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Abstract— Object recognition in unseen and cluttered indoor
scenes is a challenging problem for semantic-level mapping and
manipulation tasks involving low-cost mobile robots. In this
paper, we propose a novel framework to address this problem
through active robot navigation. Using this framework, the
robot performs instance segmentation and identifies the objects
using a 3D point cloud slicing-based topological descriptor. It
also optimizes its pose autonomously via an extremum seeking
controller to improve the identification confidence scores. Re-
sults show that our framework always improves the recognition
success rate for any given scene as the robot moves to better
pose(s), regardless of the number of objects in the scene, degree
of clutter, distance to the objects, and lighting condition.

I. INTRODUCTION

Object recognition is crucial for the robotic manipulation
of objects. In environments such as warehouses and fulfill-
ment centers, objects are often densely packed in storage,
leading to strong visual occlusion of objects. Manipulation
in such scenarios requires an object recognition system that is
robust to occlusion. However, recognizing occluded objects
is a challenging problem, especially when considering one
image frame at a time [1], [2]. However, recognition systems
mounted on a mobile platform, such as a mobile manipulator,
can achieve better recognition by moving (the camera) to a
better vantage point. This approach to recognition is often
known as active object recognition [3], [4].

Several active recognition approaches have been proposed
that perform multi-view recognition [5], end-to-end policy
learning [2] and view-planning [6]. Alongside these works,
we present an autonomous framework to actively recognize
known objects in an unseen cluttered scene while being
robust to variations in lighting conditions. Our approach is
novel in two key ways. First, we use a 3D shape-based
topological descriptor for recognition [1]. This descriptor
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enables training a recognition module exclusively using
synthetically generated data that can be directly used in an
unseen environment. Such a 3D shape-based descriptor also
provides substantial robustness to variations in lighting con-
ditions. Second, we use a model-free approach for viewpoint
optimization, which does not require an explicit objective
function or task model [7]. We describe our approach in
Section II, report the experimental findings in Section III,
and summarize the conclusions in Section IV.

II. METHOD: NANOSAM + TOPS + NN-ESC

Given an unseen cluttered scene, we aim to recognize
all the objects in the scene using a mobile robot with a
fixed camera. First, we capture an RGB-D image of the
scene and use NanoSAM [8], a variant of Segment Anything
Model (SAM) [9], to generate an instance segmentation
map of the scene from the RGB image. Subsequently, we
use the instance segmentation map and the corresponding
depth image to generate point clouds for every object. We
then compute 3D shape descriptors for these point clouds
and use a multilayer perceptron (MLP)-based classifier to
perform recognition. We use the recognition predictions
and the corresponding confidence scores (probabilities) to
compute an objective value. We then use a Neural Network-
Extremum Seeking Controller (NN-ESC) [7] to optimize
this objective value and navigate the robot to a different
pose for improved recognition. This entire process constitutes
one iteration of the active object recognition pipeline. The
pipeline runs several iterations until the robot reaches a pose
where the confidence scores of all the objects in the scene
are above a certain threshold C. Fig. 1 illustrates the robot
and the modules in our pipeline. The individual modules are
described in the following subsections.

A. Segmentation Mask Generation using NanoSAM

NanoSAM requires spatial prompts or bounding boxes
around the objects in a scene to generate segmentation
masks. Generating good spatial prompts for SAM (or its
lighter versions, such as MobileSAM [10] and NanoSAM) is
a research problem in itself [11]. In this work, we compute
spatial prompts as follows. First, we capture a reference RGB
image of the environment without any objects. Whenever a
robot looks at a cluttered scene, first, we perform background
subtraction using this reference to obtain a foreground image.
We then compute AKAZE local features [12] from the
foreground image to detect keypoints. These keypoints are



Fig. 1: Proposed framework for active object recognition using NanoSAM, point cloud slicing-based topological descriptors,
and NN-ESC implemented on a LoCoBot.

then used as initial spatial prompts for NanoSAM. Note
that this procedure is performed only once during the first
iteration. To obtain the prompts for subsequent iterations, we
use the CSRT object tracker [13]. It tracks the location of
the objects in the scene as the robot moves and updates the
relevant key points to avoid repeated keypoint computation
in subsequent iterations.

B. Object Recognition via TOPS

We use the instance segmentation map obtained from
NanoSAM along with depth image to obtain 3D point
clouds of all the objects in the scene. We then compute
3D shape descriptors for every object. In particular, using
persistent homology, we compute the previously presented
topological descriptor known as TOPS [1]. TOPS, which
stands for Topological features Of Point cloud Slices, is
designed for recognizing partially occluded 3D point clouds.
As in [1], we train an MLP classifier using training data
that comprises synthetic depth images corresponding to all
the possible views of all the objects. We use this model to
obtain recognition predictions and corresponding prediction
probabilities. These probability values are referred to as
confidence scores, which we use to obtain the objective value
to be optimized.

C. Objective Value Determination

Given a threshold C, the confidence scores output by the
model for all the objects in a scene may not always be
greater than that value in the first iteration. This is attributed
to factors including, but not limited to, object poses and
occlusion, lighting conditions, and distance to the scene.
These conditions can be improved by moving the robot to a
different pose, which can result in better confidence scores.
However, from a control perspective, it is extremely difficult
to model an objective function for confidence scores that can
be optimized. Therefore, we implement a heuristic approach
by choosing the least confidence scores as the objective value
in every iteration and optimizing until it crosses the threshold
C. Since the objective function for optimizing the confidence
scores is unknown, NN-ESC is a good candidate for this
optimization problem.

D. Optimization using NN-ESC

We implement an NN-ESC similar to [7], but in a discrete-
time viewpoint optimization loop. To perform active object
recognition effectively, we constrain the motion of the robot
in a circle with a fixed radius r around the objects such
that the camera points at the objects throughout the active
recognition task. This requires the NN-ESC algorithm to
provide a 1-D velocity vector as one of the inputs to the
differential drive robot, which becomes its tangential velocity
vr. The other input, angular velocity ωr, is automatically fed
to the robot as:

ωr =
vr
r

We formulate the control law for the robot as follows:
At time tk, the controller uses the error e[k] calculated as
the difference between the reference value fr[k] and the
objective value f [k] to compute an appropriate control law
for the system.

e[k] = fr[k]− f [k], k = 1, 2, 3, ... (1)

The algorithm updates the reference value in every itera-
tion with the help of W Switch and Peak Detector outputs
fw and fp, respectively.

fr[k] =

{
f [k], k = 1

fr[k − 1] + fw[k − 1] + fp[k − 1], k = 2, 3, ..
(2)

In the first iteration, i.e., at k = 1, the W switch is
OFF (fw[1] = 0), which makes the reference value for
our objective (confidence score) unknown. Therefore, we
initialize it with the initial objective value (fr[1] = f [1]),
thereby making the initial error equal to zero (e[1] = 0).
The peak detector updates the fp value as follows:

fp[k] =

{
M, (e[k] < 0)

0, (e[k] ≥ 0)
(3)

To ensure convergence to the maximum objective value,
the error should converge to zero. This imposes a condition
on the value of the positive constant M that it should



be greater than the absolute difference between any two
consecutive objective values.

M > |f [k + 1]− f [k]| (4)

We initialize the system with the control law u[1] = −U ,
where U is a positive constant. For the subsequent iterations,
we define the control law as:

u[k + 1] =


− U, e[k] < −δ

U, e[k] > δ

u[k], otherwise
(5)

The positive constant δ is used to define the hysteresis
width [−δ, δ]. As long as the error stays within this interval,
the previous state of the control law is retained so that the
objective value to its optimum value. If the error is outside
the bounds of the interval, the control law switches the
direction of the robot. This switching mechanism can be
interpreted as follows: initially, for k = 1, the sign of u
is negative. If this control law drives the system to a state
where the error exceeds the right boundary of the hysteresis
width, the control law switches the sign of u, i.e., the robot
moves in the opposite direction. Continuing in the same
direction, if the error exceeds the left hysteresis boundary,
the switching happens once again. This switching perpetuates
as the fr and fp values keep updating in every iteration (as
described in (2) and (3)) until and unless the error exceeds
a threshold ∆(> δ). Once the error crosses the threshold ∆,
the controller activates the W switch to reset the fr value
(as described in (2)) using the following switching function:

fw[k + 1] =


−W, (e[k + 1] > ∆)

0, (e[k + 1] < −∆)

fw[k], otherwise
(6)

If the error is above the threshold ∆, the fr value in (2)
decreases because of the negative value −W . Consequently,
from (1), the error eventually decreases and goes below −∆,
thereby taking the control law to its initial state (as described
in (5)).

III. RESULTS AND DISCUSSION

We use a collection of 10 objects1 from the YCB object set
[14] to evaluate the performance of our pipeline with respect
to the changes in degree of clutter, distance between the
robot and the objects, and lighting conditions. We consider
40 sequences of scenes created using 5 randomly chosen
objects from the collection. Similarly, we create another 48
sequences of 6-object scenes. For both the 5-object and 6-
object scenes, we divide the corresponding sequences into
eight groups each by varying the degree of clutter (less and
moderate), distance of the robot from the objects (near and
far), and background lighting (standard and dim). For every
sequence, we record the number of iterations and the time

1While there are many other objects in the YCB object set, we only
choose pitcher base, plate, bowl, mustard bottle, bleach cleanser, mug, potted
meat can, foam brick, gelatin box, and tomato soup can for the experiments
as they consistently yield better segmentation masks than the others, which
are necessary for accurate object recognition.

it takes to recognize all the objects above the threshold C,
segmentation success rate, and recognition success rates.

We implement the active recognition pipeline in a Python
environment on a LoCoBot equipped with an Intel RealSense
D435 camera and an NVIDIA Jetson AGX Orin processor.
We use the ROS Kinetic distribution on the LocoBot platform
to run NN-ESC. For our experiments, the NN-ESC param-
eters are M = 0.7, W = 1, δ = 0.1, and ∆ = 0.2. U is
chosen to be 0.2 and 0.35 for near and far instances of the
robot, respectively, to maintain the same angular velocity.
We set the threshold value to C = 90%.

Table I summarizes the results for all the 16 groups.
Based on the initial and final recognition success rates—
percentage of confidently predicted, correctly recognized
objects in a given scene (see columns 8 and 9 in Table
I), we conclude that our pipeline actively improves object
recognition performance in any scene as compared to (static)
single-shot recognition. This is true regardless of the number
of objects, clutter level, target distance, and variations in
background illumination. As might be expected, the best
recognition performance is seen in scenarios with fewer
objects in the scene, less clutter, proximity of the robot to
the objects, and well-lit environment.

Representative examples of our active recognition pipeline
are shown in Fig. 2 and Fig. 3 for dim and standard lighting
conditions, respectively. In Fig. 2, the robot recognizes all
the five objects correctly within three iterations, whereas, it
predicts five out of the six objects correctly in two iterations
in Fig. 3. Notably, in both the cases, the recognition success
rates increase over time as the robot actively moves to
different viewpoints.

In general, we observe a drop in recognition performance
in any scenario where NanoSAM outputs oversegmented
(partial or incomplete) or undersegmented (compound masks
for multiple objects) masks of the objects. Interestingly,
the CSRT object tracker impacts the recognition in both
beneficial and detrimental ways. For the objects that are ini-
tially oversegmented or undersegmented, the corresponding
bounding boxes tend to grow or shrink in size in subsequent
iterations, sometimes resulting in (more) complete masks that
lead to correct recognition. On the other hand, when the
robot is in motion, if the tracked object is occluded by a
neighboring object, the bounding box may jump on to the
latter object and cause inaccurate prediction using TOPS.

It is worth noting that the confidence scores output by the
MLP-based classifier are not very reliable, as some objects
in the scenes are wrongly predicted with high confidence.
We intend to explore other classifiers, such as a Support
Vector Machine (SVM), to mitigate this problem. Further,
the object appearance information (color, texture, etc.) are
currently not considered in the topological descriptor. We
plan to explore this possibility in the future to offset the
segmentation performance issues and enhance recognition
accuracy.



TABLE I: Summary of active object recognition results

# of objects Clutter level Distance Lighting # of iterations Recognition
time (s)

Segmentation
success rate
(%)

Recognition
success
rate at first
iteration
with > 90%
confidence
(%)

Recognition
success rate
at the end
with > 90%
confidence
(%)

5

Less
Near Standard 3.60±1.34 44.92±1.08 92.00±10.95 56.00±8.94 76.00±8.94

Dim 3.60±3.13 45.18±25.41 92.00±10.95 56.00±8.94 72.00±17.89

Far Standard 5.40±2.07 59.48±16.55 92.00±10.95 28.00±10.95 56.00±16.73
Dim 5.00±3.32 56.62±27.05 92.00±10.95 32.00±26.83 60.00±20.00

Moderate
Near Standard 3.40±2.19 43.47±18.30 100.00±0.00 48.00±22.80 60.00±14.14

Dim 4.40±2.70 52.09±22.26 88.00±17.89 40.00±14.14 48.00±22.80

Far Standard 5.40±3.13 59.13±25.63 68.00±10.95 24.00±8.94 40.00±0.00
Dim 3.60±1.95 44.52±16.28 80.00±0.00 24.00±8.94 36.00±21.91

6

Less
Near Standard 4.50±5.21 53.53±43.32 97.22±6.80 41.67±17.48 58.33±17.48

Dim 3.83±3.13 47.05±26.80 91.67±9.13 47.22±24.53 58.33±22.97

Far Standard 4.50±2.81 51.87±23.44 88.89±13.61 41.67±13.94 52.78±16.39
Dim 5.33±4.37 65.20±38.92 94.44±13.61 41.67±9.13 52.78±12.55

Moderate
Near Standard 4.17±1.17 50.08±10.50 86.11±19.48 44.44±20.18 55.56±13.61

Dim 2.67±1.21 37.15±10.07 80.56±19.48 38.89±17.21 50.00±18.26

Far Standard 4.67±3.20 53.04±26.90 75.00±9.13 30.56±19.48 38.89±17.21
Dim 4.83±2.14 60.50±16.92 77.78±13.61 27.78±17.21 38.89±13.61

(a) Input image (b) Iteration 1

(c) Iteration 2 (d) Iteration 3 (final)

Fig. 2: Results from a scenario with 5 objects in a dimly lit
scene showing the predictions of objects and their confidence
scores. The green bounding boxes represent correct and
confident predictions, whereas, red boxes represent incorrect
or non-confident predictions. The robot recognizes more
objects correctly as it actively moves to better viewpoints.

IV. CONCLUSIONS

In this work, we present a topological descriptor-based
framework to actively recognize objects in unseen cluttered
scenes using a mobile robot equipped with an RGB-D
camera. Given a scene with known objects, the robot au-
tomatically detects key points, generates segmentation maps
using AKAZE features and NanoSAM, and performs on-
the-fly object recognition based on TOPS and an MLP-
based classifier. We employ NN-ESC to actively optimize
the robot’s pose such that the recognition confidence for

(a) Iteration 1 (b) Iteration 2 (final)

Fig. 3: Results from a scenario with 6 objects in a well lit
scene showing the predictions of objects and their confidence
scores. The robot recognizes additional objects correctly as
it actively moves to a better viewpoint.

all the objects in a scene is above a predefined threshold
value. Implementation on a LoCoBot platform shows that the
recognition success rate always increases as the robot moves
to different viewpoint(s), regardless of the degree of clutter,
distance to the scene, and variations in illumination. In the
future, we plan to use the recognition labels as semantic
information for mapping of cluttered scenes and mobile
manipulation of the scene objects.
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