

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 WHEN THE BRAIN SEES BEYOND PIXELS: CREATIVE BRAIN-TO-VISION RECONSTRUCTION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Reconstructing images from fMRI has traditionally been framed as maximizing
 012 pixel fidelity to visual input. While useful for benchmarking, this perspective
 013 overlooks what brain signals truly encode: not only perception, but also abstrac-
 014 tion, semantics, and imagination. We introduce a frequency-informed framework
 015 for brain-to-vision generation that shifts the objective from replication to creative
 016 alignment across neural and visual domains. Our method applies graph spec-
 017 tral transforms to fMRI signals and masked frequency modeling to images, en-
 018 abling coarse-to-fine reconstruction by selectively aligning low-, mid-, and high-
 019 frequency structures. To ground generation in meaning, we incorporate semantic
 020 priors via CLIP-text embeddings and multi-level visual features, with attention
 021 mechanisms that allow frequency-masked brain signals to interact with both re-
 022 constructions and textual cues. The model integrates pretrained VDVAE, CLIP,
 023 and diffusion backbones, while introducing three novel frequency-aligned pro-
 024 jection layers: (i) a low-level hierarchical brain-to-vision layer, (ii) a high-level
 025 semantic brain-to-vision layer, and (iii) a brain-to-text alignment layer. The re-
 026 sulting generations may deviate from pixel-level ground truth yet capture emer-
 027 gent structures that show how the brain creatively encodes and reinterprets visual
 028 experience. By bridging frequency structures across neural, visual, and seman-
 029 tic modalities, our approach reframes fMRI-to-image reconstruction as a study of
 030 how humans perceive, imagine, and create, beyond simple replication.

032 1 INTRODUCTION

034 Decoding visual experiences from brain activity is a longstanding challenge at the intersection of
 035 neuroscience and machine learning. Functional MRI (fMRI) provides only an indirect, noisy mea-
 036 sure of neural processes, while natural images embody rich multi-scale structure (Rakhimberdina
 037 et al., 2021). Bridging these heterogeneous representations is central not only to advancing brain-
 038 computer interfaces, but also to probing how the brain encodes perception, imagination, and ab-
 039 straction. Recent progress in deep generative modeling has dramatically advanced this task (Ozcelik
 040 et al., 2022; Caselles-Dupré et al., 2024; Allen et al., 2022). By mapping neural activity into the
 041 latent space of large pretrained generators such as variational autoencoders (VAEs) or diffusion
 042 models, researchers have produced reconstructions of naturalistic faces, objects, and scenes from
 043 fMRI with unprecedented fidelity (Kim et al., 2021; Qiang et al., 2021; Zhang et al., 2021).

044 Latent diffusion models, in particular, have enabled highly naturalistic reconstructions by coupling
 045 coarse visual predictions with semantic refinement. Ozcelik and VanRullen (2023) introduced the
 046 Brain-Diffuser (Ozcelik & VanRullen, 2023) pipeline, in which a Very-Deep VAE (VDVAE) (Child,
 047 2020) provides a coarse stimulus approximation, later refined by a CLIP(Radford et al., 2021)-
 048 conditioned diffusion model. Takagi and Nishimoto (2023) further demonstrated that direct mapping
 049 of fMRI signals into the latent space of a pretrained Stable Diffusion model yields reconstructions
 050 that are semantically faithful and visually sharp at 512×512 resolution (Takagi & Nishimoto, 2023),
 051 without finetuning the generator itself. While powerful, these approaches share a crucial limitation:
 052 they treat all image information uniformly, ignoring the brain’s own frequency-specific organization.
 053 Neuroscience evidence (Broderick et al., 2022; Bartsch et al., 2022; Friedl & Keil, 2020) shows that
 visual cortex is selectively tuned to spatial frequency bands, from low-frequency global layout to
 high-frequency fine detail, yet current decoders (Ozcelik & VanRullen, 2023; Wang et al., 2024;



Figure 1: fMRI-to-image reconstruction with frequency-guided alignment. Comparison of four state-of-the-art methods (MindAligner, Brain-Diffuser, MindEye2, MindBridge) with our framework (Ours, red box). Prior methods often blur fine details, misrepresent object identity, or fail to capture semantic context. In contrast, our approach preserves global layout (*e.g.*, tennis court lines), captures object identity and distinctive attributes (*e.g.*, bear shape, clock tower silhouette, vase of flowers), and allows creative reinterpretation, reflecting how the brain encodes and reconstructs visual experience. By explicitly aligning neural, visual, and semantic frequency structures, our method goes beyond pixel-level replication to reveal emergent patterns in perception and imagination.

Belyi et al., 2019) collapse these heterogeneous signals into a single latent representation, diluting their interpretability and biological plausibility.

We introduce a frequency-informed framework for brain-to-vision generation that closes this gap by explicitly aligning the spectral structures of neural, visual, and semantic modalities (Palazzo et al., 2020; Van de Putte et al., 2018). On the neural side, we apply a graph spectral transform to fMRI data, embedding voxel activations into frequency components defined on the cortical graph. This decomposition yields low-, mid-, and high-frequency graph modes that compactly capture the brain’s representational hierarchy. On the visual side, we adopt masked frequency modeling, dynamically filtering Fourier components (Wang et al., 2023; Li et al., 2023) of image embeddings to emphasize the scales most relevant to neural graph frequencies. By doing so, our method performs brain-to-image reconstruction in a coarse-to-fine manner, selectively aligning brain graph modes with visual spatial frequencies.

Crucially, our approach does not rely on finetuning large generative backbones. Instead, we reuse pretrained VDVAE (Child, 2020), CLIP-Vision (Radford et al., 2021), CLIP-Text (Radford et al., 2021), and diffusion modules (Xu et al., 2023), and introduce three lightweight frequency-aligned projection layers that mediate cross-modal alignment. The *low-level hierarchical brain-to-vision layer* aligns masked fMRI signals with hierarchical probabilistic features extracted by the VDVAE encoder, capturing coarse structures and layouts. The *high-level semantic brain-to-vision layer* aligns masked fMRI signals with deterministic semantic features from the CLIP-Vision encoder, ensuring consistency with higher-order object and scene information. Finally, the *brain-to-text alignment layer* connects masked fMRI signals to CLIP-Text embeddings, allowing language priors to guide generation toward coherent and imaginative reconstructions. This design preserves the expressive power of pretrained models while introducing a biologically grounded adaptation that connects neural, visual, and semantic spaces.

Beyond replication of ground-truth stimuli, our framework reframes fMRI-to-image reconstruction as a problem of creative alignment. By conditioning on frequency-masked brain signals, enriched with textual priors, our model generates reconstructions that are both coherent and imaginative, revealing emergent structures that reflect the interpretive nature of human vision. Fig. 1 shows

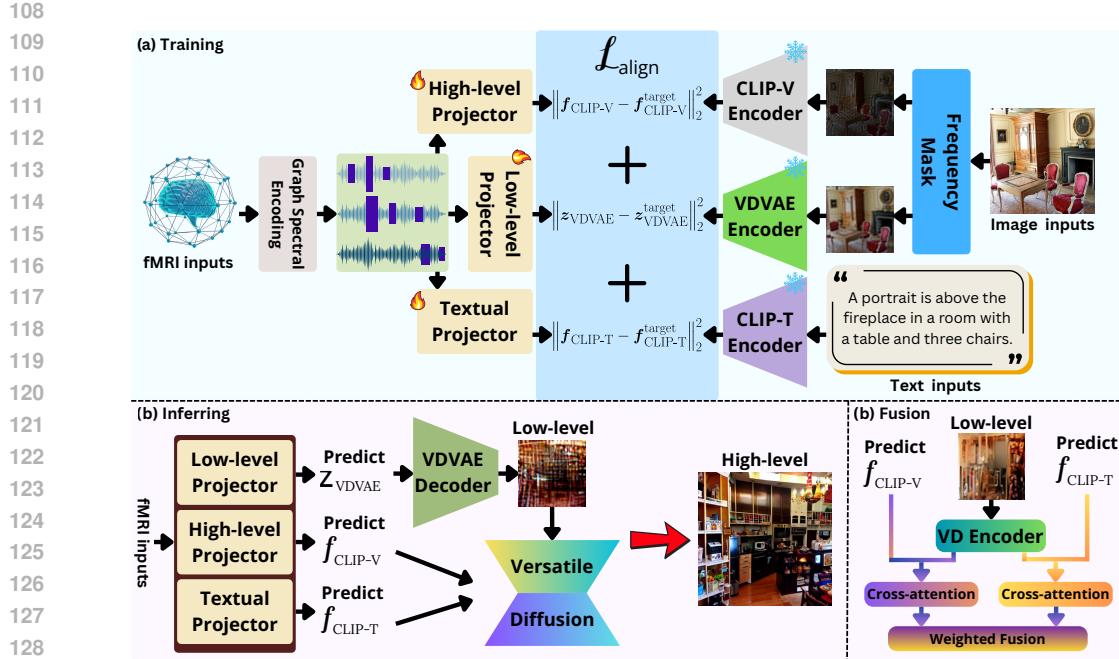


Figure 2: Overview of our frequency-informed brain-to-vision framework. (a) Training: fMRI is decomposed into graph-spectral frequency bands and mapped through three projection layers: (i) low-level projector (fMRI→VDVAE), (ii) high-level projector (fMRI→CLIP-Vision), and (iii) textual projector (fMRI→CLIP-Text), aligned with frequency-masked images and captions. (b) Fusion: the three projected features condition a pretrained diffusion model via cross-attention followed by a weighted fusion, combining structural layout (low-level), semantic content (high-level), and textual priors. (c) Inference: given new fMRI inputs, the trained projections yield reconstructions that are semantically coherent and imaginative, going beyond pixel-level replication.

our method preserves layout, captures object identity, and enables creative reinterpretation beyond pixel-level replication. In summary, our contributions are threefold:

- Frequency-guided neural representation.** We introduce the use of graph spectral transforms to project fMRI into frequency components, yielding a structured decomposition that parallels visual frequency representations.
- Cross-modal frequency alignment.** We propose masked frequency modeling for images and demonstrate that selective alignment between brain graph modes and visual spatial frequencies improves fidelity, interpretability, and robustness of reconstructions.
- Lightweight multimodal alignment layers.** We show that training only three projection layers: low-level (fMRI-VDVAE), high-level (fMRI-CLIP-Vision), and brain-to-text (fMRI-CLIP-Text), on top of frozen pretrained backbones enables reconstructions that are faithful yet creative, reframing brain decoding as exploration rather than mere replication.

Prior work on fMRI-to-image reconstruction spans diffusion-based methods (Guo et al., 2024; Ferante et al., 2024; Chen et al., 2023; Zeng et al., 2024), cross-subject alignment (Li et al., 2024; Gong et al., 2025; Han et al., 2024; Liu et al., 2024b), and multimodal brain-conditioned generation (Xia et al., 2024; Yu et al., 2025b; Qiu et al., 2025; Yeung et al., 2025). Our contribution introduces a frequency-informed framework that explicitly bridges fMRI graph spectra with image frequency bands and semantic priors, while training only three lightweight projection layers. This distinguishes our approach from prior methods that treat all image information uniformly, providing principled interpretability and creative generation capabilities. We discuss related work in Appendix A.1 and highlight how our approach differs from existing methods.

162 **2 METHOD**
 163

164 **Overview.** We introduce a frequency-informed framework (Fig. 2) that reconstructs images from
 165 fMRI by aligning brain activity with pretrained vision and language representations. The key idea
 166 is to operate in the frequency domain: fMRI signals are projected into the graph Fourier basis of the
 167 brain connectome (Ru  -Queralt et al., 2021), yielding low-, mid-, and high-frequency components.
 168 In parallel, images are decomposed in the Fourier domain and stochastically masked, ensuring that
 169 corresponding frequency bands in brain and vision features can be explicitly aligned. Text captions
 170 provide an additional semantic prior, grounding reconstructions beyond pixel fidelity.

171 To establish this cross-modal alignment, we train three projection layers, each implemented as a
 172 fully connected mapping from graph-spectral fMRI features into pretrained embedding spaces: (i)
 173 low-level visual features from VDVAE, (ii) high-level semantic features from CLIP-Vision, and
 174 (iii) textual embeddings from CLIP-Text. Crucially, these layers perform forward mappings from
 175 brain activity into vision/text feature spaces, allowing fMRI signals to be expressed in the same
 176 representational domains as pretrained models without inverting their encoders.

177 Reconstruction proceeds in a coarse-to-fine manner. First, fMRI-aligned low-level features are de-
 178 coded via VDVAE into an initial image capturing coarse structure and layout. Next, high-level
 179 semantic features and text embeddings are combined with this structural prior within the cross-
 180 attention mechanism of a pretrained Versatile Diffusion model, yielding the final reconstruction.

181 The framework use strong pretrained models (ImageNet(Deng et al., 2009)-pretrained VDVAE,
 182 LAION2B(Schuhmann et al., 2021)-pretrained Versatile Diffusion, and CLIP for text/vision) while
 183 introducing a novel frequency-alignment strategy that links neural, visual, and textual domains. This
 184 design provides both interpretability via frequency-specific mappings, and generative flexibility, en-
 185 abling semantically coherent reconstructions that go beyond pixel-level similarity.

186 **2.1 GRAPH-SPECTRAL fMRI ENCODING**
 187

188 We represent the brain as a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where nodes \mathcal{V} correspond to voxels and edges \mathcal{E}
 189 encode local anatomical or functional relationships. The normalized graph Laplacian is defined
 190 as $\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$, where \mathbf{A} is the adjacency matrix and \mathbf{D} is the degree matrix. Its
 191 eigenvectors \mathbf{U} ($\mathbf{U} \leftarrow \text{eig}(\mathbf{L})$) form the *connectome harmonics* (Atasoy et al., 2016; 2017; Ru  -
 192 Queralt et al., 2021), providing an orthonormal basis for cortical activation patterns. Given an fMRI
 193 activation vector $\mathbf{b} \in \mathbb{R}^{|\mathcal{V}|}$, we project it into the graph spectral domain:

$$\hat{\mathbf{b}} = \mathbf{U}^\top \mathbf{b}, \quad \hat{b}_i = \mathbf{U}_i^\top \mathbf{b}. \quad (1)$$

194 Eigenvectors corresponding to small eigenvalues capture smooth, low-frequency cortical patterns,
 195 while larger eigenvalues encode high-frequency, fine-grained variations. To exploit multi-scale neu-
 196 ral information, we partition the graph spectrum into B_1 frequency bands: $\hat{\mathbf{b}} = [\hat{b}_1, \hat{b}_2, \dots, \hat{b}_{B_1}]$.
 197 To improve robustness and focus on informative frequencies, we apply stochastic *frequency mask-
 198 ing* on the spectral representation. Direct eigendecomposition is computationally expensive for large
 199 graphs; therefore, we approximate graph spectral filtering using Chebyshev polynomials (Hammond
 200 et al., 2011):
 201

$$\mathbf{b}_{\text{filtered}} \approx \sum_{k=0}^{K-1} \theta_k T_k(\tilde{\mathbf{L}}), \quad \tilde{\mathbf{L}} = \frac{2}{\lambda_{\max}} \mathbf{L} - \mathbf{I}, \quad (2)$$

202 where K is the polynomial order, $k = 0, \dots, K-1$ indexes the Chebyshev terms, $T_k(\cdot)$ are Cheby-
 203 shov polynomials, and θ_k are the coefficients for each term. In principle, θ_k are learnable parameters
 204 that can be optimized via gradient descent to emphasize specific graph frequencies. In our current
 205 implementation, we initialize them as uniform values and apply stochastic masking within chosen
 206 bands, providing a computationally efficient yet flexible approximation:

$$\theta_k \leftarrow 0, \quad \forall k \in \mathcal{M}_f, \quad (3)$$

207 where \mathcal{M}_f denotes the set of Chebyshev indices corresponding to the masked frequency band $f \in$
 208 $\{\text{low, mid, high, even}\}$. Masking can target low-, mid-, or high-frequency bands, zeroing a fraction
 209 of coefficients within the chosen band while leaving others intact. Alternatively, *even* masking
 210 randomly zeros coefficients uniformly across all frequencies, without privileging any specific band.

216 This design enables controlled exploration of how distinct spectral components contribute to brain-
 217 to-vision reconstruction.

218 The largest eigenvalue λ_{\max} is estimated via power iteration and used to scale the Laplacian spec-
 219 trum (Mohar et al., 1991) to $[-1, 1]$, ensuring numerical stability for the Chebyshev recursion. Mask
 220 ratio α_1 , number of bands B_1 , and band type f are tunable hyperparameters that allow systematic
 221 exploration of frequency contributions.

222 This approach offers four key advantages: (i) Separating low-, mid-, and high-frequency compo-
 223 nents mirrors the brain’s hierarchy, where early visual areas prefer intermediate frequencies and
 224 higher areas capture global, low-frequency structure. (ii) Chebyshev approximation enables ef-
 225 ficient filtering of both raw and normalized fMRI. Mask ratios and band partitions are tunable,
 226 revealing which cortical scales drive reconstruction. (iii) Frequency-masked fMRI can be directly
 227 matched to image frequency bands, supporting principled low-, mid-, and high-frequency cor-
 228 respondence and enabling reconstructions that are both semantically coherent and imaginative.
 229 (iv) By avoiding full eigendecomposition, the method scales to tens of thousands of voxels while
 230 retaining the ability to explore multi-band interactions, making it practical for large fMRI datasets.

232 2.2 IMAGE FREQUENCY MASKING

233 To enable cross-modal alignment with fMRI signals, we decompose each image $\mathbf{I} \in \mathbb{R}^{H \times W \times C}$ into
 234 its 2D Fourier components:

$$235 \mathbf{F}\{\mathbf{I}\}(u, v) = \sum_{x=0}^{H-1} \sum_{y=0}^{W-1} \mathbf{I}(x, y) e^{-2\pi i(ux/H+vy/W)}, \quad (4)$$

236 where (x, y) are spatial pixel coordinates, (u, v) index spatial frequencies, and H, W are the image
 237 height and width. The resulting spectrum $\mathbf{F}\{\mathbf{I}\} \in \mathbb{C}^{H \times W}$ has the same resolution as the input
 238 image. We partition the frequency spectrum into B_2 bands, grouped into low-, mid-, and high-
 239 frequency ranges. For each band f , we construct a binary mask $\mathbf{M}_f \in \{0, 1\}^{H \times W}$ in the frequency
 240 domain that isolates the desired frequency range. Frequency-filtered reconstructions are then ob-
 241 tained as

$$242 \mathbf{I}_f = \mathbf{F}^{-1}(\mathbf{M}_f \odot \mathbf{F}\{\mathbf{I}\}), \quad f \in \{\text{low, mid, high, even}\}, \quad (5)$$

243 where \odot denotes element-wise multiplication and \mathbf{F}^{-1} is the inverse Fourier transform.

244 During training, stochastic frequency masking is applied to enforce robustness and encourage multi-
 245 scale integration. Masking strategies are defined as follows: low masks primarily low-frequency
 246 bands, mid targets intermediate bands, high masks high-frequency bands, and even randomly masks
 247 coefficients uniformly across all frequency bands without privileging any range. The *mask ratio*
 248 $\alpha_2 \in [0, 1]$ specifies the fraction of coefficients set to zero within the chosen strategy. These hyper-
 249 parameters, along with the number of bands B_2 , are tunable for systematic exploration.

250 This design encourages the network to learn hierarchical visual representations: low frequencies
 251 encode coarse shape and global layout, mid frequencies capture edges and patterns, and high
 252 frequencies represent fine textures. Practically, frequency masking serves as both a regularizer
 253 (preventing overfitting to dominant bands) and as a cross-modal alignment mechanism, directly
 254 matching image frequencies with fMRI graph-spectral bands.

261 2.3 FREQUENCY-ALIGNED PROJECTION

262 A core component of our framework is the set of three frequency-aligned projection layers, which
 263 map graph-spectral fMRI features into pretrained vision and language embedding spaces.

264 **Low-level visual projection.** The first projection layer maps low-frequency fMRI components to
 265 the latent space of a pretrained VDVAE. Formally, let $\mathbf{b}_{\text{low}} \in \mathbb{R}^{|\mathcal{V}|}$ denote the low-frequency graph-
 266 spectral fMRI vector. The low-level projection layer $\Phi_{\text{VDVAE}} : \mathbb{R}^{|\mathcal{V}|} \rightarrow \mathbb{R}^{d_{\text{VDVAE}}}$ is implemented as a
 267 fully connected layer:

$$268 \mathbf{z}_{\text{VDVAE}} = \Phi_{\text{VDVAE}}(\mathbf{b}_{\text{low}}) = \mathbf{W}_{\text{low}} \mathbf{b}_{\text{low}} + \mathbf{b}_{\text{low}}^{\text{bias}}, \quad (6)$$

270 **Algorithm 1** Training frequency-aligned projection layers

271 **Require:** Dataset $\mathcal{D} = \{(b, I, \text{caption})\}$, pretrained models ($\mathcal{D}_{\text{VDVAE}}$, CLIP-V, CLIP-T), projec-
272 tion layers (Φ_{VDVAE} , $\Phi_{\text{CLIP-V}}$, $\Phi_{\text{CLIP-T}}$)

273 1: **for** each batch $(b, I, \text{caption}) \in \mathcal{D}$ **do**

274 2: **Graph-spectral fMRI encoding and masking:**

275 $L = I - D^{-1/2} A D^{-1/2}$, $U \leftarrow \text{eig}(L)$

276 $\hat{b} = U^\top b$, $\{\hat{b}_f\}_{f \in \{\text{low, mid, high}\}}$ partitioned from \hat{b}

277 $b_f \leftarrow \text{ChebyshevApprox}(\hat{b}_f, \{\theta_k\}, \mathcal{M}_f)$

278 3: **Image frequency masking:**

279 $I_f = F^{-1}(M_f \odot F\{I\})$ $f \in \{\text{low, mid, high, even}\}$

280 4: **Extract target embeddings from pretrained models:**

281 $z_{\text{VDVAE}}^{\text{target}} \leftarrow \mathcal{D}_{\text{VDVAE}}(I_{\text{low}})$, $f_{\text{CLIP-V}}^{\text{target}} \leftarrow \text{CLIP-V}(I_{\text{high}})$, $f_{\text{CLIP-T}}^{\text{target}} \leftarrow \text{CLIP-T}(\text{caption})$

282 5: **Compute predicted embeddings via projection layers:**

283 $z_{\text{VDVAE}} \leftarrow \Phi_{\text{VDVAE}}(b_{\text{low}})$, $f_{\text{CLIP-V}} \leftarrow \Phi_{\text{CLIP-V}}(b_{\text{high}})$, $f_{\text{CLIP-T}} \leftarrow \Phi_{\text{CLIP-T}}(b)$

284 6: **Compute frequency-alignment loss:**

285 $\mathcal{L}_{\text{align}} = \|z_{\text{VDVAE}} - z_{\text{VDVAE}}^{\text{target}}\|_2^2 + \|f_{\text{CLIP-V}} - f_{\text{CLIP-V}}^{\text{target}}\|_2^2 + \|f_{\text{CLIP-T}} - f_{\text{CLIP-T}}^{\text{target}}\|_2^2$

286 7: **Update trainable projection layers:**

287
$$\min_{\Phi_{\text{VDVAE}}, \Phi_{\text{CLIP-V}}, \Phi_{\text{CLIP-T}}} \mathcal{L}_{\text{align}}$$

288 8: **end for**

299 where d_{VDVAE} is the dimension of flattened VDVAE latents. The predicted latents z_{VDVAE} are de-
300 coded via the pretrained VDVAE decoder to produce an initial coarse image that captures structural
301 layout and low-level visual patterns.

302 **High-level semantic visual projection.** The second projection layer aligns mid- and high-frequency
303 fMRI components $b_{\text{high}} \in \mathbb{R}^{|\mathcal{V}|}$ with the feature space of a pretrained CLIP-Vision encoder. This
304 layer, $\Phi_{\text{CLIP-V}} : \mathbb{R}^{|\mathcal{V}|} \rightarrow \mathbb{R}^{d_{\text{CLIP-V}}}$, is also implemented as a fully connected layer:

305
$$f_{\text{CLIP-V}} = \Phi_{\text{CLIP-V}}(b_{\text{high}}) = W_{\text{high}} b_{\text{high}} + b_{\text{high}}^{\text{bias}}. \quad (7)$$

306 The predicted visual embeddings $f_{\text{CLIP-V}}$ provide high-level semantic information, such as object
307 identity and scene context, to guide the generative process.

308 **Textual semantic projection.** The third layer maps the full graph-spectral fMRI vector $b \in \mathbb{R}^{|\mathcal{V}|}$
309 to the embedding space of a pretrained CLIP-Text encoder. Denoting this projection as $\Phi_{\text{CLIP-T}} : \mathbb{R}^{|\mathcal{V}|} \rightarrow \mathbb{R}^{d_{\text{CLIP-T}}}$:

310
$$f_{\text{CLIP-T}} = \Phi_{\text{CLIP-T}}(b) = W_{\text{text}} b + b_{\text{text}}^{\text{bias}}, \quad (8)$$

311 these embeddings act as semantic priors, guiding the diffusion model to generate images consistent
312 with conceptual and linguistic content.

313 We train the three frequency-aligned projection layers using a batch-wise procedure that maps graph-
314 spectral fMRI features to pretrained vision and text embeddings while enforcing cross-modal fre-
315 quency alignment (see Algorithm 1).

316 2.4 CROSS-MODAL FUSION VIA VERSATILE DIFFUSION

317 Once the frequency-aligned projection layers produce their respective embeddings, reconstruction is
318 performed via a pretrained Versatile Diffusion (VD) model, which fuses low-level visual, high-level
319 semantic, and textual information through cross-attention.

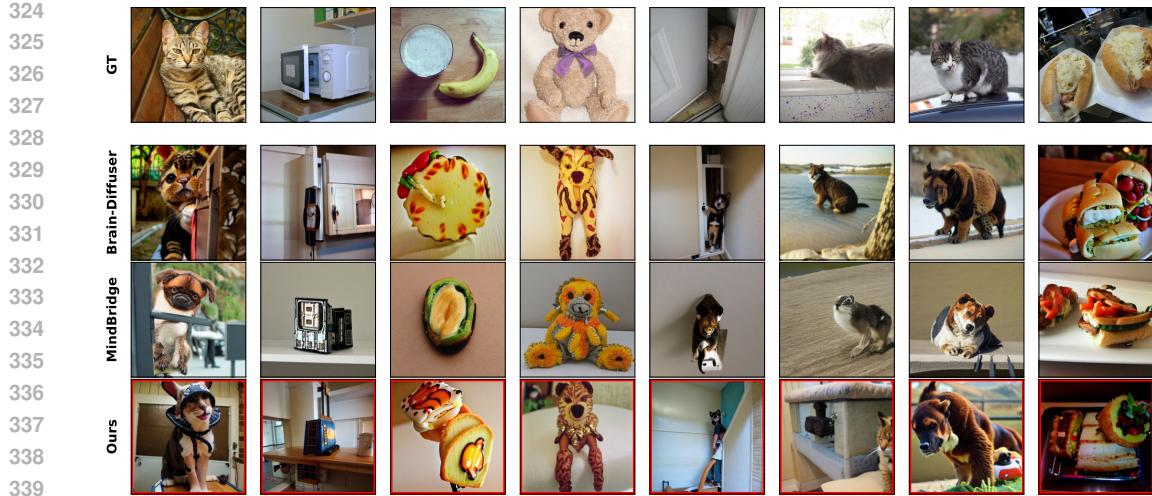


Figure 3: Qualitative comparison of fMRI reconstructions. Our frequency-informed method preserves global layout and fine semantic details better than Brain-Diffuser and MindBridge.

The reconstruction proceeds in a coarse-to-fine manner. The predicted VDVAE latents z_{VDVAE} are decoded via the pretrained VDVAE decoder $\mathcal{D}_{\text{VDVAE}}$ to produce a coarse initial image:

$$\hat{I}_{\text{low}} = \mathcal{D}_{\text{VDVAE}}(z_{\text{VDVAE}}). \quad (9)$$

This image captures global structure and low-frequency visual information corresponding to coarse brain patterns. The coarse image \hat{I}_{low} is encoded by the VD encoder \mathcal{E}_{VD} to obtain low-level visual conditioning features:

$$\mathbf{u}_{\text{im}} = \mathcal{E}_{\text{VD}}(\hat{I}_{\text{low}}), \quad (10)$$

which will be used as conditioning in the diffusion denoising process. In parallel, the high-level semantic and textual embeddings, $\mathbf{f}_{\text{CLIP-V}}$ and $\mathbf{f}_{\text{CLIP-T}}$, provide cross-modal conditioning:

$$\mathbf{c}_{\text{im}} = \mathbf{f}_{\text{CLIP-V}}, \quad \mathbf{c}_{\text{tx}} = \mathbf{f}_{\text{CLIP-T}}. \quad (11)$$

During each denoising step t , the VD U-Net \mathcal{U}_t integrates low-level image features and semantic embeddings through cross-attention:

$$\hat{I}_t = \mathcal{U}_t(\mathbf{x}_t \mid \mathbf{u}_{\text{im}}, \mathbf{c}_{\text{im}}, \mathbf{c}_{\text{tx}}; \lambda_{\text{mix}}), \quad (12)$$

where \mathbf{x}_t is the noisy image at step t , and $\lambda_{\text{mix}} \in [0, 1]$ controls the relative contribution of visual versus textual conditioning. The embeddings $\mathbf{u}_{\text{im}}, \mathbf{c}_{\text{im}}, \mathbf{c}_{\text{tx}}$ enter the U-Net via its frozen cross-attention modules, enabling frequency- and semantics-aware reconstruction. After T denoising steps, the final reconstructed image is

$$\hat{I} = \hat{I}_T, \quad (13)$$

which integrates structural, semantic, and textual information. Preserving frequency-specific alignment ensures that each cortical scale contributes to corresponding visual and textual features, producing interpretable and high-fidelity reconstructions.

Unlike prior approaches (Ozcelik & VanRullen, 2023; Takagi & Nishimoto, 2023) that train per-slot linear regressors, our method implements fully differentiable, end-to-end projection layers. The fusion is performed inside a frozen pretrained diffusion model, preserving the generative prior while allowing explicit control over frequency-aligned brain-to-vision mappings. The use of frequency-specific embeddings ensures that each cortical scale contributes meaningfully to different visual and semantic aspects of reconstructed image, providing both interpretability and reconstruction fidelity.

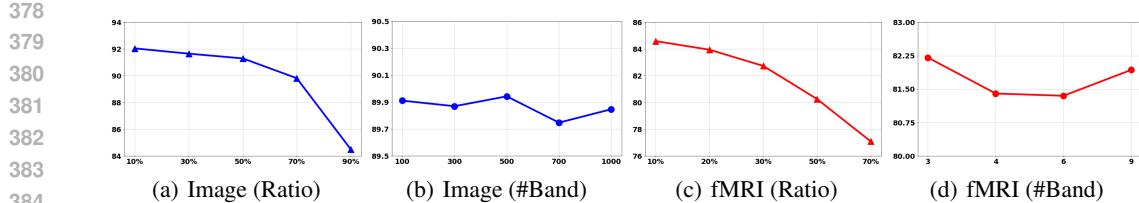


Figure 4: Hyperparameter evaluation of masking ratio and number of frequency bands for input images and fMRI. Vertical axes indicate CLIP score.

3 EXPERIMENT

3.1 SETUP

We conducted experiments using the *Natural Scenes Dataset* (NSD) (Allen et al., 2022), which provides high-resolution 7T fMRI data from subjects viewing thousands of natural images. Following prior work, we selected four participants (subj01, subj02, subj05, subj07) who completed the full protocol and used voxel-wise beta estimates from standard GLM preprocessing with denoising and regularization. Trial-averaging was applied to match previous studies (Ozcelik & VanRullen, 2023).

During training, fMRI inputs were stochastically masked with higher weights on mid-frequency components (20% masking, 4 spectral bands), while image inputs emphasized high-frequency components (10% masking, 500 spectral bands). Experiments ran on two NVIDIA Tesla V100 GPUs (32GB each) and required roughly eight hours. Pretrained generative backbones remained frozen, with only the projection layers from brain activity to latent feature spaces optimized, ensuring controlled, reproducible evaluation and computational efficiency.

3.2 EVALUATION

Hyperparameter evaluation. Fig. 4 presents the effect of masking ratio and number of frequency bands on reconstruction quality. For images, increasing the masking ratio consistently reduces the CLIP score, and a similar trend is observed for fMRI. We find the optimal number of bands to be 500 for images, while for fMRI, performance peaks at bands 3 and 9. This disparity highlights the greater difficulty of modeling fMRI signals compared to images.

Qualitative comparison of reconstructions. Figure 3 compares our method against Brain-Diffuser (Ozcelik & VanRullen, 2023) and MindBridge (Wang et al., 2024) across diverse stimuli. While baseline methods capture either coarse structure (Brain-Diffuser) or semantic plausibility (MindBridge), they often fail to preserve both simultaneously. Brain-Diffuser tends to produce visually coherent but semantically ambiguous generations (*e.g.*, distorted fruit and plush toys), whereas MindBridge frequently yields semantically biased reconstructions (*e.g.*, generic dogs for cats) that neglect global layout.

In contrast, our frequency-informed framework achieves more faithful and interpretable reconstructions. By explicitly aligning fMRI graph-spectral components with visual frequency bands, our model preserves coarse scene layout (*e.g.*, spatial arrangement of kitchen appliances, cat positions on windowsills) while also capturing fine semantic details (*e.g.*, feline identity, stuffed toy texture, sandwich ingredients). Integration of semantic priors via CLIP-Text and CLIP-Vision further grounds generation, avoiding mode collapse toward overly generic categories. Notably, our reconstructions show creative reinterpretations that remain consistent with neural input, demonstrating how frequency-guided alignment enables reconstructions that are not only perceptually accurate but also imaginative, reflecting the interpretive nature of human vision.

Insights from image frequency masking. Table 1 demonstrates that frequency-specific masking strongly influences fMRI-to-image reconstruction. High-frequency inputs yield the best low-level and semantic fidelity, capturing fine details and object-specific attributes, while low- and mid-frequency inputs primarily encode coarse layout and global scene structure. Mismatched inputs (Low-High, High-Low) highlight the complementary roles of different frequencies: combining low-frequency structural information with high-frequency semantic features balances layout preservation

Image masked		Low-Level				High-Level			
VDVAE	CLIP-V	PixCorr \uparrow	SSIM \uparrow	AlexNet(2) \uparrow	AlexNet(5) \uparrow	Inception \uparrow	CLIP \uparrow	EffNet-B \downarrow	SwAV \downarrow
Low	Low	0.250	0.289	92.1%	95.0%	85.1%	88.2%	0.828	0.488
Mid	Mid	0.298	0.346	95.5%	96.9%	88.0%	91.3%	0.792	0.439
High	High	0.309	0.357	96.4%	97.2%	88.3%	92.2%	0.771	0.421
Even	Even	0.288	0.332	94.8%	96.5%	87.0%	90.7%	0.803	0.453
Low	High	0.273	0.323	94.8%	96.7%	88.3%	92.0%	0.777	0.426
High	Low	0.313	0.335	94.1%	96.1%	85.8%	88.5%	0.818	0.476

432

433 Table 1: Ablation study on image frequency masking for VDVAE and CLIP-Vision inputs. Six
 434 masking strategies are evaluated using low- and high-level metrics. Results show that frequency-
 435 specific masking affects both structural fidelity and semantic alignment, highlighting the distinct
 436 contributions of spatial frequency bands to reconstruction quality.

437

Brain-to-Vision		Low-Level				High-Level			
fMRI	VDVAE-CLIP-V	PixCorr \uparrow	SSIM \uparrow	AlexNet(2) \uparrow	AlexNet(5) \uparrow	Inception \uparrow	CLIP \uparrow	EffNet-B \downarrow	SwAV \downarrow
Low	High-High	0.201	0.335	88.0%	90.7%	79.6%	85.4%	0.851	0.488
Low	Low-High	0.167	0.291	84.3%	89.1%	79.2%	85.4%	0.859	0.498
Mid	High-High	0.201	0.334	87.3%	90.9%	80.0%	85.7%	0.853	0.488
Mid	Low-High	0.165	0.291	83.5%	88.7%	80.0%	84.8%	0.861	0.497
High	High-High	0.196	0.333	86.8%	90.6%	79.2%	85.1%	0.859	0.490
High	Low-High	0.162	0.288	83.5%	88.4%	78.8%	84.4%	0.864	0.502
Even	High-High	0.190	0.333	85.8%	89.3%	78.6%	84.9%	0.860	0.496
Even	Low-High	0.157	0.289	81.9%	87.4%	78.5%	84.3%	0.866	0.505

451

452 Table 2: Ablation study on graph-spectral fMRI encoding and brain-to-vision alignment. Different
 453 fMRI frequency bands (Low, Mid, High, Even) are tested with VDVAE-CLIP-V input configurations
 454 (High-High, Low-High). Results show that aligning neural and visual frequencies improves both
 455 structural and semantic reconstruction, showing how distinct cortical bands contribute to perceptual
 456 and conceptual aspects of visual experience.

457

458

459 and object identity. Even masking performs moderately, underscoring the importance of selective
 460 frequency alignment. These results provide evidence that our frequency-guided framework effec-
 461 tively leverages cortical graph-spectral signals to reconstruct both structural and semantic aspects of
 462 stimuli, producing images that preserve global organization, capture meaningful object features, and
 463 allow creative reinterpretation, revealing how the brain encodes and reconstructs visual experience
 464 beyond pixel-level replication.

465 **Impact of neural frequency alignment.** Table 2 shows the impact of graph-spectral fMRI encod-
 466 ing on brain-to-vision reconstruction. High-frequency fMRI components generally improve both
 467 low-level structural metrics and high-level semantic metrics, while low- and mid-frequency bands
 468 contribute more to coarse layout and scene organization. Comparing VDVAE-CLIP-V input config-
 469 urations, High-High consistently outperforms Low-High, indicating that aligning brain and visual
 470 frequency bands enhances reconstruction fidelity. These results highlight the complementary roles
 471 of neural frequency bands: low frequencies support global structure, high frequencies capture fine
 472 details and semantic content, and their alignment enables images that reflect both perceptual accu-
 473 racy and creative reinterpretation of visual experience.

474

475

4 CONCLUSION

477

478 We introduced a frequency-informed framework for fMRI-to-image reconstruction that aligns neu-
 479 ral, visual, and semantic representations across low-, mid-, and high-frequency components. By
 480 combining graph-spectral fMRI encoding, masked image frequency modeling, and lightweight pro-
 481 jections into pretrained VDVAE, CLIP, and diffusion models, our approach achieves coarse-to-fine
 482 reconstructions that preserve global layout, capture object details, and enable creative reinterpreta-
 483 tion. Ablation studies show that different neural frequencies contribute complementary information,
 484 and aligning cortical and visual frequencies enhances both structural and semantic fidelity. Overall,
 485 our work reframes fMRI decoding as a study of how the brain perceives and imagines, producing
 486 interpretable, semantically rich, and creatively informed reconstructions.

486 REFERENCES
487

488 Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle,
489 Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset to bridge
490 cognitive neuroscience and artificial intelligence. *Nature neuroscience*, 25(1):116–126, 2022.

491 Selen Atasoy, Isaac Donnelly, and Joel Pearson. Human brain networks function in connectome-
492 specific harmonic waves. *Nature communications*, 7(1):10340, 2016.

493 Selen Atasoy, Leor Roseman, Mendel Kaelen, Morten L Kringelbach, Gustavo Deco, and Robin L
494 Carhart-Harris. Connectome-harmonic decomposition of human brain activity reveals dynamical
495 repertoire re-organization under lsd. *Scientific reports*, 7(1):17661, 2017.

496 Felix Bartsch, Bruce G Cumming, and Daniel A Butts. Model-based characterization of the selec-
497 tivity of neurons in primary visual cortex. *Journal of Neurophysiology*, 128(2):350–363, 2022.

498 Roman Beliy, Guy Gaziv, Assaf Hoogi, Francesca Strappini, Tal Golan, and Michal Irani. From
499 voxels to pixels and back: Self-supervision in natural-image reconstruction from fmri. *Advances
500 in Neural Information Processing Systems*, 32, 2019.

501 William F Broderick, Eero P Simoncelli, and Jonathan Winawer. Mapping spatial frequency prefer-
502 ences across human primary visual cortex. *Journal of Vision*, 22(4):3–3, 2022.

503 Hugo Caselles-Dupré, Charles Mellerio, Paul Hérent, Alizée Lopez-Persem, Benoit Béranger, Math-
504 ieu Soularue, Pierre Fautrel, Gauthier Vernier, and Matthieu Cord. Mind-to-image: Projecting
505 visual mental imagination of the brain from fmri. *arXiv preprint arXiv:2404.05468*, 2024.

506 Catie Chang and Jingyuan E Chen. Multimodal eeg-fmri: advancing insight into large-scale human
507 brain dynamics. *Current opinion in biomedical engineering*, 18:100279, 2021.

508 Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou. Seeing beyond the
509 brain: Conditional diffusion model with sparse masked modeling for vision decoding. In *Pro-
510 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22710–
511 22720, 2023.

512 Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on images.
513 *arXiv preprint arXiv:2011.10650*, 2020.

514 Yuqin Dai, Zhouheng Yao, Chunfeng Song, Qihao Zheng, Weijian Mai, Kunyu Peng, Shuai Lu,
515 Wanli Ouyang, Jian Yang, and Jiamin Wu. Mindaligner: Explicit brain functional alignment for
516 cross-subject visual decoding from limited fmri data. *arXiv preprint arXiv:2502.05034*, 2025.

517 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
518 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
519 pp. 248–255. Ieee, 2009.

520 Matteo Ferrante, Tommaso Boccato, Furkan Ozcelik, Rufin VanRullen, and Nicola Toschi. Multi-
521 modal decoding of human brain activity into images and text. In *UniReps: the First Workshop on
522 Unifying Representations in Neural Models*, 2023.

523 Matteo Ferrante, Tommaso Boccato, Luca Passamonti, and Nicola Toschi. Retrieving and recon-
524 structing conceptually similar images from fmri with latent diffusion models and a neuro-inspired
525 brain decoding model. *Journal of Neural Engineering*, 21(4):046001, 2024.

526 Wendel M Friedl and Andreas Keil. Effects of experience on spatial frequency tuning in the visual
527 system: behavioral, visuocortical, and alpha-band responses. *Journal of Cognitive Neuroscience*,
528 32(6):1153–1169, 2020.

529 Zixuan Gong, Qi Zhang, Guangyin Bao, Lei Zhu, Rongtao Xu, Ke Liu, Liang Hu, and Duoqian
530 Miao. Mindtuner: Cross-subject visual decoding with visual fingerprint and semantic correction.
531 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 14247–14255,
532 2025.

540 Junhao Guo, Chanlin Yi, Fali Li, Peng Xu, and Yin Tian. Mindldm: Reconstruct visual stimuli from
 541 fmri using latent diffusion model. In *2024 IEEE International Conference on Computational*
 542 *Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)*,
 543 pp. 1–6. IEEE, 2024.

544 David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
 545 graph theory. *Applied and Computational Harmonic Analysis*, 30(2):129–150, 2011.

546 Inhwa Han, Jaayeon Lee, and Jong Chul Ye. Mindformer: Semantic alignment of multi-subject fmri
 547 for brain decoding. *arXiv preprint arXiv:2405.17720*, 2024.

548 Jingyang Huo, Yikai Wang, Yun Wang, Xuelin Qian, Chong Li, Yanwei Fu, and Jianfeng Feng.
 549 Neuropictor: Refining fmri-to-image reconstruction via multi-individual pretraining and multi-
 550 level modulation. In *European Conference on Computer Vision*, pp. 56–73. Springer, 2024.

551 Jung-Hoon Kim, Yizhen Zhang, Kuan Han, Zheyu Wen, Minkyu Choi, and Zhongming Liu. Rep-
 552 resentation learning of resting state fmri with variational autoencoder. *NeuroImage*, 241:118423,
 553 2021.

554 Chong Li, Xuelin Qian, Yun Wang, Jingyang Huo, Xiangyang Xue, Yanwei Fu, and Jianfeng Feng.
 555 Enhancing cross-subject fmri-to-video decoding with global-local functional alignment. In *Euro-
 556 pean Conference on Computer Vision*, pp. 353–369. Springer, 2024.

557 Chongyi Li, Chun-Le Guo, Man Zhou, Zhexin Liang, Shangchen Zhou, Ruicheng Feng, and
 558 Chen Change Loy. Embedding fourier for ultra-high-definition low-light image enhancement.
 559 *arXiv preprint arXiv:2302.11831*, 2023.

560 Jinduo Liu, Lu Han, and Junzhong Ji. Mcan: multimodal causal adversarial networks for dynamic
 561 effective connectivity learning from fmri and eeg data. *IEEE Transactions on Medical Imaging*,
 562 43(8):2913–2923, 2024a.

563 Yulong Liu, Yongqiang Ma, Guibo Zhu, Haodong Jing, and Nanning Zheng. See through their
 564 minds: Learning transferable neural representation from cross-subject fmri. *arXiv preprint
 565 arXiv:2403.06361*, 2024b.

566 Bojan Mohar, Y Alavi, G Chartrand, and Ortrud Oellermann. The laplacian spectrum of graphs.
 567 *Graph theory, combinatorics, and applications*, 2(871-898):12, 1991.

568 Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using genera-
 569 tive latent diffusion. *Scientific Reports*, 13(1):15666, 2023.

570 Furkan Ozcelik, Bhavin Choksi, Milad Mozafari, Leila Reddy, and Rufin VanRullen. Reconstruction
 571 of perceived images from fmri patterns and semantic brain exploration using instance-conditioned
 572 gans. In *2022 international joint conference on neural networks (IJCNN)*, pp. 1–8. IEEE, 2022.

573 Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, Joseph Schmidt, and
 574 Mubarak Shah. Decoding brain representations by multimodal learning of neural activity and
 575 visual features. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(11):3833–
 576 3849, 2020.

577 Ning Qiang, Qinglin Dong, Hongtao Liang, Bao Ge, Shu Zhang, Yifei Sun, Cheng Zhang, Wei
 578 Zhang, Jie Gao, and Tianming Liu. Modeling and augmenting of fmri data using deep recurrent
 579 variational auto-encoder. *Journal of neural engineering*, 18(4):0460b6, 2021.

580 Weikang Qiu, Zheng Huang, Haoyu Hu, Aosong Feng, Yujun Yan, and Rex Ying. Mindllm: A
 581 subject-agnostic and versatile model for fmri-to-text decoding. *arXiv preprint arXiv:2502.15786*,
 582 2025.

583 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 584 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 585 models from natural language supervision. In *International conference on machine learning*, pp.
 586 8748–8763. PMLR, 2021.

594 Zarina Rakhimberdina, Quentin Jodelet, Xin Liu, and Tsuyoshi Murata. Natural image reconstruc-
 595 tion from fmri using deep learning: A survey. *Frontiers in neuroscience*, 15:795488, 2021.
 596

597 Joan Rué-Queralt, Katharina Glomb, David Pascucci, Sebastien Tourbier, Margherita Carboni, Serge
 598 Vulliémoz, Gijs Plomp, and Patric Hagmann. The connectome spectrum as a canonical basis for
 599 a sparse representation of fast brain activity. *NeuroImage*, 244:118611, 2021.

600 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 601 Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
 602 clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.
 603

604 Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster,
 605 Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the
 606 mind’s eye: fmri-to-image with contrastive learning and diffusion priors. *Advances in Neural
 607 Information Processing Systems*, 36:24705–24728, 2023.

608 Paul S Scotti, Mihir Tripathy, Cesar Kadir Torrico Villanueva, Reese Kneeland, Tong Chen,
 609 Ashutosh Narang, Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman,
 610 et al. Mindeye2: Shared-subject models enable fmri-to-image with 1 hour of data. *arXiv preprint
 611 arXiv:2403.11207*, 2024.

612 Yu Takagi and Shinji Nishimoto. High-resolution image reconstruction with latent diffusion models
 613 from human brain activity. In *Proceedings of the IEEE/CVF conference on computer vision and
 614 pattern recognition*, pp. 14453–14463, 2023.

615 Eowyn Van de Putte, Wouter De Baene, Cathy J Price, and Wouter Duyck. Neural overlap of
 616 l1 and l2 semantic representations across visual and auditory modalities: a decoding approach.
 617 *Neuropsychologia*, 113:68–77, 2018.

618 Shizun Wang, Songhua Liu, Zhenxiong Tan, and Xinchao Wang. Mindbridge: A cross-subject
 619 brain decoding framework. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 620 Pattern Recognition*, pp. 11333–11342, 2024.

621 Zheng Wang, Zhenwei Gao, Guoqing Wang, Yang Yang, and Heng Tao Shen. Visual embedding
 622 augmentation in fourier domain for deep metric learning. *IEEE Transactions on Circuits and
 623 Systems for Video Technology*, 33(10):5538–5548, 2023.

624 Weihao Xia, Raoul de Charette, Cengiz Oztireli, and Jing-Hao Xue. Umbrae: Unified multimodal
 625 brain decoding. In *European Conference on Computer Vision*, pp. 242–259. Springer, 2024.

626 Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion:
 627 Text, images and variations all in one diffusion model. In *Proceedings of the IEEE/CVF interna-
 628 tional conference on computer vision*, pp. 7754–7765, 2023.

629 Yangyang Xu, Bangzhen Liu, Wenqi Shao, Yong Du, Shengfeng He, and Tingting Zhu. Cross-
 630 subject mind decoding from inaccurate representations. *arXiv preprint arXiv:2507.19071*, 2025.

631 Fengyu Yang, Chao Feng, Daniel Wang, Tianye Wang, Ziyao Zeng, Zhiyang Xu, Hyoungseob Park,
 632 Pengliang Ji, Hanbin Zhao, Yuanning Li, et al. Neurobind: Towards unified multimodal repres-
 633 entations for neural signals. *arXiv preprint arXiv:2407.14020*, 2024.

634 Jacob Yeung, Andrew F Luo, Gabriel Sarch, Margaret M Henderson, Deva Ramanan, and Michael J
 635 Tarr. Reanimating images using neural representations of dynamic stimuli. In *Proceedings of the
 636 Computer Vision and Pattern Recognition Conference*, pp. 5331–5343, 2025.

637 Muzhou Yu, Shuyun Lin, Lei Ma, Bo Lei, and Kaisheng Ma. Mindcustomer: Multi-context im-
 638 age generation blended with brain signal. In *Forty-second International Conference on Machine
 639 Learning*, 2025a.

640 Muzhou Yu, Shuyun Lin, Hongwei Yan, and Kaisheng Ma. Mindpainter: Efficient brain-conditioned
 641 painting of natural images via cross-modal self-supervised learning. In *Proceedings of the AAAI
 642 Conference on Artificial Intelligence*, volume 39, pp. 14468–14476, 2025b.

648 Bohan Zeng, Shanglin Li, Xuhui Liu, Sicheng Gao, Xiaolong Jiang, Xu Tang, Yao Hu, Jianzhuang
 649 Liu, and Baochang Zhang. Controllable mind visual diffusion model. In *Proceedings of the AAAI*
 650 *conference on artificial intelligence*, volume 38, pp. 6935–6943, 2024.

651
 652 Xiaodi Zhang, Eric A Maltbie, and Sheila D Keilholz. Spatiotemporal trajectories in resting-state
 653 fmri revealed by convolutional variational autoencoder. *NeuroImage*, 244:118588, 2021.

654 655 A APPENDIX

656 A.1 RELATED WORK

657
 658
 659 **Diffusion-based fMRI-to-image reconstruction.** Deep generative models have driven recent ad-
 660 vances in reconstructing naturalistic images from fMRI. Brain-Diffuser (Ozcelik & VanRullen,
 661 2023) introduces a two-stage pipeline: a VDVAE produces a coarse visual layout from fMRI, and a
 662 Versatile Diffusion model conditioned on CLIP features refines semantic details. Similarly, Mind-
 663 Eye (Scotti et al., 2023) maps fMRI activity into CLIP image embeddings and leverages diffusion
 664 priors, while MindEye2 (Scotti et al., 2024) pretrains across subjects and fine-tunes a Stable Dif-
 665 fusion XL unCLIP decoder for efficient subject-specific adaptation. NeuroPictor (Huo et al., 2024)
 666 further modulates diffusion using fMRI, combining shared multi-subject pretraining with semantic
 667 and structural conditioning. Our work differs in three key aspects. First, instead of uniformly pro-
 668 cessing neural signals, we decompose fMRI into frequency-specific graph modes and align them
 669 with corresponding image frequency bands using masked frequency modeling. Second, we incor-
 670 porate pretrained VDVAE and CLIP encoders without finetuning, training only three lightweight
 671 frequency-aligned projection layers: a low-level hierarchical brain-to-vision layer for coarse visual
 672 structures, a high-level semantic brain-to-vision layer for abstract features, and a brain-to-text align-
 673 ment layer for semantic guidance. Third, this design enables coarse-to-fine reconstruction while
 674 maintaining interpretability of which frequency components drive the generated image.

675
 676 **Cross-subject brain decoding.** Aligning fMRI representations across participants is a major chal-
 677 lenge. MindBridge (Wang et al., 2024) uses adaptive max-pooling and cyclic reconstruction loss for
 678 subject-invariant embeddings, while MindAligner (Dai et al., 2025) learns an explicit Brain Trans-
 679 fer Matrix with multi-level functional alignment to project fMRI from any subject into a reference
 680 space. Xu *et al.* (Xu et al., 2025) propose a bidirectional autoencoder with subject-bias modu-
 681 lation and semantic refinement for ControlNet+Stable Diffusion generation. MindCustomer (Yu
 682 et al., 2025a) integrates brain signals with external visual context using an image-brain translator
 683 and mask-free fusion. Our approach achieves cross-subject generalization differently. By lever-
 684 aging graph spectral transforms, we project all subjects’ fMRI into a shared frequency-informed
 685 latent space. This representation is more interpretable and potentially more transferable than im-
 686 plicit cycle-consistency or explicit mapping matrices, while remaining focused on brain-to-vision
 687 reconstruction. Frequency alignment is naturally preserved across subjects, and semantic guidance
 688 is injected via the brain-to-text projection layer.

689
 690 **Multimodal brain-conditioned generation.** Beyond single-modality decoding, some approaches
 691 (Yang et al., 2024; Chang & Chen, 2021; Liu et al., 2024a; Ferrante et al., 2023) fuse brain activity
 692 with other inputs to enhance generation. MindCustomer (Yu et al., 2025a) synthesizes fMRI re-
 693 sponses alongside external images or text for few-shot cross-subject adaptation. NeuroPictor (Huo
 694 et al., 2024) also incorporates shared semantic features to guide decoding. Our framework pro-
 695 vides a complementary perspective. Rather than blending brain signals with external inputs, we
 696 emphasize the intrinsic frequency structure of fMRI and its direct alignment with image frequency
 697 bands. Text embeddings act as a semantic prior via the brain-to-text projection layer, interacting with
 698 frequency-masked fMRI to guide generation. This design improves reconstruction fidelity, preserves
 699 interpretability, and enables creative, semantically enriched outputs, reflecting the interpretive and
 700 imaginative aspects of human visual cognition.

701 A.2 ADDITIONAL VISUALIZATIONS

702 Fig. 5 illustrates the effectiveness of our frequency-guided alignment strategy in reconstruc-
 703 tion visual experiences from fMRI signals. The results highlight a complementary relationship between
 704 low-level and high-level reconstructions. Low-level outputs preserve coarse structural elements,

Figure 5: fMRI-to-image reconstruction with frequency-guided alignment. Low-level reconstructions capture coarse structures and layouts, while high-level reconstructions yield more realistic and semantically rich images.

such as object layout and spatial arrangement, providing a faithful representation of the global scene. In contrast, high-level reconstructions capture richer semantic content, producing more realistic and imaginative images that better align with human visual perception.

This dual-level reconstruction reveals two important insights. First, frequency-guided alignment enables a progressive refinement process: low-frequency components anchor the reconstruction with reliable structural cues, while high-frequency components enrich the result with semantic and contextual details. Second, the differences between low- and high-level reconstructions underscore the inherent challenge of decoding fMRI signals, where low-level alignment is more directly grounded in the neural signal, but high-level reconstruction benefits from the model’s ability to leverage prior knowledge.

These results demonstrate that our method not only recovers structural information from neural data but also bridges toward semantically meaningful interpretations, offering a more complete understanding of how brain activity maps to perceived visual content.

A.3 LLM USAGE DECLARATION

We disclose the use of Large Language Models (LLMs) as general-purpose assistive tools during the preparation of this manuscript. LLMs were used only for minor tasks such as grammar and style improvement, code verification, and formatting suggestions. No scientific ideas, analyses, experimental designs, or conclusions were generated by LLMs. All core research, methodology, experiments, and results were performed and fully verified by the authors.

The authors take full responsibility for all content presented in this paper, including text or code suggestions that were refined with the assistance of LLMs. No content generated by LLMs was treated as original scientific work, and all references and claims have been independently verified. LLMs did not contribute in a manner that would qualify them for authorship.