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Abstract

Minimum energy pathways (MEPs) provide critical insights about transition states
and energy barriers for chemical systems. A popular method for MEP discovery is
the nudged elastic band (NEB) algorithm, which involves an expensive optimization
using hundreds to tens of thousands of potentially expensive simulations. Al
methods can help reduce this cost, but have historically focused on either directly
running NEB on static, pre-trained models or actively updating simple (Gaussian
process) simulation surrogates. To our knowledge, we are the first to unite these
two regimes by using Bayesian Algorithm Execution (BAX), a technique from
Bayesian experimental design, to fine-tune EquiformerV2, a foundation model. We
demonstrate the resulting neural network BAX (NN-BAX) method on Lennard-
Jones transitions and observe that NN-BAX requires one to two orders of magnitude
fewer energy/force function evaluations compared to classical NEB, with negligible
loss in accuracy of the energy barrier and transition state prediction. We highlight
that this targeted fine-tuning procedure retains the simulation efficiency of previous
active approaches, while allowing scalability to systems of much higher complexity
and dimensionality.

1 Introduction

Minimum energy pathways (MEPs) describe the most probable paths that atomic systems follow
when transitioning between stable states. MEPs are important because they dictate the mechanisms
and corresponding energy barriers for transitions [[1]. Nudged elastic band (NEB) is a popular method
used for finding MEPs in atomic systems [2-4]. In its basic form [2], NEB begins with a set of
“moving images” in atomic space between the initial and final state being studied. Force and energy
calculations from physical simulations of the system are then used to nudge the band of images until
a convergence criterion is met—commonly the maximum perpendicular force on any atom in any
image, finqz, falling below a threshold. Each intermediate moving image is connected by an elastic
spring force to ensure the band does not collapse to a single point. Since its development, various
versions of NEB have been created to scale to more difficult systems or to reduce computational
cost [5H9]]. However, a major drawback of these “classical” NEB methods is that many simulations
are required, namely one per image for each NEB iteration. Such simulations often involve density
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Figure 1: NN-BAX Pipeline. a) Classical NEB versus NN-BAX NEB, where the expensive simulator
f is no longer called in the NEB Loop. The number of function evaluations in classical NEB scales
with the number of images times the number of NEB iterations, Nyep - NVimg, Whereas in NN-BAX it
scales with the number of BAX iterations, Np 4 x. b) NN-BAX Loop. The EquiformerV2 model is
initialized and trained on the initial and final state. In each loop, NEB is run using the trained model

as an approximation for f, a sample is acquired from the resulting path, and the sampled point is
added to the training set for the subsequent iteration. Colormap energy ranges (eV) are provided.

functional theory (DFT) calculations, which can be expensive computationally. For example OC22, a
large modern dataset, required >240 million core-hours to generate ~62K DFT relaxations [10].

Numerous efforts have been made to reduce the computational cost of NEB with machine learning
[23]]. In one paradigm, neural network surrogate models are trained on large, diverse datasets. These
models then serve as direct calculators for downstream applications, such as NEB calculations on
complex systems. An alternative approach involves sequentially updating a simulation surrogate for a
system of interest using techniques from active learning or Bayesian experimental design. Bayesian
experimental design techniques can be used to infer properties of black-box functions in limited
function queries. Common approaches fall into the regime of Bayesian optimization (BO) [24]],
where the aim is to maximize or minimize the unknown function. Bayesian algorithm execution
(BAX) [23] generalizes the optimization objective to any computable function property (called the
BAX “algorithm”). Specifically, with BAX, we choose function queries that target the output of
the NEB optimization on the unknown function defined by the physics simulator. This approach is
similar to that of [12]], and we emphasize the connection to the broader set of methodology.

Bayesian experimental design approaches have historically used Gaussian processes (GPs) as a
surrogate model, limiting their expressivity and scalability. In our work, we aim to take advantage of
the development of large neural network surrogates for materials systems and apply them within the
BAX acquisition framework. We refer to this neural network BAX methodology as NN-BAX. We
demonstrate NN-BAX on atomic systems governed by the Lennard-Jones (LJ) potential:

=2 [(2)*- (2)7]

because of its physical relevance and its well-studied transitions [26-34]]. Unlike energy/force
computations involving density functional theory, the LJ potential is inexpensive to call. However, it
retains much of the complexity of similar chemical systems, making it ideal for testing our method.
We analyze systems with 7 and 38 identical atoms, abbreviated as LJ7 and LJsg. The dimensionality



of these systems, particularly the 114-dimensional LJsg, makes GP surrogates infeasible. We use
EquiformerV?2 [35]] as our surrogate model, pre-trained on the OMat24 [36] dataset. OMat24 does
not include LJ systems, and the pre-trained EquiformerV2 model does not work well for zero-shot
NEB calculations on LJ. We therefore treat it as a foundation model and tune it in a few-shot-learning
manner using BAX.

2 Methods

NN-BAX Algorithm There are a variety of forms of BAX acquisition. InfoBAX [25], an
information-based acquisition function, aims to maximize the expected information gain (EIG)
about an algorithm output. However, it is costly to compute, involving several model retrainings to
estimate the associated entropies. Heuristic or approximate BAX algorithms have been proposed
that are much more efficient, such as MeanBAX [37]] and PS-BAX [38]] which run the algorithm on
the posterior mean or a posterior sample and then take the output point with the highest predicted
uncertainty, avoiding the cost of computing the full EIG. In this work, we take a similar, heuristic
approach. Our BAX acquisition involves running NEB on a deterministic model of the potential
energy/forces. We then randomly sample from the resulting NEB path to choose the next point to
acquire and update the model for the next loop. A visualization of the pipeline is shown in Figure T]

System Setup and Training We analyze our method on a set of transitions of L.J; and L.Jsg. To
select transitions, we first find local minima using basin hopping [26]. We then run classical NEB
between pairs of local minima, observing that the convergence hyperparameter f,,,,, varies between
0.05 and 0.3eV/A. To check stability of the resulting MEPs, we randomly perturb the positions of the
images from the converged path by o, € [0, 0.1] A and re-run the NEB minimization. If after 100
iterations the path does not move and no lower energy path is discovered, the MEP is considered a
“ground truth” target for our NN-BAX optimization. For both classical and NN-BAX NEB calculation,
we use the Atomic Simulation Environment (ASE) library [39]]. All NEB uses the string method [6],
which ignores spring forces and evenly redistributes images along the path every iteration, and the
FIRE optimizer [40]] with parameters d¢ = 0.1 and dt,,,4, = 1.0. In NN-BAX, we treat the number
of NEB iterations, N, as an additional hyperparameter because for earlier, less accurate models,
NEB often does not converge below the given f,, .. criterion. For simplicity, we base the number of
NEB iterations within NN-BAX on the number of iterations it took classical NEB to converge. In
general, we would not have access to V., but the procedure is robust to this choice, and methods
such as patience [41]] will further reduce sensitivity to N p.

For each NN-BAX iteration, we initialize the model to the 153 million parameter EquiformerV2
trained on the OMat24 dataset. EquiformerV2 combines the Transformer architecture [42] with
consideration of relevant symmetries for materials systems: atomic energies are modeled as invariant
under global translations and rotations of the system, while atomic forces are modeled as equivariant,
transforming consistently with rotations and translations of the atomic positions. EquiformerV2 has
demonstrated strong performance in benchmarks [43]] and previous non active learning (zero-shot)
neural network NEB studies such as CatTsunami [[L1]]. The inputs to the network are the positions
of the atoms in a given LJ configuration, x;, and the outputs are the forces on each atom and the
potential energy of the system. Our version of EquiformerV2 also provides stress predictions, but
these are irrelevant for our systems, so we initialize all stresses to zero and ignore them.

3 Results and Discussion

We analyze four transitions of varying numbers of intermediate minima, corresponding to increasing
difficulty. For LJ; we look at paths with O and 3 intermediate minima, and for L.Jsg we analyze
paths with 0 and 1 intermediate minima. These paths converged for classical NEB with f,,,, values
of 0.05, 0.15, 0.05, and 0.3eV/A respectively, and passed the stability check. Figure |2 compares
the converged NN-BAX paths with their classical NEB counterparts. The visuals on top display the
atomic structures of the initial and final states. The upper plots show energy versus image index for
both classical NEB and NN-BAX, with very close agreement between the two results. Of the four,
the worst predicted energy barrier is 0.6% greater than the ground truth. The bottom row shows a
two dimensional principal component analysis (PCA) projection of the MEPs and potential energy
landscapes, with projection computed from the ground truth path in atomic coordinate space. We
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Figure 2: Results from running NN-BAX on various paths with LJ7 and LJsg systems. The upper
row compares the energy profile predicted by NN-BAX to classical NEB, along with atomic visuals
for the transition. The bottom row shows dimension-reduced principal component analysis plots of
the energy, with the NN-BAX and classical NEB paths overlaid.
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Figure 3: Energy barrier v. function evaluations, for various L.J7 and L.J3g systems

observe that the NN-BAX paths qualitatively line up with the classical NEB paths, indicating that
NN-BAX is finding the same structures as classical NEB.

Figure [3|displays the speed-up NN-BAX achieves with respect to classical NEB, in terms of function
evaluations. As the LJ potential is quick to call, in this setting there is significant overhead from
the NN-BAX procedure. However, for systems running expensive DFT simulations, this becomes
negligible, making number of function calls an appropriate figure of merit. We achieve a 1-2 orders
of magnitude reduction in function calls across all four paths. In addition to the f,,, criterion used
by classical NEB, we introduce a metric MAE;, defined as the mean absolute error of model i — 1
computed on sampled point ¢, to define convergence of the full NN-BAX procedure. Reduction
in MAE; indicates that the model is performing better on points not in the training set and, once
NN-BAX begins predicting similar final paths, the sampled points grow increasingly similar, an
easier modeling task. For NN-BAX to converge, we therefore require NEB to converge (f? ... below
threshold) and MAE; to fall below a threshold value. Some energy barrier values for NN-BAX
are negligibly lower than the ground truth—this happens because of the discrete nature of the path,
resulting in images not sitting precisely at the MEP peak. Finally we observe that the L.J; path with
3 minima achieves a much greater speedup than the other paths. We hypothesize this occurs due to



the high number of NEB iterations required for classical NEB to converge, despite the energy/force
landscape modeling difficulty being similar to the other paths. Thus because the number of function
evaluations in NN-BAX no longer scales with N,,.;,, we observe a larger speedup for this path.

4 Conclusion

The nudged elastic band algorithm is critical in finding transition states and energy barriers in
chemical systems. Lennard Jones systems hold much of the complexity of the broader group of
chemical systems of interest, and allow for analysis of high dimensional atomic systems. In this paper,
we unified efforts in active learning and foundation models using BAX. Specifically, we applied
NN-BAX to NEB on Lennard Jones systems and observed a speedup of 1-2 orders of magnitude
with respect to number of function evaluations. We emphasize that NN-BAX describes a broader
system-agnostic procedure, and therefore we expect our work to extend to both new models and NEB
applications, including ones that require expensive simulations like DFT.
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S Supplementary Materials

5.1 Transition State Predictions

A state along the reaction path that corresponds to a maximum of potential energy is called a transition
state. A transition state is often of particular interest because it dictates the activation energy of the
reaction and corresponds to bonds breaking and new bonds forming [1]]. Transition states are helpful
in figuring out reaction rates in chemical systems and in determining whether reactions are physically
possible. In Figure[d we display the predicted structures for the highest energy transition state of each
reaction. We observe the NN-BAX structures qualitatively match the classical NEB structures.

LJ7 0 Minima LJ7 3 Minima LJ38 0 Minima Lst 1 Minima

NN-BAX

Classical

Figure 4: Transition state predictions. The NN-BAX predictions and the classical ground truth atomic
arrangements are displayed.

5.2 NN-BAX Convergence

In this paper we introduce a new convergence hyperparameter, MAE;, which corresponds to the error
in the prediction of model ¢ — 1 on datapoint . In Figure 5] MAE; is plotted for each BAX iteration,
for the four paths we analyze. We observe it to be a relatively stable parameter, plateauing as we
increase the BAX iteration. In order for NN-BAX to converge, MAE; < m and f! . pax <t must
simultaneously be satisfied, where m and ¢ are the respective convergence thresholds. For all results
presented here, we require MAE; < 0.1. For force convergence, we set frax BAX = 7 fmax,classical,
where n > 1 allows the model predictions slightly more error than the true potential. n is a
hyperparameter, so various values may work for different paths. In practice, we found n = 2 to work
well for our paths. For further confidence in convergence we introduce a patience metric p, where
the convergence criteria must be achieved p times for NN-BAX to converge. In this paper we use
p = 2 for both LJ; paths and the L.J3g path with one minimum, and p = 3 for the L.J3g path with
Zero minima.

Finally we comment on convergence time and BAX overhead. Specifically the L.J3g 0 minima path
took NN-BAX 9.3 hours to run, for 30 BAX iterations, with 200 NEB steps, and with each model
trained for 50 epochs. All code was run on a single NVIDIA Tesla A100 GPU. Since calls to the LJ
potential are practically instant, this is a good approximation for solely the computational overhead
cost of NN-BAX. Thus for a setting in which DFT is being used, for NN-BAX to achieve a wall-clock
speedup relative to Classical NEB, the DFT simulations would have to be longer than 25.4 seconds.
Finally we note that the NEB calculations with the model were not parallelized, but could be, which
would further improve the speedup.
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Figure 5: MAE, convergence metric versus BAX iteration. The red line denotes the convergence
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5.3 Training

In each BAX iteration, the network was trained for 50 epochs with a batch size of 2 using the AdamW
optimizer (weight decay 0.001, gradient clipping at 100) and an initial learning rate of 2 x 1074,
A cosine learning rate schedule was employed via LambdaLR, with a warmup phase lasting 1 epoch
(warmup factor 0.2) and a minimum learning rate set to 1% of the initial value. Exponential moving
average (EMA) updates with a decay of 0.999 were applied throughout training. We use the mean
absolute error (MAE) loss, giving forces four times the weight of energy since forces are critical in
NEB precision and convergence. All models are trained on a single NVIDIA Tesla A100 GPU at the
SLAC Shared Science Data Facility.
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