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Abstract

Dealing with distribution shifts is one of the central challenges for modern machine
learning. One fundamental situation is the covariate shift, where the input distribu-
tions of data change from the training to testing stages while the input-conditional
output distribution remains unchanged. In this paper, we initiate the study of a
more challenging scenario — continuous covariate shift — in which the test data
appear sequentially, and their distributions can shift continuously. Our goal is to
adaptively train the predictor such that its prediction risk accumulated over time can
be minimized. Starting with the importance-weighted learning, we theoretically
show the method works effectively if the time-varying density ratios of test and
train inputs can be accurately estimated. However, existing density ratio estimation
methods would fail due to data scarcity at each time step. To this end, we propose
an online density ratio estimation method that can appropriately reuse historical
information. Our method is proven to perform well by enjoying a dynamic regret
bound, which finally leads to an excess risk guarantee for the predictor. Empirical
results also validate the effectiveness.

1 Introduction

How to deal with distribution shifts is one of the central challenges for modern machine learning [1, 2],
which is also the key requirement of robust artificial intelligence in open and dynamic environments [3,
4]. Covariate shift is a representative problem setup and has attracted much attention [5, 6], where the
input density D(x) varies from training data to test data but their input-conditional output D(y | x)
remains unchanged. On the one hand, covariate shift serves as a foundational setup for theoretically
understanding general distribution shifts [7], and on the other hand, it can encompass many real-world
tasks such as brain-computer interface [8], speaker identification [9] and audio processing [10].

Existing works of coping with covariate shift mainly focused on the “one-step” adaptation, where
the learner aims to train a model well-performed on a fixed testing distribution. To mitigate the
distribution discrepancy, a common and classic solution is the importance-weighting framework [6],
where one assigns an appropriate importance weight to each labeled training sample and then conducts
weighted empirical risk minimization. The importance weight, also known as the density ratio of test
and training inputs, usually needs to be estimated via a reasonable amount of unlabeled data sampled
from the testing distribution [11, 12]. However, the one-step adaptation can be insufficient in many
real-world covariate shift scenarios, especially when data are accumulated in an online fashion such
that testing environments continuously shift and only a few unlabeled samples are observed at each
time. For instance, in the speaker identification task, the speech features vary over time due to session
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dependent variation, the recording environment change, and physical conditions and emotions of the
speakers [9]. Therefore, it is necessary to perform a prompt adaptation to the changes.

Motivated by such demands, we initiate the study of continuous covariate shift, where the learner’s
goal is to adaptively update the model to minimize the risk accumulated over time (see the formal
definition in Section 3). To achieve this goal, we propose the ACCOUS approach (Adapt to Continuous
Covariate shift with Unlabeled Stream) equipped with sound theoretical guarantees. Our approach is
based on the classic importance-weighting framework yet requires innovations to make it applicable
to the continuous shift scenario. Indeed, we theoretically identify that the importance-weighting
works effectively if the cumulative estimation error of the time-varying density ratios of train and
test inputs can be reduced. However, at each time step, a direct application of one-step density ratio
estimation would lead to a high variance due to data scarcity; whereas reusing all previous data can be
highly biased when testing distributions change dramatically. Thus, it is crucial to design an accurate
estimation of time-varying test-train density ratios by appropriately reusing historical information.

To combat the difficulty, we propose a generic reduction of the time-varying density ratio estimation
problem to the online convex optimization [13]: one can immediately obtain high-quality time-varying
density ratios by a suitable online process to optimize its dynamic regret over a certain sequence of loss
functions. Our reduction is based on the Bregman divergence density ratio matching framework [14]
and applicable to various existing density ratio estimation models with specific configurations of the
divergence functions. To minimize the dynamic regret, our key algorithmic ingredient of this online
optimization is the online ensemble structure [15, 16], where a group of base-learners is maintained
to perform density ratio estimation with different lengths of historical data, and a meta-algorithm
is employed to combine the predictions. As such, we can properly reuse historical information
without knowing the cumulative intensity of the covariate shift. We further instantiate the reduction
framework with the logistic regression model [17]. Letting VT =

∑T
t=2∥Dt(x) − Dt−1(x)∥1, we

prove an Õ(T 1/3V
2/3
T ) dynamic regret bound for the density ratio estimator, which finally leads to

an Õ(T−1/3V
1/3
T ) averaged excess risk of the predictor trained by importance-weighted learning.

The rate can hardly be improved even if one receives labels of the testing stream after prediction (see
more elaborations below Theorem 3 and Appendix D.6). Finally, we conduct experiments to evaluate
our approach, and the empirical results validate the theoretical findings.

Technical Contributions. We note that online ensemble was also employed by [18] to handle
continuous label shift, another typical distribution shift assuming the change happens on the class
prior Dt(y). However, their method crucially relies on the unbiasedness of weights in the risk
estimator, whereas density ratio estimators for covariate shift adaptation cannot satisfy the condition
in general. Instead of pursuing unbiasedness, we delicately design an online optimization process
to learn the density ratio estimator, which is versatile to be implemented with various models.
Our methodology is very general and might be of broader use, such as relaxing the unbiasedness
requirement in the continuous label shift. Besides, the Õ(T 1/3V

2/3
T ) dynamic regret bound for the

logistic regression density ratio estimator is obtained non-trivially. Our bound essentially holds
for online learning with exp-concave functions under noisy feedback. The only one achieving
this [19] holds in expectation and requires complicated analysis on the Karush-Kuhn-Tucker (KKT)
condition [20] of comparators. By contrast, our bound holds in high probability, and the analysis is
greatly simplified by virtue of exploiting the structure of comparators in our problem that they are
essentially the minimizers of expected functions (hence without analyzing the KKT condition).

2 Preliminaries

This section introduces the preliminaries and related work on the continuous covariate shift adaptation.
We discuss the related work on non-stationary online learning in Appendix B

One-Step Covariate Shift Adaptation. Let D0(x, y) and D1(x, y) be the training and test dis-
tributions. The “one-step” adaptation problem studies how to minimize the testing risk R1(w) =
E(x,y)∼D1(x,y)[ℓ(w⊤x, y)] by the model trained with a labeled dataset S0 = {xi, yi}N0

i=1 sampled
from D0(x, y) and unlabeled dataset S1 = {xi}N1

i=1 sampled from D1(x). We call this one-step
adaptation since the test distribution is fixed and a reasonable number of unlabeled data S1 is available.

Importance-Weighted ERM. A classic solution for the one-step covariate shift adaptation is the
importance-weighted empirical risk minimization (IWERM), which mitigates the distribution shift

2



by minimizing the weighted empirical risk R̃1(w) = E(x,y)∼S0 [r∗
1(x)ℓ(w⊤x, y)], where r∗

1(x) =
D1(x)/D0(x) is the importance weight. The risk R̃1(w) is unbiased to R1(w) and thus the learned
model is consistent over the test distribution [5]. The importance weighted learning was studied from
the lens of variance-bias trade off [5, 21], cross validation [22], model misspecification [23], and deep
neural network implementation [24]. All those are conducted under the one-step adaptation scenario.

Density Ratio Estimation. The importance weighted estimation, also known as the density ratio
estimation (DRE) [12], aims to estimate the density ratio r∗

1(x) using datasets input of S0 and S1.
Various methods were proposed with different statistical models [14, 17, 25, 26, 27, 28, 29]. All those
methods focused on the one-step adaptation, and it is challenging to extend them to the continuous
shift due to the limited unlabeled data at each time step. The work [30] studied how to update the
density ratio estimator with streaming data, but the ground-truth density ratio is assumed to be fixed.
Recently, the time-varying density ratio was investigated in [31]. Their problem setup fundamentally
differs from ours as they assume sufficient online data at each iteration, while our challenge is dealing
with limited data per iteration. The work [32] proposed to learn the time-varying density ratios using
all past data at each time. Although learning theory insights are provided in the paper, it is still
unclear how the learned density ratios balance sample complexity with environmental shift intensity.
In contrast, our density ratio estimator updates in an online fashion with dynamic regret guarantees.

Continuous Distribution Shift. For broader continuous distribution shift problems, the study [33]
focused on the label shift case and provided the first feasible solution. Then, the work [18] introduced
modern non-stationary online learning techniques to the problem, developing the first method with
dynamic regret guarantees. As shown in Remark 2, our solution refines the previous methods [33, 18]
by decoupling density ratio estimation from predictor training, paving the way for a theoretically-
grounded method for continuous covariate shift. Similarly, the subsequent work [34] developed a
method for continuous label shift, which allows for training the predictor with various models by
separately estimating the label probability through an online regression oracle. Another research [35]
studied the change detection for continuous covariate shift. However, they only focused on identifying
differences between the current and initial offline distributions, and it is still unclear how to update
the model adaptively with the online data. Moreover, the method [35] can only detect at a given time
granularity, while ours can perform the model update at each round.

3 Adapting to Continuous Covariate Shift

In this section, we formulate the problem setup of continuous covariate shift and then introduce our
approach based on the IWERM framework and online density ratio estimation.

3.1 Problem Setup

There are two stages in continuous covariate shift. The first one is the offline initialization stage,
where the learner can collect a reasonable number of label data S0 = {xn, yn}N0

n=1 from the initial
distribution D0. Then, we come to the online adaptation stage, where the unlabeled testing data
arrive sequentially, and the underlying distributions can continuously shift. Consider a T -round
online adaptation. At each round t ∈ [T ] ≜ {1, . . . , T}, the learner will receive an unlabeled dataset
St = {xn}Nt

n=1 sampled from the underlying distribution Dt. Without loss of generality, we consider
Nt = 1. We have the following continuous covariate shift condition.
Assumption 1 (Continuous Covariate Shift). For all x ∈ X in the feature space, y ∈ Y in the label
space, and any t ∈ [T ], we have

Dt(y | x) = D0(y | x) and r∗
t (x) = Dt(x)/D0(x) ≤ B < ∞.

We note that there are emerging discussions on the necessity of covariate shift adaptation [7, 23].
When there are infinite number of training samples, a well-specified large and over-parametrized
model can be trained to approximate D0(y | x) and there is no need to perform covariate shift
adaptation. However, in the finite-sample cases, one would prefer to train a model with constraint
complexity to ensure its generalization ability, which leads to model misspecification and covariate
shift adaptation is indeed necessary. In this paper, we study the continuous covariate shift under a
misspecified hypothesis space W , which generalizes the standard one-step covariate shift problem
(see [6] and reference therein) to the continuous shift case. Our goal is to train a sequence of model
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{wt}Tt=1 that are comparable with the best model w∗
t ∈ arg minw∈W Rt(w) in the hypothesis space

at each time. Consequently, we take the following average excess risk as the performance measure:

RT ({ŵt}Tt=1) ≜ 1
T

(
T∑
t=1

Rt(ŵt) −
T∑
t=1

Rt(w∗
t )
)
. (1)

We end this part by listing several common notations used throughout the paper. We denote by
R = maxx∈X ∥x∥2 the maximum norm of the input and by D = maxw1,w2∈W∥w1 − w2∥2 the
diameter of the hypothesis space W ⊆ Rd. The constant G = maxx∈X ,y∈Y,w∈W∥∇ℓ(w⊤x, y)∥2 is
the maximum gradient norm and L = maxx∈X ,y∈Y,w∈W |ℓ(w⊤x, y)| is the upper bound of the loss
values. We use the Õ(·)-notation to hide dependence on logarithmic factors of T .

3.2 Importance Weighted ERM for Continuous Shift

Our algorithm is based on the importance weighted learning. Consider the scenario where the learner
has a predefined r̂t : X → [0, B] as an estimation for the true density ratio r∗

t (x) = Dt(x)/D0(x)
for each time t ∈ [T ]. Then, the predictor can be trained by the importance weighted ERM method:

ŵt = arg minw∈W Ex∼S0 [r̂t(x)ℓ(w⊤x, y)]. (2)

The averaged excess risk of the predictor is closely related to the quality of the density ratio estimator.
Proposition 1. For any δ ∈ (0, 1], with probability at least 1 − δ, IWERM (2) with the estimator
r̂t(x) ensures RT ({ŵt}Tt=1) ≤ 2

∑T
t=1 Ex∼S0

[
|r̂t(x) − r∗

t (x)|
]
/T + O(log(T/δ)/

√
N0) .

In above, the O(log T/
√
N0) term measures the generalization gap of the predictor since it is

trained over the empirical data S0 instead of D0. Such a rate is tight up to a logarithmic factor in T .
Indeed, considering a stationary environment (i.e., Dt(x, y) = D1(x, y)) and an exact density ratio
estimation (i.e., r̂t(x) = r∗

t (x)), Proposition 1 indicates that the averaged model wT =
∑T
t=1 ŵt/T

enjoys an excess risk bound of R1(wT ) − R1(w∗
1) ≤ O(log T/

√
N0), matching the lower bound

for importance weighted learning [36, Proposition 2] up to an O(log T ) factor.

Our main focus lies on the
∑T
t=1 Ex∼S0 [|r̂t(x) − r∗

t (x)|]/T term, which is the averaged estimation
error of the density ratio estimator r̂t to the time-varying ground truth r∗

t . To minimize the estimation
error, a fundamental challenge comes from the unknown non-stationarity exhibited in the online
environments — how to select a right amount of historical data to reuse for each iteration? Intuitively,
if the environments change slowly, it would be preferable to reuse all historical data to construct
the density ratio estimator r̂t. However, when distribution shifts occur frequently, earlier data could
be useless even potentially harmful. In such scenarios, training the density ratio estimator with the
most recent data would be a more rational strategy. Furthermore, even if we could capture a roughly
stationary period, it remains unclear how to update the density ratio estimator in an online manner
with guarantees. To our knowledge, online density ratio estimation is underexplored in the literature,
even for the stationary testing streaming, not to mention the more challenging non-stationary setup.

3.3 Online Density Ratio Estimation

Here, we present a generic reduction of the online density ratio estimation problem to a dynamic
regret minimization problem. This novel perspective paves our way for designing an algorithm in
tackling the non-stationarity of environments, as mentioned in Section 3.2.

Bregman Divergence Density Ratio Matching. Our reduction is based on the Bregman divergence
density ratio matching [14], a general framework that unifies various existing DRE methods. Specifi-
cally, in the framework, the discrepancy between the ground-truth density ratio function r∗

t and any
density ratio function r is measured by the expected Bregman divergence over D0(x) defined by

EBψ(r∗
t ∥r) = Ex∼D0(x) [Bψ (r∗

t (x)∥r(x))] , (3)

where Bψ(a∥b) ≜ ψ(a) − ψ(b) − ∂ψ(b)(a− b) is the Bregman divergence and ψ : dom ψ → R is
the associated divergence function. The expected Bregman divergence can be equally rewritten as
EBψ(r∗

t ∥r) = Lψt (r) − Lψt (r∗
t ), where Lψt is the loss for the density ratio function defined by

Lψt (r) = Ex∼D0(x)
[
∂ψ(r(x))r(x) − ψ(r(x))

]
− Ex∼Dt(x)

[
∂ψ(r(x))

]
. (4)
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As a consequence, one can train the density ratio estimator by minimizing the loss Lψt (r). We have
r∗
t ∈ arg minr∈H Lψt (r) when H is the set of all measurable functions.

The Bregman divergence-based density ratio matching framework takes various DRE methods as
special cases. For instance, choosing the divergence function as ψLS(t) = (t−1)2/2 yields LSIF [28]
and KMM [26]; choosing ψLR(t) = t log t − (t + 1) log(t + 1) leads to the logistic regression
method [17]; and one can also recover the UKL [37] and KLLEP [25] with ψKL(t) = t log t− t.

Online DRE via Dynamic Regret Minimization. For a single-round density ratio estimation, the
Bregman divergence-based framework suggests to train the density ratio estimator r̂t by minimizing
the gap Lψt (r̂t) − Lψt (r∗

t ). Therefore, to derive an estimator sequence that performs well over time,
we utilize the cumulative loss gap

∑T
t=1 L

ψ
t (r̂t) −

∑T
t=1 L

ψ
t (r∗

t ) as a performance measure. Indeed,
the cumulative loss gap serves as an upper bound of the estimation error of density ratio estimators.
Proposition 2. Let ψ be a µ-strongly convex function. For any density ratio estimator sequence

{r̂t}Tt=1, we have 1
T

∑T
t=1 Ex∼D0 [|r̂t(x) − r∗

t (x)|] ≤
√

2
(∑T

t=1 L
ψ
t (r̂t) −

∑T
t=1 L

ψ
t (r∗

t )
)
/(µT ).

Proposition 2 indicates that it suffices to optimize the cumulative loss gap to perform online density
ratio estimation. Such a measure quantifies the performance difference between the online algorithm
(that yields the estimated ratio sequence {r̂t}Tt=1) and a sequence of time-varying comparators (the
true ratio sequence {r∗

t }Tt=1). This is exactly the dynamic regret in online learning literature [38, 39].
As such, we have reduced the online density ratio estimation to a problem of dynamic regret
minimization over loss functions {Lψt }Tt=1 against comparators {r∗

t }Tt=1.

Since the loss function involves the expectation over the underlying distribution D0(x) (see the
definition in (4)), we need a counterpart result with respect to empirical data S0.
Theorem 1. Let ψ be a µ-strongly convex function satisfying t∂3ψ(t) ≤ 0 and ∂3ψ(t) ≤ 0 for all
t ∈ dom ψ. Let Hθ = {x 7→ h(x, θ) | θ ∈ Θ} be a hypothesis space of density ratio functions
parameterized by a finite-dimensional bounded set Θ ≜ {θ ∈ Rd | ∥θ∥2 ≤ S} with a certain link
function h : X × Θ 7→ R. Denote by [z]+ ≜ max{z, 0}. Then, for any density ratio estimator
r̂t ∈ Hθ, the empirical estimation error is bounded by

1
T

T∑
t=1

Ex∼S0(x)
[
|r∗
t (x) − r̂t(x)|

]
≤

√√√√ 4
µT

[ T∑
t=1

L̃ψt (r̂t) −
T∑
t=1

L̃ψt (r∗
t )
]

+
+ O

(√
d log(T/δ)
µ

√
N0

)
,

provided that h(x, θ) is bounded for any x ∈ X and θ ∈ Θ and Lipschitz continuous. In the above,

L̃ψt (r) = Ex∼S0 [∂ψ(r(x))r(x) − ψ(r(x))] − Ex∼Dt(x) [∂ψ(r(x))] (5)

is the empirical approximation of the expected loss Lψt using the data S0.
Remark 1 (assumptions on ψ). We imposed certain assumptions on the divergence function ψ in
Theorem 1. One can check these conditions hold for commonly used ψ in density ratio estimation,
including all the divergence functions mentioned earlier (ψLR and ψKL are strongly convex when the
inputs are upper bounded, which can be satisfied with suitable choices of Hθ). Section 4 will present
an example with ψLR to show how the conditions are satisfied. ◁

Theorem 1 shows that we can immediately obtain a sequence of high-quality density ratio estimators
{r∗
t }Tt=1 by minimizing the dynamic regret with respect to {L̃ψt }Tt=1,

Regd
T ({L̃ψt , r∗

t }Tt=1) =
∑T

t=1
L̃ψt (r̂t) −

∑T

t=1
L̃ψt (r∗

t ). (6)

One caveat is that the second term of L̃ψt in the definition (5) requires the knowledge of underlying
distribution Dt, which is unavailable. Empirically, we can only observe L̂ψt defined below, building
upon the empirical observations St ∼ Dt,

L̂ψt (r) = Ex∼S0 [∂ψ(r(x))r(x) − ψ(r(x))] − Ex∼St [∂ψ(r(x))] . (7)

That said, we need to design an online optimization process to minimize the dynamic regret (6)
defined over L̃ψt based on the observed loss {L̂ψt }Tt=1. Since the time-varying comparator r∗

t in (6)
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is not the minimizer of the observed loss L̂ψt (but rather the minimizer of the expected loss Lψt
defined in (4)), directly minimizing the empirical loss L̂ψt will lead to a high estimation error. In the
next section, we introduce how to optimize the dynamic regret with the online ensemble framework
developed in recent studies of non-stationary online convex optimization [15, 16, 19].
Remark 2 (comparison with previous work). For the continuous label shift [18], the online ensemble
framework was employed to train the predictor wt. However, the previous method crucially relies on
the construction of an unbiased importance ratio estimator satisfying EDt

[r̂t(x)] = r∗
t (x). Such a

favorable property is hard to be satisfied in the covariate shift case. For example, in the Bregman
divergence density ratio matching framework, one can only observe an unbiased loss L̂ψt (r), whose
minimizer r̂t = arg minr L̂

ψ
t (r) is not unbiased to the true value r∗

t in general. To this end, we
disentangle the model training and importance weight estimation process in this paper. Our reduction
holds for the general Bergman divergence matching framework and thus can be initiated with different
models (not necessarily unbiased). It is possible to extend our framework to continuous label shift
problem with other importance weight estimators besides the unbiased one [40] used in [18]. ◁

4 Instantiation: Logistic Regression Model

When the loss function L̂ψt is non-convex, it is generally intractable to conduct the online optimization,
regardless of minimizing the standard regret or the strengthened dynamic regret. Fortunately, the
attained loss functions are convex or enjoy even stronger curvature with the properly chosen hypothesis
space and divergence function. In this section, we instantiate our framework with the logistic
regression model. A corresponding online DRE method is presented with dynamic regret guarantees.

Example 1 (Logistic regression model). Consider the function ψ = ψLR ≜ t log t− (t+1) log(t+1)
and the hypothesis space HLR

θ = {x 7→ exp
(
−θ⊤ϕ(x)

)
| ∥θ∥2 ≤ S}. Here, ϕ : X 7→ Rd represents

a specific basis function with bounded norm ∥ϕ(x)∥2 ≤ R, which could be, for instance, the feature
representation extractor from a deep neural network. Then, the loss function L̂ψt (θ) as per (7) becomes

L̂ψt (θ) = 1
2

(
ES0 [log(1 + e−ϕ(x)⊤θ)] + ESt [log(1 + eϕ(x)⊤θ)]

)
.

Let β = exp(SR). Then, the output of any density ratio function r ∈ Hθ is bounded by [1/β, β]. It
can be validated that ψLR is 1/(β + β2)-strongly convex and satisfies the condition ∂3ψLR(z) ≤ 0
required by Theorem 1. Besides, the logistic loss is a 1/(1(1 + β))-expconcave function and R2/2-
smooth function, presenting a favorable function properties for online convex optimization [13].

We note that the other two divergence functions ψLS and ψKL also exhibit desirable function properties
as ψLR. When choosing the hypothesis space Hθ = {x 7→ θ⊤ϕ(x) | θ ∈ Θ}, the methods recover
the the uLISF [28] and UKL [37] density ratio estimators equipped with the generalized linear model.
Our analysis is also applicable in the two cases. More details are provided in Appendix D.7.

4.1 Density Ratio Estimation via Online Ensemble

In this part, we introduce our online ensemble method for online DRE with the logistic regression
model. Since the logistic regression loss is exp-concave, [19] shows that one can employ the
following-the-leading-history (FLH) method [41] to minimize the dynamic regret. However, a caveat
is that the observed loss L̂t is only an empirical estimation of L̃t established on few online data St.
The result of [19] only implies an expected bound for our problem.

We twisted the FLH algorithm to achieve a high probability bound. As shown in Figure 1, our
algorithm maintains multiple base-learners, each learning over different intervals of the time-horizon,
and then employs a meta-learner to aggregate their predictions. We modify the meta-learner in FLH
from Hedge [42] to Adapt-ML-Prod [43], which ensures that the meta-learner can track each base-
learner on the associated time interval with high probability. This strategy allows us to selectively
reuse the historical information to handle the non-stationary environments. We introduce ingredients
of our algorithms as follows. A more detailed algorithm descriptions and comparison with the
dynamic regret minimization literature in OCO can be found in Appendices D.1 and B respectively.

Base-learner. Our algorithm runs multiple base-learners that are active on different intervals of
the time horizon. Let C = {Ii = [si, ei] ⊆ [T ]} be a interval set. Each base-learner Ei will only
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t =1 t =2 t =3 t =4 t =5 t =6 t =7 t =8 t =9

. . .

. . .

. . .

. . .

: θ̂t =
∑

i∈At
pt,iθ̂t,i

update pt,i by (9)

meta-learner

update θ̂t,i by (8)

active base-learner

Figure 1: An illustration of our online ensemble method, where we employ a meta-learner to aggregate the
predictions from base-learners running over different intervals of the time horizon.

update and submit the model θ̂t,i to the meta-learner if t ∈ Ii. We use the online Newton step
(ONS) for the model update. For an exp-concave loss function, the method ensures the base-learner’s
model is comparable with the best fixed model over the interval up to a logarithmic factor in T [44].
Specifically, for each base-learner Ei running on the interval [si, ei], ONS updates the model by

θ̂t+1,i = ΠAt,i

Θ
[
θ̂t,i − γA−1

t,i ∇L̂t(θ̂t,i)
]
, ∀t ∈ [si, ei] , (8)

where the matrix At,i = λI +
∑t
τ=si

∇L̂τ (θ̂τ,i)∇L̂s(θ̂τ,i)⊤. In the above, the projection function

is defined as ΠAt,i

Θ [θ1] = arg minθ∈Θ∥θ − θ1∥At,i
and Θ = {θ ∈ Rd | ∥θ∥2 ≤ S} is the parameter

space. The constant λ > 0 and η > 0 are the regularizer parameter and step size to be specified latter.

Meta-learner. As shown by Figure 1, the meta-learner’s role is to aggregate the models produced
by the base-learners using a weighting scheme. At each iteration t, the meta-learner will maintain a
weight pt,i for each “active” base-learner Ei, defined as the one whose associated interval contains t.
We update the weights for active base-learners based on the Adapt-ML-Prod method [43]. Specifically,
for every active base-learner Ei, our algorithm maintains a “potential” vt,i ∈ R+ at iteration t, which
reflects the historical performance of the base-leaner until time t. Then, denoting by At the index set
of the active base-learners at time t, their weights and the output model are obtained by

pt,i ∝ εt−1,ivt−1,i for all i ∈ At and θ̂t+1 =
∑

i∈At+1
pt+1,iθ̂t+1,i . (9)

In the above εt,i > 0 is a step size that can be automatically tuned along the learning process. A
noteworthy ingredient of our algorithm is the construction of the potential vt,i, using the linearlized
loss ⟨∇L̂t(θ̂t), θ̂t − θ̂t,i⟩/(SR). Then, the generalization gap between L̂t and L̃t can be controlled
with the negative term introduced by the exp-concave loss function. As a result, we can establish
a high probability bound to ensure that θ̂t is competitive with any base-learner’s model θ̂t,i on the
corresponding interval Ii. The detailed configurations of vt,i and εt,i are deferred to Appendix D.1.

Schedule of Intervals. As shown in Figure 1, we specify the intervals with the geomet-
ric covering scheme [41], where the interval set is defined as C =

⋃
k∈N∪{0} Ck with Ck ={

[i · 2k, (i+ 1) · 2k − 1] | i ∈ N and i · 2k ≤ T
}

. One can check that |C| is at most T , and the
number of active base-learner is bounded as |At| ≤ ⌈log t⌉. Thus, we only need to maintain at most
O(log t) base-learners at time t. The intervals specified by the geometric covering are informative to
capture the non-stationarity of the environments, leading to the following dynamic regret guarantees.

4.2 Theoretical Guarantees

This part presents the theoretical guarantees of our method. The estimator r̂t(x) = exp(−ϕ(x)⊤θ̂t)
established on θ̂t returned by the online ensemble method (9) achieves the dynamic regret guarantee.
Theorem 2. Assume the true density ratio r∗

t (x) = Dt(x)/D0(x) is contained in the hypothesis
space as r∗

t ∈ HLR
θ ≜ {x 7→ exp(−ϕ(x)⊤θ) | θ ∈ Θ} for any t ∈ [T ]. Then, with probability at

least 1 − δ, the dynamic regret of the density ratio estimator r̂t(x) = exp(−ϕ(x)⊤θ̂t) is bounded by

Regd
T ({L̃t, r∗

t }Tt=1) ≤ Õ
(

max{T 1
3V

2
3
T , 1} + T/N0

)
,

when the parameters are set as γ = 3(1 + β) and λ = 1. In the above, VT =
∑T
t=2∥Dt(x) −

Dt−1(x)∥1 measures the variation of input densities.
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Theorem 2 imposes a realizable assumption for the true density ratio function such that r∗
t ∈ HLR

θ .
Such an assumption is required since we train the density ratio estimator on a given hypothesis space
while the true density ratio function could be arbitrary. We note that the realizability assumption is
frequently used in the analysis for the density ratio estimation problem [29, 45] and other related
topics, including active learning [46] and contextual bandit [47], where the density ratio (or density)
estimation is required. A possible direction to relax the assumption is to consider a richer function
class, e.g., a neural network or a non-parametric model. We leave this as a future work.

The Õ(T 1
3V

2
3
T ) rate in our bound exhibits the same rate as the minimax optimal dynamic regret

bound for the squared loss function with the noisy feedback [48]. Since the squared loss function
enjoys even stronger curvature than the logistic loss, our result is hard to be improved. To achieve
this fast-rate result, the key was to show a “squared” formulation O

(
max{1, |I|V 2

I }
)

of the dynamic
regret for the base-leaner on each interval I (Lemma 3 in Appendix D.2). [19] achieved this by a
complicated analysis with the KKT condition to capture the structure of the comparators, while we
greatly simplified the analysis by exploiting the structure that the comparator θ∗

t is essentially the
minimizers of expected functions Lt (hence avoiding analyzing the KKT condition). Our analysis is
applicable to the case where the minimiers lie in the interior of the decision set and only requires the
smoothness of the loss function, which can be of independent interest in online convex optimization.

Averaged Excess Risk Bound for Continuous Covariate Shift. After obtaining the density ratio
estimator, we can train the predictive model by IWERM (2), leading to the following guarantee.

Theorem 3. Under the same condition as Theorem 2 and letting VT =
∑T
t=2∥Dt(x) − Dt−1(x)∥1,

running IWERM (2) with the estimated density ratio function r̂t(x) = exp(−ϕ(x)⊤θ̂t) yields

RT ({ŵt}Tt=1) ≤ Õ
(
N

− 1
2

0 + max
{
T− 1

3V
1
3
T , T

− 1
2
})
.

Theorem 3 shows that our learned predictor ŵt adapts to the environment with a converged average
excess risk when compared with the per-round best predictor w∗

t . By the discussion below Proposi-
tion 1, the Õ(N−1/2

0 ) generalization error over the offline data S0 is hard to improve. We focus on
the error in the online learning part. When the environment is nearly-stationary, i.e., VT ≤ O(T−1/2),
our bound implies an Õ(N−1/2

0 +T−1/2) average excess risk, matching the same rate for the one-step
adaptation [49], even if the unlabeled data appear sequentially and the comparator w∗

t could change
over time. When the environments shift quickly, the O(T−1/3V

1/3
T ) rate still exhibits a diminishing

error for covariate shift adaptation once VT = o(T ). Indeed, our result has the same rate as that for
continuous label shift [18] (with a slightly different definition of VT though). In Appendix D.6, we
further provide evidence to show that the O(max{T−1/3V

1/3
T , T−1/2) rate can hardly be improved,

even if one can receive labels of the testing stream after prediction.

Discussion on Assumptions. We end this section by a discussion on possible future directions to
relax the linear model assumption for DRE and covariate shift assumption. Since our analysis is based
on the online convex optimization framework, we employed the (generalized) linear model for DRE
to ensure the convexity. To go beyond the linear model while still having theoretical guarantees, one
might extend the online ensemble framework to learn within the Reproducing Kernel Hilbert Space,
leveraging advances in online kernel learning [50]. As for the step towards handling the general
distribution shift, it is possible to consider the sparse joint shift model [51] where both covariate and
label distribution could shift. Besides, studying how to handle the joint distribution shift with few
online labeled data also presents an interesting future direction. Our research on the covariate shift
might serve as a basic step towards addressing more complex real-world distribution shifts.

5 Experiments

Setups. We generate continuous covariate shift by combining two fixed distributions with a time-
varying mixture proportion αt ∈ [0, 1]. Specifically, given two fixed distributions D′(x) and D′′(x),
we generate samples from Dt(x) = (1−αt)D′(x)+αtD′′(x) at each round. The mixture proportion
αt shifts in four patterns: in Sin Shift and Squ Shift, αt changes periodically, following sine and
square waves; in Lin Shift, the environment changes slowly from α1 = 1 to αT = 0 linearly over T
rounds, while in Ber Shift, the proportion αt flips quickly between 0 and 1 with a certain probability.
For parameterization in the Accous implementation, we set R by directly calculating the data norm
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Figure 2: Performance compari-
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Figure 4: Average error and esti-
mator loss in squared shift.

and set S = d/2 for all experiments. We repeat all experiments five times and evaluate the algorithms
by the average classification error over the unlabeled test stream for 10,000 rounds.

Contenders. We compare our method with six algorithms, which can be divided into three groups.
The first is a baseline approach that predicts directly using the model trained on initial offline data
(FIX). The second group consists of the one-step covariate shift adaptation methods that do not
reuse historical information: DANN [52] handles the shifts by learning an invariant feature space, IW-
KMM [26], IW-KEIEP [25] and IW-uLSIF [28] equip the one-step IWERM method (2) with different
density ratio estimators. The third is OLRE, which serves as an ablation study for our Accous
algorithm. The OLRE algorithm estimates the density ratio by running an ONS (8) with all historical
data and then performs the IWERM at each round. All algorithm parameters are set by their default.

In the following, we focus on the results of empirical studies. Detailed configurations for the datasets,
simulated shifts, and setups for the Accous algorithm and contenders can be found in Appendix A.

5.1 Illustrations on Synthetic Data

Average Classification Error Comparison. We summarize the comparison results on synthetic
data with different types of covariate shifts with all contenders in Figure 2. The Accous algorithm
outperforms almost all other methods in the four shift patterns. We observe that the offline model FIX
performs poorly compared to the online methods. The best result of DANN, IW-KMM, IW-KLIEP
and IW-uLSIF is called One-Step for comparison. By reusing historical data, the Accous algorithm
achieves a lower average classification error compared to these One-Step competitors that use only
one round of online data. The Accous also outperforms OLRE, especially when the environments
change relatively quickly (Squ, Sin, and Ber). These results justify that performing density ratio
estimation with either one round of online data or all historical data is inappropriate for non-stationary
environments. Moreover, when the number of unlabeled data per round changes from Nt = 5
to Nt = 1, the one-step methods suffer severe performance degradation. In contrast, our Accous
algorithm still performs relatively well, highlighting the need for selective reuse of historical data.

Effectiveness of Online Density Ratio Estimation. We then take a closer look at the core component
of our algorithm, the online density ratio estimator, in the Squ shift where the distribution of the
online data shifts every M rounds. Figure 3 shows the weight assignment for base-learners with
different interval lengths, averaged over their active period. The result shows that our meta-learner
successfully assigns the largest weight to the base-learner whose interval length matches the switching
period M , which ensures that the right amount of historical data is reused. Figure 4 also shows the
average error of Accous and OLRE over 1, 000 iterations. The results show that Accous (red line)
can quickly adapt to new distributions after the covariate shift occurs. In contrast, OLRE (blue line)
struggles because it uses all the historical data generated from different distributions. Furthermore,
we denote the loss of the density ratio estimator L̂t(θ̂t) by the green line, which is quickly minimized
after the covariate shift occurs. The similar tendency between the average error (red line) and the
loss of the estimator (green line) confirms our theoretical finding in Theorem 1: we can minimize the
excess risk of the predictor by minimizing the dynamic regret of the density ratio estimator.

5.2 Comparison on Real-world Data

Performance Comparison on Benchmarks. In Table 1 and Table 2, we present the results of
the average classification error comparison with the contenders on four benchmark datasets. Our
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Table 1: Average classification error (%) of different algorithms on various real-world datasets with Lin
and Ber shifts. We report the mean accuracy and standard deviation over five runs. The best algorithms are
emphasized in bold. The number of data in each round is set as Nt = 5.

Lin Ber

FIX DANN KMM KLIEP uLSIF LR OLRE Accous FIX DANN KMM KLIEP uLSIF LR OLRE Accous

Diabetes 39.55 46.88 43.67 37.85 38.32 39.17 37.40 35.92 40.90 49.03 46.80 42.98 43.22 40.28 42.05 39.14
±6.58 ±7.09 ±6.23 ±6.15 ±6.00 ±7.10 ±6.56 ±6.44 ±6.90 ±6.54 ±6.67 ±6.52 ±6.78 ±6.25 ±6.22 ±4.51

Breast 10.25 16.03 8.26 6.90 11.07 7.33 3.59 4.60 11.68 15.34 10.12 7.13 9.01 8.14 5.27 3.89
± 3.00 ± 4.79 ± 0.31 ± 0.77 ± 2.34 ± 1.59 ± 0.25 ± 0.16 ± 4.16 ± 5.23 ± 0.60 ± 1.30 ± 1.91 ± 2.02 ± 0.44 ± 0.37

MNIST-SVHN 8.19 13.37 6.24 7.52 6.38 6.81 6.65 5.93 11.33 16.54 10.81 11.50 12.19 11.18 13.42 10.31
±1.39 ±0.97 ±1.52 ±0.33 ±0.76 ±0.84 ±0.93 ±0.72 ±0.83 ±1.10 ±0.63 ±0.97 ±1.20 ±0.50 ±0.49 ±0.51

CIFAR10-CINIC10 29.24 31.59 29.60 29.33 29.18 29.75 28.17 27.80 33.16 42.50 33.49 31.44 32.98 33.03 31.22 30.69
±0.51 ±2.18 ±1.43 ±0.97 ±1.50 ±0.48 ±1.24 ±0.83 ±0.94 ±1.29 ±0.83 ±1.57 ±0.67 ±1.26 ±1.01 ±0.62

Table 2: Average classification error (%) of different algorithms on various real-world datasets with Squ
and Sin shifts. We report the mean accuracy and standard deviation over five runs. The best algorithms are
emphasized in bold. The number of data in each round is set as Nt = 5.

Squ Sin

FIX DANN KMM KLIEP uLSIF LR OLRE Accous FIX DANN KMM KLIEP uLSIF LR OLRE Accous

Diabetes 37.85 45.69 43.57 37.00 38.03 37.83 39.17 36.45 37.30 44.96 41.38 36.40 37.23 36.99 38.58 35.17
±6.67 ±6.51 ±6.97 ±6.80 ±6.45 ±5.87 ±6.67 ±5.36 ±7.02 ±6.79 ±6.46 ±6.93 ±6.88 ±6.21 ±7.45 ±6.44

Breast 9.92 12.54 8.53 6.52 7.92 7.39 4.67 3.68 8.68 14.34 7.18 6.11 9.59 7.50 4.16 3.29
±0.23 ±1.55 ±0.30 ±0.91 ±1.39 ±0.83 ±0.23 ±0.58 ±0.56 ±1.78 ±0.39 ±0.92 ±1.02 ±0.51 ±0.42 ±0.43

MNIST-SVHN 11.28 13.98 10.21 11.01 10.49 11.72 13.68 9.54 9.98 16.73 8.91 9.41 9.30 9.00 15.38 7.74
±1.22 ±0.97 ±0.53 ±1.41 ±0.67 ±1.89 ±0.59 ±0.40 ±1.29 ±1.03 ±0.68 ±1.01 ±0.53 ±1.77 ±0.88 ±0.74

CIFAR10-CINIC10 34.75 38.13 34.08 34.27 33.80 33.56 32.61 31.08 36.44 42.53 37.00 36.58 36.53 36.21 38.24 35.42
±0.29 ±1.58 ±0.85 ±1.24 ±1.73 ±1.59 ±0.69 ±0.60 ±0.47 ±1.09 ±0.67 ±1.52 ±1.02 ±1.31 ±1.86 ±1.22

algorithm Accous outperforms other contenders in the four types of shifts, whether in a slowly
evolving environment (Lin) or in relatively non-stationary environments (Squ,Sin,Ber). The
OLRE algorithm uses all historical data, but does not necessarily outperform contenders that use only
current data, suggesting that we should selectively reuse the historical data.
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Figure 5: Average error on Year-
book dataset with real-life covari-
ate shift.

Case Study on a Real-life Application. We conducted empirical
studies on a real-world application using the yearbook dataset [53],
which contains high school front-facing yearbook photos from 1930
to 2013. The photo distributions shift along years due to the changing
social norms, fashion styles, and population demographics. Conse-
quently, it is essential to adapt to these changes. We used photos
before 1945 as the offline labeled dataset and generated the online
unlabeled data stream using photos after 1945, arranged chrono-
logically with 10 photos per round. Figure 5 shows the average
error curves. The OLER algorithm performs well when the distri-
butions do not change too much, but the method starts to suffer from
large prediction errors after 400 iterations. In contrast, our method
outperforms all competitors by selectively reusing historical data.

6 Conclusion

This paper initiated the study of the continuous covariate shift with the goal of minimizing the
cumulative excess risk of the predictors. We showed that the importance-weighted ERM method
works effectively given high-quality density ratio estimators (Proposition 1), whose estimation can
be cast as a dynamic regret minimization problem (Theorem 1). Instantiating with the logistic
regression density ratio estimation model, we proposed a novel online that can adaptively reuse
the historical data and enjoy a tight dynamic regret bound (Theorem 2). The regret bound finally
implies an Õ(T−1/3V

1/3
T ) averaged excess risk guarantee for the predictor. Experiments validate the

effectiveness of the proposed method and demonstrate the need for selective reuse of historical data.
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A Omitted Details for Experiments

In this section, we first provide additional details that were omitted in section 5. We then provide the
descriptions of our experimental setups, which include details of the datasets used, simulations of
continuous covariate shifts, descriptions of the competing algorithms, and the parameter configuration
of our proposed Accous algorithm. After that, we supplement the detailed numerical results obtained
from the synthetic experiments.

A.1 Experiment Setup

Continuous Covariate Shift Simulation. To simulate the continuous covariate shift, we generate
offline and online samples from different marginal distributions and annotate them with the same
labeling function. Given two different marginal distributions D′(x) and D′′(x), the offline dataset
S0 is sampled from the distribution D0(x) = (1 − α0)D′(x) + α0D′′(x), where α0 ∈ [0, 1] is a
mixture proportion coefficient. The online dataset St received at each iteration t is sampled from the
distribution Dt(x) = (1 − αt)D′(x) + αtD′′(x), where αt ∈ [0, 1] is the time-varying coefficient.
By changing the coefficient αt for t ≥ 1, we can simulate different types of continuous covariate
shifts with different shift patterns.

• Linear Shift (Lin): We set αt = t/T to simulate a gradually changing environment.

• Square Shift (Squ): In this case, the parameter αt switches between 1 and 0 every
M rounds, where 2M is the periodic length. We set M = Θ(

√
T ) to simulate a fast-

changing environment with periodic patterns.

• Sine Shift (Sin): We set αt = sin iπ
M , where i = t mod M and M is the periodic

length. We set M = Θ(
√
T ) to simulate a fast-changing environment with periodic patterns.

• Bernoulli Shift (Ber): In this case, we keep the αt = αt−1 with probability
p ∈ [0, 1] and otherwise set αt = 1 − αt−1. We set p = Θ(1/

√
T ) to simulate a fast-

changing environment but without periodic patterns.

Datasets. For the synthetic dataset, we generate D′(x) and D′′(x) using the multinomial Gaussian
distribution, wherein each class is generated from a Gaussian distribution. For D′(x), the positive
class data is generated from N (x; µp1,Σ), and the negative class data is generated from N (x; µn1 ,Σ).
Here, µp1 is set to −1.2 in R12, and µn1 is set to −0.8 in R12. As for D′′(x), its positive class data is
generated from N (x; µp2,Σ), and the negative class data is generated from N (x; µn2 ,Σ). Here, µp2 is
specified as 1.2 in R12, and µn2 as 0.8 in R12. The covariance matrix is set as Σ = Id in R12×12,
and the prior probability for the positive class data is fixed at 0.5. Besides, we generated offline data
with α0 = 0.9 and introduced a time-varying coefficient, αt, to simulate continuous covariate shifts.

The benchmark datasets are generated from real-world datasets.

• Diabetes (Dia) is a tabular UCI dataset. Each sample is an 8-dimensional vector with a
binary label. We split the dataset into two subsets and choose the split such that the classifier
trained on one dataset generalizes poorly to the other. We choose one of them as the offline
dataset and combine them with a time-varying coefficient to generate the online data.

• Breast (Bre) is a tabular UCI dataset. Each sample is a 9-dimensional vector with a binary
label. This dataset is generated similarly to the Diabetes dataset.

• MNIST-SVHN (M-S) contains the digital images collected from handwriting or natural scene
images. A feature extractor pre-trained on this dataset produces a 512-dimensional vector
with a 10-class label for each sample. We choose 10% MNIST data and 90% SVHN data as
the offline dataset and generate the online data by mixing the MNIST and SVHN datasets
with a time-varying proportion coefficient αt.

• CIFAR10-CINIC10 (C-C) contains real-life subjective images collected from different
sources. This dataset is generated similarly to the MNIST-SVHN dataset.

We also conduct experiments on a real-world dataset where the underlying data distributions exhibit
a continuous shift.
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• Yearbook [53]: This dataset contains the 37,921 frontal-facing American high school
yearbook photos from 1930 to 2013 [54]. Each photo is a 32 × 32 × 1 grayscale image
associated with a binary label representing the student’s gender. This dataset captures the
real-life changing of social norms, fashion styles, and population demographics. The offline
data is generated with photos before 1945, the online data is generated from 1946, and the
data size is 10 per round.

Contenders. We compare our proposed approach with six contenders, including:

• FIX is the baseline method that predicts with the classifier that are pre-trained on offline data
without any updates in the online adaptation stage.

• is a general domain adaptation algorithm that mitigates the discrepancy between the training
and test distributions by learning an invariant feature representation. We adapt this method
to the online setting by running DANN at each round t ∈ [T ] based on the offline data S0
and the online data St available at that round.

• IW-KMM is an importance weighting learning method that first estimates the density ratios
by the Kernel Mean Matching (KMM) method [26] and then performs the IWERM to train
the model. At each iteration t ∈ [T ], the density ratios are estimated with the offline dataset
S0 and the online dataset St by the KMM. Then the model is trained by running the IWERM
method on the offline data S0.

• IW-KLIEP is also an importance weighting learning method, where the density ratios are
estimated by the KLIEP method [25]. At each iteration t ∈ [T ], after the density ratios have
been estimated by KLIEP, the learner performs the IWERM over the offline data S0.

• IW-uLSIF is an importance weighting learning method where the density ratio estimated
by the uLSIF method is used [28]. At each iteration t ∈ [T ], the learner first estimates the
density ratios by the uLSIF and then performs the IWERM on the offline data S0.

• LR serves as an ablation study for the proposed Accous algorithm. At each iteration t ∈ [T ],
the learner first estimates the density ratios by an ONS with a logistic regression model and
then performs the IWERM on the offline data S0.

• OLRE also serves as an ablation study for the proposed Accous algorithm. It estimates the
density ratios in an on-line manner by running an ONS with a logistic regression model with
all the historical data and then performing the IWERM each round.

Accous Setup. We implement the Accous algorithm using a logistic regression model. Before
running the Accous algorithm, two parameters must be defined. They are the maximum norm of
the feature R and the maximum norm of the density functions S. We set R by directly calculating
the data norm. The covariate shift level determines the parameter S, which is difficult to predict in
advance. We found that setting S = d/2 is a good choice in the experiments. For stable performance,
we set a threshold of 100 and truncate the large weights after the density ratio estimation in each
round. We also ignore the base models with interval lengths 1, 2 in the density ratio estimation.

For the synthetic, diabetes, and breast tabular datasets, the linear model is used. For the MNIST-
SVHN, CIFAR10-CINIC10, and Yearbook datasets, the deep model is used for density ratio estima-
tion and predictive model training. The deep models consist of a backbone and a linear layer. In all
experiments, only the linear layer of the neural network is updated, while the backbone parameters
trained with offline data remain fixed. Backbone settings for different datasets are presented below.

• MNIST-SVHN and CIFAR10-CINIC10: The backbone is a pre-trained ResNet34 backbone
from torchvision with its weights initialized by training on ImageNet. Both the weight
estimator and the classifier share the same backbone and its corresponding parameters.

• Yearbook: Our network adopts a similar structure and updating process as in the MNIST-
SVHN and CIFAR10-CINIC10 experiments, following the configuration described in [53].
The backbone of our network consists of a CNN model with the default settings.

Computational Resources. We run experiments with two Xeon Gold 6248R processors (24 cores,
3.0GHz base, 4.0GHz boost), eight Tesla V100S GPUs (32GB video memory each), 768GB RAM,
all managed by the Ubuntu 20.04 operating system.
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Table 3: Average error (%) over the entire time horizons for different algorithms under various simulated shifts.
The best algorithms are emphasized in bold.

Nt = 1 Nt = 5
FIX DANN KMM KLIEP uLSIF LR OLRE Accous FIX DANN KMM KLIEP uLSIF LR OLRE Accous

Lin
32.85 46.93 37.97 36.26 38.34 36.51 27.13 27.69 32.59 40.33 32.68 34.13 31.70 32.21 27.34 27.11
±0.43 ±2.40 ±0.56 ±0.82 ±0.40 ±1.12 ±0.74 ±0.49 ±0.53 ±2.99 ±0.86 ±0.30 ±0.46 ±0.72 ±0.81 ±0.69

Squ
33.19 40.59 35.50 35.13 36.44 36.21 34.82 29.30 33.37 41.24 31.52 30.94 32.07 31.63 34.46 28.46
±0.56 ±3.28 ±0.33 ±0.61 ±0.79 ±0.46 ±0.30 ±0.82 ±0.67 ±4.01 ±0.46 ±0.53 ±0.36 ±1.08 ±0.86 ±0.54

Sin
32.80 42.65 36.25 35.83 37.01 37.42 33.15 31.08 32.66 39.94 34.15 34.47 33.93 34.62 31.85 30.57
±0.75 ±4.49 ±0.37 ±0.65 ±0.38 ±0.73 ±0.50 ±0.58 ±0.80 ±2.94 ±0.45 ±0.72 ±0.37 ±0.56 ±0.28 ±0.59

Ber
34.11 46.20 36.49 37.07 36.28 37.42 34.91 29.55 33.89 45.33 32.89 33.52 32.01 34.13 32.57 28.60
±0.45 ±4.12 ±0.42 ±0.67 ±0.36 ±0.85 ±0.47 ±0.46 ±0.67 ±2.88 ±0.36 ±0.78 ±0.59 ±0.72 ±0.40 ±0.36

A.2 Supplementary Numerical Results for Section 5.1

In Section 5.1 we summarize the results of the synthetic experiments, and here in Table 3, we
supplement their detailed numerical results. Overall, Accous outperforms almost all other methods
in the four shift patterns. Compared to the competitors that use only one round of online data, our
proposed method achieves a lower average error. The general domain adaptation method DANN
is also inferior in the online setting due to the limited amount of data per round, which makes it
difficult to learn a good representation. The proposed Accous algorithm also outperforms the OLRE
algorithm, which reuses all historical data. The above evidence demonstrates the need for selective
reuse of historical data and validates the effectiveness of our algorithm.

B More Related Work

B.1 Related Work on Non-stationary Online Learning

Online convex optimization (OCO) [13] is a powerful paradigm to handle sequential prediction
problems. To adapt to the continuously shifting environments, we exploit the online ensemble
technique [15, 16] developed in non-stationary online learning literature to hedge the uncertainty. In
this part, we will introduce the related works and discuss the difference between our algorithm and
the previous work.

Specifically, OCO paradigm considers a T -round game between a learner and the environment. At
every round t, the learner makes a prediction θt ∈ Θ, and, at the same time, the environments reveal
the convex loss function Lt : Θ → R. Then, the learner suffers from the loss Lt(θt) and observes
certain information about Lt to update the model for the next iteration. A classical performance
measure for OCO framework in non-stationary environments is the dynamic regret,

Regd
T ({L̃t, θ∗

t }Tt=1) =
T∑
t=1

Lt(θt) −
T∑
t=1

Lt(θ∗
t ), (10)

which compares the learner’s prediction with the function minimizer θ∗
t at every iteration. Over the

decades, a variety of online learning algorithms have been proposed to optimize this dynamic regret
measure [38, 39, 55, 56, 57, 58, 59, 60, 61, 62, 63] in the online convex optimization problem.

Worst-case Dynamic Regret. Many works focus on the full information setting [57, 58, 59, 60, 63],
where the learner can observe the loss functions entirely. We call the dynamic regret in such a case
as “worse-case” dynamic regret in the sense that the comparator θ∗

t is exactly the minimizer of the
observed function Lt. According to different complexity measures for quantifying the environmental
non-stationarity, there are two lines of results. The first is the path length of comparators V θT =∑T
t=2∥θ∗

t − θ∗
t−1∥2 measuring the variation of the function minimizers; and the second one is the

variation of the function values V LT =
∑T
t=2 maxθ∈Θ|Lt(θ) − Lt−1(θ)|. For the full information

setting, the prior art [63] showed that a simple greedy strategy can already be already well-behaved and
achieves an O(min{V θT , V LT }) dynamic regret bound that minimizes the two kinds of non-stationarity
measure simultaneously.

Universal Dynamic Regret. Competing to the sequences of observed functions’ minimizers can be
sometimes too pessimistic for the online optimizing, which may lead to a severe overfitting. A more
appropriate performance measure is the universal dynamic regret [38], which has drawn more and
more attention in recent years. Universal dynamic regret compares the learner’s prediction with an
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arbitrary comparator sequence {νt}Tt=1,

Regd
T ({L̃t, νt}Tt=1) =

T∑
t=1

Lt(θt) −
T∑
t=1

Lt(νt). (11)

Let V νT =
∑T
t=1∥νt − νt−1∥2 be the path length of the comparator sequence {νt}Tt=1. [38]

showed that the online gradient descent algorithm achieves an O((1 + V νT )
√
T ) universal dynamic

regret bound for convex function, whereas there is still a gap to the Ω(
√
T (1 + V νT )) lower bound

established by [15], who further proposed an algorithm attaining an O(
√
T (1 + V νT )) dynamic regret

bound and thus closed the gap. Their key algorithmic ingredient is the online ensemble structure [64],
which hedges the non-stationarity of the environments by employing a meta-learner to ensemble
the predictions from a group of base-learners. When, the loss function is convex and smooth,
the O(

√
T (1 + V νT )) can be improved to O(

√
(1 + min{FT , GT } + V νT )(1 + V νT )) [16], where

FT =
∑T
t=1 Lt(νt) and GT =

∑T
t=2 maxθ∈Θ∥∇Lt(θ) − ∇Lt−1(θ)∥2

2 are two problem-dependent
quantities capturing different kinds of easiness of the environments. For the exp-concave and smooth
functions, [19] showed an O(T 1/3(V νT )2/3) universal dynamic regret by an improper algorithm (i.e.,
the output decisions can be slightly out of the feasible domain, while comparators have to locate in the
domain), which is proven to be minimax optimal for exp-concave functions. Note that the worst-case
dynamic regret (10) is clearly a special case of the universal dynamic regret defined in (11), so a
universal dynamic regret upper bound directly implies an upper bound for the worst-case dynamic
regret, by substituting comparators {νt}Tt=1 as functions’ minimizer {θ∗

t }Tt=1. This method yields a
path-length type bound. Furthermore, we mention that it is also possible to obtain a function-variation
type worst-case dynamic regret bound from the universal dynamic regret guarantee, which is revealed
in [61, Appendix A.2].

An Intermediate Dynamic Regret. There is also an intermediate case between the worst-case and
universal dynamic regret. We refer to it the “intermediate” dynamic regret in this paper. In this
intermediate case, the online learner still aims to optimize the worst-case dynamic regret of the
loss function Lt(θ), but she can only observe a noisy feedback L̂t(θ) at each iteration. Since the
comparator θ∗

t = arg minθ∈Θ Lt(θ) is not the minimizer of the observed loss L̂t(θ), such a kind of
problem is more challenging than the worst-case dynamic regret minimization problem given the
uncertainty of the comparator sequence. [39] showed a restarted online gradient descent algorithm can

achieve an O(T 1/3(V LT )2/3) dynamic regret bound for convex function and an O(
√
TV LT ) bound for

strongly convex function under the noisy feedback. However, their algorithm requires the knowledge
of the non-stationarity measure V LT =

∑T
t=2 maxθ∈Θ|Lt(θ) − Lt−1(θ)| defined over Lt, which

is generally unknown. [48] showed that an O(T 1/3(V θT )2/3) bound is achievable with the noisy
feedback when Lt is a one-dimensional squared loss. The proposed method is based on the de-noising
technique and are free from the knowledge of V θT . Evidently, this intermediate dynamic regret is still
a feasible realization of the universal dynamic regret, so one can achieve the intermediate dynamic
regret bound by the universal dynamic regret. However, this reduction will only provide an expected
guarantee. More detailed discussions are provided below.

Comparison of Our Results and Earlier Works. Our Regd
T ({L̃t, θ∗

t }Tt=1) ≤ O(T 1/3(V θT )2/3)
high-probability dynamic regret bound for logistic regression (Theorem 2) falls into the intermediate
case, where we aim to minimize the worst-case dynamic regret bound in terms of Lt with noisy
feedback. The closest related work is by [19], who also exploited an online ensemble structure and
achieved a universal dynamic regret in the form of Regd

T ({L̃t, νt}Tt=1) ≤ O(T 1/3(V νT )2/3) universal
dynamic regret by taking L̂t as the input. Further choosing νt = θ∗

t and taking the expectation over
St for each round, their result implies an expectation bound E[Regd

T ] ≤ O(T 1/3(V θT )2/3). One main
advantage of our result is that the bound holds with high probability. To achieve the high-probability
bound, we twist the meta-learner from Hedge [42] to Adapt-ML-Prod [43], which helps control
the generalization error between L̂t and L̃t with the negative term introduced by the exp-concavity
of the loss function. Besides, similar to [19], our analysis crucially relies on providing a squared
formulation of the dynamic regret O(max{1, |I|(V θT )2}) on each interval I . However, to obtain such
a result, [19] crucially rely on a complicated analysis on the KKT condition to depict the structure of
comparators. We greatly simplify the analysis by exploiting the fact that in our case the comparator
θ∗
t is actually the minimizer of expected functions Lt, hence avoiding analyzing KKT condition. Our
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analysis is applicable to the case when the minimizers lie in the interior of the feasible domain and
require the smoothness of the online functions only (which does not rely on the particular properties
of logistic loss). This result might be of independent interest in other online learning studies.

C Omitted Details for Section 3

This section provides the proofs for Section 3 in the main paper.

C.1 Proof of Proposition 1

Proof of Proposition 1. We first provide an excess risk bound for the model ŵt at each time t and
then combine them for T rounds. For each time t ∈ [T ], let R̃t(w) = E(x,y)∼S0

[
r∗
t (x)ℓ(w⊤x, y)

]
be the risk built upon the true density ratio function r∗

t and R̂t(w) = E(x,y)∼S0

[
r̂t(x)ℓ(w⊤x, y)

]
be that built upon the empirical density ratio function r̂t. We can decompose the excess risk of the
trained model ŵt as

Rt(ŵt) −Rt(w∗
t ) = Rt(ŵt) − R̃t(ŵt)︸ ︷︷ ︸

term (a)

+ R̃t(ŵt) − R̃t(w∗
t )︸ ︷︷ ︸

term (b)

+ R̃t(w∗
t ) −Rt(w∗

t )︸ ︷︷ ︸
term (c)

.

For term (a), by a standard generalization error analysis as shown in Lemma 2, with probability at
least 1 − δ/(2T ), the gap between Rt(ŵt) and R̃t(ŵt) is bounded by

term (a) = Rt(ŵt) − R̃t(ŵt) ≤ 2BGDR√
N0

+ 4BL

√
2 ln((8T )/δ)

N0
.

Then, we proceed to bound term (b).

term (b) = R̃t(ŵt) − R̃t(w∗
t )

= R̃t(ŵt) − R̂t(ŵt) + R̂t(ŵt) − R̂t(w∗
t ) + R̂t(w∗

t ) − R̃t(w∗
t )

≤ R̃t(ŵt) − R̂t(ŵt) + R̂t(w∗
t ) − R̃t(w∗

t )
= E(x,y)∼S0

[
(r∗
t (x) − r̂t(x))ℓ(ŵ⊤

t x, y)
]

+ E(x,y)∼S0

[
(r̂t(x) − r∗

t (x))ℓ((w∗
t )⊤x, y)

]
≤ 2LEx∼S0 [|r∗

t (x) − r̂t(x)|],

where the first inequality is due to the optimality of ŵt and the second inequality is by the condition
maxx∈W,y∈Y,w∈W |ℓ(w⊤x, y)| ≤ L.

Finally, as for term (c), since w∗
t is independent of S0, a direct application of the Hoeffding’s

inequality [65, Lemma B.6] implies,

term (c) = R̃t(w∗
t ) −Rt(w∗

t ) ≤ BL

√
2 ln((8T )/δ)

N0

with probability at least 1 − δ/(2T ). Combining the upper bounds for term (a), term (b) and term (c)
and taking the summation over T rounds, we get

RT ({ŵt}Tt=1) ≤ 2BGDRT√
N0

+ 5BLT

√
2 ln((8T )/δ)

N0
+ 2L

T∑
t=1

Ex∼S0 [|r∗
t (x) − r̂t(x)|]

with probability at least 1 − δ, which completes the proof.

C.2 Proof of Proposition 2

Proof of Proposition 2. We begin with converting the estimation error to the squared formulation,

T∑
t=1

Ex∼D0(x)[|r∗
t (x) − r̂t(x)|] ≤

T∑
t=1

√
Ex∼D0(x)[|r∗

t (x) − r̂t(x)|2]
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≤

√√√√T

(
T∑
t=1

Ex∼D0(x)[|r∗
t (x) − r̂t(x)|2]

)
, (12)

where the first inequality is by Jensen’s inequality and the last inequality is due to the Cauchy-Schwarz
inequality. Then, we can bound the squared density ratio estimation error as
µ

2Ex∼D0(x)
[
|r̂t(x) − r∗

t (x)|2
]

≤ Ex∼D0(x) [ψ (r∗
t (x)) − ψ (r̂t(x)) − ∂ψ (r̂t(x)) (r∗

t (x) − r̂t(x))]

= EBψ(r∗
t ∥r̂t) = Lψt (r̂t) − Lψt (r∗

t ), (13)

where the first inequality is due to the strong convexity of the function ψ. The last equality is by the
definition of the loss function Lψt . Combining (12) and (13), we have

T∑
t=1

Ex∼D0(x)[|r̂t(x) − r∗
t (x)|] ≤

√√√√2T
µ

(
T∑
t=1

Lψt (r̂t) −
T∑
t=1

Lψt (r∗
t )
)
.

C.3 Proof of Theorem 1

Proof of Theorem 1. Following the same arguments in obtaining (12), the empirical cumulative
estimation error of the density ratio estimators can be bounded as

T∑
t=1

Ex∼S0(x)[|r∗
t (x) − r̂t(x)|] ≤

√√√√T

(
T∑
t=1

Ex∼S0(x)

[
|r∗
t (x) − r̂t(x)|2

])
. (14)

Then, we proceed to bound the squared cumulative estimation error by the regret of the loss function
L̃ψt (r) defined in (5). For notation simplicity, we define

f1(z) = ∂ψ(z)z − ψ(z) and f2(z) = ∂ψ(z).

In such a case, the loss function L̃ψt (r) = Ex∼S0 [f1(r(x))] − Ex∼Dt(x) [f2(r(x))] and the regret
over L̃ψt can be written as

L̃ψt (r̂t) − L̃ψt (r∗
t ) = Ex∼S0 [f1(r̂t(x)) − f1(r∗

t (x))] − Ex∼Dt
[f2(r̂t(x)) − f2(r∗

t (x))]. (15)

For the first term of R.H.S. of (15), by the Taylor’s Theorem, for each x ∈ X , we have

Ex∼S0 [f1(r̂t(x)) − f1(r∗
t (x))]

= Ex∼S0

[
∂f1(r∗

t (x))(r̂t(x) − r∗
t (x)) + ∂2f1(ξx)

2 (r̂t(x) − r∗
t (x))2

]
≥ Ex∼S0

[
∂2ψ

(
r∗
t (x)

)
r∗
t (x)

(
r̂t(x) − r∗

t (x)
)]

+ µ

2Ex∼S0

[
(r̂t(x) − r∗

t (x))2] . (16)

In above ξx ∈ dom ψ is a certain point on the line collecting r̂t(x) and r∗
t (x). The second inequality

is due to the definition of f1 such that,

∂2f1(ξx) = ∂2ψ(ξx) − ∂3ψ(ξx)ξx ≥ µ,

where the inequality holds due to the µ-strong convexity of ψ(z) and the condition ξx∂
3ψ(ξx) ≤ 0

for all ξx ∈ domψ.

Then, we proceed to bound the second term of R.H.S. of (15),

Ex∼Dt [f2(r̂t(x)) − f2(r∗
t (x))]

= Ex∼Dt

[
∂f2
(
r∗
t (x)

)
(r̂t(x) − r∗

t (x))
]

+ Ex∼Dt

[
∂2f2(ξx)

2 (r̂t(x) − r∗
t (x))2

]
≤ Ex∼Dt

[
∂2ψ

(
r∗
t (x)

)
(r̂t(x) − r∗

t (x))
]

= Ex∼D0

[
∂2ψ

(
r∗
t (x)

)
r∗
t (x) (r̂t(x) − r∗

t (x))
]
, (17)
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In above ξx ∈ dom ψ is a certain point on the line connecting r̂t(x) and r∗
t (x). The first inequality is

due to the definition of f2 and the condition on ψ, such that ∂2f2(ξx) = ∂3ψ(ξx) ≤ 0. Plugging (16)
and (17) into (15), and rearranging the terms, we arrive

µ

2Ex∼S0

[
(r̂t(x) − r∗

t (x))2] ≤ L̃ψt (r̂t) − L̃ψt (r∗
t ) + Ut, (18)

where the term Ut is defined as

Ut = Ex∼D0

[
∂2ψ

(
r∗
t (x)

)
r∗
t (x) (r̂t(x) − r∗

t (x))
]

− Ex∼S0

[
∂2ψ

(
r∗
t (x)

)
r∗
t (x)

(
r̂t(x) − r∗

t (x)
)]
.

It remains to analyze the generalization gap Ut for every iteration. The main challenge is that the
learned model r̂t depends on the initial dataset S0 and the generalization error is related to the
complexity of the hypothesis of the density ratio estimator. In the following lemma, we use the
covering number [65, Chapter 27] to measure the complexity of the hypothesis space. It is possible
to provide an upper bound of Ut with other advanced complexity measure.

Lemma 1. Let Hr ≜ {r : X → R | ∥r∥∞ ≤ B′
r} be a hypothesis space of the density ratio function

whose covering number is N(Hr, ε, ∥·∥∞) . Then, for all model r ∈ Hr and δ ∈ (0, 1), we have the
following upper bound

Ut = Ex∼D0

[
∂2ψ

(
r∗
t (x)

)
r∗
t (x) (r(x) − r∗

t (x))
]

− Ex∼S0

[
∂2ψ

(
r∗
t (x)

)
r∗
t (x)

(
r(x) − r∗

t (x)
)]

≤ Cr(µ) log (2N(Hr, ε, ∥·∥∞)/δ)
N0

+ µ

4ES0

[
(r(x) − r∗

t (x))2]+ 2Arε+ µε2

4 ,

with probability at least 1 − δ for any ε > 0, where Cr(µ) = 4ArBr/3 + 16A2
r/µ + 3µB2

r =
O(max{µ, 1/µ}) with constants Ar = |maxx∈X ∂2ψ(r∗

t (x))r∗
t (x)|, and Br = max{B,B′

r}.

Combining (18) and Lemma 1 with the hypothesis space Hr = Hθ ≜ {x 7→ h(x, θ) | θ ∈ Θ} and
rearranging the terms yields,

µ

4Ex∼S0

[
(r̂t(x) − r∗

t (x))2] ≤ L̃ψt (r̂t) − L̃ψt (r∗
t ) + Cr(µ) log (2N(Hθ, ε, ∥·∥∞)/δ)

N0
+ 2Arε+ µε2

4 .

Further choosing ε = 1/T and taking the summation of the T iterations, we have

µ

4

T∑
t=1

Ex∼S0

[
(r̂t(x) − r∗

t (x))2]
≤

T∑
t=1

L̃ψt (r̂t) −
T∑
t=1

L̃ψt (r∗
t ) + Cr(µ)T log (2TN(Hθ, 1/T , ∥·∥∞)/δ)

N0
+Dr (19)

where Dr = 2Ar + µ/(4T ) = O(1) is a constant. Then, we proceed to bound the covering number
of the hypothesis space Hθ. Let θ, θ′ ∈ Θ be the corresponding parameters for the two density ratio
function r, r′ ∈ Hθ. Then, we can show that for any ∥θ − θ′∥2 ≤ ε, we have

∥r − r′∥∞ = max
x∈X

|h(x, θ) − h(x, θ′)| ≤ Gh∥θ − θ′∥2,

where Gh = maxx∈X ,θ∈Θ∥∇h(x, θ)∥2 is the Lipschitz continuity constant. Then, we can check that
the covering number of Hθ in terms of ∥·∥∞ can be bounded by that of Θ in terms of ∥·∥2 as

N(Hθ, 1/T , ∥·∥∞) ≤ N(Θ, 1/(GhT ), ∥·∥2) ≤ (3SGhT )d. (20)

In the above, the last inequality holds because the parameter space Θ is essentially a L2-ball with
radius S, whose covering number is bounded by (3S/ε)d [66]. Then, plugging (20) into (19), we
arrive
T∑
t=1

Ex∼S0

[
(r̂t(x) − r∗

t (x))2] ≤ 4
µ

T∑
t=1

(
L̃ψt (r̂t) − L̃ψt (r∗

t )
)

+ 4dTCr(µ) log (6SGhT/δ)
µN0

+ 4Dr

µ
.

Then, we complete the proof by plugging this inequality into (14),
T∑
t=1

Ex∼S0(x)[|r̂t(x) − r∗
t (x)|]
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≤

√√√√4T
µ

(
T∑
t=1

Lψt (r̂t) −
T∑
t=1

Lψt (r∗
t )
)

+ 4dT 2Cr(µ) log (6SGhT/δ)
µN0

+ 4TDr

µ

=

√√√√4T
µ

max
{

T∑
t=1

Lψt (r̂t) −
T∑
t=1

Lψt (r∗
t ), 0

}
+ O

(
max

{
1, 1
µ

}
· T

√
d log(T/δ)√
N0

)
.

C.4 Useful Lemmas

Lemma 2. Let R̃t(w) = E(x,y)∼S0

[
r∗
t (x)ℓ(w⊤x, y)

]
. With probability at least 1 − δ over the

drawn of S0, all predictions w ∈ W satisfy

|Rt(w) − R̃t(w)| ≤ 2BGDR√
N0

+ 4BL

√
2 ln(4/δ)
N0

.

Proof of Lemma 2. Since the risk function R̃t(w) is bounded by BL for all w ∈ W , the standard
analysis on generalization bound with Rademacher complexity (e.g. [65, Theorem 26.5]) shows that

|Rt(w) − R̃t(w)| ≤ 2R̂S0(Lt) + 4BL

√
2 ln(4/δ)
N0

for any w ∈ W . In above, the function space Lt is defined as Lt = {(x, y) 7→ r∗
t (x)ℓ(w⊤x, y) |

w ∈ W} and R̂S0(Lt) = 1
N0

Eσ∼{±1}N0

[
supw∈W

∑N0
n=1 σirt(xn)ℓ(w⊤xn, yn)

]
is the empirical

Rademacher complexity of Lt.
Note that the function ϕn : R → R defined as ϕn(z) = r∗

t (xn)ℓ(z, yn) is BG-Lipschitz, such that
|ϕn(w⊤

1 xn) − ϕn(w⊤
2 xn)| ≤ BG|(w1 − w2)⊤xn| for any w1,w2 ∈ W . Then, according to the

Talagrand’s lemma [65, Lemma 26.9], we have

R̂S0(Lt) ≤ BGR̂S0(W̃),

where W̃ = {x 7→ w⊤x | w ∈ W} is a hypothesis space for the linear functions. By [65, Lemma
26.10], the Rademacher complexity of the linear function class is bounded by

R̂S0(W̃) ≤ Dmaxxn∈S0∥xn∥2√
N0

≤ DR√
N0

.

We complete the proof by combining the above displayed inequalities.

Proof of Lemma 1. We begin with the analysis for the generalization gap for a fixed model r ∈ Hr.
For notation simplicity, we denote by

fr(x) = ∂2ψ
(
r∗
t (x)

)
r∗
t (x) (r(x) − r∗

t (x)) ,

and let the random variable Zi = Ex∼D0 [fr(x)] − fr(xi) for any xi ∈ S0. Since xi is i.i.d. sampled
from D0 and fr is independent of S0, we have E[Zi] = 0 and |Zi| ≤ 2ArBr with the constants
Ar = maxx∈X |∂2ψ(r∗

t (x))r∗
t (x)| and Br = max{B,maxx∈X ,r∈Hr |r(x)|}. Besides, the variance

of Zi is bounded by

E[Z2
i ] = Ex∼D0 [(fr(x))2] − (Ex∼D0 [fr(x)])2 ≤ Ex∼D0

[
(fr(x))2] ,

Then, by the Bernstein’s inequality [65, Lemma B.9], with probability at least 1 − δ, we have

Ex∼D0 [fr(x)] − Ex∼S0 [fr(x)] ≤ 4ArBr log(1/δ)
3N0

+

√
2 log(1/δ)ED0 [(fr(x))2])

N0

≤
(

4ArBr
3 + 16A2

r

µ

)
log(1/δ)
N0

+ µ

8A2
r

ED0 [(fr(x))2]
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≤
(

4ArBr
3 + 16A2

r

µ

)
log(1/δ)
N0

+ µ

8ED0

[
(r(x) − r∗

t (x))2] ,
(21)

where the first inequality is due to the AM-GM inequality. The second inequality is due to the fact
that |fr(x)| ≤ |∂2ψ(r∗

t (x))r∗
t (x)| · |r(x) − r∗

t (x)| ≤ Ar|r(x) − r∗
t (x)| for any x ∈ X .

Then, since r is a fixed model in Hr, we can further bound ED0

[
(r(x) − r∗

t (x))2] by
ES0

[
(r(x) − r∗

t (x))2] by applying the Bernstein’s inequality to the random variable Yi =
(r(xi) − r∗

t (xi))2/(4B2
r ). Specifically, after checking E[Yi] = ED0

[
(r(x) − r∗

t (x))2] /(4B2
r ) and

Yi ∈ [0, 1], a direct application of [65, Lemma B.10] implies

ED0

[
(r(x) − r∗

t (x))2]
≤ ES0

[
(r(x) − r∗

t (x))2]+ 16B2
r log(1/δ)
N0

+

√
8B2

rES0 [(r(x) − r∗
t (x))2] log(1/δ)

N0

≤ 24B2
r log(1/δ)
N0

+ ES0

[
(r(x) − r∗

t (x))2] , (22)

where the last inequality is due to the AM-GM inequality. Plugging (22) into (21), for a fixed r ∈ Hr,
we have

Ex∼D0 [fr(x)] − Ex∼S0 [fr(x)]

≤
(

4ArBr
3 + 16A2

r

µ
+ 3µB2

r

)
log(2/δ)
N0

+ µ

8ES0

[
(r(x) − r∗

t (x))2] ,
with probability at least 1 − δ.

Then, based on the notion of covering number, we show a union bound of Ut over all r ∈ Hr. Let
N (Hr, ε, ∥·∥∞) be the ε-net of Hr such that for any r ∈ Hr one can find a r′ ∈ N (Hr, ε, ∥·∥∞)
satisfying ∥r−r′∥∞ ≤ ε. The covering numberN(Hr, ε, ∥·∥∞) is defined as the minimal cardinality
of an ε-net of Hr. By taking the union bound over all r′ ∈ N (Hr, ε, ∥·∥∞), with probability at least
1 − δ, the following holds for any r′ ∈ N (Hr, ε, ∥·∥∞),

Ex∼D0 [fr′(x)] − Ex∼S0 [fr′(x)]

≤
Cr(µ) log

(
2N(Hr,ε,∥·∥∞)

δ

)
N0

+ µ

8ES0

[
(r′(x) − r∗

t (x))2] , (23)

where Cr(µ) = 4ArBr/3 + 16A2
r/µ + 3µB2

r = O(max{µ, 1/µ}). Then, for any model r ∈ Hr,
we can show

Ex∼D0 [fr(x)] − Ex∼S0 [fr(x)]
= Ex∼D0 [fr′(x)] − Ex∼S0 [fr′(x)] + Ex∼D0 [fr(x) − fr′(x)] − Ex∼S0 [fr(x) − fr′(x)]
≤ Ex∼D0 [fr′(x)] − Ex∼S0 [fr′(x)] + 2εAr

(23)
≤ Cr(µ) log (2N(Hr, ε, ∥·∥∞)/δ)

N0
+ µ

8ES0

[
(r′(x) − r∗

t (x))2]+ 2Arε

≤ Cr(µ) log (2N(Hr, ε, ∥·∥∞)/δ)
N0

+ µ

4ES0

[
(r(x) − r∗

t (x))2]+ 2Arε+ µε2

4 ,

where the first inequality is due to the property of the ε-net such that

Ex∼D0 [fr(x) − fr′(x)] ≤ Ex∼D0 [|∂2ψ(r∗
t (x))r′(x)| · |r(x) − r∗

t (x)|] ≤ Ar∥r − r′∥∞ ≤ Arε.

The last inequality is by
µ

8ES0

[
(r′(x) − r∗

t (x))2] ≤ µ

4ES0

[
(r(x) − r∗

t (x))2]+ µ

4ES0

[
(r(x) − r′(x))2]

≤ µ

4ES0

[
(r(x) − r∗

t (x))2]+ µ

4 ∥r − r′∥2
∞ ≤ µ

4ES0

[
(r(x) − r∗

t (x))2]+ µε2

4 .

Thus, we complete the proof.
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Algorithm 1 Base-learner Ei
Input: Active interval Ii = [si, ei], regularization parameter λ and step size η, feasible domain Θ.
1: Initialize the model θ̂si,i as any point in the domain Θ and the matrix Asi−1 = λId.
2: for t ∈ Ii = [si, ei] do
3: Submit the model θ̂t,i to the meta-learner.
4: Update the matrix by At,i = At−1,i + ∇L̂t(θ̂t,i)∇L̂t(θ̂t,i)⊤.
5: Update the model for next iteration by

θ̂t+1,i = ΠAt,i

Θ
[
θ̂t,i − γA−1

t,i ∇L̂t(θ̂t,i)
]
,

where ΠAt,i

Θ [ν] = arg minθ∈Θ∥θ − ν∥At,i is the projection operator.
6: end for

D Omitted Details for Section 4

This section presents the omitted details for Section 4. We will first introduce the algorithm details
for our online ensemble algorithm, characterized by its meta-base structure, in Appendix D.1. Then,
we present the theoretical guarantees alongside their proofs for the base-learner (Lemma 3) and meta-
learner (Lemma 10) in Appendix D.2 and Appendix D.3 respectively. These elements collectively
contribute to the dynamic regret guarantee of the overall algorithm. The dynamic regret of the online
ensemble algorithm (Theorem 2) is presented in Appendix D.4. We provide the proof for the average
excess risk (Theorem 3) in Appendix D.5. Further discussions regarding the tightness of the bound
and alternative choices for the Bregman divergence function are located in Appendices D.6 and D.7.

D.1 Omitted Algorithm Details

Here, we introduce the algorithmic details for the online ensemble method omitted in Section 4.1.

Interval Schedules. We run multiple based learners on the geometric covering:

C =
⋃

k∈N∪{0}
Ck and Ck =

{
[i · 2k, (i+ 1) · 2k − 1] | i ∈ N and i · 2k ≤ T

}
(24)

and then employ a meta-learner to combine them by weights. For any interval Ii = [si, ei] ∈ C,
which starts at time t = si and end at t = ei, we denote by Ei the base-learner running over Ii.

Base-learner. The base-learner Ei updates his/her model with the ONS algorithm [44] in the
associated active period Ii. The algorithmic details of the base-learner are summarized in Algorithm 1.
At every iteration t ∈ Ii, the base-learner Ei will first submit his/her model θ̂t,i to the meta-learner
and then update the model for the next iteration by Line 4 and Line 5 as shown in Algorithm 1.

Meta-learner. The meta-learner aggregates the predictions of each active base-learner by a weighted
combination scheme. To obtain the weight pt,i for each active base-learner Ei, we maintain three
terms mt,i, vt,i and εt,i for each base-learner Ei when he/she is active, i.e., t ∈ Ii. Let gt(θ) =
⟨∇L̂t(θ̂t), θ − θ̂t⟩ be a linearized loss for the original function L̂t(θ). The first term is defined by

mt,i ≜
gt(θ̂t) − gt(θ̂t,i)

SR
= ⟨∇L̂t(θ̂t), θ̂t − θ̂t,i⟩

SR
,

which measures the performance gap between the meta-learner’s prediction θ̂t and the i-th base-
learner’s prediction θ̂t,i over the linearized loss gt(θ). The second term vt,i is the “potential” of the
base-learner Ei, which measures the historical performance of Ei over the interval. When invoking
the base-learner Ei at t = si, we initialize vsi−1,i = 1/K and the term is updated by

vt,i =
(
vt−1,i ·

(
1 + εt−1,imt,i

)) εt,j
εt−1,j

,∀t ∈ Ii. (25)

The last term εt,i is the learning rate, which is set as

εt,i = min
{

1
2 ,
√

lnK
1 +

∑t
τ=si

m2
τ,i

}
. (26)
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Algorithm 2 Meta-learner

Input: Interval set for base-learners C.
1: Iitialize the set for active base-learner A0 = ∅ and let K = |C|.
2: for t = 1, . . . , T do
3: for Ii = [si, ei] ∈ C do
4: if si is equal to t then
5: Create a base-leaner Ei by Algorithm 1 and initialize the potential vsi−1,i = 1/K and

step size εsi−1,i = min{1/2,
√

lnK}.
6: Add the index to the active set At = At−1 ∪ {i}.
7: else if ei + 1 is equal to t then
8: Remove the index from the active set At = At−1/{i}.
9: end if

10: end for
11: Receive the θ̂i,t from active base-learners Ei ∈ At and update their weights pt,i by (27).
12: Submit the model by θ̂t =

∑
i∈At

pt,iθ̂t,i.
13: for i ∈ At do
14: Update the step size εt+1,i for all current active base-learner by (26).
15: Update the potential vt+1,i for all current active base-learner by (25).
16: end for
17: end for

After obtaining the vt,i and εt,i for each active base-learner, the weight for the next iteration t+ 1 is
updated by

pt+1,i = εt,ivt,i∑
i∈At+1

εt,ivt,i
, for all i ∈ At+1 . (27)

The algorithm is summarized in Algorithm 2. At the beginning of each iteration t, the algorithm will
update the index set for the active base-learner (Line 3-Line 10). Then, the meta-learner’s prediction
is generated by the weighted combination rule (Line 11). After that, the meta-learner will update the
potential vt+1,i and the step εt+1,i for the next iteration.

D.2 Regret Guarantee for Base-Algorithm (Lemma 3)

By suitable configurations of the parameters γ, λ > 0, we show that the ONS algorithm enjoys the
following dynamic regret guarantees,

Lemma 3. Let θ∗
t = arg minθ∈Rd Lt(θ) and all the minimizer θ∗

t ’s lie in the interior of Θ. Set
γ = 6(1 + β) and λ = 1. Then, with probability at least 1 − δ, the ONS running on the interval
Ii = [si, ei] ⊆ [T ] ensures∑

t∈Ii

L̃t(θ̂t,i) −
∑
t∈Ii

L̃t(θ∗
t ) ≤ O

(
dβ log

(
|Ii|/δ

)
+ |Ii|

(
V θIi

)2 + |Ii| log(dT/δ)
N0

)
where V θIi

=
∑ei

t=si+1∥θ∗
t − θ∗

t−1∥2 is the path length measuring the fluctuation of the minimizers.

D.2.1 Main Proof

This section provides the proof of the ONS algorithm. Since the analysis of the single base-learner is
independent from the online ensemble structure, for notation simplicity, we omit the subscribe of
the base-learner in the analysis. Specifically, we abbreviate the prediction θ̂t,i, matrix At,i and the
interval Ii as θ̂t, matrix At and the interval I respectively.

Proof of Lemma 3. We begin the proof of the dynamic regret with a lemma on the static regret of
the ONS algorithm, whose proof is proved in Appendix D.2.2. For notation simplicity, we omit the
subscribes of the base-learner, where the prediction θt,i, matrix At,i and interval Ii is abbreviated as
θt, At and I , respectively.
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Lemma 4. Set γ = 6(1 + β) and λ = 1. With probability at least 1 − 2δ, for any δ ∈ (0, 1], the
ONS algorithm (8) running on the interval I = [s, e] ⊆ [T ] ensures∑

t∈I
L̃t(θ̂t) −

∑
t∈I

L̃t(θ) ≤ C
(1)
I (δ) = O (dβ log(|I|/δ))

for any θ ∈ Θ, where C(1)
I (δ) = 12dβ′ log

(
1 + |I|R2) + S2

3β′ + (48β′ + 6S2R2

β′ ) log
√

2|I|+1
δ +

(4SR+ S2R2

β′ )
√

log 2|I|+1
δ2 and β′ = β + 1.

Then, we can decompose the dynamic regret as follows,∑
t∈I

L̃t(θ̂t) −
∑
t∈I

L̃t(θ∗
t ) =

∑
t∈I

L̃t(θ̂t) −
∑
t∈I

L̃t(θ̄∗
I ) +

∑
t∈I

L̃t(θ̄∗
I ) −

∑
t∈I

L̃t(θ∗
t )

≤ C
(1)
I (δ) +

∑
t∈I

L̃t(θ̄∗
I ) −

∑
t∈I

L̃t(θ∗
t ), (28)

where θ̄∗
I = 1

|I|
∑
t∈I θ

∗
t is an averaged prediction of the function minimizers over T rounds. Under

the condition all function minimizers lie in the interior of Θ, we have θ̄∗
I ∈ Θ. As a consequence, the

last inequality holds due to Lemma 4.

Then, we proceed to bound the last two terms of the R.H.S. of the above inequality. Since the
first-order derivative of the sigmoid function σ′(z) = exp(−z)/(1 + exp(−z))2 ≤ 1/4 for any
z ∈ R. Let Id ∈ Rd×d be the identity matrix. we can check L̃t is a R2/4-smooth function such that
∇2L̃t(θ) = 1

2Ex∼S0 [σ′(x⊤θ)ϕ(x)ϕ(x)⊤] + 1
2Ex∼Dt

[σ′(x⊤θ)ϕ(x)ϕ(x)⊤] ≼ R2

4 Id for any θ ∈ Θ.
Then, with probability at least 1 − 2δ, we have

L̃t(θ̄∗
I ) − L̃t(θ∗

t ) ≤ ⟨∇L̃t(θ∗
t ), θ̄∗

I − θ∗
t ⟩ + R2

8 ∥θ̄∗
I − θ∗

t ∥2
2

≤ 8
R2 ∥∇L̃t(θ∗

t )∥2
2 + R2

4 ∥θ̄∗
I − θ∗

t ∥2
2

≤ 16 ln((d+ 1)/δ)
N0

+ R2

4 ∥θ̄∗
I − θ∗

t ∥2
2 + o

(
log(d/δ)
N0

)
≤ 16 ln((d+ 1)/δ)

N0
+ R2

4 (V θI )2 + o

(
log(d/δ)
N0

)
(29)

where V θI =
∑e
t=s+1∥θ∗

t−1 −θ∗
t ∥2 with s being the start time of the interval I and e being the ending

time. In above, the first inequality is due to the smoothness of the loss function and the second
inequality comes from the AM-GM inequality. The third inequality is due to Lemma 5. The last
inequality can be obtained by the definition of θ̄∗

I such that

∥θ̄∗
I − θ∗

t ∥2
2 =

(∥∥∥∥∥ 1
|I|
∑
τ∈I

θ∗
τ − θ∗

t

∥∥∥∥∥
2

)2

≤

(
1

|I|
∑
τ∈I

∥θ∗
τ − θ∗

t ∥2

)2

≤ (V θI )2.

Plugging (29) into (28) and taking the summation over T rounds, we obtain∑
t∈I

L̃t(θ̂t) −
∑
t∈I

L̃t(θ)

≤ C
(1)
I (δ) + 16|I| ln((d+ 1)|I|/δ)

N0
+ R2

4 |I|(V θI )2 + o

(
|I| log(d|I|/δ)

N0

)
= O

(
dβ log(|I|/δ) + |I| ln(d|I|/δ)

N0
+ |I|(V θI )2

)
with probability at least 1 − 3δ. We have completed the proof.

26



D.2.2 Useful Lemmas

Lemma 4. Set γ = 6(1 + β) and λ = 1. With probability at least 1 − 2δ, for any δ ∈ (0, 1], the
ONS algorithm (8) running on the interval I ⊆ [T ] ensures,∑

t∈I
L̃t(θ̂t) −

∑
t∈I

L̃t(θ) ≤ C
(1)
I (δ) = O (dβ log(|I|/δ))

for any θ ∈ Θ, where C(1)
I (δ) = 12dβ′ log

(
1 + |I|R2) + S2

3β′ + (48β′ + 6S2R2

β′ ) log
√

2|I|+1
δ +

(4SR+ S2R2

β′ )
√

log 2|I|+1
δ2 and β′ = β + 1.

Proof of Lemma 4. The main difference between the proof of Lemma 4 and the standard analysis for
the ONS algorithm (e.g., proof of [13, Theorem 4.3]) is that the later one is for the full information
online learning setting, in which the learner can exactly observe the loss function L̃t. However, in
the continuous covariate shift problem, we can only observe the empirical loss L̂t, which poses the
challenge to bound a generalization gap between the expected loss L̃t and the empirical observation
L̂t (e.g. term (b) in (35)). We manage to show such a gap can be bounded by O(log T ) with the
self-normalized concentration inequality for the martingale different sequence.

We start with the analysis of the instantaneous regret. By the Taylor’s theorem, we have

L̂t(θ̂t) − L̂t(θ) = ⟨∇L̂t(θ̂t), θ̂t − θ⟩ − 1
2(θ̂t − θ)⊤∇2L̂t(ξt)(θ̂t − θ), (30)

where ξt ∈ Rd is a certain point on the line connecting θ and θ̂t. In above, the second order derivative
∇2L̃t can be further lower bounded by

∇2L̂t(ξt) = 1
2Ex∼S0 [σ′(x⊤ξt)ϕ(x)ϕ(x)⊤] + 1

2Ex∼St
[σ′(x⊤ξt)ϕ(x)ϕ(x)⊤]

≽
1

4(1 + eSR)
(
Ex∼S0 [ϕ(x)ϕ(x)⊤] + Ex∼St

[ϕ(x)ϕ(x)⊤]
)

≽
1

2(1 + β)∇L̂t(θ̂t)∇L̂t(θ̂t)⊤, (31)

where σ′(z) = exp(−z)/(1 + exp(−z))2 is the first-order derivative of the sigmoid function
σ(z) = 1/(1 + exp(−z)) and A ≽ B indicates A − B is a positive semi-definite matrix for any
matrix A,B ∈ Rd×d. The first equality is due to the definition of L̃t and the second inequality is due
to Lemma 6.

Plugging (31) into (30), we have

L̂t(θ̂t) − L̂t(θ) ≤ ⟨∇L̂t(θ̂t), θ̂t − θ⟩ − 1
4(1 + β)

(
∇L̂t(θ̂t)⊤(θ̂t − θ)

)2
. (32)

Let Et[·] = ESt∼Dt [· | S0, S1, . . . , St−1] be the expectation taken over the draw of St conditioned on
the randomness until round t− 1. Since θ̂t is independent of St, we have Et[L̂t(θ̂t)] = L̃t(θ̂t) and
Et[∇L̂t(θ̂t)] = ∇L̃t(θ̂t). Taking the expectation over both sides of (32) yields

L̃t(θ̂t) − L̃t(θ)

≤ ⟨∇L̃t(θ̂t), θ̂t − θ⟩ − 1
4(1 + β)Et

[(
∇L̂t(θ̂t)⊤(θ̂t − θ)

)2
]

= ⟨∇L̂t(θ̂t), θ̂t − θ⟩ + ⟨∇L̃t(θ̂t) − ∇L̂t(θ̂t), θ̂t − θ⟩ − 1
4(1 + β)Et

[(
∇L̂t(θ̂t)⊤(θ̂t − θ)

)2
]
(33)

where the first term of the R.H.S. can be further bounded by

⟨∇L̂t(θ̂t), θ̂t − θ⟩

= ⟨∇L̂t(θ̂t), θ̂t+1 − θ⟩ + ⟨∇L̂t(θ̂t), θ̂t − θ̂t+1⟩
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≤ 1
2γ

(
∥θ̂t − θ∥2

At
− ∥θ̂t+1 − θ∥2

At
− ∥θ̂t − θ̂t+1∥2

At

)
+ ⟨∇L̂t(θ̂t), θ̂t − θ̂t+1⟩

≤ 1
2γ

(
∥θ̂t − θ∥2

At
− ∥θ̂t+1 − θ∥2

At
− ∥θ̂t − θ̂t+1∥2

At

)
+ 2γ∥∇L̂t(θ̂t)∥2

A−1
t

+ 1
2γ ∥θ̂t − θ̂t+1∥2

At

= 2γ∥∇L̂t(θ̂t)∥2
A−1

t

+ 1
2γ

(
∥θ̂t − θ∥2

At
− ∥θ̂t+1 − θ∥2

At

)
= 2γ∥∇L̂t(θ̂t)∥2

A−1
t

+ 1
2γ

(
∥θ̂t − θ∥2

At−1
− ∥θ̂t+1 − θ∥2

At

)
+ 1

2γ (∇L̂t(θ̂t)⊤(θ̂t − θ))2. (34)

In above, the first inequality is due to the update rule of the ONS algorithm and the Bregman proximal
inequality [67, Lemma 5]. The second inequality is due to the AM-GM inequality. The last equality
is due the definition of At such that ∥θ̂t − θ∥2

At
− ∥θ̂t − θ∥2

At−1
= (∇L̂t(θ̂t)⊤(θ̂t − θ))2.

Plugging (34) into (33) and taking the summation over the interval I = [s, e], we have∑
t∈I

L̃t(θ̂t) −
∑
t∈I

L̃t(θ)

≤ 2γ
∑
t∈I

∥∇L̂t(θ̂t)∥2
A−1

t︸ ︷︷ ︸
term (a)

+ 1
2γ ∥θ̂s − θ∥2

As
+ 1

2γ
∑
t∈I

(∇L̂t(θ̂t)⊤(θ̂t − θ))2

+
∑
t∈I

⟨∇L̃t(θ̂t) − ∇L̂t(θ̂t), θ̂t − θ⟩︸ ︷︷ ︸
term (b)

− 1
4(1 + β)

∑
t∈I

Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ)
)2
]
.

(35)

Now, we proceed to bound term (a) and term (b), respectively. Firstly, according to Lemma 7, we can
show term (a) is bounded by

term (a) ≤ 2dγ log
(

1 + |I|R2

λ

)
.

Then, we handle term (b) with the Bernstein-type self-normalized concentration inequality [68,
Theorem 4] . Specifically, let Et[·] = ESt∼Dt [· | S0, S1, . . . , St−1] be the expectation taken over
the draw of St conditioned on the randomness until round t − 1. Denoting by Zt = ⟨∇L̃t(θ̂t) −
∇L̂t(θ̂t), θ̂t−θ⟩, it is easy to check {Zt}et=s is a martingale difference sequence such that Et[Zt] = 0
and |Zt| ≤ 4SR. Lemma 8 with the choice ν = 1/(48(1 + β)) indicates,

term (b) ≤ 1
24(1 + β)

∑
t∈I

((
∇L̂t(θ̂t)⊤(θ̂t − θ)

)2 + Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ)
)2
])

+ 48(1 + β) log
√

2|I| + 1
δ

+ 4SR
√

log 2|I| + 1
δ2 . (36)

Combining the upper bounds for term (a) and term (b) with (35), we have∑
t∈I

L̃t(θ̂t) −
∑
t∈I

L̃t(θ)

≤ 2dγ log
(

1 + |I|R2

λ

)
+ 2λS2

γ
+ 48(1 + β) log

√
2|I| + 1
δ

+ 4SR
√

log 2|I| + 1
δ2

+
(

1
2γ + 1

24(1 + β)

)∑
t∈I

(∇L̂t(θ̂t)⊤(θ̂t − θ))2 − 5
24(1 + β)

∑
t∈I

Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ)
)2
]

︸ ︷︷ ︸
term (c)

(37)

Then, setting γ = 6(1 + β), with probability at least 1 − δ, we can bound term (c) by

term (c) ≤ 1
6(1 + β)

(
3
4
∑
t∈I

∇L̂t(θ̂t)⊤(θ̂t − θ))2 − 5
4
∑
t∈I

Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ)
)2
])
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≤ 6S2R2

1 + β
log
√

2|I| + 1
δ

+ S2R2

1 + β

√
log 2|I| + 1

δ2 ,

where the last inequality is due to Lemma 9. Combining the upper bound for term (c) and (37) and
setting λ = 1, we have∑

t∈I
L̃t(θ̂t) −

∑
t∈I

L̃t(θ)

≤ 12d(1 + β) log
(
1 + |I|R2)+ S2

3β + 3

+
(

48(β + 1) + 6S2R2

1 + β

)
log
√

2|I| + 1
δ

+
(

4SR+ S2R2

β + 1

)√
log 2|I| + 1

δ2

=O(dβ log(|I|/δ)),

with probability at least 1 − 2δ, which completes the proof.

Lemma 5. When all the minimizers θ∗
t = arg minθ∈Rd Lt(θ) lie in the interior of Θ, then we have

∥∇L̃t(θ∗
t )∥2

2 = 2R2 ln((d+ 1)/δ)
N0

+ o

(
log(d/δ)
N0

)
.

Proof of Lemma 5. Since all the minimizers θ∗
t = arg minθ∈Rd Lt(θ) lie in the interior of Θ, then

we have ∇Lt(θ∗
t ) = 0 and the term ∥∇L̃t(θ∗

t )∥2
2 can be rewritten as

∥∇L̃t(θ∗
t )∥2

2 = ∥∇L̃t(θ∗
t ) − ∇Lt(θ∗

t )∥2
2

= 1
4∥Ex∼S0 [(σ(x⊤θ∗

t ) − 1)ϕ(x)] − Ex∼D0 [(σ(x⊤θ∗
t ) − 1)ϕ(x)]∥2

2

= 1
4

∥∥∥∥∥ 1
N0

N0∑
n=1

Zn

∥∥∥∥∥
2

2

, (38)

where {Zn}N0
n=1 with Zn = (σ(ϕ(xn)⊤θ∗

t ) − 1)ϕ(xn) − Ex∼D0 [(σ(ϕ(x)⊤θ∗
t ) − 1)ϕ(x)] are N0

independent random vectors. We can check that Exn∼D0 [Zn] = 0 and ∥Zn∥2 ≤ 2R for any xn ∈ X .
Then by the Hoeffding’s inequality for the random vector [69, Theorem 6.1.1], with probability at
least 1 − δ, we have∥∥∥∥∥ 1

N0

N0∑
n=1

Zn

∥∥∥∥∥
2

≤ 2R ln((d+ 1)δ)
3N0

+

√
8R2 ln((d+ 1)/δ)

N0
. (39)

Plugging (39) into (38) obtains ∥∇L̃t(θ∗
t )∥2

2 = 2R2 ln((d+1)/δ)
N0

+ o
(

log(d/δ)
N0

)
.

Lemma 6. Let ∇L̂t(θ̂t) = 1
2Ex∼S0 [(σ(ϕ(x)⊤θ̂t) − 1)ϕ(x)] + 1

2Ex∼St
[σ(ϕ(x)⊤θ̂t)ϕ(x)]. We have

2∇L̂t(θ̂t)∇L̂t(θ̂t)⊤ ≼ Ex∼S0 [xx⊤] + Ex∼St [ϕ(x)(ϕ(x)⊤].

Proof of Lemma 6. For notation simplicity, we denote by at = Ex∼S0 [(σ(x⊤θ̂t) − 1)x] and bt =
Ex∼St

[σ(x⊤θ̂t)x]. Then, according to the definition of ∇L̂t(θ̂t), we have

∇L̂t(θ̂t)∇L̂t(θ̂t)⊤ = 1
4(at + bt)(at + bt)⊤ ≼

1
2(ata⊤

t + btb⊤
t ),

where the last inequality is due to Lemma 16. We can further bound the R.H.S. of the above inequality
by

ata⊤
t =

(
Ex∼S0 [(σ(ϕ(x)⊤θ̂t) − 1)ϕ(x)]

)(
Ex∼S0 [(σ(ϕ(x)⊤θ̂t) − 1)ϕ(x)]

)⊤

≼ Ex∼S0 [(σ(x⊤θ̂t) − 1)2ϕ(x)ϕ(x)⊤] ≼ Ex∼S0 [ϕ(x)ϕ(x)⊤].
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In above the first inequality is due to the fact that E[a]E[a]⊤ ≼ E[aa⊤] for any random vector
a ∈ Rd. The second inequality comes from (σ(x⊤θ̂t) − 1)2 ≤ 1 since the output value of the
sigmoid function σ is bounded in (0, 1). A similar arguments shows btb⊤

t ≤ Ex∼St
[ϕ(x)ϕ(x)⊤].

Combining it with above displayed inequalities completes the proof.

Lemma 7. The predictions returned by the ONS algorithm satisfies,∑
t∈I

∥∇L̂t(θ̂t)∥2
A−1

t

≤ d log
(

1 + |I|R2

λ

)
.

Proof of Lemma 7. The proof follows the standard arguments in the analysis of the online Newton
step algorithm [13, Theorem 4.3]. We present the proof here for self-containedness.∑

t∈I
∥∇L̂t(θ̂t)∥2

A−1
t

=
∑
t∈I

∇L̂t(θ̂t)⊤A−1
t ∇L̂t(θ̂t)

=
∑
t∈I

trace
(
A−1
t ∇L̂t(θ̂t)∇L̂t(θ̂t)⊤

)
=
∑
t∈I

trace
(
A−1
t (At −At−1)

)
≤
∑
t∈I

log |At|
|At−1|

= log |Ae|
|As|

,

where the last inequality is due to the fact that trace(A−1(A−B)) ≤ log(|A|/|B|) for any positive
definite matrix satisfying A ≽ B ≻ 0 [13, Lemma 4.5].

By definition, we have As = λId ∈ Rd×d and we have Ae = λId +
∑
t∈I ∇L̂t(θ̂t)∇L̂t(θ̂t)⊤.

Furthermore, since ∥∇L̂t(θ̂t)∥2 ≤ R, we have |Ae| ≤ (|I|R2 + λ)d. In such a case, we can bound
the above inequality by∑

t∈I
∥∇L̂t(θ̂t)∥2

A−1
t

≤ log |Ae|
|As|

≤ log (|I|R2 + λ)d

λd
≤ d log

(
1 + |I|R2

λ

)
and finish the proof.

Lemma 8. Let Zt = ⟨∇L̃t(θ̂t) − ∇L̂t(θ̂t), θ̂t − θ⟩. Then, with probability at least 1 − δ, we have∑
t∈I

Zt ≤ 2ν
∑
t∈I

(
∇L̂t(θ̂t)⊤(θ̂t − θ)

)2
+ 2ν

∑
t∈I

Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ)
)2
]

+ 1
ν

log
√

2|I| + 1
δ

+ 4SR
√

log 2|I| + 1
δ2

for any δ ∈ (0, 1) and ν > 0.

Proof of Lemma 8. We can check that {Zt}et=s is a martingale difference sequence such that Et[Zt] =
0 since θ̂t is independent of St. Further noting that |Zt| ≤ ∥∇L̃t(θ̂t) − ∇L̂t(θ̂t)∥2∥θ̂t − θ∥2 ≤ 4SR,
a direct application of Lemma 17 shows that∑

t∈I
Zt ≤ ν

∑
t∈I

Z2
t + ν

∑
t∈I

Et
[
Z2
t

]
+ 1
ν

log
√

2|I| + 1
δ

+ 4SR
√

log 2|I| + 1
δ2 , (40)

with probability at least 1 − δ for any ν > 0. Then, for any t ∈ [T ], we can further bound the term
Z2
t and Et[Z2

t ] by

Z2
t = ⟨∇L̃t(θ̂t) − ∇L̂t(θ̂t), θ̂t − θ⟩2 ≤ 2⟨∇L̃t(θ̂t), θ̂t − θ⟩2 + 2⟨∇L̂t(θ̂t), θ̂t − θ⟩2 (41)

and

Et[Z2
t ] = Et[⟨∇L̂t(θ̂t), θ̂t − θ⟩2] − ⟨∇L̃t(θ̂t), θ̂t − θ⟩2,
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where the first inequality is due to the fact (a− b)2 ≤ 2a2 + 2b2 for any a, b ∈ R. Then, combining
the above two displayed inequalities and taking the summation over T iterations, we have∑
t∈I

Z2
t +

∑
t∈I

Et[Z2
t ] ≤

∑
t∈I

Z2
t + 2

∑
t∈I

Et[Z2
t ] ≤ 2⟨∇L̂t(θ̂t), θ̂t − θ⟩2 + 2Et[⟨∇L̂t(θ̂t), θ̂t − θ⟩2].

(42)

We complete the proof by plugging (42) into (40).

Lemma 9. With probability at least 1 − δ, we have

3
4
∑
t∈I

(∇L̂t(θ̂t)⊤(θ̂t − θ))2 − 5
4
∑
t∈I

Et
[
(∇L̂t(θ̂t)⊤(θ̂t − θ))2

]
≤ ΛT (δ)

for any δ ∈ (0, 1), where ΛI(δ) = 32S2R2 log
√

2|I|+1
δ + 4S2R2

√
log 2|I|+1

δ2

Proof of Lemma 9. We can check {Yt}et=s is a martingale difference sequence such that |Yt| ≤
4S2R2. As a consequence, a direct application of Lemma 17 implies,∑

t∈I
Yt =

∑
t∈I

(∇L̂t(θ̂t)⊤(θ̂t − θ))2 −
∑
t∈I

Et
[
(∇L̂t(θ̂t)⊤(θ̂t − θ))2

]
≤ 2ν

∑
t∈I

(
(∇L̂t(θ̂t)⊤(θ̂t − θ))4 + Et[(∇L̂t(θ̂t)⊤(θ̂t − θ))4]

)
+ 1
ν

log
√

2|I| + 1
δ

+ 4S2R2

√
log 2|I| + 1

δ2

≤ 1
4
∑
t∈I

(
(∇L̂t(θ̂t)⊤(θ̂t − θ))2 + Et[(∇L̂t(θ̂t)⊤(θ̂t − θ))2]

)
+ 32S2R2 log

√
2|I| + 1
δ

+ 4S2R2

√
log 2|I| + 1

δ2 ,

where the first inequality follows the proof of Lemma 8 and the second inequaliuty is due to
the parameter setting ν = 1/(32S2R2) and the condition that (∇L̂t(θ̂t)⊤(θ̂t − θ))2 ≤ 4S2R2.
Rearranging the above inequlaity, we have

3
4
∑
t∈I

(∇L̂t(θ̂t)⊤(θ̂t − θ))2 − 5
4
∑
t∈I

Et
[
(∇L̂t(θ̂t)⊤(θ̂t − θ))2

]
≤ 32S2R2 log

√
2|I| + 1
δ

+ 4S2R2

√
log 2|I| + 1

δ2 ,

which completes the proof.

D.3 Regret Guarantee for Meta-Algorithm (Lemma 10)

We have the following guarantee on the meta-algorithm, which ensures that for any interval Ii ∈ C,
the final prediction is comparable with the prediction of the base-learner Ei with an O(log T ) cost.

Lemma 10. For any interval Ii ∈ C and δ ∈ (0, 1), with probability at least 1−δ, the final prediction
returned by our meta-learner satisfies∑

t∈Ii

L̃t(θ̂t) −
∑
t∈Ii

L̃t(θ̂t,i) ≤ O
(
β log(T/δ) + β lnK

)
,

where K = |C| is the number of the intervals contained in the set C.
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D.3.1 Main Proof

This part presents the proof of Lemma 10. Our analysis for the meta-learner is based on that of the
strongly adaptive algorithm [70], where the problem of tracking base-learners on the corresponding
intervals is converted to a sleeping expert problem [71]. The main challenge of our problem is that
the feedback function is noisy. Thus, we require to provide tight analysis on the generalization gap
between L̂t and L̃t without ruining the O(log T ) regret guarantee. By twisting the meta-algorithm
from Hedge [42] used in the previous work to Adapt-ML-Prod [43], we show that the generalization
gap can be cancelled by the negative term introduced by the exp-concavity of the loss functions (see
how to bound term (b) in (48)).

Proof of Lemma 10. To prove Lemma 10, we show that the final prediction θ̂t generated by rule
θ̂t =

∑
Ei∈At

pt,iθ̂t,i with the weight update procedure (25), (26) and (27) is identical to an algorithm
learning in the standard prediction with expert advice (PEA) setting [72], where all base-learners
submit their predictions at each time t ∈ [T ].

Lemma 11. For any base-learner Ei, let E ′
i be a surrogate of Ei, whose prediction θ̄t,i = θ̂t,i is the

same as that of Ei for any t ∈ Ii and θ̄t,i = θ̂t for other iterations. Then, for any time t ∈ [T ], the
surrogate meta-learner predicts as

θ̄t =
∑
i∈[K]

p̄t,iθ̄t,i and p̄t,i = ε̄t−1,iv̄t−1,i∑
i∈[K] ε̄t−1,iv̄t−1,i

, (43)

where the potential v̄t,i and the learning rate ε̄t,i is defined as

v̄t,i =
(
v̄t−1,i ·

(
1 + ε̄t−1,im̄t,i

)) ε̄t,i
ε̄t−1,i for all t ∈ [T ], (44)

and

ε̄t,i = min
{

1
2 ,
√

lnK
1 +

∑t
τ=1 m̄

2
τ,j

}
for all t ∈ [T ] (45)

with m̄t,i = ⟨L̂t(θ̄t), θ̄t − θ̄t,i⟩, v̄0,i = 1/K and ε̄0,i = min{1/2, lnK} for all i ∈ [K]. Then, we
have θ̄t = θ̂t for any t ∈ [T ].

We have the following guarantee for the final prediction generated by the surrogate algorithm defined
by (43).

Lemma 12. With probability at least 1 − 2δ, for any δ ∈ (0, 1), the prediction returned by the
surrogate meta-algorithm defined as (43) ensures,

T∑
t=1

L̃t(θ̄t) −
T∑
t=1

L̃t(θ̄t,j) ≤ C
(2)
T (δ) = O

(
β log(T/δ) + β lnK

)
for any base-algorithm E ′

i , i ∈ [K], where C
(2)
T (δ) = 16(1+β)S2R2(C′

T )2

lnK + 1
6(1+β) +

2C ′
T +

(
24(1 + β) + 11S2R2

1+β

)
log

√
2T+1
δ +

(
4SR+ S2R2

2(1+β)

)√
log 2T+1

δ2 and C ′
T = 3 lnK +

ln
(
1 + K

2e (1 + ln(T + 1))
)

= O(lnK + ln lnT ).

Then, according to the relationship between Ei and E ′
i , we can bound the regret of the final prediction

θ̂t with respect to that of any base-learner Ei over the interval Ii by∑
t∈Ii

L̃t(θ̂t) −
∑
t∈Ii

L̃t(θ̂t,j) =
T∑
t=1

L̃t(θ̄t) −
T∑
t=1

L̃t(θ̄t,j) ≤ C
(2)
T (δ) = O(β log(T/δ) + β lnK).

In above, the first equality is due to Lemma 11 and the definition of the surrogate base-learner E ′
i

such that θ̄t,i = θ̂t,i for any t ∈ Ii and θ̄t,i = θ̂t for any t ∈ [T ]/Ii. The first inequality is due to
Lemma 12. In the last equality, we treat double logarithmic factors in T as a constant, following
previous studies [73, 74]. We have completed the proof.
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D.3.2 Useful Lemma

Proof of Lemma 11. We show that the predictions θ̂t and θ̄t by the two algorithm are exactly the same
for any t ∈ [T ] by induction. At iteration t ∈ [T ], we have the following two induction hypotheses:

• IH1: the final predictions satisfy θ̂τ = θ̄τ for all τ ≤ t.

• IH2: any base-algorithms Ei ∈ Aτ satisfy pτ,i = p̄τ,i/(
∑
i∈Aτ

p̄τ,i) for all τ ≤ t.

Base case: For the base case of t = 1, there is only one active base-algorithm. Denote by i1 the
index of the active base-algorithm, we have θ̂1 = θ̂1,i1 , p1,i1 = 1 and A1 = {i1}. Moreover, for the
surrogate algorithm, we have p̄1,i = 1/K for any i ∈ [K] and θ̄1 = (

∑
i∈[K]/{i1} θ̂1 + θ̂1,i1)/|K| =

θ̂1. We can check that θ̂1 = θ̄1 and p1,i = p̄1,i/
∑
i∈A1

p̄1,i for any i ∈ A1.

Induction step: For the induction step, we first show

pt+1,i = p̄t+1,i∑
i∈At+1

p̄t+1,i
(46)

for all i ∈ At+1. By the definition of p̄t+1,i, it is sufficient to prove

pt+1,i = ε̄t,iv̄t,i∑
i∈At+1

ε̄t,iv̄t,i
for any i ∈ At+1. (47)

For the base-algorithm Ei active at iteration t+ 1 and his/her corresponding surrogate base-algorithm
E ′
i , we can decompose the time horizon until t+ 1 into two intervals: asleep interval Islp

i = [1, si− 1]
and active part Iact

i = [si, t+ 1]. For any time stamp belonging to the asleep interval τ ∈ Islp
i , we

can check that the loss for the base-algorithm E ′
i satisfies

m̄τ,i = ⟨L̂τ (θ̄τ ), θ̄τ − θ̄τ,i⟩ = ⟨L̂τ (θ̂τ ), θ̂τ − θ̂τ ⟩ = 0,
where the first equality is by the definition of m̄τ,i. The second equality is due to IH1 such that
θ̄τ = θ̂τ for any τ ≤ t and the definition of the surrogate base-learner E ′

i such that the prediction
θ̄τ,i = θ̂τ on the asleep interval. For any time stamp belonging to the active interval τ ∈ Iact

i , similar
argument shows that

m̄τ,i = ⟨L̂τ (θ̄τ ), θ̄τ − θ̄τ,i⟩ = ⟨L̂τ (θ̂τ ), θ̂τ − θ̂τ,i⟩ = mτ,i,

Thus, by definition, we can draw the conclusion that v̄t,i = vt,i and ε̄t,i = εt,i for any active
base-algorithm with index i ∈ At+1, which would finally lead to (47).

Then, we show θ̂t+1 = θ̄t+1 based on IH1 and IH2. We have

θ̄t+1 =
∑

i∈At+1

p̄t+1,iθ̂t+1,i +
∑

i∈[K]/At+1

p̄t+1,iθ̂t+1

=

 ∑
i∈At+1

p̄t+1,i

 ∑
i∈At+1

pt+1,iθ̂t+1,i

+

1 −
∑

i∈At+1

p̄t+1,i

 θ̂t+1

=

 ∑
i∈At+1

p̄t+1,i

 θ̂t +

1 −
∑

i∈At+1

p̄t+1,i

 θ̂t+1 = θ̂t,

where the first equality is due to (46) and the second inequality is due to the definition of θ̂t+1. We
have finished the induction steps and completed the proof.

Proof of Lemma 12. Since θ̂t and θ̂t,i are both independent of St, using the same arguments for
obtaining (33), we can obtain that

T∑
t=1

L̃t(θ̂t) −
T∑
t=1

L̃t(θ̂t,i) ≤
T∑
t=1

⟨∇L̂t(θ̂t), θ̂t − θ̂t,i⟩︸ ︷︷ ︸
term (a)

+
T∑
t=1

⟨∇L̃t(θ̂t) − ∇L̂t(θ̂t), θ̂t − θ̂t,i⟩︸ ︷︷ ︸
term (b)
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−
T∑
t=1

1
2(β + 1)Et

[(
∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)

)2
]

(48)

For term (a), we have

term (a) ≤ 2SRC ′
T√

lnK

√√√√1 +
T∑
t=1

(
∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)

)2
+ 2C ′

T

≤ 24(β + 1)S2R2(C ′
T )2

lnK + 1
6(β + 1) + 1

6(β + 1)

T∑
t=1

(
∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)

)2
+ 2C ′

T ,

(49)

for any i ∈ [K], where C ′
T = 3 lnK + ln

(
1 + K

2e (1 + ln(T + 1))
)

= O(lnK + ln lnT ). In above,
the first inequality is a direct application of [43, Corollary 4] with the linearized loss Mt(θ) =
⟨L̂t(θ̂t), θ⟩/(2SR) + 1/2 and the second inequality is due to the AM-GM inequality.

For term (b), by Lemma 8 with ν = 6(1 + β) and a similar argument in (36), we have

term (b) ≤ 1
12(1 + β)

T∑
t=1

((
∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)

)2 + Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)
)2
])

+ 24(1 + β) log
√

2T + 1
δ

+ 4SR
√

log 2T + 1
δ2 (50)

Combining the upper bound for term (a) and term (b) with (48) yields,
T∑
t=1

L̃t(θ̂t) −
T∑
t=1

L̃t(θ̂t,i)

≤ 1
4(1 + β)

T∑
t=1

(
∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)

)2
− 5

12(1 + β)Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)
)2
]

︸ ︷︷ ︸
term (c)

+ 24(1 + β)S2R2(C ′
T )2

lnK + 1
6(1 + β) + 2C ′

T + 24(1 + β) log
√

2T + 1
δ

+ 4SR
√

log 2T + 1
δ2 .

Then, according to Lemma 9, we can further bound term (c) by

term (c) = 1
4(1 + β)

T∑
t=1

(
∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)

)2
− 5

12(1 + β)Et
[(

∇L̂t(θ̂t)⊤(θ̂t − θ̂t,i)
)2
]

≤ 11S2R2

1 + β
log
√

2|I| + 1
δ

+ 4S2R2

3(1 + β)

√
log 2T + 1

δ2 ,

which implies
T∑
t=1

L̃t(θ̂t) −
T∑
t=1

L̃t(θ̂t,i)

≤ 24(1 + β)S2R2(C ′
T )2

lnK + 1
6(1 + β) + 2C ′

T + C ′
1 log

√
2T + 1
δ

+ C ′
2

√
log 2T + 1

δ2

= O(β log(T/δ) + β lnK).
In above, C ′

1 = 24(1 + β) + 11S2R2/(1 + β) and C ′
2 = 4SR + 4S2R2/(3(1 + β)). In the last

equality, we treat double logarithmic factors in T as a constant, following previous studies [73, 74].
We have completed the proof.

D.4 Proof of Theorem 2

This part presents the proof for Theorem 2, which is based on the dynamic regret for the base-learner
(Lemma 3) and that for the meta-learner (Lemma 10) presented in Appendix D.1.
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D.4.1 Main Proof

Proof of Theorem 2. When choosing the Bregman divergence function as ψ(t) = ψLR(t) ≜ t log t−
(t+1) log(t+1) and the hypothesis space HLR

θ = {x 7→ exp(−θ⊤ϕ(x)) | ∥θ∥2 ≤ S}. The expected
loss function Lt(θ) as defined by (4) is equal to

Lt(θ) = 1
2

(
ED0 [log(1 + e−ϕ(x)⊤θ)] + EDt

[log(1 + eϕ(x)⊤θ)]
)
.

Let θ∗
t ≜ arg minθ∈Rd Lt(θ). Since the ground-truth density ratio r∗

t (x) = Dt(x)/D0(x) function
is contained in the hypothesis space as Dt(x)/D0(x) ∈ HLR

θ . One can show that Dt(x)/D0(x) =
exp(−(θ∗

t )⊤ϕ(x)) and θ∗
t ∈ Θ = {θ ∈ Rd | ∥θ∥2 ≤ S}.

Then, for the base-learner Ei running on any interval Ii, Lemma 3 in Appendix D.2 shows that its
prediction θ̂t,i is comparable with the best model at every iteration θ∗

t with an O(|Ii|(V θIi
)2) cost:∑

t∈Ii

L̃t(θ̂t,i) −
∑
t∈Ii

L̃t(θ∗
t ) ≤ O

(
dβ log

(
|Ii|/δ

)
+ |Ii|

(
V θIi

)2 + |Ii| log(dT/δ)
N0

)
, (51)

where V θIi
=
∑ei

t=si+1∥θ∗
t − θ∗

t−1∥2 is the path length measuring the fluctuation of the minimizers.

Besides, Lemma 10 in Appendix D.3 ensures that the prediction θ̂t of the meta-learner is comparable
with the prediction θ̂t,i of each base-learner Ei on the associated interval Ii with an O(log T ).∑

t∈Ii

L̃t(θ̂t) −
∑
t∈Ii

L̃t(θ̂t,i) ≤ O
(
β log(T/δ) + β lnK

)
. (52)

A direct combination of (51) and (52) shows that the meta-learner is able to track the best prediction
θ∗
t on any interval Ii ∈ C. Actually, by exploiting the structure of the geometric covering (24), it can

be shown that such a property can be extended to arbitrary interval I ∈ [T ] as the following lemma,
whose proof is deferred to Appendix D.4.2.

Lemma 13. With probability at least 1 − 5δ for any δ ∈ (0, 1), for any interval [s, e] ∈ [T ], the
meta-learner’s prediction θ̂t returned by (9) ensures,∑

t∈I
L̃t(θ̂t) −

∑
t∈I

L̃t(θ∗
t )

≤ R2

4 |I|(V θI )2 + 2 log|I|
(
C

(1)
T (δ′) + C2

T (δ′)
)

+ 16|I| ln((d+1) log|I|T/δ)
N0

+ o

(
|I| log(dT/δ)

N0

)
where V θI =

∑e
t=s+1∥θ∗

t−1 − θ∗
t ∥2 and δ′ = δ/2 log|I|. The coefficient C(1)

T (δ) = O (dβ log(T/δ))
and C(2)

T (δ) = O
(
β log(T/δ)

)
is defined in Lemma 4 and Lemma 12, respectively.

Then, we can use the bin partition [19, Lemma 30] to convert the dynamic regret on each interval to a
dynamic regret over T iterations. For self-containedness, we restate the lemma here.

Lemma 14 (Lemma 30 of [19]). There exists a partition P of the time horizon [T ] into M =
O(max{dT 1/3(UθT )2/3, 1}

)
intervals ,i.e., {Ii = [si, ei]}Mi=1 such that for any interval Ii ∈ P ,

UθIi
≤ Dmax/

√
|Ii|, where UθIi

=
∑ei

t=si+1∥θ∗
t − θ∗

t−1∥1 and Dmax = maxt∈[T ]∥θ∗
t ∥∞ ≤

maxt∈[T ]∥θ∗
t ∥2 ≤ S.

Then, we can decompose the overall dynamic regret of our method into those over the key partition
P . Specifically, with probability at least 1 − 5δ, we have

T∑
t=1

L̃t(θ̂t) −
T∑
t=1

L̃t(θ∗
t )

=
∑
Ii∈P

(∑
t∈Ii

L̃t(θ̂t) −
∑
Ii

L̃t(θ∗
t )
)
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≤
∑
Ii∈P

R2

4 |Ii|(V θIi
)2 +

∑
Ii∈P

16|Ii| ln
(

2(d+1)T log|Ii|M/δ
)

N0

+ 2
∑
Ii∈P

log|Ii|
(
C

(1)
T

(
δ/2M log|Ii|

)
+ C2

T

(
δ/2M log|Ii|

))

≤ MS2R2

4︸ ︷︷ ︸
term (a)

+ 2M log T
(
C

(1)
T

(
δ/2M logT

)
+ C

(2)
T

(
δ/2M logT

))
︸ ︷︷ ︸

term (b)

+
16T ln

(
2(d+1)T logTM/δ

)
N0︸ ︷︷ ︸

term (c)

,

where the second last inequality is due to Lemma 13 and a union bound taken over all intervals
in the key partition. The last inequality is due to Lemma 14 such that V θIi

≤ UθIi
≤ S/

√
Ii

for any interval Ii ∈ P . Lemma 14 shows that we can bound the partition number by M =
O(max{dT 1/3(UθT )2/3), 1}) = O(max{d4/3T 1/3(V θT )2/3, 1}). Then, we can further show that

term (a) ≤ O
(
d4/3 max{T 1/3(V θT )2/3, 1}

)
,

term (b) ≤ O
(
d4/3β log T log(T/δ) max{T 1/3(V θT )2/3, 1}

)
,

term (c) ≤ O
(
T ln(dT/δ)

N0

)
,

which implies that the overall dynamic regret is bounded by

T∑
t=1

L̃t(θ̂t) −
T∑
t=1

L̃t(θ∗
t ) ≤ O

(
d

4
3 β log T log

(
T/δ

)
· max{T 1

3 (V θT ) 2
3 , 1} + T ln(dT/δ)

N0

)
.

Hence, we complete the proof by showing L̃t(θ∗
t ) = L̃t(r∗

t ) under the realizable assumption and
converting the variation of the model parameter V θT =

∑T
t=2∥θ∗

t − θ∗
t−1∥2 to the variation of the

feature distribution VT =
∑T
t=2∥Dt(x) − Dt−1(x)∥1 by Lemma 15.

D.4.2 Useful Lemmas

Lemma 13. With probability at least 1 − 5δ for any δ ∈ (0, 1), for any interval [s, e] ∈ [T ], the
meta-learner’s prediction θ̂t returned by (9) ensures,∑

t∈I
L̃t(θ̂t) −

∑
t∈I

L̃t(θ∗
t )

≤ R2

4 |I|(V θI )2 + 2 log|I|
(
C

(1)
T (δ′) + C2

T (δ′)
)

+ 16|I| ln((d+1) log|I|T/δ)
N0

+ o

(
|I| log(dT/δ)

N0

)
,

where V θI =
∑e
t=s+1∥θ∗

t−1 − θ∗
t ∥2 and δ′ = δ/2 log|I|. The coefficient C(1)

T (δ) = O (dβ log(T/δ))
and C(2)

T (δ) = O
(
β log(T/δ)

)
is defined in Lemma 4 and Lemma 12, respectively.

Proof of Lemma 13. A direct combination of Lemma 3 and 10 shows that, with probability at least
1 − 5δ, we have the following dynamic regret guarantee on any interval Ii = [si, ei] ∈ C.∑

t∈Ii

L̃t(θ̂t) −
∑
t∈Ii

L̃t(θ∗
t )

≤ C
(1)
Ii

(δ) + C
(2)
T (δ) + R2

4 |Ii|(V θIi
)2 + 16|Ii| ln((d+ 1)|Ii|/δ)

N0
+ o

(
|Ii| log(d|Ii|/δ)

N0

)
, (53)

where V θIi
=
∑ei

t=si+1∥θ∗
t−1 − θ∗

t ∥2. The coefficient C(1)
Ii

= O (dβ log(|Ii|/δ)) is defined in

Lemma 4 and C(2)
T (δ) = O

(
β log(T/δ)

)
is defined in Lemma 12.
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For any interval I = [s, e] ⊆ [T ], [75, Lemma 3] showed that it can be partitioned into two sequences
of disjoint and consecutive intervals, denoted by I−p, . . . , I0 ∈ C and I1, . . . , Iq ∈ C, such that

|I−i|/|I−i+1| ≤ 1/2,∀i ≥ 1 and |Ii|/|Ii−1| ≤ 1/2,∀i ≥ 2. (54)

Then, with probability at least 1 − 5δ, we can decompose the regret over I = [s, e] ⊆ [T ] as∑
t∈I

L̃t(θ̂t) −
∑
t∈I

L̃t(θ∗
t ) =

q∑
i=−p

(∑
t∈Ii

L̃t(θ̂t) −
∑
t∈Ii

L̃t(θ∗
t )
)

≤ (p+ q)(C(1)
T (δ/p+q) + C

(2)
T (δ/p+q)) + R2

4

q∑
i=−p

|Ii|(V θIi
)2

+
q∑

i=−p

16|Ii| ln((d+1)(p+q)T/δ)
N0

+
q∑

i=−p
o

(
|Ii| log(dT (p+ q)/δ)

N0

)
.

where the last inequality is due to (53) and a union bound taken over all intervals. Then, due to the
partition of the intervals (54), we can check that p+ q ≤ 2 log|I|. Then, we can further bound the
above displayed inequality by∑
t∈I

L̃t(θ̂t) −
∑
t∈I

L̃t(θ∗
t ) ≤ 2 log|I|

(
C

(1)
T (δ/(2 log |I|)) + C

(2)
T (δ/(2 log |I|))

)
+ R2

4 |I|(V θI )2

+ 16|I| ln(2(d+1) log|I|T/δ)
N0

+ o

(
|I| log(dT log|I|/δ)

N0

)
= R2

4 |I|(V θI )2 + O
(
dβ log|I| log(T log|I|/δ) + |I| log(dT log |I|/δ)

N0

)
,

where the first inequality is due to the fact that
∑q
i=−p V

2
Ii

≤ V 2
I . This completes the proof.

Lemma 15. Under the condition that Dt(x)/D0(x) ∈ HLR
θ ≜ {exp(−θ⊤ϕ(x)) | ∥θ∥2 ≤ S} for

any t ∈ [T ] and Ex∼D0 [|ϕ(x)⊤a|] ≥ α∥a∥2 for any a ∈ Rd with a certain α > 0. Then, we have
∥θ∗
t−1 − θ∗

t ∥2 ≤ β∥Dt−1(x) − Dt(x)∥1/α.

Proof of Lemma 15. Under the realizable assumption such that Dt(x)/D0(x) ∈ HLR
θ . One can

verify that exp(−ϕ(x)⊤θ∗
t ) = Dt(x)/D0(x). Then, we can convert the variation of the model

∥θ∗
t−1 − θ∗

t ∥2 to the variation of the distribution ∥Dt−1(x) − Dt(x)∥1.

∥θ∗
t−1 − θ∗

t ∥2 ≤ 1
α
Ex∼D0

[
|ϕ(x)⊤(θ∗

t−1 − θ∗
t )|
]

≤ β

α
Ex∼D0

[
|eϕ(x)⊤θ∗

t−1 − eϕ(x)⊤θ∗
t |
]

≤ β

α
Ex∼D0

[∣∣∣∣Dt(x)
D0(x) − Dt−1(x)

D0(x)

∣∣∣∣] = β

α
∥Dt(x) − Dt−1(x)∥1,

where the first inequality is by the condition Ex∼D0 [|ϕ(x)⊤a|] ≥ α∥a∥2 and the second is by the
mean value theorem and the boundedness of |ϕ(x)⊤(θ∗

t−1 − θ∗
t )| ≤ 2SR for any x ∈ X . The last

inequality is due to the realizable assumption.

D.5 Proof of Theorem 3

Proof of Theorem 3. Then, we can bound the overall excess risk over the model trained by IW-
ERM (1) by a combination of Proposition 1 and Theorem 1 as

1
T

(
T∑
t=1

Rt(ŵt) −
T∑
t=1

Rt(w∗
t )
)

≤ B · CT (δ)√
N0

+ 2L
T

T∑
t=1

Ex∼S0

[
|r̂t(x) − r∗

t (x)|
]

≤ B · CT (δ)√
N0

+ 4Lβ
T

√√√√T

[ T∑
t=1

L̃t(θ̂t) −
T∑
t=1

L̃t(θ∗
t )
]

+
+ O

(
log(T/δ)

√
d√

N0

)
, (55)
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where the first inequality is due to Proposition 1 and CT (δ) = 2GDR + 5L
√

2 log(8T/δ) =
O(log(T/δ)). The second inequality is due to Theorem 1 with the choice of the logistic regression
modelψ(t) = t log t−(1+t) log(1+t) and r̂t(x) = exp(−ϕ(x)⊤θ̂t) and the realizability assumption
r∗
t (x) = exp(−ϕ(x)⊤θ∗

t ). Then, by Theorem 2, we have
T∑
t=1

L̃t(r̂t) −
T∑
t=1

L̃t(r∗
t ) ≤ O

(
d

4
3 log T log

(
T/δ

)
· max{T 1

3V
2
3
T , 1} + T ln(dT/δ)

N0

)
,

which implies√√√√T

[
T∑
t=1

L̃t(θ̂t) −
T∑
t=1

L̃t(θ∗
t )
]

+

≤ O
(
d

2
3 log

(
T/δ

)
· max{T 2

3V
1
3
T ,

√
T} + T

√
ln(dT/δ)
N0

)
.

(56)

We complete the proof by substituting (56) it into (55).

D.6 Discussion on Tightness of the Bound

This part illustrates the tightness of our bound with the case where the labels of testing samples are
available after the prediction.

Continuous Shift with Labeled Feedback. We consider a T -round online learning process. At
iteration t, the learner submits her prediction ŵt ∈ W . At the same time, the environments
pick the data pair (xt, yt) ∼ Dt. Then, the learner updates her model with the loss function
R̂t(w) = ℓ(w⊤xt, yt) and obtains the prediction ŵt+1 ∈ W for the next iteration. The goal
of the learner is to minimize the cumulative excess risk against the sequence of optimal models
w∗
t ∈ arg minw∈W Rt(w), that is,

RT ({ŵt}Tt=1) = 1
T

T∑
t=1

Rt(ŵt) −
T∑
t=1

Rt(w∗
t ). (57)

The goal is the same as that of standard continuous covariate shift, see the problem setup in (1). The
key difference is that now the label of testing data is available. Therefore, the noisy feedback R̂t(w)
observed by the learner is an unbiased estimator with respect to the true risk Rt(w).

Tightness of Our Bound. The continuous shift with labeled feedback is essentially a non-stationary
stochastic optimization problem [39]. For general convex functions, [39] showed that any gradient-
based algorithm will suffer

E[RT ({ŵt}Tt=1)] = Ω
(
T−1/3(V LT )1/3

)
(58)

in the worst case. In above, V LT =
∑T
t=2 maxw∈W |Rt(w) −Rt−1(w)| measures the fluctuation of

the risk function. For the same performance measure, our algorithm achieves

RT ({ŵt}Tt=1) = Õ
(

1√
N0

+ max{T−1/3V
1/3
T , T− 1

2 }
)
. (59)

In the non-stationary case, i.e., VT ≥ Θ(T− 1
2 ), our bound becomes Õ

(
1/

√
N0 + T−1/3V

1/3
T

)
. As

discussed below Proposition 1, the first term Õ(1/
√
N0) is hard to be improved. We thus focus on

the tightness of the second term Õ(T−1/3V
1/3
T ).

Although the definition of VT in our upper bound is different from the that of V LT in the lower
bound (58), the two bounds share the same dependence on the time horizon T , which provides
evidence that our bound is hard to improve. Indeed, consider the 1-dimensional case where the
underlying distribution only shifts once from D1(x, y) to D2(x, y) at a certain time t ∈ [T ]. In such
a case, VT = O(1) and our bound implies an O(T−1/3) rate for the second term of (59). On the
other hand, the rate in the lower bound (58) becomes Ω(T−1/3). The same dependence on the time
horizon T indicates our bound is hard to improve. We leave a precise lower bound argument as the
future work.
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D.7 On Other Choices of Bregman Divergence Function

In this section, we discuss how to apply the other two choice of the divergence function ψLS =
(t− 1)2/2 and ψKL = t log t− t in our framework. Our analysis crucially relies on two conditions:

1. the Bregman divergence function ψ satisfies the conditions in Theorem 1.

2. the induced loss function L̂t(θ) is an exp-concave and smooth function with respect to θ.

Choice of ψLS(t) = (t− 1)2/2. Considering the Bregman divergence function ψ(t) = (t− 1)2/2
and the hypothesis space Hθ = {x 7→ ϕ(x)⊤θ | ∥θ∥2 ≤ S}, where ϕ : X → Rd represents a
specific basis function with bounded norm ∥ϕ(x)∥2 ≤ R. Then, the loss L̂ψt (θ) as per (7) becomes

L̂t(θ) = 1
2ES0 [(ϕ(x)⊤θ)2] − ESt

[ϕ(x)⊤θ].

The above configuration recovers the unconstrained least-squares importance fitting (uLSIF)
method [28]. We can show such a choice of divergence function satisfy the condition required
by Theorem 1 and enjoys favorable function properties.

• Conditions in Theorem 1: when Bregman divergence function is chosen as ψLS, we
have ∂2ψLS(t) = 1 and ∂3ψLS(t) = 0. Thus, ψLS is a 1-strongly convex function and
t∂3ψLS(t) = 0 for t ∈ R.

• Expconcavity and smoothness: We have ∇2L̂t(θ) = ES0 [ϕ(x)ϕ(x)⊤]. Then, when the
input is upper bounded by ∥ϕ(x)∥2 ≤ R for all ϕ(x) ∈ X , we have ∇2L̂t(θ) ≼ R2Id,
which implies the smoothness. Furthermore, if the initial data ensure ES0 [ϕ(x)ϕ(x)⊤] ≽
αId, the L̂t(θ) is strongly convex and thus is exp-concave as shown by [60, Lemma 2]. We
note that the regularity condition on the offline data ES0 [ϕ(x)ϕ(x)⊤] ≽ αId is used in the
analysis of LSIF algorithm [28, Lemma 1].

Choice of ψKL = t log t− t. Considering the Bregman divergence function ψ(t) = t log t− t and
the hypothesis Hθ = {x 7→ ϕ(x)⊤θ | ∥θ∥2 ≤ S}, where ϕ : X → Rd+ represents a specific basis
function with bounded norm ∥ϕ(x)∥2 ≤ R. Then, the loss L̂ψt (θ) as per (7) becomes

L̂t(θ) = ES0 [ϕ(x)⊤θ)] − ESt [log(ϕ(x)⊤θ)].

To ensure L̂t(θ) is well-defined, we further require the density function r̂(x) = ϕ(x)⊤θ > 1/β
for any x ∈ X and θ ∈ Θ ≜ {θ | ∥θ∥2 ≤ S} with a certain positive constant β > 0. The above
configuration recovers the UKL method [37] with the generalized linear model. We can show such
a choice of divergence function satisfy the condition required by Theorem 1 and enjoys favorable
function properties.

• Conditions in Theorem 1: When Bregman divergence function is chosen as ψKL, we have
∂2ψKL(t) = 1/t and ∂3ψKL(t) = −1/t2. When the input of the loss function satisfies
t ≥ β, ψKL(t) is a 1/β-strongly convex function, and we can also check that t∂3ψKL(t) ≤ 0
for all t ∈ R+.

• Expconcavity and smoothness: We have ∇2L̂t(θ) = ESt
[ϕ(x)ϕ(x)⊤/(ϕ(x)⊤θ)2]. Then,

since the output of the density ratio function r̂(x) = ϕ(x)⊤θ ≥ 1/β for any x ∈ X
and θ ∈ Θ and the boundedness of the input feature ∥ϕ(x)∥2 ≤ R, we have ∇2L̂t(θ) ≼
β2R2Id for any θ ∈ Θ. Then, the loss function is a smooth function. Besides, under the
regularity condition ES0 [xx⊤] ≽ αId of the initial data and again the boundedness of Θ
and ∥ϕ(x)∥2 ≤ R, the loss function is also a strongly convex function by ∇2L̂t(θ) ≽
α/(SR)2Id, which indicates the expconcavity of the loss function.

E Technical Lemmas

This section presents several useful technical lemmas used in the proof.
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Lemma 16. For any a,b ∈ Rd, we have (a + b)(a + b)⊤ ≼ 2(aa⊤ + bb⊤), where for any matrix
A,B ∈ Rd×d, A ≼ B indicates B −A is a positive semi-definite matrix.

Proof. For any x ∈ Rd, x⊤(2(aa⊤+bb⊤)−(a+b)(a+b)⊤)x = x⊤(aa⊤+bb⊤−ab⊤−ba⊤)x
= x⊤((a − b)(a − b)⊤)x ≥ 0, which completes the proof.

Lemma 17 (Theorem 4 of [68]). Let {Zi : i ≥ 1} be a martingale difference with the filtration
F = {Fn : n ≥ 1} and suppose |Zi| ≤ R for all i ≥ 1. Then, for any δ ∈ (0, 1), r > 0, with
probability at least 1 − δ,∣∣∣∣∣

t∑
i=1

Zi

∣∣∣∣∣ ≤ r

(
t∑
i=1

Z2
i +

t∑
i=1

E[Z2
i | Fi−1]

)
+ 1
r

log
√

2t+ 1
δ

+R

√
log 2t+ 1

δ2 .
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