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Abstract

Unsupervised domain adaptation (UDA) has been widely applied in improving
model generalization on unlabeled target data. However, accurately selecting the
best UDA model for the target domain is challenging due to the absence of labeled
target data and domain distribution shifts. Traditional model selection approaches
involve training extra models with source data to estimate the target validation
risk. Recent studies propose practical methods that are based on measuring various
properties of model predictions on target data. Although effective for some UDA
models, these methods often lack stability and may lead to poor selections for other
UDA models. In this paper, we present MixVal, an innovative model selection
method that operates solely with unlabeled target data during inference. Mix Val
leverages mixed target samples with pseudo labels to directly probe the learned tar-
get structure by each UDA model. Specifically, MixVal employs two distinct types
of probes: the intra-cluster mixed samples for evaluating neighborhood density and
the inter-cluster mixed samples for investigating the classification boundary. With
this comprehensive probing strategy, Mix Val elegantly combines the strengths of
two state-of-the-art model selection methods, Entropy and SND. We extensively
evaluate MixVal on 11 UDA methods across 4 adaptation settings, including classi-
fication and segmentation tasks. Experimental results consistently demonstrate that
MixVal achieves state-of-the-art performance and maintains exceptional stability in
model selection. Code is available at https://github. com/LHXXHB/MixVal.

1 Introduction

Despite the remarkable achievements of supervised learning in visual recognition tasks [1-4], deep
neural networks face challenges when it comes to generalizing to out-of-distribution data [5]. As
for the obstacle of out-of-domain generalization, deep domain adaptation techniques [6] provide
an effective solution by transferring knowledge from a label-rich source domain to a related, yet
label-scarce, target domain. Unsupervised domain adaptation (UDA) has drawn significant interest
in recent years within the field of computer vision, including image classification [7-9], semantic
segmentation [10—12], and object detection [13, 14], thanks to its practical setup with completely
unlabeled target data. As the UDA landscape continues to evolve, various UDA settings have been
explored to consider real-world scenarios, such as variations in category overlaps between domains
and concerns related to source data privacy. These settings include closed-set UDA [7], partial-set
UDA [15, 16], open-set UDA [17], open-partial-set UDA [18], and source-free UDA [19-21]. To ef-
fectively address these UDA problems, researchers have developed various novel solutions, including
cross-domain alignment techniques [7, 9, 22, 11, 12], target-domain regularization methods [23-25],
and self-training strategies in the target domain [26, 27, 20].
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Nevertheless, it is worth emphasizing that hyperparameters, including those associated with both the
method-specific loss functions and the deep training pipeline, play a critical role in ensuring superior
performance of UDA models during deployment. Notably, even the model trained by a state-of-the-
art UDA approach can underperform the baseline source-trained model without adaptation if the
hyperparameters are not properly set [28]. Surprisingly, the selection of hyperparameters has been
largely overlooked in previous UDA studies, as highlighted by You ef al. [18] and Saito et al. [29].

To further fill this research gap, this paper tackles the challenging problem of unsupervised model
selection * in domain adaptation. Figure 1(a) illustrates the UDA validation pipeline. During the
training stage, we employ different values of a hyperparameter 3, denoted as 31, 32, 83, to train
corresponding UDA models denoted as My, Mo, Ms. Subsequently, in the validation stage, our
objective is to identify the model with the minimal risk on the target domain and determine its
associated /3 value as the optimal choice for the UDA method. Dealing with model selection in UDA
presents two primary challenges. On one hand, the absence of labeled target data makes conventional
supervised target validation unfeasible. On the other hand, even if we had access to labeled source
data, relying solely on the source risk [7] cannot ensure accurate estimation of the target risk due
to domain distribution shifts between domains [29]. Therefore, advanced validation approaches are
necessary to ensure accurate model selection in UDA.

Existing validation solutions in UDA can be classified into two types. The first type consists of source-
based methods, which include the vanilla baseline of using source risk directly for target validation,
denoted as SourceVal [7]. Additionally, Importance-Weighted Cross-Validation (IWCV)[30] and
Deep Embedded Validation (DEV) [18] re-weight the source risk based on density similarity between
domains. Reverse Validation (RV) [31] builds a symmetric UDA task to estimate target risk by
reversing the source risk. However, source-based methods require training extra models involving
source data and are vulnerable to severe distribution shifts between domains. On the other hand,
the second type, target-only validation methods, is more straightforward and only utilizes unlabeled
target samples. Entropy [30], based on the assumption of low-density separation [32], selects the
model that produces target predictions with the lowest mean entropy. Soft Neighborhood Density
(SND) [29], which relies on the assumption of neighborhood consistency, chooses the model with
the highest consistency of predictions within the target neighborhood. While both Entropy and SND
outperform source-based methods in certain UDA tasks, they have not fully explored the learned
target structure for model selection, leading to instability across various UDA methods.

In this paper, we introduce MixVal, a novel target-only method for model selection in UDA. MixVal
leverages mixed target samples as validation probes. To achieve this, MixVal employs mixup [33]
with unlabeled target samples and their predictions, generating pseudo-labeled mixed samples. These
mixed samples are further categorized into two types, depending on whether mixup is performed
intra-cluster or inter-cluster. MixVal takes a novel strategy by evaluating inference-stage interpolation
consistency for both types of mixed samples. Compared to Entropy and SND, MixVal innovatively
employs mixed samples for probing the target structure, rather than directly measuring certain
properties of target predictions. Moreover, Mix Val elegantly combines the advantages of both Entropy
and SND. On one hand, MixVal employs intra-cluster mixed samples to evaluate neighborhood
density, leveraging the neighborhood consistency assumption utilized in SND. On the other hand,
it utilizes inter-cluster mixed samples to evaluate the classification boundary, considering the low-
density separation assumption used in Entropy. The novel probing allows MixVal to benefit from the
strengths of both assumptions, making it a competitive UDA model selection method.

Our main contributions are highlighted as threefold:

* We study the significant yet under-explored model selection problem in UDA, providing
comprehensive empirical evaluations of existing validation baselines.

* We introduce MixVal, a novel target-only validation method that directly probes the target
structure using mixed samples. MixVal combines the strengths of both SND and Entropy
through novel consistency-based probing with inter-cluster and intra-cluster mixed samples.

* We conduct extensive experiments to evaluate MixVal’s effectiveness in model selection
across various UDA settings, including closed-set UDA, partial-set UDA, open-partial-
set UDA, and source-free UDA. The results highlight MixVal’s exceptional stability and
superior performance in UDA model selection compared to existing baselines.

“Throughout this paper, we use model selection, validation, and hyperparameter selection interchangeably.



Table 1: Comparison of assumptions considered in validation methods using target data.

neighborhood no prior of low-density

Validation Method . . . .
consistency class diversity  separation

Entropy [42] X v 4
InfoMax [28] X X v
SND [29] v v X
Corr-C [43] X X v
Mix Val v v v

2 Related Work

2.1 Unsupervised Domain Adaptation

Domain adaptation aims to leverage labeled source domains to facilitate transductive learning in
a label-scarce target domain [34]. Unsupervised domain adaptation (UDA), which assumes that
the target domain is entirely unlabeled, has gained significant attention due to its practical nature.
Many traditional methods have been proposed to address UDA [35-38]. In recent years, deep
learning-based UDA methods have witnessed significant progress, with domain adversarial learning
emerging as a popular approach. Adversarial domain adaptation has been explored at multiple levels,
including input-level [39], feature-level [7, 9, 15], prediction-level [11, 22], and entropy-level [12].
Additionally, there has been growing interest in adapting UDA models with a specific focus on the
leverage of target data, leading to explorations in techniques such as target clustering [40, 27, 41] and
target output regularization [24, 25]. Notably, Xu et al. [23] proposed a feature-level regularization
approach that diverges from the popular mainstream methods. These UDA methods primarily address
conventional scenarios that require source data for adaptation. More recently, a practical variant
called source-free UDA has gained increasing attention [19, 20], where adaptation relies solely on
the source-trained model. To comprehensively compare different validation approaches, we conduct
hyperparameter selection for various representative UDA methods across diverse UDA settings.

2.2 Model Selection in Unsupervised Domain Adaptation

Model selection in UDA poses a significant challenge due to the absence of labeled target data and
the presence of domain distribution shifts between domains. Some pioneering efforts have been
made to address this issue. Ganin et al. [7] initially introduced the estimation of the unavailable
target risk using source risk for target-domain validation (SourceVal). However, SourceVal is
susceptible to severe domain shifts. Later, Ganin et al. [31] proposed Reverse Validation (RV), which
considers a symmetric UDA problem from target to source and employs the reversed source risk
for validation. Sugiyama et al. [30] introduced Importance-Weighted Cross-Validation (IWCV),
which estimates the target risk by re-weighting the source risk based on input-level domain similarity.
You et al. [18] further proposed Deep Embedded Validation (DEV), which considers feature-level
similarity and controls variance in IWCV. While these source-based methods have proven effective,
their practical applicability is limited by the need of extensive model training, access to source data,
and the challenge of dealing with severe domain shifts. Consequently, recent efforts have shifted
towards target-only validation methods, which rely solely on unlabeled target data. Morerio et
al. [42] pioneered the use of mean entropy (Entropy) of target predictions for validation, considering
the assumption of low-density separation [32]. Musgrave et al. [28] introduced the Information
Maximization (InfoMax) score, which further considers class diversity in addition to Entropy. Tu
et al. [43] introduced Corr-C, which prioritizes predictions with both large class diversity and high
confidence. However, class diversity serves as a strict prior that is unsuitable for UDA scenarios with
label shift [44]. Saito ef al. [29] introduced Soft Neighborhood Density (SND), the state-of-the-art
target-only validation method that prioritizes high neighborhood consistency. SND has demonstrated
that target-only validation can outperform source-based methods, including IWCV and DEV. We also
align with the research line of target-only validation, which offers simplicity and adaptability across
various UDA settings. Table 1 showcases a comparison of how our method MixVal differs from other
target-only validation methods in terms of the consideration of common assumptions.



2.3 Mixup

Mixup, a data augmentation technique originally proposed by Zhang et al. [33], is used during
model training to improve generalization. Mixup has been extended to different levels, such as
feature-level [45], patch-level [46], and token-level [47]. In addition to supervised learning, mixup
has been successfully applied in semi-supervised learning [48, 49] and domain adaptation [50-52].
Unlike existing studies that consider mixup as a small perturbation to regularize model training, we
employ mixup to generate in-between probing samples for model evaluation.

3 Methodology

3.1 Problem Setting

Unsupervised domain adaptation (UDA). We begin by introducing the UDA problem with a K-way
image classification task, easily extendable to semantic segmentation tasks. In this setup, we are
provided with a labeled source domain Dy = { (%, y!)}"'*; consisting of ng labeled images z with
their corresponding labels ys, and an unlabeled target domain Dy = {z{}"t; containing n unlabeled
images xy. Here, s and xy represent image vectors, and ys are one-hot ground truth labels. The
objective of UDA is to learn a discriminative model M using Dg and Dy, which can accurately predict
the target labels {y!}!*, for the corresponding target images {xi}"* , under covariate shift [30]
or label shift [44] between domains. Each image vector z € R% in the input space is associated
with a one-hot pseudo label encoding, denoted as §j € R, which is predicted by model M. We
denote |Cs| = K as the number of categories in the source domain and |C;| as that in the target
domain. Besides the vanilla UDA, which refers to closed-set UDA where both domains share the
same label space (Cs = C;), we also investigate other challenging UDA settings to evaluate the
versatility of model selection approaches. These include partial-set UDA [15], where the source
domain contains more categories than the target domain (Cs O Ct), and open-partial-set UDA [53],
where both domains have overlapping but not identical labels (Cs N Cy # 0, Cs 2 Cy, Cs € Cy).

Traditional UDA settings [34, 6, 15, 53] typically require simultaneous access to source and target
data for effective target adaptation. The general optimization objective can be represented as follows:

Luda = £src(M; Ds) + ﬁ‘cadapt (M; Dy, Dy, 77)-

Here, Ly, is the cross-entropy loss with labeled source data, and L,qap¢ denotes the adaptation loss
that adapts the training of model M to unlabeled target data. The scalar coefficient 3 is a common
type of hyperparameter, and 7 is a hyperparameter specific to the adaptation loss. Additionally, there
are other training-related hyperparameters, such as learning rate, iterations, and network architecture.

Recently, source-free unsupervised domain adaptation (SFUDA) [19, 20] has gained significant
attention in the research community. Unlike traditional UDA, SFUDA decouples the source supervised
learning and unsupervised target adaptation into two sequential stages. The target adaptation stage in
SFUDA is typically guided by the following objective function:

Lsfuda = Eadapt(M; Msa Dtv 7’)

Here, M represents the source pre-trained model. During the target adaptation stage, a target model
M is learned with access to the source model My and unlabeled target data {xi}1 ;.

Model selection. In UDA, the goal of model selection is to pinpoint the hyperparameter configuration
that offers the best performance on unlabeled target data. For example, let’s consider the hyperparam-
eter 3, with a set of possible values {3; }';, where m is the number of candidate values. We proceed
to train m distinct models {M;} ,, each employing a different /5 value. Our aim is to identify the
model M that delivers the highest performance on Dy among all candidate UDA models {M;}™,,
thus determining the optimal hyperparameter value. Figure 1(a) visually illustrates this process, using
3 as the value for m. Model selection in UDA confronts two key challenges. Firstly, the absence
of labeled target data renders traditional supervised validation methods, such as using a hold-out
dataset [54], unfeasible. Secondly, the presence of severe domain distribution shifts between domains
poses a risk when using source data for selecting the best model for the target data. Additionally,
concerns about source data privacy can limit direct source data utilization.
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Figure 1: Overview of the proposed method (MixVal) for model selection in UDA.

3.2 MixVal: Mixed Samples as Probes for Unsupervised Validation

Motivation. While existing target-only model selection methods [42, 29] have demonstrated com-
petitive performance, they sometimes result in extremely poor selections when applied to different
UDA methods and datasets, even within the standard closed-set UDA scenario. This phenomenon is
substantiated by a comprehensive large-scale empirical study conducted by Musgrave et al. [28]. We
highlight two common limitations in existing target-only validation methods that potentially hinder
their ability to generalize across various UDA scenarios. First, these methods primarily rely on raw
target predictions to calculate specific metrics for evaluating the learned target structure. However,
it’s important to note that these target data have already been utilized during the transductive model
training. Second, while both the assumptions of low-density separation and neighborhood consistency
are effective for model selection, existing validation methods often design their metrics based solely
on one of these assumptions, as summarized in Table 1.

To address these limitations, we present Mix Val, a target-only validation method that thoroughly
evaluates the target structure through the use of mixed samples. We employ the mixup technique [33]
to create novel in-between target samples. These mixed samples are then used for consistency
evaluation to probe the learned target structure. With two distinct types of mixed samples, we ensure
a comprehensive assessment of the target structure acquired by each candidate UDA model.

Generation of mixed samples. We first generate a labeled set of mixed samples using mixup with
unlabeled target data and inference-stage UDA models. Specifically, we create a mixed sample xyix
and its label y,ix by performing a convex combination of a pair of target samples x?, x{ and their
corresponding pseudo labels i, g)f which are predicted by the UDA model. The process of mixed
sample generation is formulated as follows:

Tmix = Axxl + (1= \) wad, Ymix = A% 98 4 (1= X) % ..

where ) is a scalar used for interpolation, and ¢! and yt denote the one-hot pseudo label encodings.
By performing mixup on random target samples for a single epoch in the inference stage, we generate
a set of mixed samples { (2%, , v . )}, where n; represents the total number.

Interpolation consistency evaluation. Next, we leverage each candidate UDA model to infer
labels for all mixed samples, resulting in predicted labels {g; }7¢,. Using both the mixed labels
{yl it | and predicted labels, we assess the accuracy of mixed samples for each candidate model.
This assessment yields the Interpolation Consistency Evaluation (ICE) score, defined as follows:

ICE = AccuraCY({Yinix}?:tla {lex i= 1)

For all UDA models {M;},, we apply the same mixup operation to generate identical mixed
samples, but the mixed labels differ because model predictions for target samples vary among
different models. We subsequently calculate the ICE score for each candidate model M, yielding a
set of ICE scores {ICE; }}2 ;. The candidate model with a higher ICE score is deemed superior.



MixVal via two types of probes. Through a meticulous analysis of the mixup operation applied to
unlabeled target samples and their pseudo labels, we have identified two distinct categories of mixed
samples, as illustrated in Figure 1(b). The first type involves mixing target samples with the same
pseudo label, referred to as intra-cluster mixup. When we evaluate the ICE score after performing
intra-cluster mixup, we effectively measure the neighborhood density within each cluster. A higher
ICE score indicates a higher level of neighborhood consistency [29]. Conversely, the second type
involves mixing target samples with different pseudo labels, termed inter-cluster mixup. By evaluating
the ICE score in this context, we can assess the classification margin between clusters. A higher
ICE score in inter-cluster mixup signifies a larger margin of the classification boundary, indicating
low-density separation [42]. For comprehensive probing, MixVal uses both types of mixed samples
as probes. It separately ranks all candidate models in ascending order based on each type of ICE
score. Then, MixVal takes the average rank from both rankings to select the candidate model with the
highest average rank. Kindly refer to Appendix A for the pseudocode of MixVal.

Connection to interpolation consistency training. We provide a comprehensive comparison
between our MixVal approach and interpolation consistency training (ICT), a commonly used
technique in semi-supervised learning [48]. While our ICE score draws inspiration from ICT, there
are three significant distinctions between MixVal and ICT. ICT primarily employs inter-cluster mixup
as a minor training perturbation to regularize model learning with unlabeled data. In contrast, MixVal
explicitly applies mixup to create in-between target samples, encompassing both inter-cluster and
intra-cluster scenarios, during the inference stage without requiring model re-training.

4 Experiments

4.1 Setup

Datasets. For image classification tasks, we consider 4 popular UDA benchmarks of varied scales.
Office-31 [55] is a classic domain adaptation benchmark consisting of 31 object categories across 3
domains: Amazon (A), DSLR (D), and Webcam (W). Office-Home [56] is a challenging benchmark
with 65 different object categories in 4 domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World
(Re). VisDA [57] is a large-scale benchmark for the synthetic-to-real object recognition task, featuring
12 categories. It consists of a training (T) domain with 152k synthetic images and a validation (V)
domain with 55k realistic images. DomainNet [58] is a recent large-scale benchmark comprising
approximately 600k images across 345 categories in 6 distinct domains. For evaluation, we focus on
a subset of 126 classes with 7 tasks [59] from 4 domains: Real (R), Clipart (C), Painting (P), and
Sketch (S). For semantic segmentation tasks, we use the synthetic GTAV [60] dataset as the source
domain and the real-world Cityscapes [61] dataset as the target domain.

UDA methods. We use the validation baselines discussed in Section 2.2 to conduct model selection
for various UDA methods, with a specific emphasis on the practical target-only baselines. For closed-
set UDA, we consider ATDOC [27], BNM [24], CDAN [9], MCC [25], MDD [22], SAFN [23],
DMRL [50], AdaptSeg [11], and AdvEnt [12]. For partial-set UDA, we consider PADA [15] and
SAFN [23]. For source-free UDA, we consider SHOT [20]. For open-partial-set UDA, we consider
DANCE [41]. For ATDOC, BNM, CDAN, PADA, SAFN, SHOT, DMRL, and DANCE, we select the
loss coefficient among 7 varied candidate values. For MDD, we validate the margin factor, while for
MCC, we validate the temperature. For AdaptSeg and AdvEnt, we validate both the loss coefficient
and training iteration. For MCC and MDD, we also include a two-hyperparameter validation task,
where the bottleneck dimension is considered as an additional hyperparameter, with 4 possible values.
Kindly refer to Appendix B for details of hyperparameter settings.

Implementation details. We utilize the Transfer Learning Library to train UDA models on a single
RTX TITAN 16GB GPU. The batch size is set to 32, and the total number of iterations is set to 5,000.
We save the final model as a checkpoint. For VisDA and GTAV2Cityscapes, we use ResNet-101 [3], for
DomainNet, we use ResNet-34 [3], and for the other benchmarks, we use ResNet-50 [3]. Regarding
SND [29], we employ the official implementation. For source-based methods, we split 80% of the
source data as the training set and the remaining 20% as the validation set. In our Mix Val approach,
we use a fixed value of A to ensure a fair comparison among candidate models. Specifically, we set
A = 0.55 for all experiments, which allows us to probe with in-between samples.

"https://github.com/thuml/Transfer-Learning-Library
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Table 2: Validation accuracy (%) of closed-set UDA on Office-Home (Home). bold: Best value.

Method ATDOC [27] BNM [24] CDAN [9]
—Ar —Cl —Pr —Re avg —Ar —Cl —Pr —Re avg —Ar —Cl —Pr —Re avg

SourceVal 66.63 5254 7857 76.61 6859 [ 6244 5074 7153 7476 6637 [ 55.00 42.65 69.50 6881 58.99
IWCV [30] 6797 5403 7831 79.26 69.89 | 66.56 48.16 74.09 73.28 6552 | 61.31 4124 67.17 7193 60.41
DEV [18] 6739 5423 7778 7939 69.70 | 65.76 5639 7392 7759 6841 | 6723 57.04 6876 7691 67.49
RV [31] 68.68 56.13 7893 79.64 70.85 | 68.25 56.75 78.08 78.67 70.44 | 67.66 56.74 76.01 77.68 69.52
Entropy [42] | 63.67 5583 76.54 7836 68.60 [ 66.28 5449 7415 77.64 68.14 [ 67.66 5756 7637 7745 69.76
InfoMax [28] | 63.67 55.63 77.61 7836 6882 | 66.28 5449 74.15 77.64 68.14 | 67.66 57.56 7637 7745 69.76
SND [29] 63.67 55.63 76.54 7754 6834 | 6628 5449 7415 77.64 68.14 | 67.94 57.56 7696 77.68 70.04
Corr-C [43] 63.51 5039 7389 7388 6542 | 58.10 4537 6897 70.59 60.76 | 53.84 41.21 6496 67.65 56.91

MixVal 6647 56.87 78.14 7920 70.17 | 67.36 56.18 76.10 78.12 69.44 | 67.71 57.78 7689 77.76 70.03
Worst 62.89 5039 7389 73.88 6526 [ 58.10 4537 6896 70.59 60.75 [ 53.80 4121 6478 67.65 56.86
Best 68.97 5835 80.27 80.58 72.04 | 68.93 57.51 7843 79.57 71.11 | 68.19 5790 77.44 78.19 70.43
Method MCC [25] MDD [22] SAFN [23] Home

—Ar —Cl  —Pr —Re avg —Ar —Cl  —Pr —Re avg —Ar —Cl —Pr —Re avg AVG
SourceVal 66.57 5653 79.55 80.90 70.89 [ 6253 5443 7527 7555 66.94 [ 63.54 5134 73.66 7454 6577 | 66.26
IWCV [30] 68.69 5893 8037 80.08 72.02 | 6420 56.50 73.78 7428 67.19 | 64.31 5236 7231 7429 6582 @ 66.81
DEV [18] 68.81 58.07 78.54 80.10 7138 | 6442 5694 7685 75.94 68.54 | 63.15 5047 7120 7454 64.84 | 68.39
RV [31] 70.40 58.80 80.63 8039 72.56 | 66.57 5575 76.60 7690 68.96 | 6431 50.13 73.77 7493 65.78 & 69.68
Entropy [42] | 6929 59.33 80.63 80.96 72.55 [ 66.54 57.63 7727 7745 69.72 [ 5985 4641 7251 7318 62.99 @ 68.63
InfoMax [28] | 66.58 5848 79.12 80.81 71.25 | 66.54 57.74 7727 7745 69.75 | 6456 49.71 7377 73.18 65.31 @ 68.84

SND [29] 69.05 5561 79.72 79.10 7087 | 51.34 38.01 77.61 6846 5886 | 57.90 4641 67.04 68.18 59.88 ' 66.02
Corr-C [43] 69.05 55.61 79.72 79.10 70.87 | 47.79 31.69 63.40 60.63 50.88 | 62.66 46.41 6883 68.18 61.52  61.06
MixVal 69.79 59.24 80.47 80.74 72.56 | 6573 58.01 7736 7691 69.50 | 65.98 53.14 74.76 7540 67.32  69.84
Worst 6272 5463 76.19 7819 67.93 [ 4779 31.69 6340 60.63 50.88 [ 57.90 4641 67.04 68.18 59.88 | 60.26
Best 70.68 59.95 80.93 81.02 73.14 | 66.75 5836 77.61 7745 70.04 | 66.59 53.14 7490 7557 67.55 70.72

Table 3: Validation accuracy (%) of closed-set UDA on Office-31 (Office) and VisDA.

Method ATDOC [27] BNM [24] CDAN [9]

—A —D —-W avg T—-V | —A —D —SW avg TV | —A —D W avg TV
SourceVal 7256 8896 87.80 83.11 67.79 [ 7292 90.36 89.43 84.24 70.51 [ 63.90 91.16 89.06 81.37 64.50
IWCV [30] 72.56 86.14 86.54 81.75 67.79 | 7292 8554 8943 82.63 76.94 | 63.90 69.08 5874 6391 64.50
DEV [18] 7256 86.14 86.54 81.75 70.34 | 72.92 8554 89.43 82.63 7694 | 6390 91.16 8830 81.12 64.50

RV [31] 7493 89.96 87.23 8404 77.37 | 7071 8855 89.43 8290 7458 | 7327 91.16 8830 8424 76.02
Entropy [42] | 7329 86.14 87.80 8241 6285 [72.67 8554 B83.14 8045 5836 [71.62 9I.16 89.06 83.95 80.46
InfoMax [28] | 7329 86.14 87.80 8241 7649 | 7052 8554 83.14 7973 5836 | 71.62 91.16 8830 83.69 80.46
SND [29] 7329 9237 87.80 84.49 77.37 | 7444 8554 8314 8104 69.65 | 7155 9237 8855 84.16 80.46
Corr-C [43] | 71.05 9096 8440 82.14 67.79 | 67.16 8434 7899 7683 70.51 | 5829 67.67 59.62 61.86 64.50
MixVal 7361 9096 86.54 8370 77.37 | 7497 8648 87.00 82.81 7451 | 7273 92.64 89.06 84.81 80.46
Worst 7105 86.14 8440 80.53 6285 [67.16 8434 7899 76.83 2308 [5829 6767 ST.II_ 61.02 64.50
Best 7531 9237 87.80 8516 77.37 | 7552 9036 89.43 8510 7694 | 7338 9277 89.06 8507 80.46
Method MCC [25] MDD [22] SAFN [23] Office  VisDA

—-A =D =W avg TV | A =D W ag T2V | A =D =W avg T—=V | AVG AVG
SourceVal 7311 9096 91.07 85.05 8046 [ 7572 91.06 8623 84.34 7225 [69.20 83.73 87.17 80.03 70.71 | 83.02 = 71.04
IWCV [30] 73.11 91.16 8855 8427 8148 | 7549 91.16 89.18 8528 72.25 | 69.32 86.55 80.38 78.75 66.33 | 79.43 = 71.55
DEV [18] 7270 89.16 93.08 8498 8148 | 75.65 91.16 89.18 8533 7225 | 68.21 86.55 80.38 7838 66.33 | 82.36 7197
RV [31] 7397 89.06 93.08 8537 82.22 | 7446 92.57 86.79 84.61 77.23 | 68.69 90.83 87.17 8223 66.33 | 83.90 75.62
Entropy [42] | 73.93 9056 9346 85.98 82.22 [ 7631 92.57 9082 86.57 7895 [ 6823 9157 8566 81.82 70.20 | 83.53 72.17
InfoMax [28] | 73.93 89.16 88.55 83.88 81.48 | 76.50 92.57 90.82 86.63 78.95 | 68.23 91.57 8742 8241 7020 | 83.13 7432
SND [29] 7393 9197 9346 8645 69.35 | 76.50 92.17 90.82 86.50 78.95 | 68.23 89.96 85.66 81.28 58.15 | 83.99 7232
Corr-C [43] 7393 91.37 9346 8625 6935 | 7425 91.57 85.66 8383 7225 | 68.39 86.75 80.38 7851 62.52 | 7824 = 67.82

MixVal 7409 91.77 9321 8636 81.48 | 7597 91.77 91.74 86.49 7895 | 69.61 89.96 86.83 82.13 74.41 | 84.39 | 77.86
‘Worst 7056 86.75 87.17 8149 6935 [ 73.06 8735 85.66 8202 7225|6727 8373 8038 77.13 58.15 | 76.50 58.36
Best 7442 9197 9346 86.62 8223 | 76.52 9257 9220 87.10 7895 | 70.06 91.57 8742 83.02 7530 | 8534 78.54

Table 4: Validation accuracy (%) of closed-set UDA on DomainNet.

Method CDAN [9] BNM [24] ATDOC [27]

—-C —+P —R =S avg —-C —-P —SR =S avg —-C —-P —SR =S8 avg
Entropy [42] | 67.09 65.80 74.42 59.34 66.66 | 63.36 6428 7431 48.69 62.66 | 6375 61.85 79.60 52.17 64.34
InfoMax [28] | 67.09 65.80 74.42 59.34 66.66 | 67.05 64.28 7431 55.67 6533 | 63.75 6185 79.60 52.17 64.34
SND [29] 67.09 64.68 7442 5934 66.38 | 56.56 54.50 7431 4237 5693 | 63.75 6185 79.60 47.00 63.05
Corr-C [43] 5735 62.88 7442 54.63 6232 | 59.75 6341 77.62 4237 60.79 | 59.98 62.27 7442 53.69 62.59

MixVal 67.09 6580 7442 59.34 66.66 | 67.84 66.40 78.68 5849 67.85 | 68.94 68.44 79.60 61.73 69.68
Worst 5735 60.76 73.44 5141 60.74 | 55,79 5450 7431 4237 56.74 | 5998 61.85 7442 47.00 60.81
Best 67.09 6580 7444 5934 66.66 | 67.86 66.50 78.68 58.49 67.88 | 70.30 68.44 80.38 6223 70.34

4.2 Results

We report MixVal’s validation performance as averages from three random runs. In the tables, ‘Best’
signifies the optimal selection, and “Worst’ represents the worst one. For brevity, we report average
results for tasks with the same target domain. Kindly refer to Appendix D for detailed results.

Closed-set UDA. We begin by comparing the performance of validation baselines within the standard
closed-set UDA scenario. Specifically, we report the results for both source-based and target-only
validation methods across several well-established UDA benchmarks. Table 2 provides the results
on the medium-scale benchmark Office-Home, while Table 3 presents the results on the small-scale
benchmark Office-31 and the large-scale benchmark VisDA. Furthermore, Table 4 presents the results



Table 5: Validation accuracy (%) of partial-set UDA on Office-Home.

Method PADA [15] SAFN [23]
ctho —Ar —Cl —Pr —Re ag | —>Ar —Cl —Pr —Re avg
SourceVal 5721 4190 6448 71.89 58.87 [ 66.82 5471 7441 7648 68.11

IWCV [30] 59.65 50.51 66.84 7296 6249 | 69.36 5391 71.78 7638 67.86
DEV [18] 66.88 49.29 7240 7046 64.76 | 69.36 5494 7395 76.06 68.58
RV [31] 57719 40.87 6387 70.83 5834 | 6898 5274 7283 77.14 6792
Entropy [42] | 60.08 4651 53.16 6247 5556 | 71.75 55.62 7636 76.59 70.08
InfoMax [28] | 60.08 51.40 6020 66.67 59.59 | 63.67 51.74 69.64 73.62 64.67

SND [29] 67.80 50.71 59.46 67.13 6127 | 71.75 51.74 7636 7836 69.55
Corr-C [43] 61.34 45.65 5490 6225 56.04 | 71.23 5570 7694 79.13 70.75
MixVal 67.68 51.01 7294 78.64 67.57 | 71.70 5791 77.08 7894 7141
Worst 56.29 39.76 5049 5931 51.46 | 6248 4991 6850 73.62 63.63
Best 69.33 55.86 74.55 79.59 69.83 | 73.37 58.09 7735 79.33 72.03

Table 6: HOS (%) of open-partial-set UDA and accuracy (%) of source-free UDA.

Method DANCE [41] Home SHOT [20] Office  VisDA

—Ar —Cl —Pr —Re avg —A =D =W avg TV
Entropy [42] | 32.00 39.48 27.52 38.08 3427 | 71.67 90.76 88.68 83.70 82.65
InfoMax [28] | 32.00 39.48 27.52 38.01 3425 | 71.67 90.76 88.68 83.70 82.65

SND [29] 15.05 433 2375 16.79 1498 | 71.67 90.76 88.68 83.70  82.65
Corr-C [43] 29.60 433 2375 1679 18.62 | 71.58 90.76 90.19 84.18 82.65
MixVal 71.54 5290 178.61 65.01 67.01 | 72.04 9237 9232 85.58 83.12
Worst 1505 433 1517 1679 1284 | 71.56 90.76 88.68 83.67 80.57
Best 77.01 6629 7881 69.81 7298 | 75.06 94.78 9333 87.72 83.12

of practical target-only validation baselines on the large-scale benchmark DomainNet. The current
state-of-the-art source-based baseline is DEV [18], and for target-only methods, SND [29] holds the
state-of-the-art position. Nonetheless, our observations differ from previous findings. When consider-
ing the averaged validation accuracy across 6 popular UDA methods, we note that RV consistently
outperforms other source-based validation methods across three benchmarks. Regarding target-only
validation methods, entropy-based approaches like Entropy and InfoMax prove to be competitive,
particularly demonstrating a significant advantage over SND on the Office-Home benchmark. As
expected, our MixVal consistently attains the highest average accuracy across all four benchmarks,
surpassing the vanilla SourceVal baseline, while most existing validation methods may noticeably
underperform in comparison to this baseline. Notably, MixVal demonstrates exceptional performance
on large-scale benchmarks such as VisDA and DomainNet, approaching the upper bound of ‘Best’
and outperforming the second-best method by substantial margins. MixVal’s consistent advantages in
closed-set UDA highlight its effectiveness in this widely studied setting.

Partial-set UDA. Following [29], we assess validation performance in partial-set UDA, a scenario
with label shifts between domains. We validate two representative partial-set UDA methods, PADA
and SAFN, and present the validation accuracy of Office-Home in Table 5. We observe that Mix Val
consistently outperforms all other validation baselines, maintaining performance close to the ‘Best’.
However, we notice some differences in comparison to closed-set UDA. Specifically, SND achieves
more stable validation performance than Entropy, because Entropy can be susceptible to structure
collapse [29]. Second, methods emphasizing ‘class diversity’, such as InfoMax and Corr-C, often
yield lower results than SourceVal. Additionally, RV consistently underperforms SourceVal in
scenarios without symmetric label distribution, making it unsuitable for UDA with label shifts.

Open-partial-set UDA. We extend our evaluation of UDA scenarios with label shifts, conducting
validation for a popular open-partial-set UDA method, DANCE. Table 6 presents the HOS [62, 63]
results on Office-Home. MixVal consistently provides strong validation performance, nearing the
‘Best’, while other validation baselines tend to align with the “Worst’.

Source-free UDA. Finally, we compare the target-only validation baselines in source-free UDA. We
conduct validation for a popular method, SHOT, and report the accuracy of Office-31 and VisDA in
Table 6. We find that MixVal consistently outperforms other baselines in this practical setting.

4.3 Analysis

Influence of pseudo label quality. Because Mix Val utilizes pseudo labels of target data for the mixup
operation, it is crucial to assess the impact of pseudo label quality. When examining UDA tasks with
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Figure 2: (a) presents the effect of different consistency evaluation techniques. (b) provides compar-
isons between SND and our MixVal on a validation task involving two hyperparameters: MCC on
the Ar—Cl, where -y represents the bottleneck dimension and 7 represents the temperature. The SND
and MixVal scores of the 28 candidate models are ranked in ascending order. To enhance clarity, we
include the real target accuracy for each model in the left figure labeled as ‘Accuracy’.

low-quality pseudo labels (around 50% accuracy), such as the results of ‘— CI’, it becomes evident
that Mix Val consistently maintains stable validation performance.

Influence of consistency evaluation. Mix Val utilizes image-level mixup-based consistency evaluation
for the target probing. To gain a deeper understanding of its role in Mix Val, we substitute it with other
consistency evaluation techniques, including instance-based augmentations such as RandAug [64]
and SSLAug [65], as well as mixup at other levels, such as CutMix [46] and FeatMix [45]. The
results in Figure 2(a) consistently demonstrate that image-level mixup outperforms other strategies.

Table 7: Two-hyperparameter validation accuracy (%) of closed-set UDA on Office-Home.

Method MDD [22] MCC [25]
Ar—Cl Cl - Pr Pr—-Re Re =+ Ar avg |Ar—Cl Cl - Pr Pr—Re Re = Ar avg

SourceVal 5599  73.15 7877 69.39  69.33| 5791 7684  8I.I3 72.89  72.19
IWCV [30] 37.89 7292 8042 5843 62.42| 46.09 7774  80.68 7445 69.74
DEV [18] 52.60  72.11  53.36 67.70 61.44| 5947 7684  81.94 74.08 73.08
RV [31] 5759 7225  80.83 70.79 70.37| 59.13  76.84  82.03 71.98 72.50
Entropy [42] | 5721  73.19  80.06 7231 70.69| 59.75 77777 8237 7433 73.56
InfoMax [28]| 57.59 7292  80.06 7231 7072 59.70 7873  82.58 70.33  72.84

SND [29] 38.10 5645  70.03 65.10 57.42| 5349 7497 7725 7412 69.96
Corr-C [43] 30.17 44774 57.15 50.76  45.71| 4490  56.75  74.32 67.61  60.90
Mix Val 5599  72.63 80.27 7212 70.25| 60.08 78.52  81.95 7443  73.75
Worst 30.17 39.81 53.36 5076  43.53| 43.02 56.75  73.47 67.24  60.12
Best 5759 7335 80.93 7252  71.10| 61.10 7894  83.04 7536 74.61

Two-hyperparameter validation. We further evaluate all validation baselines in challenging tasks
that involve two hyperparameters. Quantitative comparisons in Table 7 consistently position MixVal
as one of the top-performance validators. Qualitative comparisons in Figure 2(b) clearly illustrate
that MixVal scores demonstrate a strong correlation with actual accuracy, whereas SND [29] scores
exhibit noticeable deviation, resulting in selections far from optimal.

Table 8: Validation accuracy (%) of a mixup-based closed-set UDA method DMRL [50].

Method DMRL [50] Home DMRL [50] Office
—Ar —Cl —Pr —Re avg —A —-D =W avg

Entropy [42] | 58.14 50.25 69.06 71.37 6220 [ 63.67 80.52 86.67 76.95

InfoMax [28] | 58.14 50.75 69.06 71.37 6233 | 63.67 80.52 86.67 76.95

SND [29] 57.74 4996 69.28 7142 62.10 | 61.84 84.14 86.67 77.55
Corr-C [43] 5829 4946 68.67 71.73 62.04 | 60.23 77.51 81.13 72.95
Mix Val 59.13 5041 69.28 72.07 62.72 | 6489 8293 86.67 78.16
Worst 5771 4899 67.78 70.72 6130 | 60.23 76.31 81.13 72.55
Best 59.20 50.75 69.28 7224 62.87 | 65.30 84.14 86.67 78.70

Validation of mixup-based UDA method. The ICE score of MixVal is based on the evaluation of
mixup-based interpolation consistency during the inference stage. To assess MixVal’s robustness,
we apply it in the validation of the UDA method DMRL [50], which incorporates mixup-based
consistency training within the target domain and across two domains at the same time. Mix Val is
employed to determine the optimal consistency loss coefficient for DMRL, and the results are reported
in Table 8. Notably, MixVal consistently outperforms most of the existing target-only validation
baselines, even when subjected to the ‘attack’ posed by specialized UDA model training.
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Figure 3: Analysis of probing. Table 9: Segmentation mIoU (%). Table 10: ViT results.

Analysis of probing. In MixVal, we generate mixed samples by applying mixup with a mix ratio A
of 0.55 to both target samples and their hard pseudo labels. We then calculate ICE scores for both
intra-cluster and inter-cluster mixed samples. The final score for model selection is determined by
averaging ascending rankings of both types of ICE scores. Here, we present a comprehensive ablation
study to delve into these design choices within MixVal. To do this, we conduct validation experiments
for PADA on four partial-set UDA tasks (Ar—Cl, C1—Pr, Pr—Re, Re—Ar) and report the average
accuracy results in Figure 3. ‘AccAvg’ represents the direct average of ICE scores (i.e., accuracy
values) as the final score for model selection. ‘RankAvg’ denotes the use of the average ranking
of ICE scores for selection. ‘RanklInter’ relies solely on inter-cluster mixed samples for probing.
‘RankIntra’ employs only intra-cluster mixed samples for probing. ‘Hard’ and ‘Soft’ indicate the
utilization of hard and soft pseudo labels, respectively. It’s worth noting that for intra-cluster mixed
samples, there is no distinction between ‘Hard’ and ‘Soft’ labels, as all pseudo labels involved are
the same. The observations drawn from Figure 3 are as follows: (i) The mix ratio (\) influences the
level of ambiguity in mixed samples. In MixVal, A = 0.55 generates more ambiguous in-between
samples with greater probing capabilities than the easier samples created by A = 0.9. Consequently,
validation performance at A = 0.55 surpasses that at A = 0.9. (if) In MixVal, while soft pseudo labels
may provide additional performance improvements for inter-cluster probing, the use of hard pseudo
labels offers simplicity and stability advantages. (iii) The separate probing of each type of mixed
samples demonstrates effectiveness, and the combination of intra-cluster and inter-cluster probing
enhances MixVal’s stability. Kindly refer to Appendix C for more discussions on probing.

Extension to segmentation. We extend the use of MixVal to the domain adaptive segmentation task
on GTAV2Cityscapes, following the same configuration as SND [29]. Our model selection process
involves 66 candidate models generated by varying two hyperparameters: the loss coefficient and
training iteration. We save checkpoints every 2,000 iterations, starting from the 10,000th iteration to
the 30,000th iteration. The results in Table 9 demonstrate that Mix Val consistently delivers the top
validation performance for both UDA methods, while Entropy consistently underperforms SourceVal.

Influence of backbone. In addition to ResNet backbones, we also utilize ViT-B [4] as the backbone
for the validation of BNM on the task R—S. Accuracies reported in Table 10 highlight MixVal’s
superior stability with ViT, especially in comparison to Entropy, InfoMax, and Corr-C.

Limitations and impacts. While MixVal excels in classification tasks, further research is needed to
address its limitations. This includes establishing the theoretical foundations of probing data structure
using pseudo-labeled mixed samples. Additionally, extending MixVal to other machine learning
tasks like object detection and regression presents challenges. Poor hyperparameter selections
could potentially have negative societal impacts on the real-world deployment of UDA models.
Nevertheless, we have not observed such situations during our extensive evaluation of MixVal.

5 Conclusion

In summary, we introduce Mix Val, a novel and straightforward target-only method for model selection
in unsupervised domain adaptation (UDA). MixVal leverages inference-stage mixup to generate two
distinct types of mixed samples, facilitating effective probing of the learned target structure while
elegantly considering key assumptions used in previous approaches. Our extensive evaluations
encompass diverse UDA methods and adaptation scenarios, consistently affirming the superior and
reliable performance of MixVal when compared to existing model selection methods.
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A Algorithm

The PyTorch-style pseudocode for our validation approach MixVal is presented in Algorithm 1.

Algorithm 1 PyTorch-style pseudocode for MixVal.

HHHFH

#

def ice_score(x,

x: A batch of real target images with shuffled order.

lam: The mix ratio, a fixed scalar value between 0.5 and 1.0.
net: A trained UDA model in the evaluation mode.

A list containing candidate UDA models.

model_list:

Calculate ICE scores for a mini-batch.

# Random
rand_idx
inputs_a
inputs_b
# Obtain
pred_a =

lam, net):

batch index.
torch.randperm(x.shape [0])

nn

X

x[rand_idx]

model predictions and hard pseudo labels.
net (inputs_a)

pl_a = pred_a.max(dim=1)[1]

pl_b = pl_alrand_idx]

# Intra-cluster mixup.

same_idx = (pl_a == pl_b).nonzero(as_tuple=True) [0]
# Inter-cluster mixup.
diff_idx = (pl_a != pl_b).nonzero(as_tuple=True) [0]
# Mixup with images and hard pseudo labels.
mix_inputs = lam * inputs_a + (1 - lam) * inputs_b
if lam > 0.5:

mix_labels = pl_a
else:

mix_labels = pl_b

# Obtain predictions for the mixed samples.
net (mix_inputs)

mix_pred_labels
# Calculate ICE scores for two-dimensional probing.
torch.sum(mix_pred_labels[same_idx] \

mix_pred

ice_same

ice_diff

= mix_pred.max(dim=1) [1]

mix_labels[same_idx]) / same_idx.shape [0]

torch.sum(mix_pred_labels[diff_idx] \

mix_labels[diff_idx]) / diff_idx.shape [0]

return ice_same, ice_diff

# Perform model selection based on ICE scores.
def mixVal (model_list, x, lam):
# Calculate ICE scores for all candidate models.
ice_same_list
ice_diff_list
for net in model_list:
ice_same,
ice_same_list.append(ice_same)
ice_diff_list.append(ice_diff)
# Calculate the average rank of two types of ICE scores.
ice_same_list
ice_diff_list
ice_same_rank
ice_diff_rank
average_rank =
# Choose the model with the highest average rank.
return model_list[torch.argmax(average_rank)]

i

(]
(]

ce_diff = ice_score(x, lam, net)

torch.tensor(ice_same_list)
torch.tensor(ice_diff_list)
torch.argsort(torch.argsort(ice_same_list))
torch.argsort(torch.argsort(ice_diff_list))
(ice_same_rank + ice_diff_rank) / 2
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B Hyperparameter Settings

In our main experiments, we follow the methodology of previous model selection studies [18, 29].
For simplicity, we tune a single hyperparameter for various UDA methods. In the case of two-
hyperparameter validation experiments, as in MCC [25] and MDD [22], we also tune the bottleneck
dimension, choosing from the candidate values {256,512,1024,2048}. This variation is due to
observations that the bottleneck dimension varies across different datasets in the official code of
these UDA methods. For the validation of semantic segmentation tasks, we also consider two
hyperparameters with the training iteration as an additional hyperparameter selected from the set
{10, 000, 12, 000, 14, 000, 16, 000, 18, 000, 20, 000, 22, 000, 24, 000, 26, 000, 28, 000, 30, 000}, fol-
lowing SND [29]. Detailed hyperparameter settings are available in Table 11.

Table 11: Summary of the considered UDA methods and their corresponding hyperparameters.

UDA method UDA Type Hyperparameter Search Space Default Value
ATDOC [27] Sgllgiiiﬁientg loss coifﬁcient 0{(2)700275?108 : g(l)v} 0.2
M4 | gy egulaization | a | 02.0.5:1.0.2.0) L0
COANDL | oot | e [ e o, 10
MCC [25] outpuilrt:sgliiljggation temp?ature 2;,1306),135’5,2406} 25
MDD (2 | S e o ) Lo
SARN 23] | e | r | o ooy | 00
PADA [15] featggﬁiﬁ?n N loss coifﬁcient (){50’?5()77021(;705207} 1.0
DANCE [41] :5?‘35;2‘3‘;5; foss Cof}fﬁdem 0{.3;002.5?'198: g:(l)’} 005
SHOT20] | e ter | 8 | a96h 080, | 03
DMRL [50] miil;;i(rj;;tng loss coifﬁcient . 0{7()2107052(501(5),0} 2.0
AdapISes 111 | e stgmment | oa | Do050.01003) | 00002
AE 2|t | s oatony | 000!

C Analysis of Intra-Cluster and Inter-Cluster Probing

In MixVal, we use mixed samples to directly probe the intra-cluster and inter-cluster structures within
the target representations learned by a UDA model. This strategy shares similar spirits with the
well-known Linear Discriminant Analysis (LDA) [66], which optimizes an objective focused on
minimizing intra-cluster variance while maximizing inter-cluster variance. Drawing inspiration from
the LDA optimization, we explore a straightforward validation baseline that employs an LDA-like
metric. In this context, let’s denote the number of target samples as [V, the number of categories as
K, and the feature of a sample encoded by a UDA model as f. The formulation for the LDA score is
presented in Equation | below.

] K Nm B K
f:NZme m Tanm N:ZNm
m—1 i1 i=1 m=1 (1)
1 K Np . _ 9 1 K — 112 Dinter
1ntra - N Zz g |f fm||2 Dintcr = ? Z Hfm’ - fH2 LDA = Dintra

m=1

In our implementation, we utilize the predicted logits as features and compute variance using the
L distance. We assess the LDA baseline against all target-only validation methods in both closed-
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set UDA (Table 12) and partial-set UDA (Table 13). In both UDA scenarios, LDA outperforms
existing validation methods in terms of average validation accuracy. This highlights the advantage
of considering two effective assumptions, in contrast to the single assumption used in SND and
Entropy. It’s worth noting that while LDA performs well, it still falls short of MixVal’s performance,
underscoring the benefits of MixVal’s direct probing approach using mixed samples compared to the
indirect probing via measurement of raw predictions used by SND, Entropy, and LDA.

Table 12: Validation accuracy (%) of closed-set UDA on Office-Home (Home). bold: Best value.

Method ATDOC [27] BNM [24] CDAN [9]

—Ar —Cl —Pr —Re avg | 2Ar —Cl —Pr —Re avg | »Ar —Cl —Pr —Re avg
SourceVal 66.63 52.54 78.57 76.61 68.59 [62.44 50.74 77.53 7476 66.37 | 55.00 42.65 69.50 68.81 58.99
Entropy [42] | 63.67 55.83 76.54 78.36 68.60 | 66.28 54.49 74.15 77.64 68.14 | 67.66 57.56 76.37 7745 69.76
InfoMax [28] | 63.67 55.63 77.61 78.36 68.82|66.28 54.49 74.15 77.64 68.14 | 67.66 57.56 76.37 7745 69.76
SND [29] 63.67 55.63 76.54 77.54 68.34|66.28 54.49 74.15 77.64 68.14|67.94 57.56 76.96 77.68 70.04
Corr-C [43] | 63.51 50.39 73.89 73.88 65.42|58.10 45.37 68.97 70.59 60.76 | 53.84 41.21 64.96 67.65 56.91

LDA 63.67 55.63 76.54 7754 6834|6628 5449 74.15 77.64 68.14 |67.66 57.56 7637 77.45 69.76
MixVal 6647 56.87 78.14 79.20 70.17 | 67.36 56.18 76.10 78.12 69.44 | 67.71 57.78 76.89 77.76 70.03
Worst 62.80 50.39 73.89 73.88 65.26|58.10 4537 68.06 70.59 60.75 [53.80 4121 64.78 67.65 56.86
Best 68.97 58.35 80.27 80.58 72.04|68.93 57.51 78.43 79.57 71.11|68.19 57.90 77.44 78.19 70.43
Method MCC [25] MDD [22] SAEN [23] Home

—Ar —Cl —Pr —Re avg | 2Ar —Cl —Pr —Re avg | »Ar —Cl —Pr —Re avg | AVG
SourceVal 66.57 56.53 79.55 80.90 70.89 |62.53 54.43 75.27 7555 66.94 [63.54 51.34 73.66 74.54 65.77 | 66.26
Entropy [42] | 69.29 59.33 80.63 80.96 72.55|66.54 57.63 77.27 7745 69.72 |59.85 46.41 72.51 73.18 62.99 | 68.63
InfoMax [28] | 66.58 58.48 79.12 80.81 71.25|66.54 57.74 77.27 77.45 69.75|64.56 49.71 73.77 73.18 65.31 | 68.84
SND [29] 69.05 55.61 79.72 79.10 70.87 |51.34 38.01 77.61 68.46 58.86|57.90 46.41 67.04 68.18 59.88 | 66.02
Corr-C [43] | 69.05 55.61 79.72 79.10 70.87 | 47.79 31.69 63.40 60.63 50.88 | 62.66 46.41 68.83 68.18 61.52 | 61.06

LDA 70.46 59.60 80.60 80.25 72.73 | 66.38 57.63 77.61 77.45 69.77 | 64.56 4991 72.51 71.55 64.63 | 68.90
MixVal 69.79 59.24 80.47 80.74 72.56 |65.73 58.01 77.36 7691 69.50|65.98 53.14 74.76 75.40 67.32 | 69.84
Worst 62.72 54.63 76.19 78.19 67.93 [47.79 31.69 63.40 60.63 50.88 [57.90 46.41 67.04 68.18 59.88 | 60.26
Best 70.68 59.95 80.93 81.02 73.14 | 66.75 58.36 77.61 77.45 70.04 |66.59 53.14 74.90 75.57 67.55|70.72

Table 13: Validation accuracy (%) of partial-set UDA on Office-Home.

Method PADA [15] SAFN [23] Home

—Ar —Cl —Pr —Re avg | -Ar —Cl —Pr —Re avg AVG
SourceVal 5721 4190 6448 71.89 58.87 | 66.82 5471 7441 7648 68.11 | 63.49
Entropy [42] | 60.08 46.51 53.16 62.47 5556 | 71.75 55.62 7636 76.59 70.08 | 62.82
InfoMax [28] | 60.08 51.40 60.20 66.67 59.59 | 63.67 51.74 69.64 73.62 64.67 | 62.13

SND [29] 67.80 50.71 5946 67.13 61.27 | 71.75 51.74 76.36 78.36 69.55 | 65.41
Corr-C [43] 61.34 4565 5490 6225 56.04 | 71.23 5570 76.94 79.13 70.75 | 63.40
LDA 64.52 4651 6947 72.67 6329 | 71.75 5439 7393 77.10 69.29 | 66.29
Mix Val 67.68 51.01 7294 78.64 67.57 | 71.70 5791 77.08 78.94 71.41 | 69.49
Worst 5629 39.76 50.49 5931 5146 | 6248 4991 6850 73.62 63.63 | 57.55
Best 69.33 5586 7455 79.59 69.83 | 73.37 58.09 77.35 79.33 72.03 | 70.93

D Full Validation Results

For classification tasks in our evaluation, we utilize the HOS score (%) [62, 63] for open-partial-set
UDA and accuracy (%) for all other UDA tasks. In the case of segmentation tasks, we measure
mloU (%) [11, 12]. To accommodate space constraints in this main text, we present the averaged
validation results for UDA tasks that share the same target domain. For example, ‘— Ar’ represents
the averaged results of three tasks on the Office-Home benchmark, namely ‘Cl— Ar’, ‘Pr— Ar’, and
‘Re— Ar’. Additionally, please note that the ‘avg’ row signifies the average of the rows preceding it
within each UDA method, while the ‘AVG’ row represents the average results of ‘avg’ rows across all
considered UDA methods. For more detailed validation results for each specific UDA task, please
refer to the corresponding tables, from Table 14 to Table 29.
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Table 14: Accuracy (%) of ATDOC [27], a closed-set UDA method, on Office-Home.

Method Ar—Cl Ar—Pr Ar+Re Cl - Ar Cl - Pr Cl = Re Pr— Ar Pr— Cl Pr—+Re Re — Ar Re =+ Cl Re — Pr| avg
SourceVal 51.43 77.31 78.17 66.87 74.36 75.60 61.85 48.06  76.06 71.16 58.14 84.05 |68.59
IWCV [30] 55.88 76.57 78.88 66.25 74.50 78.33 65.60  48.06 80.58 72.06 58.14 83.87 |69.89
DEV [18] 51.43 76.55 78.88 66.25 74.36 77.67 64.77 51.29 81.62 71.16 59.98 82.43 |69.70
RV [31] 56.38 76.12 80.01 66.25 76.80 78.33 67.82  55.62 80.58 71.98 56.40 83.87 |70.85
Entropy [42] | 55.88 74.14 78.88 59.25 74.52 71.67 64.19 54.39 78.54 67.57 57.23 80.96 |68.60
InfoMax [28]| 55.88 74.14 78.88 59.25 71.74 717.67 64.19 54.39 78.54 67.57 56.61 80.96 |68.82
SND [29] 55.88 74.14 78.88 59.25 74.52 75.21 64.19 54.39 78.54 67.57 56.61 80.96 |68.34
Corr-C [43] 51.41 72.00 76.04 59.37 69.36 69.54 61.85 48.04 76.06 69.30 51.71 80.31 |65.42
Mix Val 57.19 74.82 79.13 64.19 78.10 77.90 65.63 55.28 80.57 69.60 58.15 81.49 |70.17
Worst 5141 72.00 76.04 59.25 69.36 69.54 61.85 48.04  76.06 67.57 S51.71 80.31 |65.26
Best 58.01 77.31 81.04 66.91 79.48 78.52 67.94 57.07 82.17 72.06 59.98 84.03 |72.04
Table 15: Accuracy (%) of BNM [24], a closed-set UDA method, on Office-Home.
Method Ar —Cl Ar—-Pr Ar +Re Cl -+ Ar C1 - Pr Cl -+ Re Pr— Ar Pr - Cl Pr - Re Re - Ar Re -+ Cl Re — Pr| avg
SourceVal 56.93 77.00 71.74 57.64 73.33 69.36 56.45 42.38 77.19 73.22 52.90 82.26 |66.37
IWCV [30] 46.46 77.00 79.30 63.86 61.34 62.54 63.95 42.38 78.01 71.86 55.65 83.92 |65.52
DEV [18] 57.75 71.62 79.30 57.64 67.90 75.46 66.21 54.04 78.01 73.42 57.37 82.25 |68.41
RV [31] 58.67 77.00 79.30 65.68 73.33 75.46 65.64 52.05 81.25 73.42 59.54 83.92 |70.44
Entropy [42] | 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 |68.14
InfoMax [28]| 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 |68.14
SND [29] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 |68.14
Corr-C [43] 46.46 67.06 74.82 49.73 61.34 62.54 56.45 42.38 7441 68.11 47.26 78.51 |60.76
MixVal 56.30 72.90 78.75 64.66 71.44 74.52 64.32 54.04 81.09 73.09 58.19 83.96 |69.44
Worst 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 |60.75
Best 58.67 77.00 80.61 67.16 74.16 76.75 66.21 54.04 81.36 73.42 59.82 84.12 |71.11
Table 16: Accuracy (%) of CDAN [9], a closed-set UDA method, on Office-Home.
Method Ar— Cl Ar—Pr Ar—+Re Cl - Ar Cl - Pr Cl - Re Pr— Ar Pr— Cl Pr—+Re Re — Ar Re -+ Cl Re — Pr| avg
SourceVal 43.41 62.51 75.51 43.96 61.59 57.70 53.75 37.53 7322 67.28 47.01 8439 [58.99
IWCV [30] 43.18 62.51 77.81 4471 54.61 56.14 65.14 37.53 81.85 74.08 43.02 8439 |60.41
DEV [18] 57.16 71.75 77.81 62.46 55.64 71.08 65.14 56.54 81.85 74.08 5743 78.89 |67.49
RV [31] 57.16 71.75 77.78 63.62 72.92 73.40 65.14 54.50 81.85 74.21 58.56 83.37 |69.52
Entropy [42] | 57.55 7243 71.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 |69.76
InfoMax [28]| 57.55 72.43 71.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 |69.76
SND [29] 57.55 7243 71.78 64.61 73.73 73.40 65.14  56.66  81.85 74.08 58.47 84.73 |70.04
Corr-C [43] 43.14 63.05 73.61 43.96 54.58 56.12 51.75 3750 7322 65.80 43.00 7725 |56.91
MixVal 57.55 73.71 71.75 63.95 73.19 74.06 65.23 56.59 81.47 73.95 59.19 83.76 |70.03
Worst 43.14 62.51 73.61 43.96 54.58 56.12 51.63 3750 7322 65.80 43.00 7725 |56.86
Best 57.55 73.71 78.33 64.61 73.89 74.39 65.76 56.66 81.85 74.21 59.50 84.73 |70.43
Table 17: Accuracy (%) of MCC [25], a closed-set UDA method, on Office-Home.
Method Ar—Cl Ar—Pr Ar+Re Cl - Ar Cl - Pr Cl = Re Pr— Ar Pr— Cl Pr —+Re Re = Ar Re =+ Cl Re — Pr| avg
SourceVal 57.23 78.19 81.75 60.65 76.50 78.79 64.15 53.15 82.17 74.91 59.20 83.96 |70.89
IWCV [30] 60.02 78.15 81.34 68.73 78.51 77.85 64.15 57.85 81.04 73.18 58.92 84.46 |72.02
DEV [18] 57.16 78.15 81.34 69.10 73.01 76.80 64.15 57.85 82.17 73.18 59.20 84.46 |71.38
RV [31] 59.34 78.53 80.70 69.10 77.83 78.22 6720 57.85 82.24 74.91 59.20 85.54 |72.56
Entropy [42] | 59.31 78.53 81.59 66.87 77.83 78.79 67.20 57.85 82.51 73.79 60.82 85.54 |72.55
InfoMax [28]| 60.02 74.66 81.75 64.98 78.24 78.49 64.15 54.52 82.19 70.62 60.89 84.46 |71.25
SND [29] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 |70.87
Corr-C [43] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 |70.87
Mix Val 59.08 77.81 81.61 68.40 78.45 78.40 67.56 57.65 82.21 73.41 61.00 85.15 |72.56
Worst 53.56 73.44 79.25 60.65 73.01 75.76 59.74 53.15 79.55 67.78 57.18 82.11 |67.93
Best 60.02 78.53 81.75 69.22 78.51 78.79 6790  58.49 82.51 7491 61.35 85.74 |73.14
Table 18: Accuracy (%) of MDD [22], a closed-set UDA method, on Office-Home.
Method Ar— Cl Ar—Pr Ar—+Re Cl - Ar Cl - Pr Cl »Re Pr— Ar Pr— Cl Pr—+Re Re — Ar Re - Cl Re — Pr| avg
SourceVal 54.85 73.35 77.05 58.76 69.95 72.23 60.03 51.02 77.36 68.81 57.42 82.50 |66.94
IWCV [30] 56.40 69.52 76.59 58.76 67.40 69.43 61.89 56.43 76.82 71.94 56.68 84.43 |67.19
DEV [18] 57.71 75.42 77.05 58.76 72.99 70.51 63.95 56.43 80.26 70.54 56.68 82.14 | 68.54
RV [31] 58.05 75.42 76.59 63.54 69.95 73.74 63.95 51.02 80.38 72.23 58.17 84.43 | 68.96
Entropy [42] | 57.73 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 8428 |69.72
InfoMax [28]| 58.05 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 |69.75
SND [29] 58.05 7542 77.05 44.99 72.99 48.06 37.08 21.60 80.26 71.94 34.39 84.43 |58.86
Corr-C [43] 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 6422 61.31 34.39 75.87 |50.88
Mix Val 57.39 75.13 78.15 63.45 72.67 72.69 63.91 56.63  79.90 69.82 60.02 84.27 |69.50
Worst 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 150.88
Best 58.05 75.42 78.22 64.07 72.99 73.74 63.95 57.02 80.38 72.23 60.02 84.43 |70.04
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Table 19: Accuracy (%) of SAFN [23], a closed-set UDA method, on Office-Home.

Method Ar —Cl Ar—Pr Ar—Re Cl =+ Ar Cl = Pr Cl -+ Re Pr— Ar Pr— Cl Pr— Re Re = Ar Re = Cl Re — Pr| avg
SourceVal 5078  69.72 7606  59.66 7029 6986 6090 4607 7771 7005  57.16  80.96 |65.77
IWCV [30] | 5024 69.72 7728 6263 6724 69.86 5884 4969 7572 7145  57.16 7997 |65.82
DEV [18] 5107 6972 76.64  59.66 6724 7126 5884 49.69 7572 7095  50.65 76.64 |64.84
RV [31] 5107 7141 7664  62.63 6844 7044 5884 4449 7771 7145 5482 8146 |65.78
Entropy [42] | 4593  69.72 7549 5529 6722 6835 5426 4330 7569 7000 4999  80.60 |62.99
InfoMax [28] | 5047  69.72 7549 6246 7098 6835 6123 4330 7569 7000 5537  80.60 [6531
SND [29] 4593 6436 7060 5529  60.13 6250 5426 4330 7143 6415 4999  76.64 |59.88
Com-C[43] | 4593 6972 7060 5529 60.13 6250 6123 4330 7143 7145 4999  76.64 |61.52
MixVal 5173 7214 7708 6392 7098 7155 6271 5052 7756 7130 5716  81.17 [67.32
Worst 4593 6436 7060 5529 60.13 6250 5426 4330 7143 6415 4999 7664 |59.88
Best 5173 7227 7730 6465 7098 7170  63.66 5052 7771 7145  57.16 8146 |67.55
Table 20: Accuracy (%) of closed-set UDA methods on Office-31.
Method ATDOC [27] BNM [24] CDAN [9]
A—-DA—->WD->A WA avg | A DA—-WD—->A WA avg |[A-D A—-WD—->A WA avg
SourceVal | 8896 87.80 73.65 7146 80.47[ 90.36 89.43 73.13 7270 81.41[91.16 89.06 6633 6146 77.00
IWCV [30] | 86.14 86.54 73.65 7146 79.45| 8554 8943 73.13 7270 80.20| 69.08 5874 6633 61.46 63.90
DEV[I8] | 86.14 86.54 73.65 7146 79.45| 8554 89.43 73.13 7270 80.20| 91.16 8830 6633 6146 76.81
RV [31] 89.96 8723 74.28 75.58 81.76| 88.55 89.43 7490 6652 79.85| 91.16 8830 7618 70.36 81.50
Entropy [42] | 86.14 87.80 7387 7270 80.13[ 8554 83.14 7107 7426 7850 91.16 89.06 7288 70.36 80.87
InfoMax [28] | 86.14 87.80 73.87 7270 80.13| 8554 83.14 71.07 69.97 77.43| 91.16 8830 72.88 70.36 80.68
SND [29] 9237 87.80 7387 7270 81.69| 8554 83.14 7462 7426 79.39| 9237 8855 7288 7022 81.01
Corr-C[43] | 90.96 8440 71.88 7022 79.37| 8434 7899 6780 66.52 7441| 67.67 59.62 5815 5843 60.97
MixVal 90.96 8654 7375 7347 81.18| 8648 87.00 75.64 74.29 80.85| 92.64 89.06 7508 70.38 81.79
Worst 86.14 8440 7188 7022 78.16[ 8434 7899 6780 6652 7441[ 6767 5711 5815 5843 6034
Best 9237 87.80 7504 7558 8270| 90.36 8943 7575 7529 8271|9277 89.06 76.18 70.57 82.15
Table 21: Accuracy (%) of closed-set UDA methods on Office-31.
Method MCC [25] MDD [22] SAFN [23]
ASDASWD—oSA WA ag ADASWD—oSA WA ag [ASDASWD—SA WA avg
SourceVal | 9096 91.07 7333 72.89 8206 91.06 8623 7668 74.76 82.18[ 8373 87.17 6896 69.44 77.33
IWCV [30] | 91.16 88.55 7333 7289 81.48| 91.16 89.18 76.68 7430 82.83| 86.55 80.38 68.96 69.68 76.39
DEV[I8] | 89.16 93.08 7333 7206 8191| 91.16 89.18 76.68 74.62 8291|8655 80.38 6896 6745 75.84
RV [31] 89.06 93.08 7442 7352 8252| 92.57 8679 73.94 7497 8207 90.83 87.17 68.76 68.62 78.85
Entropy [42] | 90.56  93.46 74.83 73.02 82.97[ 9257 9082 78.03 7458 84.00[ 9157 8566 6720 69.26 78.42
InfoMax [28] | 89.16 88.55 7416 73.70 81.39| 9257 90.82 78.03 74.97 84.10| 91.57 8742 6720 69.26 78.86
SND [29] 91.97 9346 7483 73.02 83.32| 9217 90.82 78.03 7497 8400 89.96 8566 6720 69.26 78.02
Cor-C[43] | 91.37 9346 7483 73.02 83.17| 91.57 8566 7391 7458 8143|8675 8038 67.09 69.68 75.98
MixVal 91.77 9321 7474 7344 8329|9177 9174 7735 7458 83.86| 89.96 86.83 69.91 69.31 79.00
Worst 86.75 87.17 71.18 6993 7876 8735 8566 7391 7220 79.78| 8373 8038 6700 6745 74.66
Best 91.97 9346 7483 7401 8357|9257 9220 78.03 7501 84.45| 9157 8742 7043 69.68 79.78

Table 22: Accuracy (%) of CDAN [9], a closed-set UDA method, on DomainNet.

Method C—-S P-C PR R—-C R—=P R—=S S—P| avg

Entropy [42] | 58.04 6478 7442 69.39 68.65 60.63 62.94 | 65.55
InfoMax [28] | 58.04 64.78 7442 69.39 68.65 60.63 62.94 | 65.55
SND [29] 58.04 6478 7442 69.39 68.65 60.63 60.70 | 65.23
Corr-C [43] 58.04 5773 7442 5698 65.07 5123 60.70 | 60.60
MixVal 58.04 6478 7442 69.39 68.65 60.63 62.94 | 65.55
Worst 51.59 5773 7344 5698  63.06 5123 58.46 | 58.93
Best 58.04 6478 7444 6939 68.65 60.63 6294 | 65.55

Table 23: Accuracy (%) of BNM [24], a closed-set UDA method, on DomainNet.

Method cC—+S P-C PR R—-C R—-P RS S—P| avg

Entropy [42] | 56.42  61.57 7431 65.15 6515 4095 63.42 | 61.00
InfoMax [28] | 56.42 6895 7431 65.15 65.15 5493 6342 | 64.05
SND [29] 4378  61.57 7431 5155 5440 4095 5459 | 5445
Corr-C [43] 4378  60.03  77.62 5947 67.19 4095 59.64 | 58.38
Mix Val 5848 69.63 78.68 66.05 67.59 58.50 65.20 | 66.30
Worst 4378 60.03 7431 5155 5440 4095 5459 | 54.23
Best 5848 69.63 78.68 66.10 67.79 5850 6520 | 66.34
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Table 24: Accuracy (%) of ATDOC [27], a closed-set UDA method, on DomainNet.

Method cC—-»S P-C P—-R R—-C R—-P R—S S—P| avg

Entropy [42] | 46.43 6598 79.60 6152 6424 5792 5946 | 62.16
InfoMax [28] | 46.43 6598 79.60 6152 6424 5792 5946 | 62.16
SND [29] 46.43 6598 79.60 6152 6424 4758 59.46 | 60.69
Corr-C [43] 5471  60.63 7442 5933 6458 5266 59.95 | 60.90
MixVal 62.11 69.64 79.60 6824 69.79 6135 67.10 | 68.26
Worst 46.43 60.63 7442 5933 6424 4758 59.46 | 58.87
Best 63.12  71.14 8038 6945 69.79 6135 67.10 | 68.90

Table 25: Accuracy (%) of PADA [15], a partial-set UDA method, on Office-Home.

Method Ar — Cl Ar—Pr Ar—Re Cl =+ Ar Cl -+ Pr Cl -+ Re Pr— Ar Pr— Cl Pr— Re Re =+ Ar Re = Cl Re — Pr| avg
SourceVal 45.03 68385 81.89 4325 4683 5726 5712 3642 7653 71.26 4424 7776 [5887
IWCV [30] 5558 6510  84.54 5142 61.29  53.01 57.02 3516 8134 70.52 60.78  74.12 |62.49
DEV [18] 54.81 7815 78.02 5813 61.29 50.14 6786 3516 8321 74.66 5791 77.76 | 64.76
RV [31] 43.22 65.10 81.89 42.70 48.74 52.79 57.21 35.16 77.80 73.46 44.24 77.76 |58.34
Entropy [42] | 40.12 40.11 55.94 5243 37.25 50.14 57.30 47.22 81.34 70.52 52.18 82.13 |55.56
InfoMax [28] | 54.81 69.24 78.02 5243 37.25 50.14 57.30 47.22 71.84 70.52 52.18 74.12 |59.59
SND [29] 40.12 40.11 55.94 58.13 56.13 64.11 70.62 51.22 81.34 74.66 60.78 82.13 |61.27
Corr-C [43] 40.12  40.11 55.94 54.18  46.89  53.01 58.59 3893  77.80 71.26 5791 77.70 |56.04
MixVal 45.02  78.15 83.69 5623 5785 68.19 7141 4722  84.04 75.39 60.78  82.82 |67.57
Worst 40.12 40.11 55.94 4141 3725 50.14 5693 3487 7184 70.52 4430 7412 |51.46
Best 55.58  78.15 86.53 58.13 6129  68.19  73.00 5122 84.04 76.86 60.78 8420 |69.83
Table 26: Accuracy (%) of SAFN [23], a partial-set UDA method, on Office-Home.
Method Ar— Cl Ar—Pr Ar—+Re Cl - Ar Cl - Pr Cl »Re Pr— Ar Pr— Cl Pr—+Re Re — Ar Re -+ Cl Re — Pr| avg
SourceVal 59.40 77.14 81.34 63.97 67.00 71.29 65.60 46.21 76.81 70.89 58.51 79.10 |68.11
IWCV [30] 52.24 74.45 82.16 70.98 62.41 70.18 63.45 53.49 76.81 73.65 56.00 78.49 |67.86
DEV [18] 55.22 74.45 80.07 70.98 67.00 71.29 63.45 51.70 76.81 73.65 57.91 80.39 |68.58
RV [31] 53.67  71.60 81.34 67.58 67.00 7327 65770 4854  76.81 73.65 56.00  79.89 |67.92
Entropy [42] | 58.93  74.90 80.73 7098 7412 6980 70.16  50.09 79.24 74.10 57.85 80.06 |70.08
InfoMax [28]| 51.82  67.62 76.97 64.65 6577  69.80  59.69 50.09 74.10 66.67 5331 75.52 | 64.67
SND [29] 51.82 7490 80.73 7098 7412 7510 70.16  50.09 79.24 74.10 5331 80.06 |69.55
Corr-C [43] 5940 7720  82.16 67.58 7289 7510  70.16 5570  80.12 75.94 52.00  80.73 |70.75
MixVal 59.24  76.90 81.28 6896 7371 7482 7019 5534  80.73 75.94 59.16  80.62 |71.41
Worst 51.52 67.62 76.97 61.07 62.35 69.80 59.69 46.21 74.10 66.67 52.00 75.52 |63.63
Best 59.40 77.20 82.16 71.72 74.12 75.10 72.45 55.70 80.73 75.94 59.16 80.73 |72.03
Table 27: HOS [62, 63] (%) of DANCE [41], an open-partial-set UDA method, on Office-Home.
Method Ar—Cl Ar—Pr Ar—+Re Cl - Ar Cl - Pr Cl = Re Pr— Ar Pr— Cl Pr—+Re Re — Ar Re =+ Cl Re — Pr| avg
Entropy [42] | 3829  26.08 36.51 3292 17.10 3219  37.69 4640 4553 25.39 3375 39.37 |34.27
InfoMax [28]| 38.29  26.08 36.51 3292 17.10 3219  37.69 4640 4533 25.39 33.75 39.37 |34.25
SND [29] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 1199  35.69 25.39 0.00 2840 |14.98
Corr-C [43] 1.00 0.00 12.73 0.00 42.84 1.95 1977 1199  35.69 69.02 0.00 2840 |18.62
MixVal 4793 7636  66.57 67.87 7517 59.05 69.18 5893 69.40 71.57 51.83  84.31 |67.01
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 |12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 |72.98
Table 28: Accuracy (%) of DMRL [50], a closed-set UDA method, on Office-Home.
Method Ar—Cl Ar—Pr Ar—+Re Cl - Ar Cl - Pr Cl = Re Pr— Ar Pr— Cl Pr—+Re Re — Ar Re =+ Cl Re — Pr| avg
Entropy [42] | 47.03  62.09 73.42 5529 6434 6654 5192 4896 74.16 67.20 5475  80.74 |62.20
InfoMax [28] | 48.55  62.09 73.42 5529 6434 6654 5192 4896 7416 67.20 54.75 80.74 |62.33
SND [29] 47.84 6276  73.86 5492 6434  66.65 51.87 4896 7374 66.42 53.08 80.74 |62.10
Corr-C [43] 4774 6276 7253 5529 6434 6812 53.11 4756 7455 66.46 53.08 7891 |62.04
MixVal 4774 6276 7342 56.29 6434 6812 53.73 4896  74.67 67.37 5454  80.74 |62.72
Worst 47.03 61.73 72.34 54.84 62.90 66.15 51.87 46.85 73.67 66.42 53.08 78.71 |61.30
Best 48.55 62.76 73.86 56.41 64.34 68.12 53.73 48.96 74.73 67.45 54.75 80.74 |62.87

Table 29: Accuracy (%) of DMRL [50] and SHOT [20] on Office-31.

Method DMRL [50] SHOT [20]
A—-DA—-WD—-AW=A avg | A-D A-WD—-A WA avg

Entropy [42] | 80.52 86.67 61.77 65.57 73.63| 90.76 88.68 71.21 72.13 80.70
InfoMax [28] | 80.52 86.67 61.77 65.57 73.63| 90.76 88.68 71.21 72.13 80.70
SND [29] 84.14 86.67 61.77 6191 73.62| 90.76 88.68 71.21 72.13 80.70
Corr-C [43] | 77.51 81.13 6028 60.17 69.77| 90.76  90.19 7121 7196 81.03
MixVal 82.93 86.67 6340 6638 74.85| 9237 9232 7121 72883 82.20
Worst 7631 81.13 60.28 60.17 69.47| 90.76  88.68 71.21 7192 80.64
Best 84.14 86.67 6422 6638 7535| 9478 9333 7558 7455 84.56
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