions typically fall into two paradigms: either col-280

laborative, where agents share a common goal, or 281

competitive (Guo et al., 2024). Both the paradigms 282

call for the strong communication and planning 283

ability of LLMs through language (Lazaridou et al., 284

2016; Havrylov and Titov, 2017). In our work, 285

we focus on the cooperative abilities of agents. 286

Previous work has explored along this direction, 287

covering diverse tasks including cooperative devel- 288

opment of softwares (Qian et al., 2023), improv- 289

ing reasoning with debate (Du et al., 2023; Tang 290

et al., 2023; Sun et al., 2023), and playing diplo- 291

macy games (Mukobi et al., 2023; , FAIR), featur- 292

ing the strength of collaborative communication 293

skill of LLM-based agents. Our work explores the 294

multi-agent collaboration through various demand- 295

ing tasks towards a common goal. 296

Multi-Agent Simulators. Despite of extensive 297

research in single-agent simulators and bench- 298

marks (Côté et al., 2019; Fan et al., 2022; Yao 299

et al., 2022; Liu et al., 2023; Ma et al., 2024), the 300

evaluation of LLM-based multi-agent interactions 301

is a relatively underexplored. Reinforcement learn- 302

ing community proposes several multi-agent chal- 303

lenges (Rashid et al., 2020; Cordasco et al., 2018), 304

yet they often lack a textual interface among agents. 305

Recently, Park et al. (2023b); Zhang et al. (2023); 306

Chen et al. (2023); Li et al. (2023) adapt LLMs as 307

NPCs and propose SandBox-like simulators. These 308

simulators often fall short of offering a quantitative 309

measurement of agent behaviors or a clearly de- 310

fined common goal. We aim to address these issues 311

by providing multi-level tasks as well as a unified 312

multi-agent framework for multi-agent evaluation. 313

5 Conclusion 314

In conclusion, we introduced AutoDiner, a 315

novel simulation environment designed to ad- 316

vance research in LLM-based multi-agent systems. 317

AutoDiner sets the stage for future studies to ex- 318

plore more complex interactions, develop more 319

sophisticated strategies for agent collaboration, and 320

further refine the models for enhanced performance. 321

we anticipate that environments like AutoDiner 322

will push forward the boundaries of agent research. 323
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6 Limitation324

One notable limitation of our current simulation325

environment is its high operational cost. Utilizing326

advanced LLMs to empower agents involves sig-327

nificant computational resources, which can lead to328

increased expenses for research and development.329

This cost factor may limit accessibility for smaller330

research teams or individuals without the requisite331

funding or computational infrastructure.332

Additionally, while the simulation provides a ro-333

bust platform for exploring agent collaboration and334

decision-making in a restaurant management con-335

text, the range of business management elements336

integrated into the simulation is not exhaustive.337

Certain aspects of restaurant operations, such as338

financial management, staff training, and customer339

relationship management, are not fully developed.340
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