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ABSTRACT

Reconstructing images from fMRI has traditionally been framed as maximizing
pixel fidelity to visual input. While useful for benchmarking, this perspective
overlooks what brain signals truly encode: not only perception, but also abstrac-
tion, semantics, and imagination. We introduce a frequency-informed framework
for brain-to-vision generation that shifts the objective from replication to creative
alignment across neural and visual domains. Our method applies graph spec-
tral transforms to fMRI signals and masked frequency modeling to images, en-
abling coarse-to-fine reconstruction by selectively aligning low-, mid-, and high-
frequency structures. To ground generation in meaning, we incorporate semantic
priors via CLIP-text embeddings and multi-level visual features, with attention
mechanisms that allow frequency-masked brain signals to interact with both re-
constructions and textual cues. The model integrates pretrained VDVAE, CLIP,
and diffusion backbones, while introducing three novel frequency-aligned pro-
jection layers: (i) a low-level hierarchical brain-to-vision layer, (ii) a high-level
semantic brain-to-vision layer, and (iii) a brain-to-text alignment layer. The re-
sulting generations may deviate from pixel-level ground truth yet capture emer-
gent structures that show how the brain creatively encodes and reinterprets visual
experience. By bridging frequency structures across neural, visual, and seman-
tic modalities, our approach reframes fMRI-to-image reconstruction as a study of
how humans perceive, imagine, and create, beyond simple replication.

1 INTRODUCTION

Decoding visual experiences from brain activity is a longstanding challenge at the intersection of
neuroscience and machine learning. Functional MRI (fMRI) provides only an indirect, noisy mea-
sure of neural processes, while natural images embody rich multi-scale structure (Rakhimberdina
et al., [2021). Bridging these heterogeneous representations is central not only to advancing brain-
computer interfaces, but also to probing how the brain encodes perception, imagination, and ab-
straction. Recent progress in deep generative modeling has dramatically advanced this task (Ozcelik
et al., [2022; |Caselles-Dupré et al., 2024; |Allen et al., 2022). By mapping neural activity into the
latent space of large pretrained generators such as variational autoencoders (VAEs) or diffusion
models, researchers have produced reconstructions of naturalistic faces, objects, and scenes from
fMRI with unprecedented fidelity (Kim et al.,|2021;|Qiang et al., [2021};|Zhang et al.,[2021]).

Latent diffusion models, in particular, have enabled highly naturalistic reconstructions by coupling
coarse visual predictions with semantic refinement. Ozcelik and VanRullen (2023) introduced the
Brain-Diffuser (Ozcelik & VanRullen, [2023)) pipeline, in which a Very-Deep VAE (VDVAE) (Child,
2020) provides a coarse stimulus approximation, later refined by a CLIP(Radford et al., 2021)-
conditioned diffusion model. Takagi and Nishimoto (2023) further demonstrated that direct mapping
of fMRI signals into the latent space of a pretrained Stable Diffusion model yields reconstructions
that are semantically faithful and visually sharp at 512x512 resolution (Takagi & Nishimoto}|[2023),
without finetuning the generator itself. While powerful, these approaches share a crucial limitation:
they treat all image information uniformly, ignoring the brain’s own frequency-specific organization.
Neuroscience evidence (Broderick et al.,[2022} [Bartsch et al., [2022}; [Friedl & Keill,[2020) shows that
visual cortex is selectively tuned to spatial frequency bands, from low-frequency global layout to
high-frequency fine detail, yet current decoders (Ozcelik & VanRullen, 2023} |Wang et al., 2024;
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Figure 1: fMRI-to-image reconstruction with frequency-guided alignment. Comparison of four
state-of-the-art methods (MindAligner, Brain-Diffuser, MindEye2, MindBridge) with our frame-
work (Ours, red box). Prior methods often blur fine details, misrepresent object identity, or fail to
capture semantic context. In contrast, our approach preserves global layout (e.g., tennis court lines),
captures object identity and distinctive attributes (e.g., bear shape, clock tower silhouette, vase of
flowers), and allows creative reinterpretation, reflecting how the brain encodes and reconstructs vi-
sual experience. By explicitly aligning neural, visual, and semantic frequency structures, our method
goes beyond pixel-level replication to reveal emergent patterns in perception and imagination.

2019) collapse these heterogeneous signals into a single latent representation, diluting
their interpretability and biological plausibility.

We introduce a frequency-informed framework for brain-to-vision generation that closes this gap
by explicitly aligning the spectral structures of neural, visual, and semantic modalities
et al} 2020} [Van de Putte et al.| [2018). On the neural side, we apply a graph spectral transform to
fMRI data, embedding voxel activations into frequency components defined on the cortical graph.
This decomposition yields low-, mid-, and high-frequency graph modes that compactly capture
the brain’s representational hierarchy. On the visual side, we adopt masked frequency modeling,
dynamically filtering Fourier components (Wang et al.,[2023} [Li et al, 2023) of image embeddings
to emphasize the scales most relevant to neural graph frequencies. By doing so, our method performs
brain-to-image reconstruction in a coarse-to-fine manner, selectively aligning brain graph modes
with visual spatial frequencies.

Crucially, our approach does not rely on finetuning large generative backbones. Instead, we reuse

pretrained VDVAE (Child} [2020), CLIP-Vision (Radford et al. [2021)), CLIP-Text (Radford et al,

[2021), and diffusion modules 2023), and introduce three lightweight frequency-aligned
projection layers that mediate cross-modal alignment. The low-level hierarchical brain-to-vision

layer aligns masked fMRI signals with hierarchical probabilistic features extracted by the VD-
VAE encoder, capturing coarse structures and layouts. The high-level semantic brain-to-vision layer
aligns masked fMRI signals with deterministic semantic features from the CLIP-Vision encoder, en-
suring consistency with higher-order object and scene information. Finally, the brain-to-text align-
ment layer connects masked fMRI signals to CLIP-Text embeddings, allowing language priors to
guide generation toward coherent and imaginative reconstructions. This design preserves the expres-
sive power of pretrained models while introducing a biologically grounded adaptation that connects
neural, visual, and semantic spaces.

Beyond replication of ground-truth stimuli, our framework reframes fMRI-to-image reconstruction
as a problem of creative alignment. By conditioning on frequency-masked brain signals, enriched
with textual priors, our model generates reconstructions that are both coherent and imaginative,
revealing emergent structures that reflect the interpretive nature of human vision. Fig. [T] shows
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Figure 2: Overview of our frequency-informed brain-to-vision framework. (a) Training: fMRI is
decomposed into graph-spectral frequency bands and mapped through three projection layers: (i)
low-level projector fMRI—VDVAE), (ii) high-level projector (fMRI—CLIP-Vision), and (iii) tex-
tual projector (fMRI—CLIP-Text), aligned with frequency-masked images and captions. (b) Fusion:
the three projected features condition a pretrained diffusion model via cross-attention followed by a
weighted fusion, combining structural layout (low-level), semantic content (high-level), and textual
priors. (c) Inference: given new fMRI inputs, the trained projections yield reconstructions that are
semantically coherent and imaginative, going beyond pixel-level replication.

our method preserves layout, captures object identity, and enables creative reinterpretation beyond
pixel-level replication. In summary, our contributions are threefold:

i. Frequency-guided neural representation. We introduce the use of graph spectral transforms
to project fMRI into frequency components, yielding a structured decomposition that parallels
visual frequency representations.

ii. Cross-modal frequency alignment. We propose masked frequency modeling for images and
demonstrate that selective alignment between brain graph modes and visual spatial frequencies
improves fidelity, interpretability, and robustness of reconstructions.

iii. Lightweight multimodal alignment layers. We show that training only three projection lay-
ers: low-level (fMRI-VDVAE), high-level (fMRI-CLIP-Vision), and brain-to-text (fMRI-CLIP-
Text), on top of frozen pretrained backbones enables reconstructions that are faithful yet cre-
ative, reframing brain decoding as exploration rather than mere replication.

Prior work on fMRI-to-image reconstruction spans diffusion-based methods (Guo et al., [2024; [Fer-
rante et al., 2024; Chen et al.l 2023} [Zeng et al.l 2024)), cross-subject alignment (Li et al., 2024;
Gong et al.,[2025; Han et al., |2024; [Liu et al., 2024b), and multimodal brain-conditioned generation
(Xia et al., [2024; [Yu et al.| 2025b; |Qiu et al.l 2025} | Yeung et al., 2025)). Our contribution introduces
a frequency-informed framework that explicitly bridges fMRI graph spectra with image frequency
bands and semantic priors, while training only three lightweight projection layers. This distinguishes
our approach from prior methods that treat all image information uniformly, providing principled
interpretability and creative generation capabilities. We discuss related work in Appendix [A:T]and
highlight how our approach differs from existing methods.
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2 METHOD

Overview. We introduce a frequency-informed framework (Fig. [2) that reconstructs images from
fMRI by aligning brain activity with pretrained vision and language representations. The key idea
is to operate in the frequency domain: fMRI signals are projected into the graph Fourier basis of the
brain connectome (Rué-Queralt et al.,|[2021)), yielding low-, mid-, and high-frequency components.
In parallel, images are decomposed in the Fourier domain and stochastically masked, ensuring that
corresponding frequency bands in brain and vision features can be explicitly aligned. Text captions
provide an additional semantic prior, grounding reconstructions beyond pixel fidelity.

To establish this cross-modal alignment, we train three projection layers, each implemented as a
fully connected mapping from graph-spectral fMRI features into pretrained embedding spaces: (i)
low-level visual features from VDVAE, (ii) high-level semantic features from CLIP-Vision, and
(iii) textual embeddings from CLIP-Text. Crucially, these layers perform forward mappings from
brain activity into vision/text feature spaces, allowing fMRI signals to be expressed in the same
representational domains as pretrained models without inverting their encoders.

Reconstruction proceeds in a coarse-to-fine manner. First, fMRI-aligned low-level features are de-
coded via VDVAE into an initial image capturing coarse structure and layout. Next, high-level
semantic features and text embeddings are combined with this structural prior within the cross-
attention mechanism of a pretrained Versatile Diffusion model, yielding the final reconstruction.

The framework use strong pretrained models (ImageNet(Deng et al., |2009)-pretrained VDVAE,
LAION2B(Schuhmann et al.l 2021)-pretrained Versatile Diffusion, and CLIP for text/vision) while
introducing a novel frequency-alignment strategy that links neural, visual, and textual domains. This
design provides both interpretability via frequency-specific mappings, and generative flexibility, en-
abling semantically coherent reconstructions that go beyond pixel-level similarity.

2.1 GRAPH-SPECTRAL FMRI ENCODING

We represent the brain as a graph G = (V, &), where nodes V correspond to voxels and edges £
encode local anatomical or functional relationships. The normalized graph Laplacian is defined
as L = I — D '2AD~1/2 where A is the adjacency matrix and D is the degree matrix. Its
eigenvectors U (U <« eig(L)) form the connectome harmonics (Atasoy et al., 2016; 2017; Rué-
Queralt et al.} 2021), providing an orthonormal basis for cortical activation patterns. Given an fMRI
activation vector b € RV, we project it into the graph spectral domain:

b=U'b, b =U,’ b. (1)

Eigenvectors corresponding to small eigenvalues capture smooth, low-frequency cortical patterns,
while larger eigenvalues encode high-frequency, fine-grained variations. To exploit multi-scale neu-
ral information, we partition the graph spectrum into By frequency bands: b = [by,bs, ..., bg,].
To improve robustness and focus on informative frequencies, we apply stochastic frequency mask-
ing on the spectral representation. Direct eigendecomposition is computationally expensive for large
graphs; therefore, we approximate graph spectral filtering using Chebyshev polynomials (Hammond
et al.l[2011):
K-1
bﬁltered ~ Z ak Tk(L)7 L=
k=0

2

A max

L—-1, 2)

where K is the polynomial order, k = 0,..., K — 1 indexes the Chebyshev terms, T} (-) are Cheby-
shev polynomials, and 6y, are the coefficients for each term. In principle, 6, are learnable parameters
that can be optimized via gradient descent to emphasize specific graph frequencies. In our current
implementation, we initialize them as uniform values and apply stochastic masking within chosen
bands, providing a computationally efficient yet flexible approximation:

Or < 0, Vke My, 3)

where M ; denotes the set of Chebyshev indices corresponding to the masked frequency band f €
{low, mid, high, even}. Masking can target low-, mid-, or high-frequency bands, zeroing a fraction
of coefficients within the chosen band while leaving others intact. Alternatively, even masking
randomly zeros coefficients uniformly across all frequencies, without privileging any specific band.
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This design enables controlled exploration of how distinct spectral components contribute to brain-
to-vision reconstruction.

The largest eigenvalue A\, .« is estimated via power iteration and used to scale the Laplacian spec-
trum (Mohar et al.} [1991)) to [—1, 1], ensuring numerical stability for the Chebyshev recursion. Mask
ratio a1, number of bands By, and band type f are tunable hyperparameters that allow systematic
exploration of frequency contributions.

(This approach offers four key advantages: (i) Separating low-, mid-, and high-frequency compo)
nents mirrors the brain’s hierarchy, where early visual areas prefer intermediate frequencies and
higher areas capture global, low-frequency structure. (ii) Chebyshev approximation enables ef-
ficient filtering of both raw and normalized fMRI. Mask ratios and band partitions are tunable,
revealing which cortical scales drive reconstruction. (iii) Frequency-masked fMRI can be directly
matched to image frequency bands, supporting principled low-, mid-, and high-frequency cor-
respondence and enabling reconstructions that are both semantically coherent and imaginative.
(iv) By avoiding full eigendecomposition, the method scales to tens of thousands of voxels while
\retaining the ability to explore multi-band interactions, making it practical for large fMRI datasets )

2.2 IMAGE FREQUENCY MASKING

To enable cross-modal alignment with fMRI signals, we decompose each image I € R *Wx*C into
its 2D Fourier components:

1W—
F{I}(u,v) Z 727ri(u:v/H+vy/W), (4)

||F1m

where (z,y) are spatial pixel coordinates, (u, v) index spatial frequencies, and H, W are the image
height and width. The resulting spectrum F{I} € C”*W has the same resolution as the input
image. We partition the frequency spectrum into Bs bands, grouped into low-, mid-, and high-
frequency ranges. For each band f, we construct a binary mask M € {0, 1}>W in the frequency
domain that isolates the desired frequency range. Frequency-filtered reconstructions are then ob-
tained as

I; = F (M;® F{I}), f € {low,mid,high,even}, 5)
where ® denotes element-wise multiplication and F'~! is the inverse Fourier transform.

During training, stochastic frequency masking is applied to enforce robustness and encourage multi-
scale integration. Masking strategies are defined as follows: low masks primarily low-frequency
bands, mid targets intermediate bands, high masks high-frequency bands, and even randomly masks
coefficients uniformly across all frequency bands without privileging any range. The mask ratio
ag € [0, 1] specifies the fraction of coefficients set to zero within the chosen strategy. These hyper-
parameters, along with the number of bands Bs, are tunable for systematic exploration.

This design encourages the network to learn hierarchical visual representations: low frequencies
encode coarse shape and global layout, mid frequencies capture edges and patterns, and high
frequencies represent fine textures. Practically, frequency masking serves as both a regularizer
(preventing overfitting to dominant bands) and as a cross-modal alignment mechanism, directly
matching image frequencies with fMRI graph-spectral bands.

2.3 FREQUENCY-ALIGNED PROJECTION

A core component of our framework is the set of three frequency-aligned projection layers, which
map graph-spectral fMRI features into pretrained vision and language embedding spaces.

Low-level visual projection. The first projection layer maps low-frequency fMRI components to
the latent space of a pretrained VDVAE. Formally, let by,,, € R!VI denote the low-frequency graph-
spectral fMRI vector. The low-level projection layer ®ypyag : RVl — R&pve s implemented as a
fully connected layer:

2vovak = Pvpvat (Biow) = Wiowblow + bIS, (6)
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Algorithm 1 Training frequency-aligned projection layers

Require: Dataset D = {(b, I, caption)}, pretrained models (Dypvyag, CLIP-V, CLIP-T), projec-

tion layers (®vpvag, PcLip—v, PcLip-T)
1: for each batch (b, I, caption) € D do
2: Graph-spectral fMRI encoding and masking:

L=I-DY2AD'Y? U « eig(L)
b= U'b, {Bf}fe{low, mid, high} Partitioned from b
by + ChebyshevApprox(by, {0}, M)
3: Image frequency masking:
I; = F '(M;®F{I}) f ¢ {low, mid, high, even}
4: Extract target embeddings from pretrained models:
28 o < Dvpvar(liow),  forgsty  CLIP-V(Inyg), fores' . « CLIP-T(caption)
5: Compute predicted embeddings via projection layers:
zvpvae < Pvpvae(biow),  forrp—v «— Porip—v(bhigh), feLp—1 ¢+ PcrLip—T(b)
6: Compute frequency-alignment loss:
Latign = ||2vDvar — 2upinslls + [ ferr—v — forte vl + | form—t — forset +ll3
7: Update trainable projection layers:

min Eali n
®vpvag,Pcrp-v,PcLip—T &

8: end for

where dypyag is the dimension of flattened VDVAE latents. The predicted latents zypyag are de-
coded via the pretrained VDVAE decoder to produce an initial coarse image that captures structural
layout and low-level visual patterns.

High-level semantic visual projection. The second projection layer aligns mid- and high-frequency
fMRI components byign € RIVI with the feature space of a pretrained CLIP-Vision encoder. This
layer, ®cppp.y : RIVI — Rcuev s also implemented as a fully connected layer:

Sferwr-v = Pcripv (bhigh) = Whighbnign + bﬁigi (7N

The predicted visual embeddings fcrp.v provide high-level semantic information, such as object
identity and scene context, to guide the generative process.

Textual semantic projection. The third layer maps the full graph-spectral fMRI vector b € R!V!
to the embedding space of a pretrained CLIP-Text encoder. Denoting this projection as ®crp.t :
RVl 5 Rdcup-r.

foupr = PeLpr(b) = Wiexb + b, (®)

these embeddings act as semantic priors, guiding the diffusion model to generate images consistent
with conceptual and linguistic content.

We train the three frequency-aligned projection layers using a batch-wise procedure that maps graph-
spectral fMRI features to pretrained vision and text embeddings while enforcing cross-modal fre-
quency alignment (see Algorithm [T).

2.4 CROSS-MODAL FUSION VIA VERSATILE DIFFUSION

Once the frequency-aligned projection layers produce their respective embeddings, reconstruction is
performed via a pretrained Versatile Diffusion (VD) model, which fuses low-level visual, high-level
semantic, and textual information through cross-attention.
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Figure 3: Qualitative comparison of fMRI reconstructions. Our frequency-informed method pre-
serves global layout and fine semantic details better than Brain-Diffuser and MindBridge.

The reconstruction proceeds in a coarse-to-fine manner. The predicted VDVAE latents zypyag are
decoded via the pretrained VDVAE decoder Dypyag to produce a coarse initial image:

Tiow = Dvpvae(2vpvar)- 9

This image captures global structure and low-frequency visual information corresponding to coarse

brain patterns. The coarse image f]ow is encoded by the VD encoder Eyp to obtain low-level visual
conditioning features:

Uim = Evp (Tiow), (10)

which will be used as conditioning in the diffusion denoising process. In parallel, the high-level
semantic and textual embeddings, fcrp.v and fcpip.1, provide cross-modal conditioning:

Cim = feup-v, cx = feup-t. (11)

During each denoising step ¢, the VD U-Net U, integrates low-level image features and semantic
embeddings through cross-attention:

Iy = Uy (2 | Wim, Cims Cox; Amix) 5 (12)

where x; is the noisy image at step ¢, and A € [0, 1] controls the relative contribution of visual ver-
sus textual conditioning. The embeddings win, cim, cx enter the U-Net via its frozen cross-attention
modules, enabling frequency- and semantics-aware reconstruction. After 7' denoising steps, the final
reconstructed image is

I=1Ir, (13)
which integrates structural, semantic, and textual information. Preserving frequency-specific align-

ment ensures that each cortical scale contributes to corresponding visual and textual features, pro-
ducing interpretable and high-fidelity reconstructions.

(Unlike prior approaches (Ozcelik & VanRullen| 2023} [Takagi & Nishimotol, [2023) that train per)
slot linear regressors, our method implements fully differentiable, end-to-end projection layers.
The fusion is performed inside a frozen pretrained diffusion model, preserving the generative
prior while allowing explicit control over frequency-aligned brain-to-vision mappings. The use
of frequency-specific embeddings ensures that each cortical scale contributes meaningfully to
different visual and semantic aspects of reconstructed image, providing both interpretability and
\reconstruction fidelity. )
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Figure 4: Hyperparameter evaluation of masking ratio and number of frequency bands for input
images and fMRI. Vertical axes indicate CLIP score.

3 EXPERIMENT

3.1 SETUP

We conducted experiments using the Natural Scenes Dataset (NSD) (Allen et al.| [2022), which pro-
vides high-resolution 7T fMRI data from subjects viewing thousands of natural images. Following
prior work, we selected four participants (subjO1, subjO2, subjO5, subj07) who completed the full
protocol and used voxel-wise beta estimates from standard GLM preprocessing with denoising and
regularization. Trial-averaging was applied to match previous studies (Ozcelik & VanRullen, [2023).

During training, fMRI inputs were stochastically masked with higher weights on mid-frequency
components (20% masking, 4 spectral bands), while image inputs emphasized high-frequency com-
ponents (10% masking, 500 spectral bands). Experiments ran on two NVIDIA Tesla V100 GPUs
(32GB each) and required roughly eight hours. Pretrained generative backbones remained frozen,
with only the projection layers from brain activity to latent feature spaces optimized, ensuring con-
trolled, reproducible evaluation and computational efficiency.

3.2 EVALUATION

Hyperparameter evaluation. Fig. 4] presents the effect of masking ratio and number of frequency
bands on reconstruction quality. For images, increasing the masking ratio consistently reduces the
CLIP score, and a similar trend is observed for fMRI. We find the optimal number of bands to be
500 for images, while for fMRI, performance peaks at bands 3 and 9. This disparity highlights the
greater difficulty of modeling fMRI signals compared to images.

Qualitative comparison of reconstructions. Figure [3|compares our method against Brain-Diffuser
(Ozcelik & VanRullen, 2023) and MindBridge (Wang et al., [2024) across diverse stimuli. While
baseline methods capture either coarse structure (Brain-Diffuser) or semantic plausibility (Mind-
Bridge), they often fail to preserve both simultaneously. Brain-Diffuser tends to produce visu-
ally coherent but semantically ambiguous generations (e.§g., distorted fruit and plush toys), whereas
MindBridge frequently yields semantically biased reconstructions (e.g., generic dogs for cats) that
neglect global layout.

In contrast, our frequency-informed framework achieves more faithful and interpretable reconstruc-
tions. By explicitly aligning fMRI graph-spectral components with visual frequency bands, our
model preserves coarse scene layout (e.g., spatial arrangement of kitchen appliances, cat positions
on windowsills) while also capturing fine semantic details (e.g., feline identity, stuffed toy tex-
ture, sandwich ingredients). Integration of semantic priors via CLIP-Text and CLIP-Vision further
grounds generation, avoiding mode collapse toward overly generic categories. Notably, our recon-
structions show creative reinterpretations that remain consistent with neural input, demonstrating
how frequency-guided alignment enables reconstructions that are not only perceptually accurate but
also imaginative, reflecting the interpretive nature of human vision.

Insights from image frequency masking. Table [T] demonstrates that frequency-specific mask-
ing strongly influences fMRI-to-image reconstruction. High-frequency inputs yield the best low-
level and semantic fidelity, capturing fine details and object-specific attributes, while low- and mid-
frequency inputs primarily encode coarse layout and global scene structure. Mismatched inputs
(Low-High, High-Low) highlight the complementary roles of different frequencies: combining low-
frequency structural information with high-frequency semantic features balances layout preservation
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Image masked Low-Level High-Level
VDVAE | CLIP-V | PixCorr T | SSIM 1 | AlexNet(2) T | AlexNet(5) 1 | Inception 1 | CLIP 1 | EffNet-B | | SWAV |
Low Low 0.250 0.289 92.1% 95.0% 85.1% 88.2% 0.828 0.488
Mid Mid 0.298 0.346 95.5% 96.9% 88.0% 91.3% 0.792 0.439
High High 0.309 0.357 96.4% 97.2% 88.3% 92.2% 0.771 0.421
Even Even 0.288 0.332 94.8% 96.5% 87.0% 90.7% 0.803 0.453
Low High 0.273 0.323 94.8% 96.7% 88.3% 92.0% 0.777 0.426
High Low 0.313 0.335 94.1% 96.1% 85.8% 88.5% 0.818 0.476

Table 1: Ablation study on image frequency masking for VDVAE and CLIP-Vision inputs. Six
masking strategies are evaluated using low- and high-level metrics. Results show that frequency-
specific masking affects both structural fidelity and semantic alignment, highlighting the distinct
contributions of spatial frequency bands to reconstruction quality.

Brain-to-Vision Low-Level High-Level
fMRI | VDVAE-CLIP-V | PixCorr 7 | SSIM 1 | AlexNet(2) T | AlexNet(5) 1 | Inception T | CLIP 1 | EffNet-B | | SWAV |
Low High-High 0.201 0.335 88.0% 90.7% 79.6% 85.4% 0.851 0.488
Low Low-High 0.167 0.291 84.3% 89.1% 79.2% 85.4% 0.859 0.498
Mid High-High 0.201 0.334 87.3% 90.9 % 80.0% 85.7% 0.853 0.488
Mid Low-High 0.165 0.291 83.5% 88.7% 80.0% 84.8% 0.861 0.497
High High-High 0.196 0.333 86.8% 90.6% 79.2% 85.1% 0.859 0.490
High Low-High 0.162 0.288 83.5% 88.4% 78.8% 84.4% 0.864 0.502
Even High-High 0.190 0.333 85.8% 89.3% 78.6% 84.9% 0.860 0.496
Even Low-High 0.157 0.289 81.9% 87.4% 78.5% 84.3% 0.866 0.505

Table 2: Ablation study on graph-spectral fMRI encoding and brain-to-vision alignment. Different
fMRI frequency bands (Low, Mid, High, Even) are tested with VDVAE-CLIP-V input configurations
(High-High, Low-High). Results show that aligning neural and visual frequencies improves both
structural and semantic reconstruction, showing how distinct cortical bands contribute to perceptual
and conceptual aspects of visual experience.

and object identity. Even masking performs moderately, underscoring the importance of selective
frequency alignment. These results provide evidence that our frequency-guided framework effec-
tively leverages cortical graph-spectral signals to reconstruct both structural and semantic aspects of
stimuli, producing images that preserve global organization, capture meaningful object features, and
allow creative reinterpretation, revealing how the brain encodes and reconstructs visual experience
beyond pixel-level replication.

Impact of neural frequency alignment. Table |2 shows the impact of graph-spectral fMRI encod-
ing on brain-to-vision reconstruction. High-frequency fMRI components generally improve both
low-level structural metrics and high-level semantic metrics, while low- and mid-frequency bands
contribute more to coarse layout and scene organization. Comparing VDVAE-CLIP-V input config-
urations, High-High consistently outperforms Low-High, indicating that aligning brain and visual
frequency bands enhances reconstruction fidelity. These results highlight the complementary roles
of neural frequency bands: low frequencies support global structure, high frequencies capture fine
details and semantic content, and their alignment enables images that reflect both perceptual accu-
racy and creative reinterpretation of visual experience.

4 CONCLUSION

We introduced a frequency-informed framework for fMRI-to-image reconstruction that aligns neu-
ral, visual, and semantic representations across low-, mid-, and high-frequency components. By
combining graph-spectral fMRI encoding, masked image frequency modeling, and lightweight pro-
jections into pretrained VDVAE, CLIP, and diffusion models, our approach achieves coarse-to-fine
reconstructions that preserve global layout, capture object details, and enable creative reinterpreta-
tion. Ablation studies show that different neural frequencies contribute complementary information,
and aligning cortical and visual frequencies enhances both structural and semantic fidelity. Overall,
our work reframes fMRI decoding as a study of how the brain perceives and imagines, producing
interpretable, semantically rich, and creatively informed reconstructions.
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A APPENDIX

A.1 RELATED WORK

Diffusion-based fMRI-to-image reconstruction. Deep generative models have driven recent ad-
vances in reconstructing naturalistic images from fMRI. Brain-Diffuser (Ozcelik & VanRullen,
2023) introduces a two-stage pipeline: a VDVAE produces a coarse visual layout from fMRI, and a
Versatile Diffusion model conditioned on CLIP features refines semantic details. Similarly, Mind-
Eye (Scotti et al., 2023)) maps fMRI activity into CLIP image embeddings and leverages diffusion
priors, while MindEye2 (Scotti et al., 2024) pretrains across subjects and fine-tunes a Stable Dif-
fusion XL unCLIP decoder for efficient subject-specific adaptation. NeuroPictor (Huo et al., [2024)
further modulates diffusion using fMRI, combining shared multi-subject pretraining with semantic
and structural conditioning. Our work differs in three key aspects. First, instead of uniformly pro-
cessing neural signals, we decompose fMRI into frequency-specific graph modes and align them
with corresponding image frequency bands using masked frequency modeling. Second, we incor-
porate pretrained VDVAE and CLIP encoders without finetuning, training only three lightweight
frequency-aligned projection layers: a low-level hierarchical brain-to-vision layer for coarse visual
structures, a high-level semantic brain-to-vision layer for abstract features, and a brain-to-text align-
ment layer for semantic guidance. Third, this design enables coarse-to-fine reconstruction while
maintaining interpretability of which frequency components drive the generated image.

Cross-subject brain decoding. Aligning fMRI representations across participants is a major chal-
lenge. MindBridge (Wang et al.,[2024) uses adaptive max-pooling and cyclic reconstruction loss for
subject-invariant embeddings, while MindAligner (Dai et al., [2025)) learns an explicit Brain Trans-
fer Matrix with multi-level functional alignment to project fMRI from any subject into a reference
space. Xu et al. (Xu et al.l 2025) propose a bidirectional autoencoder with subject-bias modu-
lation and semantic refinement for ControlNet+Stable Diffusion generation. MindCustomer (Yu
et al.| |2025a) integrates brain signals with external visual context using an image-brain translator
and mask-free fusion. Our approach achieves cross-subject generalization differently. By lever-
aging graph spectral transforms, we project all subjects’ fMRI into a shared frequency-informed
latent space. This representation is more interpretable and potentially more transferable than im-
plicit cycle-consistency or explicit mapping matrices, while remaining focused on brain-to-vision
reconstruction. Frequency alignment is naturally preserved across subjects, and semantic guidance
is injected via the brain-to-text projection layer.

Multimodal brain-conditioned generation. Beyond single-modality decoding, some approaches
(Yang et al., [2024; \Chang & Chenl 2021} [Liu et al.l [2024a} [Ferrante et al., [2023)) fuse brain activity
with other inputs to enhance generation. MindCustomer (Yu et al., [2025a) synthesizes fMRI re-
sponses alongside external images or text for few-shot cross-subject adaptation. NeuroPictor (Huo
et al [2024) also incorporates shared semantic features to guide decoding. Our framework pro-
vides a complementary perspective. Rather than blending brain signals with external inputs, we
emphasize the intrinsic frequency structure of fMRI and its direct alignment with image frequency
bands. Text embeddings act as a semantic prior via the brain-to-text projection layer, interacting with
frequency-masked fMRI to guide generation. This design improves reconstruction fidelity, preserves
interpretability, and enables creative, semantically enriched outputs, reflecting the interpretive and
imaginative aspects of human visual cognition.

A.2 ADDITIONAL VISUALIZATIONS
Fig. []illustrates the effectiveness of our frequency-guided alignment strategy in reconstructing

visual experiences from fMRI signals. The results highlight a complementary relationship between
low-level and high-level reconstructions. Low-level outputs preserve coarse structural elements,
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Figure 5: fMRI-to-image reconstruction with frequency-guided alignment. Low-level reconstruc-
tions capture coarse structures and layouts, while high-level reconstructions yield more realistic and
semantically rich images.

such as object layout and spatial arrangement, providing a faithful representation of the global scene.
In contrast, high-level reconstructions capture richer semantic content, producing more realistic and
imaginative images that better align with human visual perception.

This dual-level reconstruction reveals two important insights. First, frequency-guided alignment en-
ables a progressive refinement process: low-frequency components anchor the reconstruction with
reliable structural cues, while high-frequency components enrich the result with semantic and con-
textual details. Second, the differences between low- and high-level reconstructions underscore the
inherent challenge of decoding fMRI signals, where low-level alignment is more directly grounded
in the neural signal, but high-level reconstruction benefits from the model’s ability to leverage prior
knowledge.

These results demonstrate that our method not only recovers structural information from neural data
but also bridges toward semantically meaningful interpretations, offering a more complete under-
standing of how brain activity maps to perceived visual content.

A.3 LLM USAGE DECLARATION

We disclose the use of Large Language Models (LLMs) as general-purpose assistive tools during
the preparation of this manuscript. LLMs were used only for minor tasks such as grammar and
style improvement, code verification, and formatting suggestions. No scientific ideas, analyses,
experimental designs, or conclusions were generated by LLMs. All core research, methodology,
experiments, and results were performed and fully verified by the authors.

The authors take full responsibility for all content presented in this paper, including text or code
suggestions that were refined with the assistance of LLMs. No content generated by LLMs was
treated as original scientific work, and all references and claims have been independently verified.
LLMs did not contribute in a manner that would qualify them for authorship.
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