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ABSTRACT

While adversarial attacks are a serious threat for neural networks safety, exist-
ing defense mechanisms remain very limited regarding their applicability to real-
world settings. Any industrial-driven attack detector is expected to meet three un-
avoidable requirements: (R1) being adapted to black-box scenario where the user
has only access to the predicted probabilities, (R2) making fast inference and (R3)
not involving any training phase. In this paper, we introduce REFEREE, the first
detector that meets all these requirements while improving state-of-the-art perfor-
mances. It leverages the concept of information projections (I-projection), which
generalizes ideas coming from out-of-distribution detection and allows to extract
relevant information contained in the softmax outputs of a network. Our extensive
experiments demonstrates that REFEREE improves upon existing methods while
considerably reducing the inference time: it requires less than 0.05 seconds by test
input, which is up to 400 times faster than former methods. This makes REFEREE
an excellent candidate for adversarial attacks detection in real-world applications.

1 INTRODUCTION

Advanced Deep Learning (DL) techniques have made significant improvements over previous state-
of-the-art methods in computer vision. The rise of highly scalable architectures and training tech-
niques has fueled their wide adoption in the industry. However, the impressive performances of deep
neural networks often hide many failures regarding their resilience and reliability (Hendrycks et al.,
2021), which is an obvious obstacle to their adoption for high-risk applications such as face recog-
nition (Grother et al., 2014; 2018; 2019) or autonomous vehicles (Bojarski et al., 2016). This paper
focuses on a specific safety issue: adversarial attacks. The latter refer to the design of malicious
attackers able to craft samples that fool a given classifier. This is typically done by adding small
additive perturbations to real-world examples, which are indistinguishable to human eyes but highly
disruptive to network predictions.

The design of efficient attacks has resulted in a vast literature in the field of computer vision (starting
with the seminal work of Szegedy et al. (2013)), but fewer works have focused on building appropri-
ate defense mechanisms against these attacks. Protection techniques can be divided into two main
tendencies, depending on whether the practitioner is intervening during the training phase or on an
already deployed system. The first line of work can be assimilated to robust training techniques
which consist in incorporating regularization terms that are smoothing the variability of predictions
(Madry et al., 2018; Zhang et al., 2019; Carmon et al., 2019). However, this approach contains two
important limitations: (i) in many situation, it makes the training phase unstable and (ii) it is not able
to anticipate for future attack mechanisms which could fool the system.

The second line of work corresponds to the design of detectors that are able to decide, based on
an already existing system, whether an input sample is a malicious attack or not. This paradigm is
appealing because it does not require any change during the learning phase, making it ready-to-use
for an already deployed system. However, existing methods fail to meet the requirements of real-life
scenarii which can be summarized into three points.

(R1) Black-box scenario. Systems already deployed in production are generally opaque to the
end user, who only has access to the softmax predictions of the networks.
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(R2) Low resources / computation time. In many real-world applications, AI systems are mak-
ing real-time predictions at a high frequency (e.g. face recognition for airport security). As
a result, any relevant detector should have a low inference time and require low computa-
tion resources.

(R3) No oracle on the nature of the attackers. Any relevant detector should be unsupervized,
meaning it should not require any training phase with access to attack examples. Indeed,
the landscape of existing attackers is moving fast, making the availability of adversarial
examples not realistic in practice.

CONTRIBUTIONS

In this paper, we introduce the first efficient adver-
sarial attacks detector that meets all requirements
(R1) - (R2) - (R3) of real-life applications of com-
puter vision. In words, our detector is only based
on the sotftmax predictions of the network, makes
fast predictions and is unsupervised. In addition,
it improves upon existing state-of-the-art detec-
tion methods, as can be visually checked in Fig. 1.
In order to ensure fair comparison with previous
works, we conduct extensive experiments on var-
ious datasets (i.e., CIFAR10, CIFAR100 and Tiny
ImageNet) and various attack mechanisms.
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Figure 1: Performances versus testing time.

Experimental setting. We choose to evaluate our detectors on vision transformers (Dosovitskiy
et al., 2021; Tolstikhin et al., 2021; Steiner et al., 2021; Chen et al., 2021; Zhai et al., 2022), con-
trarily to previous works on adversarial attack detection that rely on ResNets (Kherchouche et al.,
2020; Xu et al., 2018; Meng & Chen, 2017; Ma et al., 2018; Feinman et al., 2017). This choice is
motivated by the fact that transformers have achieved state-of-the-art results in several tasks (e.g.,
image generation (Parmar et al., 2018), image classification (Wang et al., 2021) and image segmen-
tation (Zheng et al., 2021)). Our extensive experiments on CIFAR10 (Krizhevsky, 2009), CIFAR100
(Krizhevsky et al.) and TinyImageNet (Jiao et al., 2019) demonstrate the superiority of REFEREE
over existing methods.

Paper organisation. In Sec. 2, we formalise the adversarial attack detection problem and discuss
related works and their limitations. Then, motivated by Information Theory considerations, we
introduce our detector in Sec. 3. We present insights about our proposed detector in Sec. 4, while
Sec. 5 is dedicated to the presentation and analysis of our extensive experiments. Finally, in Sec. 6,
we provide concluding remarks.

2 FRAMEWORK AND RELATED WORK

2.1 PROBLEM FORMULATION

Computer vision classification. We are considering classification problems for computer vision ap-
plications and will denote by X the image input space and Y = {1, . . . , C} the target space made of
C > 1 classes. A given training set can be described as a set of i.i.d. realizations Dtrain{(xk, yk)}nk=1
of a given pair of random variables (X, Y ) taking its values in X × Y . We will denote by pXY the
p.d.f. of (X, Y ).

Transformers and softmax-based decision. A given Vision Transformer (ViT) fθ, parametrized by
θ ∈ Θ, processes a given image x through consecutive layers in order to extract relevant information.
After the application of a softmax, the last layer {qθ(i|x)}Ci=1 corresponds to the probabilities of
class membership of x. The final decision of the Transformer is then fθ(x) = argmax

i∈Y
qθ(i|x).

Adversarial attacks. The goal of an attacker consists in finding, from a standard input x, a de-
formation x′ close to x but leading to a change in the network prediction. Formally, one tries to
solve an optimization problem (Szegedy et al., 2013) of the following form x′ ∈ argminw d(w,x),
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where d is a distance on X and under the constraint that fθ(w) ̸= fθ(x) and that w remains an
image.

Detection of adversarial attacks. The goal of an adversarial attack detector is to predict whether
a new input x is regular or has been crafted by a malicious adversary. In full generality, it first
computes an anomaly score s(x) based on x and/or any of its transformations through the network
fθ. Then, depending on the magnitude of this score, the sample x is deemed regular or not. Denoting
the detector by d, the final decision takes the following form, for a given threshold γ:

d(x) = 1s(x)≥γ =

{
1 if s(x) ≥ γ,
0 if s(x) < γ.

(1)

2.2 EXISTING ADVERSARIAL DETECTION METHODS

Let us review existing defense mechanisms that exist to protect neural networks against adversarial
attacks in the context of computer vision. We will divide our review into two paragraphs whether
the detector satisfy requirement (R3) or not, that is whether attacked training data are required to
train the detector or not.

Supervised methods – not satisfying (R3). Supervised methods usually consist in training simple
machine learning algorithms, such as SVMs or logistic regressions, to discriminate adversarial ex-
amples from natural ones, using examples from both classes. The features used for training these
machine learning models can be extracted from the networks layers using directly the samples (Lu
et al., 2017; Carrara et al., 2018; Metzen et al., 2017), or pre-process them using kernel density
estimation or uncertainty measure (Feinman et al., 2017), computer vision specific characteristics
such as natural scene statistics (Kherchouche et al., 2020), PCA (Li & Li, 2017) or also local in-
trinsic dimensionality (Ma et al., 2018). Regarding (R2), one can arguably say that these methods
are satisfying as the inference time of simple machine learning models is fast. However, as they do
not satisfy (R3), these methods need to make some assumptions on the nature of adversarial attacks
to generate malicious samples, at the risk of overfitting and misgeneralizing. Moreover, most of
these methods rely on the hidden layers of the networks, which makes them unrealistic for practical
black-box applications (R1) where only softmax are available.

Unsupersived methods – satisying (R3). Unsupervised methods only rely on clean samples to
build a detector, making them very attractive for real-life applications. Let us explore existing works
in light of requirements (R1) and (R2). Some
detectors require access to intermediate lay-
ers representation (Ma et al., 2019; Sotgiu
et al., 2020; Zheng & Hong, 2018; Aldah-
dooh et al., 2021), which makes them un-
suitable for use in the context of (R1). Two
methods satisfy (R1) but are arguably less ef-
fective regarding (R2): the Feature Squeez-
ing (FS) of Xu et al. (2018) and the MagNet
detector of Meng & Chen (2017) which re-
lies on a denoising autoencoder. We will dis-
cuss these two methods in further details in
Sec. 3.3 as we include them into our experi-
mental setting. Let us also mention JTLA

Table 1: Summary of Detector’s requirements
meets

Detector (R1) (R2) (R3)
Ma et al. (2019) % % "

Sotgiu et al. (2020) % % "

Zheng & Hong (2018) % % "

Aldahdooh et al. (2021) % % "

Xu et al. (2018) " % "

Meng & Chen (2017) " % "

Raghuram et al. (2021) % % "

Raghuram et al. (2021), a refinement of FS which unfortunately does not satisfy (R1).

2.3 OUT-OF-DISTRIBUTION DETECTION METHODS

Adversarial attack detection can be considered as an extreme case of the out-of-distribution (OOD)
detection problem. The latter has received much attention from the ML/DL community and many
techniques have been developed. In particular, a line of methods is based on the extraction of relevant
information from the softmax probabilities, making them very attractive for our purpose. This line of
works has been lauched by the seminal work of Hendrycks & Gimpel (2016) who proposed to focus
on the Maximum Softmax Probability (MSP) to discriminate between in- and out-of-distribution
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samples. The underlying idea of MSP is that the more spiky the probabilities, the more confident
the network is and therefore the cleaner the input. Let us also mention the DOCTOR detector,
recently introduced by Granese et al. (2021), which computes the Gini coefficient of the softmax
probabilities. Both methods satisfy the three requirements (R1) - (R2) - (R3) and shall be used as
baselines in our experiments.

3 REFEREE: AN EFFICIENT, REAL-LIFE ADAPTED ADVERSARIAL DETECTOR

3.1 AN INFORMATION THEORETIC VIEW ON SOFTMAX-BASED DETECTION METHODS

Both previously mentioned methods MSP and DOCTOR make the assumption that softmax proba-
bilities contain relevant information regarding the input under consideration. We think this hypoth-
esis is relevant and introduce a softmax-based detector that is able to improve the state-of-the-art
performances regarding the detection of adversarial attacks. Our idea is based on a quite simple
interrogation: do existing methods leverage full information from the softmax probabilities? In-
formation Theoretic reasoning is helpful to investigate this question as it provides many tools to
measure how much a discrete probability distribution differs from a fixed reference (see for instance
Basseville (2013)). The resulting notions of divergence between probability distributions has been
extensively used by the machine learning community (Li & Turner, 2016). The most famous are
probably the Bregman, Rényi and Chernoff divergences (Bregman, 1967; Rényi et al., 1961; Basu
et al., 1998; Chernoff et al., 1952), which are specific instantiations of the family of f -divergences
(Csiszár, 1967). In this paper, we will focus on the fruitful notion of Tsallis-α divergence.
Definition (Tsallis-α divergence). Let C ≥ 1. Let p = (pi)

C
i=1 and q = (qi)

C
i=1 be two discrete

probability distributions. Let α ∈ R \ {1}. The Tsallis-α divergence Tα(p ||q) between p and q is
defined by

Tα (p ||q) := sign(α)
α− 1

[(
C∑
i=1

pαi × q1−α
i

)
− 1

]
. (2)

When α → 1, the definition extends by taking the natural limit, which leads to the usual Kullback-
Leibler divergence: T1 (p ||q) = DKL(p ||q).

This notion of Tsallis-α divergence has many links with other notions of entropy (see Villmann &
Haase (2010)). Moreover, it offers a quite natural generalisation of both the DOCTOR and MSP
detector as stated in the following proposition, which follows from elementary computations.
Proposition 1. Let u be the uniform distribution.

1. When α = −1, T−1(u ||q) is proportional to the Gini coefficient of q. As a result,
T−1(u ||q) corresponds to the DOCTOR score.

2. It holds that lim
α→−∞

1
α−1 ln

[
(α − 1)Tα(u||q) + 1

]
= lnmax

i

qi
ui

. Otherwise saying, the

asymptotic behavior of the Tsallis-α divergence is governed by the MSP score.

3.2 REFEREE: OUR INFORMATION THEORETIC DETECTOR

General observations. Notice that MSP and DOCTOR are not assuming knowledge on the training
data distribution, while the latter is usually at the disposal of the practitioner. This missing infor-
mation should however be instrumental to discriminate between a clean and a malicious sample. A
refinement of DOCTOR could be to replace the uniform distribution by the empirical frequencies of
each class. Still, this aggregated version of the training distribution would not be able to capture all
existing attack mechanisms. Let us be more precise. A typical, in-distribution softmax probability is
spiked on the predicted class and a malicious one deviates from this typical behavior. However, this
deviation can take two opposite forms: it can be “over-spiked” on a given class or it can be “over-
smoothed” (see Figure 3 for an illustration of these concepts). The DOCTOR detector assumes that
any deviation is of the second form: the more close it is to the uniform distribution, the more likely
it is malicious. But this completely misses the first type.

Projection onto the training manifolds of softmax probabilities. Instead of aggregating over
the training distribution, we will leverage the full information it contains at the level of the softmax
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probabilities. More precisely, given the training reference of images Dtrain = {(xk, yk)}nk=1, our de-
tector computes the distance to the softmax probabilities associated to Dtrain. Formally, the anomaly
score sREFEREE of a test input x is defined by the following formula:

sREFEREE(x) = min
xk∈Dtrain

Tα

(
qθ(· |xk) || qθ(· |x)

)
. (3)

Then, the decision is taken as in Eq. 1. Our detector can therefore be divided into three steps:

REFEREE in a nutshell

1. (Offline) Collect the softmax probabilities of the training set {qθ(· |xk)}nk=1.
2. (Online) For a given test input x:

(a) Compute the anomaly score sREFEREE(x),
(b) Threshold the score: dREFEREE(x) = 1sREFEREE(x)≥γ .

Remark (Hyperparameters of our detector). Our detector possesses two hyperparameters: α,
which controls the amount of distortion incorporated in the divergence computation Tα, and the
threshold γ. In Sec. 5.3, we will discuss the choice of α. Regarding γ, a typical way to select it is
to use the training set and select a proportion of “outliers” (e.g. by relying on a notion of data depth
Tukey (1975)) and trying to detect them with REFEREE.

Notice that Eq. 3 is reminiscent of the notion of Information Projection introduced by Kullback
(1997); Csiszár (1975; 1984). It finds numerous applications, for instance in statistical physics
(Jaynes, 1957) or in large deviation theory (Sanov, 1958). The basic idea behind REFEREE is
that a malicious sample lies outside the training manifold, at the level of the softmax probabilities.
Indeed, when n → +∞, if Mtrain denote the limiting set of Dtrain, the limiting form of Eq. 3 is
the Information Projection onto the manifold Mtrain. As our experiments demonstrate, REFEREE
improve the state-of-the-art. We think it is quite remarkable that the information contained at the
level of softmax probabilities is actually sufficient to detect adversarial attacks. Moreover, this
notion of Information Projection offers a very natural interpretation of the score sREFEREE(x) which
computes the similarity level between a test input and the training dataset. We investigate this aspect
in Sec. 5.4.

3.3 COMPARISON WITH EXISTING DETECTORS

As previously announced, we are going to compare REFEREEwith FS, MagNet and OOD-detection
methods (MSP, ODIN and DOCTOR). Let us provide more details about FS and MagNet.

The Feature Squeezing method (FS; Xu et al. (2018)). FS is an unsupervized parameter-free
method that does not involve any training. Given a pre-trained classifier, FS consists of three steps:
(i) input feature compression, (ii) prediction extraction, (iii) comparison of the extracted features
to the original prediction. The more the predictions differ, the more the sample is likely to be
inconsistent. FS requires four different versions of the input: the original input, a low-precision
version, a median-filtered version and a denoised version. At test time, the pre-trained classifier is
run on all four versions of the input sample. A L1-distance is then used to compare the predictions.
FS requires a GPU to run inference on different inputs and is memory intensive as it requires both
all input changes and network predictions, making it difficult to deploy in a real-world scenario.

MagNet Meng & Chen (2017). MagNet is an unsupervised adversarial detection method that
involves learning two different components: a detector and a reformer. The role of the detector
is to decide whether the input sample is clean, while the reformer finds the closest input on the
training manifold. MagNet implements this strategy by relying on two autoencoders trained on clean
samples. MagNet is computationally intensive because, during inference, the detector as well as the
model must be run. The careful training of the autoencoders is an additional layer of complexity,
which makes it difficult to use in practice.

REFEREE does not require any training which makes it easy to use. At the time of testing, given
an input sample, REFEREE solely relies on a comparison on the predictions of the softmax method,
which requires a calculation for prediction, with a set of pre-computed reference distributions. It is,
therefore, computationally efficient and makes REFEREE a good fit for real-world scenarios.
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4 BENCHMARKING OUR DETECTOR

4.1 EXPERIMENTAL DETAILS

Setting. To benchmark REFEREE, we rely on Vision Transformers (He et al., 2016) as they outper-
forms ResNet models on many vision tasks (Parmar et al., 2018; Wang et al., 2021; He et al., 2021;
Dosovitskiy et al., 2021; Steiner et al., 2021; Chen et al., 2021; Tolstikhin et al., 2021; Zhai et al.,
2022). We test REFEREE on three vision datasets that have been widely used by the vision commu-
nity: CIFAR10, CIFAR100 (Krizhevsky, 2009) and Tiny ImageNet (Jiao et al., 2019). On CIFAR10
and CIFAR100, we finetune the ViT-based model with 16 layers (85.8 million of parameters)1

(Dosovitskiy et al., 2021) pretrained on ImageNet (Deng
et al., 2009). During finetuning the batch size is set
to 512, the learning rate of SGD (Ruder, 2016) is set
to 3 × 10−2 and we use 500 warming steps with no
gradient accumulation Vaswani et al. (2017). For Tiny
ImageNet, we used a ViT with 16 layers, trained by
Huynh (2022) and available at https://github.com/
ehuynh1106/TinyImageNet-Transformers.

Table 2: ViT accuracy

Dataset Acc (%)
CIFAR10 98.7
CIFAR100 92.4

Tiny ImageNet 86.4

Choice of the Attacks. To benchmark the evaluation methods, we rely on multiple attack mech-
anisms. First, we consider Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) as it is
the first and one of the simplest attack. FGSM consists of taking a single step in the direction of
the gradient of an attack objective w.r.t. the input. We also attack our classifier using two iterative
versions of FGSM, i.e., Basic Iterative Method (BIM) (Kurakin et al., 2018) and Projected Gradient
Descent (PGD) (Madry et al., 2018). To test against a wide range of attacks, we also consider the
Carlini & Wagner’s (CW) Carlini & Wagner (2017) attack which attempts to solve the adversarial
problem by regularizing the minimization of the perturbation norm by a surrogate of the misclassi-
fication constraint, and DeepFool (DF) Moosavi-Dezfooli et al. (2016) which is an iterative method
that solves a locally linearized version of the adversarial problem. All these methods, as they rely
on the gradient of a given objective w.r.t. the input, are what we call white-box attacks. In the event
where no knowledge about the model to attack is available, black-box attacks have been created.
Amongst them, we chose to test our detector against Hop Skip Jump (HOP) Chen et al. (2020),
which tries to estimate the model’s gradient through queries, Square Attack (SA) Andriushchenko
et al. (2020) which is based on random searches for a perturbation, and, Spatial Transformation
Attack (STA) Engstrom et al. (2019) which rotates and translates the original samples to fool the
model.

Attack Calibration. As most of previous studies have been conducted on ResNet models (Good-
fellow et al., 2014; Moosavi-Dezfooli et al., 2016; Zhang et al., 2019; Madry et al., 2018; Xu et al.,
2018; Meng & Chen, 2017), to ensure attacker’s success, we need to re-calibrate the maximal al-
lowed perturbation for each attacks. We report in Fig. 2 the chosen ε for each attack which is justified
by the efficiency of the attacker.
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Figure 2: Percentage of successful attacks depending on the Lp-norm constraint, the maximal per-
turbation ε and the attack algorithm on ViT.

1https://github.com/jeonsworld/ViT-pytorch
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4.2 ON THE IMPORTANCE OF THE REFERENCE SET

Setting. To understand the importance of the reference set to detect adversarial examples, we tested
MSP, DOCTOR, Tα(u||qθ(·|x)) (Eq. 2) and our proposed detector REFEREE on all the previously
presented attacks on all three considered datasets. In Fig. 3, we present the histograms of the
scores of each detection method under the L2-norm constraint. In Tab. 3, we present the aver-
aged AUROC↑and FPR↓90%on CIFAR10, CIFAR100 and Tiny ImageNet. The detailed results are
presented in Tab. 7, Tab. 9, and Tab. 11.

Analysis. From Fig. 3, three different behaviors can be observed. Although DOCTOR and MSP (cf.
Fig. 3b and Fig. 3a respectively) are
sometimes quite effective at discarding
adversarial examples, on others, it is
impossible for them to distinguish be-
tween natural and adversarial samples.
The detector using Tα (cf. Fig. 3c)
have a different behavior. For some at-
tacks, the scores attributed to attacked
samples by each of those methods is
higher than the scores of natural ex-
amples, the opposites also occurs. In
other words, the method attribute some-
times over-confident and others under-
confident scores to adversarial samples,
it is therefore impossible to clearly dis-
tinguish between natural and attacked

Table 3: Average AUROC and FPR for each considered
softmax-based method on each considered dataset.
Ours stands for REFEREE, and DOC. for DOCTOR.
The best result for each attack is shown in bold.

CIFAR10 CIFAR100 Tiny ImageNet

AUROC FPR AUROC FPR AUROC FPR

Ours. µ 91.1 25.9 90.0 24.0 83.2 38.5
σ 10.1 31.1 8.6 19.1 10.8 24.8

Tα
µ 47.3 63.8 42.3 85.7 53.3 68.5
σ 41.5 43.7 31.9 16.3 31.1 42.8

DOC. µ 69.4 67.3 64.8 57.0 58.4 59.9
σ 19.7 31.0 27.0 33.8 37.0 33.9

MSP µ 68.6 69.5 64.6 56.4 58.8 58.8
σ 19.0 29.5 16.2 33.6 37.3 34.9

samples using them, as the direction of the decision is sometimes flipped. It is clear that those
methods would benefit from having a reference set. REFEREE is however, able to better distinguish
between natural and attacked samples as shown in Fig. 3d. All those behaviors are also clearly
observable in Tab. 7, Tab. 9, and Tab. 11. From all of this, and Tab. 3, it is clear that classical
OOD detection methods would benefit from having a reference set, and that REFEREE clearly
outperforms them in detecting adversarial examples.
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Figure 3: Adversarial detection score histogram of classical OOD detection score and REFEREE.

5 EXPERIMENTAL RESULTS & ANALYSIS

5.1 GLOBAL ANALYSIS

Global Performances. We first compare the performances of REFEREE, FS and MagNet on the
adversarial benchmark described in Sec. 4.1. We reported the detailed results in Tab. 6, Tab. 8, and
Tab. 10, relegated in App. A, and the averaged results in Tab. 4.

Analysis. We observe substantial gains when comparing REFEREE with existing baselines such as
FS or MagNet. REFEREE outperforms FS of over 15% AUROC↑on CIFAR10, CIFAR100 and Tiny.
It is interesting to note that MagNet, which was originally developed for the ResNet model, does not
generalize at all to ViT since it performs poorly on all datasets. The decrease in performance ob-
served when comparing CIFAR10, CIFAR100 and Tiny shows that as the complexity of the dataset
increases, the detection task becomes more difficult. Finally, from Tab. 6, Tab. 8, and Tab. 10, we
can observe that the performance of REFEREE is consistently better than FS and MagNet, regardless
of attacks and ε, which further validates our approach.
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Table 4: Detection performance for each considered dataset. Mean (µ) and standard deviation (σ)
are obtained by aggregating results by Lp-norm. AUC. stands for AUROC, and No stands for No
Norm. The best result for each attack is shown in bold.

REFEREE FS MagNet

CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny

AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR

L1
µ 87.8 30.5 85.4 32.3 75.4 56.7 79.5 36.0 71.2 55.5 54.2 75.1 51.3 90.1 50.1 90.2 49.4 90.9
σ 12.3 30.7 8.6 18.0 3.0 5.2 3.3 7.9 5.1 8.0 14.0 11.0 1.1 3.3 0.2 0.2 0.9 1.5

L2
µ 89.8 38.1 87.0 29.4 75.5 55.2 77.3 37.2 68.2 58.9 58.8 72.4 51.0 89.7 50.6 89.3 49.9 89.2
σ 6.1 29.8 5.9 11.7 1.0 7.8 1.8 8.6 5.1 10.5 14.4 10.6 1.2 2.7 0.7 2.0 1.3 2.6

L∞
µ 93.3 19.6 93.2 17.5 91.0 21.1 74.1 51.8 62.6 66.8 74.8 61.2 55.6 89.9 55.0 81.3 50.9 88.3
σ 9.9 30.6 8.5 20.3 10.3 24.2 4.0 18.8 6.8 11.8 17.6 23.9 7.7 17.4 8.7 15.8 2.6 4.5

No. µ 93.3 6.9 92.5 20.5 76.9 51.5 78.8 37.5 65.4 50.0 53.0 77.5 39.4 93.5 38.3 92.8 34.9 95.6
σ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Avg. µ 91.1 25.9 89.9 24.0 83.2 38.5 76.3 44.2 66.1 62.0 65.3 67.7 53.0 85.0 52.3 85.7 49.8 88.9
σ 10.1 31.1 8.7 19.1 10.8 24.8 4.1 16.4 7.0 11.8 18.5 19.6 6.4 13.5 7.0 12.0 3.7 4.0

Time & Resources. To ensure the adoption of
REFEREE to a real application (see (R3)), we inves-
tigate the resources an execution time. Tab. 5 shows
a comparison of the different methods when run on
NVIDIA V100 GPUs with 32Go of RAM for each con-
sidered dataset.
Analysis. REFEREE is up to two orders of magnitude
faster than FS and MagNet. It should be noted that
REFEREE can also be run on the CPU and takes about
0.003 sec/input.

Table 5: Execution time of each method
on each dataset. Relative improvements
are computed w.r.t REFEREE.

Dataset Method Time (min)
FS 51 +10200%

CIFAR 10/100 MagNet 13 +2600%

REFEREE 0.5
FS 34 +34000%

TINY MagNet 13 +25000%

REFEREE 0.1

5.2 ADAPTIVE EXPERIMENTS

Adaptive Attacks. In the previous sections, we considered attacks with no knowledge about the
defense. However, in the last few years, adaptive attacks (Athalye et al., 2018; Tramer et al., 2020;
Carlini & Wagner, 2017), i.e., attacks with full knowledge about the defense, has gain momentum.
To further assess the effectiveness of our method compared to previous state-of-the-art ones, we
attacked both REFEREE and FS using PGD∞ with ε = 0.03125 modifying the attack objective so
the attacker targets both the underlying classifier and the detection method, using an hyperparameter
β to control the trade-off between the two objectives. We present the results in Fig. 4.
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Figure 4: FS’ and REFEREE’s performances under adaptive attacks.

Analysis. As β increases, the effectiveness of the attack on the classifier decreases while the effec-
tiveness on the defense increases. No matter the success of the attack on the classifier, REFEREE
clearly outperforms FS, in terms of both AUROC↑and FPR↓90%.

5.3 ABLATION STUDIES: ROLE OF α

On the importance of α. To decide whether a sample is contradictory, REFEREE relies on the
Tsallis-α divergence parameterized by α. In Fig. 5, we report the performance variations when
varying α. We stopped at α = 14 due to overflow limitations. The color area of the curve correspond
to the 90%-confidence region.
Analysis. Performances of REFEREE monotonically increase as α increases for both CIFAR10 and

8
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CIFAR100. We therefore chose α = 9. For Tiny ImageNet, we observe an optimal value for α = 3.
However, in this papers all the results are reported with α = 9 as we wanted to provide a unified
framework across datasets.
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Figure 5: Study of the influence of α in REFEREE’s performance.

5.4 INTERPRETING REFEREE’S DECISIONS

On the interpretability of REFEREE. In a
practical scenario, a key ingredient to foster-
ing adoption is the ability to monitor and ver-
ify the results of the automatic system (Mon-
tavon et al., 2018). REFEREE makes a step
towards this ambitious objective by relying
on an interpretable score. For any input sam-
ple x, REFEREE computes the information
projection as defined in Eq. 3. Thus one can
find x∗ ∈ Dtrain such that:

x∗ = argmin
xk∈Dtrain

Tα(qθ(·|xk)∥qθ (·|x))

to control the decision of REFEREE.
Analysis. Fig. 6 reports clean and attacked
samples, along with their closest projection

Figure 6: Example of x∗ for different x. First row
displays clean input x, second row its closest pro-
jection x∗, third row displays adversarial inputs
x′, last row displays its closest projection x′∗.

on the reference set. We observe that, for clean samples, the closest point in the reference set belong
to the same class (row 1 and 2 of Fig. 6). However, for most of the adversarial samples, the closest
reference point belongs to a different class, showing the effectiveness of the attack (row 3 and 4
of Fig. 6). Therefore, one can visually see what the prediction of the classifier is going to be, and
assess its quality.

6 CONCLUSION

This paper revisits the problem of adversarial attack detection and approaches it under realistic
constraints. The introduced detector, called REFEREE, is unsupervised and black-box. It is 400
times faster than previous methods (0.05s per image) and significantly outperforms existing detec-
tion methods on CIFAR10, CIFAR100 and Tiny ImageNet. We let teams with more GPUs evaluate
the methods on Imagenet. The new introduced formulation opens up new avenues of research and
ensures that future detectors will be ready for deployment in the real world and could benefit society.

Future Research. Our research is expected to have a positive societal impact by protecting the
integrity of artificial intelligence systems, which is particularly needed in critical systems such as
stock predictions (Xie et al., 2022) , autonomous cars (Morgulis et al., 2019) or healthcare systems
(Newaz et al., 2020). Future work includes testing the projection of information to textual adversarial
attacks where we expect to see different behaviors (Yoo et al., 2022; Le et al., 2020).
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A DETAILED RESULTS

Table 6: AUROC and FPR for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR10 for REFEREE, FS and MagNet on ViT. The best result for each attack is shown in bold.

CIFAR10

Norm L1 REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD1

ε = 50 95.4 4.8 77.6 37.5 53.3 90.1
ε = 60 95.2 5.4 77.4 37.5 51.6 92.1
ε = 70 93.6 6.5 78.0 31.2 51.9 92.0
ε = 80 92.1 13.1 78.1 31.2 51.3 91.9
ε = 90 90.1 36.1 78.7 31.2 52.0 91.6
ε = 100 88.4 47.9 79.0 37.5 51.6 91.6
ε = 500 55.4 88.7 86.8 25.0 49.6 90.5
ε = 1000 81.8 71.5 83.7 37.5 49.9 90.0
ε = 5000 97.8 0.6 76.0 55.2 50.1 89.9

Norm L2 REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD2

ε = 0.125 95.9 3.9 75.5 37.5 50.6 92.1
ε = 0.25 95.1 5.3 77.2 37.5 52.2 91.7
ε = 0.5 85.7 59.6 79.8 31.2 50.6 91.6
ε = 5 85.2 65.0 77.0 45.9 50.0 89.8
ε = 10 87.5 58.5 76.8 52.1 50.1 89.8
HOP
ε = 0.1 98.5 2.7 74.5 25.0 53.4 83.6
DeepFool
No ε 80.9 71.7 79.7 31.2 50.3 89.7

Norm L∞
REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD∞

ε = 0.03125 92.9 21.7 78.7 42.9 50.3 89.6
ε = 0.0625 99.9 0.0 73.4 64.7 51.0 88.4
ε = 0.125 100 0.0 71.8 68.6 52.9 85.5
ε = 0.25 100 0.0 70.9 70.0 54.3 83.4
ε = 0.5 100 0.0 70.8 70.1 54.4 83.3
BIM
ε = 0.03125 67.6 84.0 74.0 64.5 50.3 89.6
ε = 0.0625 95.6 4.1 70.2 72.3 50.7 88.9
ε = 0.125 99.9 0.0 70.0 72.2 51.8 87.2
ε = 0.25 100 0.0 70.7 70.5 53.6 84.4
ε = 0.5 100 0.0 71.2 68.4 56.4 80.1
FGSM
ε = 0.03125 73.5 80.2 75.2 38.8 51.9 88.1
ε = 0.0625 80.4 72.3 77.2 37.5 53.0 86.1
ε = 0.125 92.9 10.2 78.9 31.2 57.3 79.2
ε = 0.25 99.5 0.9 69.6 25.0 70.6 54.8
ε = 0.5 99.7 0.5 67.7 31.2 80.4 18.0
SA
ε = 0.125 98.0 2.9 72.0 25.0 55.1 82.4
CW∞

ε = 0.3125 87.0 56.0 78.8 37.5 50.6 89.3

No Norm REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

STA
No ε 93.3 6.9 78.8 37.5 39.4 93.5
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Table 7: AUROC and FPR for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR10 for REFEREE, Tα, DOCTOR, and MSP. The best result for each attack is shown in bold.

CIFAR10

Norm L1 REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD1

ε = 50 95.4 4.8 12.3 99.4 89.7 43.6 88.8 49.3
ε = 60 95.2 5.4 12.8 99.4 89.0 47.2 87.1 56.7
ε = 70 93.6 6.5 14.2 99.4 87.0 56.2 84.7 63.9
ε = 80 92.1 13.1 15.6 99.2 83.8 65.8 81.0 71.7
ε = 90 90.1 36.1 17.2 99.2 80.6 72.1 78.4 75.3
ε = 100 88.4 47.9 18.5 99.1 78.8 74.7 77.0 77.0
ε = 500 55.4 88.7 67.0 82.1 50.8 90.1 50.7 90.1
ε = 1000 81.8 71.5 89.5 30.0 48.1 91.2 48.3 91.2
ε = 5000 97.8 0.6 98.3 2.4 47.8 91.1 48.1 91.1

Norm L2 REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD2

ε = 0.125 95.9 3.9 10.9 99.7 93.3 4.7 92.6 17.3
ε = 0.25 95.1 5.3 12.4 99.4 89.4 44.7 86.1 60.3
ε = 0.5 85.7 59.6 20.4 98.9 76.4 77.5 74.1 79.7
ε = 5 85.2 65.0 87.5 40.5 49.0 90.7 49.2 90.7
ε = 10 87.5 58.5 88.6 36.6 48.9 90.8 49.1 90.8
HOP
ε = 0.1 98.5 2.7 4.9 99.7 96.8 2.7 95.8 2.6
DeepFool
No ε 80.9 71.7 17.7 100 73.9 79.9 72.4 81.1

Norm L∞
REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD∞

ε = 0.03125 92.9 21.7 94.6 13.8 48.7 91.1 48.8 91.1
ε = 0.0625 99.9 0.0 99.8 0.1 48.2 91.0 48.3 91.0
ε = 0.125 100 0.0 100 0.0 48.1 90.7 48.2 90.6
ε = 0.25 100 0.0 100 0.0 48.1 90.7 48.2 90.6
ε = 0.5 100 0.0 100 0.0 48.1 90.6 48.3 90.6
BIM
ε = 0.03125 67.6 84.0 76.7 61.1 49.3 90.5 49.4 90.5
ε = 0.0625 95.6 4.1 95.6 10.2 49.0 90.8 49.0 90.8
ε = 0.125 99.9 0.0 99.8 0.1 48.4 90.8 48.5 90.8
ε = 0.25 100 0.0 100 0.0 48.2 90.6 48.3 90.6
ε = 0.5 100 0.0 100 0.0 48.1 90.5 48.3 90.5
FGSM
ε = 0.03125 73.5 80.2 21.4 99.9 67.3 84.1 66.1 84.7
ε = 0.0625 80.4 72.3 10.4 100 73.7 80.1 72.1 81.3
ε = 0.125 92.9 10.2 1.8 100 87.6 55.6 86.0 61.5
ε = 0.25 99.5 0.9 0.0 100 99.1 0.7 98.8 0.7
ε = 0.5 99.7 0.5 0.0 100 99.7 0.0 99.8 0.0
SA
ε = 0.125 98.0 2.9 4.5 100 96.1 2.5 95.4 2.5
CW∞

ε = 0.3125 87.0 56.0 15.4 100 80.8 72.1 78.8 75.1

No Norm REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

STA
No ε 93.3 6.9 5.4 100 88.3 53.6 86.2 61.6
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Table 8: AUROC and FPR for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR100 for REFEREE, FS and MagNet. The best result for each attack is shown in bold.

CIFAR100

Norm L1 REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD1

ε = 50 89.4 22.7 65.5 56.2 50.5 90.5
ε = 60 87.8 26.0 66.6 56.2 50.5 90.3
ε = 70 86.1 29.8 67.4 50.0 50.0 90.4
ε = 80 84.7 32.4 68.3 50.0 50.0 90.4
ε = 90 83.0 35.7 69.2 50.0 50.2 90.3
ε = 100 81.3 39.6 70.1 50.0 50.1 90.4
ε = 500 65.3 74.5 79.3 50.0 50.0 90.0
ε = 1000 92.3 28.2 80.0 62.5 50.0 89.9
ε = 5000 98.5 1.9 74.0 75.0 50.0 89.8

Norm L2 REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD2

ε = 0.125 90.7 21.6 64.6 56.2 50.8 90.8
ε = 0.25 88.2 25.3 66.2 56.2 50.8 90.1
ε = 0.5 78.3 45.0 72.0 50.0 50.3 90.0
ε = 5 92.4 27.4 75.1 75.0 50.0 89.9
ε = 10 93.3 22.2 74.4 75.0 50.0 89.9
HOP
ε = 0.1 93.0 15.2 62.7 50.0 52.1 84.5
DeepFool
No ε 79.5 49.1 62.2 50.0 50.0 89.9

Norm L∞
REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD∞

ε = 0.03125 88.1 36.2 76.0 74.8 50.2 89.7
ε = 0.0625 99.1 1.5 68.9 75.0 50.6 88.9
ε = 0.125 99.9 0.0 65.5 75.0 52.1 86.5
ε = 0.25 100 0.0 64.3 75.0 53.0 84.9
ε = 0.5 100 0.0 64.2 75.0 53.1 84.8
BIM
ε = 0.03125 68.0 71.2 67.6 75.0 50.2 89.7
ε = 0.0625 89.2 34.5 63.0 81.1 50.5 89.2
ε = 0.125 98.8 2.3 62.1 82.7 51.3 87.8
ε = 0.25 99.9 0.0 63.7 75.4 52.5 85.7
ε = 0.5 100 0.0 65.3 75.0 54.6 82.2
FGSM
ε = 0.03125 82.6 43.8 61.9 62.5 51.0 88.8
ε = 0.0625 88.0 31.8 61.3 61.4 52.1 86.8
ε = 0.125 93.3 20.3 54.8 50.0 55.8 80.2
ε = 0.25 97.8 6.8 49.6 50.0 66.4 60.4
ε = 0.5 99.4 1.4 46.2 56.2 86.6 24.2
SA
ε = 0.125 93.4 16.9 63.3 50.0 54.9 82.6
CW∞

ε = 0.3125 86.6 31.5 67.0 50.0 50.0 89.8

No Norm REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

STA
No ε 92.5 20.5 65.4 50.0 38.3 92.8
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Table 9: AUROC and FPR for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR100 for REFEREE, Tα, DOCTOR, and MSP. The best result for each attack is shown in
bold.

CIFAR100

Norm L1 REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD1

ε = 50 98.4 22.7 19.1 98.3 89.7 22.0 89.7 22.1
ε = 60 87.8 26.0 20.8 97.8 87.7 25.9 87.6 25.8
ε = 70 86.1 29.8 22.3 97.4 85.8 29.3 85.6 29.4
ε = 80 84.7 32.4 24.0 96.9 83.8 33.6 83.6 33.4
ε = 90 83.0 35.7 25.9 96.5 81.8 37.9 81.6 38.0
ε = 100 81.3 39.6 27.4 96.1 79.9 42.2 79.5 42.8
ε = 500 65.3 74.5 70.1 72.9 33.2 93.9 34.1 93.5
ε = 1000 92.3 28.2 73.0 74.4 30.9 94.3 32.2 93.8
ε = 5000 98.5 1.9 71.6 78.3 32.7 93.9 33.5 93.5

Norm L2 REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD2

ε = 0.125 90.7 21.6 17.6 98.4 92.0 16.5 92.1 16.4
ε = 0.25 88.2 25.3 20.3 97.8 88.2 24.4 88.2 24.5
ε = 0.5 78.3 45.0 30.8 95.2 76.5 48.7 75.8 49.2
ε = 5 92.4 27.4 71.3 76.0 31.0 94.4 32.5 93.8
ε = 10 93.3 22.2 70.8 76.7 31.2 94.3 32.6 93.7
HOP
ε = 0.1 93.0 15.2 8.1 99.5 91.8 17.0 91.6 17.1
DeepFool
No ε 79.5 49.1 22.9 98.9 78.8 51.6 78.1 52.6

Norm L∞
REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD∞

ε = 0.03125 88.1 36.2 74.3 76.6 33.3 94.2 34.9 93.4
ε = 0.0625 99.1 1.5 78.8 74.9 35.1 93.6 36.0 93.1
ε = 0.125 99.9 0.0 85.3 63.9 36.9 92.8 37.1 92.7
ε = 0.25 100 0.0 87.4 58.8 37.9 92.5 38.1 82.4
ε = 0.5 100 0.0 87.5 58.5 38.3 92.3 38.3 92.4
BIM
ε = 0.03125 68.0 71.2 62.4 85.2 36.0 93.7 37.2 93.0
ε = 0.0625 89.2 34.5 69.4 82.5 35.1 93.8 36.5 93.1
ε = 0.125 98.8 2.3 77.1 76.5 34.7 93.7 35.8 93.1
ε = 0.25 99.9 0.0 85.1 64.1 36.6 93.0 37.0 92.8
ε = 0.5 100 0.0 92.2 36.7 41.2 91.0 40.4 91.7
FGSM
ε = 0.03125 82.6 43.8 8.7 99.9 81.6 45.6 80.6 46.0
ε = 0.0625 88.0 31.8 4.0 100 86.9 34.2 86.2 34.5
ε = 0.125 93.3 20.3 1.6 100 92.6 22.7 92.1 22.9
ε = 0.25 97.8 6.8 0.3 100 97.6 9.8 97.2 10.4
ε = 0.5 99.4 1.4 0.0 100 99.3 1.1 99.0 2.5
SA
ε = 0.125 93.4 16.9 10.6 99.6 94.2 13.3 94.3 13.4
CW∞

ε = 0.3125 86.6 31.5 20.0 98.8 86.8 30.5 86.7 30.4

No Norm REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

STA
No ε 92.5 20.5 4.6 99.9 92.9 19.4 92.5 19.5
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Table 10: AUROC and FPR for each considered attack mechanisms, Lp-norm constraint and ε on
Tiny ImageNet for REFEREE, FS and MagNet. The best result for each attack is shown in bold.

Tiny

Norm L1 REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD1

ε = 50 74.6 56.3 44.8 81.6 50.4 88.9
ε = 60 74.9 56.6 45.0 81.8 50.3 88.9
ε = 70 75.4 56.6 45.1 82.0 50.0 89.0
ε = 80 75.6 54.6 45.1 82.3 49.6 88.9
ε = 90 76.0 51.8 45.0 82.2 49.7 89.3
ε = 100 76.2 50.9 44.9 82.0 49.6 89.0
ε = 500 73.0 61.8 60.7 71.7 48.0 93.1
ε = 1000 70.2 68.8 73.7 62.4 47.6 92.0
ε = 5000 82.4 53.1 83.2 50.0 49.1 90.3

Norm L2 REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD2

ε = 0.125 74.7 57.0 45.2 81.4 50.2 88.7
ε = 0.25 76.2 50.9 45.2 81.8 49.3 89.7
ε = 0.5 77.0 49.2 47.1 79.5 49.6 91.0
ε = 5 74.1 65.4 77.9 57.5 48.7 91.0
ε = 10 74.9 64.4 78.1 57.7 48.8 90.9
HOP
ε = 0.1 75.9 44.5 59.1 76.3 52.7 83.8

Norm L∞
REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

PGD∞

ε = 0.03125 97.9 2.0 96.0 8.2 49.7 90.0
ε = 0.0625 99.9 0.0 93.8 11.9 49.8 89.9
ε = 0.125 99.9 0.0 89.2 47.1 49.9 89.6
ε = 0.25 100 0.0 85.5 73.6 50.0 89.5
ε = 0.5 100 0.0 83.6 82.2 50.1 89.4
BIM
ε = 0.03125 86.8 42.6 86.0 44.8 49.5 90.1
ε = 0.0625 99.4 0.1 90.3 33.4 49.9 89.9
ε = 0.125 99.9 0.0 87.4 61.4 49.9 89.8
ε = 0.25 100 0.0 84.9 79.9 50.0 89.5
ε = 0.5 100 0.0 83.9 82.5 50.2 89.1
FGSM
ε = 0.03125 74.3 60.1 56.3 75.5 49.7 90.2
ε = 0.0625 76.8 55.6 58.0 71.8 50.4 89.6
ε = 0.125 79.0 51.0 53.6 75.1 50.9 88.7
ε = 0.25 82.1 43.5 48.1 78.8 52.6 86.2
ε = 0.5 84.9 37.0 50.9 74.2 60.7 72.1
SA
ε = 0.125 74.4 46.2 48.7 78.5 50.6 89.4

No Norm REFEREE FS MagNet

AUROC FPR AUROC FPR AUROC FPR

STA
No ε 76.9 51.5 53.0 77.5 34.9 95.6
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Table 11: AUROC and FPR for each considered attack mechanisms, Lp-norm constraint and ε on
Tiny ImageNet for REFEREE, Tα, DOCTOR, and MSP. The best result for each attack is shown in
bold.

Tiny ImageNet

Norm L1 REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD1

ε = 50 74.6 56.3 27.8 97.2 86.7 30.9 87.8 28.6
ε = 60 74.9 56.6 27.6 97.3 86.9 29.6 88.0 27.3
ε = 70 75.4 56.6 27.7 97.2 87.2 29.2 88.3 26.2
ε = 80 75.6 54.6 27.7 97.3 87.3 28.9 88.5 25.6
ε = 90 76.0 51.8 28.0 97.3 87.4 28.6 88.7 25.3
ε = 100 76.2 50.9 27.5 97.4 87.6 28.1 88.8 25.0
ε = 500 73.0 61.8 21.4 96.9 82.5 39.1 82.8 39.3
ε = 1000 70.2 68.8 40.5 96.4 71.6 79.7 71.6 80.0
ε = 5000 82.4 53.1 64.3 94.3 49.0 99.6 48.9 99.6

Norm L2 REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD2

ε = 0.125 74.7 57.0 27.5 97.3 86.8 30.8 87.8 27.9
ε = 0.25 76.2 50.9 27.6 97.2 87.6 28.1 88.8 24.8
ε = 0.5 77.0 49.2 26.8 97.6 88.0 28.2 89.1 25.0
ε = 5 74.1 65.4 48.8 96.0 62.6 95.6 62.5 95.7
ε = 10 74.9 64.4 50.0 96.1 61.6 96.6 61.4 96.7
HOP
ε = 0.1 75.9 44.5 39.7 91.4 86.1 28.3 87.3 25.1

Norm L∞
REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

PGD∞

ε = 0.03125 97.9 2.0 97.2 2.2 7.0 100 7.0 100
ε = 0.0625 99.9 0.0 99.9 0.0 0.5 100 0.6 100
ε = 0.125 99.9 0.0 100 0.0 0.0 100 0.1 100
ε = 0.25 100 0.0 100 0.0 0.0 100 0.0 100
ε = 0.5 100 0.0 100 0.0 0.0 100 0.0 100
BIM
ε = 0.03125 86.8 42.6 78.5 81.0 40.0 99.8 39.9 99.8
ε = 0.0625 99.4 0.1 98.7 0.0 10.9 100 10.9 100
ε = 0.125 99.9 0.0 99.9 0.0 1.2 100 1.3 100
ε = 0.25 100 0.0 100 0.0 0.0 100 0.1 100
ε = 0.5 100 0.0 100 0.0 0.0 100 0.0 100
FGSM
ε = 0.03125 74.3 60.1 24.0 98.0 85.5 36.0 85.2 35.8
ε = 0.0625 76.8 55.6 28.1 96.9 85.7 36.1 85.4 36.9
ε = 0.125 79.0 51.0 30.7 95.2 87.0 32.7 86.7 32.7
ε = 0.25 82.1 43.5 32.6 91.9 89.2 26.1 88.8 27.1
ε = 0.5 84.9 37.0 36.3 89.5 91.1 21.3 90.7 22.7
SA
ε = 0.125 74.4 46.2 33.1 94.9 85.1 29.3 87.8 22.2

No Norm REFEREE Tα DOCTOR MSP

AUROC FPR AUROC FPR AUROC FPR AUROC FPR

STA
No ε 76.9 51.5 32.6 94.3 86.5 33.7 87.0 32.2
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