
Why Do You Grok? A Theoretical Analysis on Grokking Modular Addition

Mohamad Amin Mohamadi 1 2 Zhiyuan Li 1 Lei Wu 3 Danica J. Sutherland 2 4

Abstract
We present a theoretical explanation of the
“grokking” phenomenon (Power et al., 2022),
where a model generalizes long after overfitting,
for the originally-studied problem of modular
addition. First, we show that early in gradi-
ent descent, when the “kernel regime” approx-
imately holds, no permutation-equivariant model
can achieve small population error on modular
addition unless it sees at least a constant fraction
of all possible data points. Eventually, however,
models escape the kernel regime. We show that
one-hidden-layer quadratic networks that achieve
zero training loss with bounded ℓ∞ norm general-
ize well with substantially fewer training points,
and further show such networks exist and can be
found by gradient descent with small ℓ∞ regular-
ization. We further provide empirical evidence
that these networks leave the kernel regime only
after initially overfitting. Taken together, our re-
sults strongly support the case for grokking as
a consequence of the transition from kernel-like
behavior to limiting behavior of gradient descent
on deep networks.

1. Introduction
Understanding the generalization patterns of modern over-
parameterized neural networks has been a long-standing
goal of the deep learning community. Power et al.
(2022) demonstrated an intriguing phenomenon they called
“grokking” when learning transformers on small algorithmic
tasks: neural networks can find a generalizing solution long
after overfitting to the training dataset with poor generaliza-
tion. This observation has lead to a stream of recent works

1Toyota Technological Institute at Chicago 2Computer Science
Department, University of British Columbia 3School of Mathemat-
ical Sciences, Peking University 4Alberta Machine Intelligence
Institute. Correspondence to: Mohamad Amin Mohamadi <mo-
hamadamin@ttic.edu>, Zhiyuan Li <zhiyuanli@ttic.edu>, Danica
J. Sutherland <dsuth@ubc.ca>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

aimed at uncovering the mechanisms that can lead a network
to “grok,” and properties of the final solutions, on various
algorithmic tasks. Later, it was discovered that grokking
can happen in tasks beyond modular arithmetic: in learn-
ing sparse parities (Barak et al., 2022; Bhattamishra et al.,
2023), image classifiers (Liu et al., 2022b), greatest com-
mon divisors (Charton, 2023), matrix completion (Lyu et al.,
2023), and k-sparse linear predictors (Lyu et al., 2023).

Grokking has been variously attributed to difficulty of repre-
sentation learning (Liu et al., 2022a), the “slingshot” mech-
anism (Thilak et al., 2022), weight norm (Liu et al., 2022b;
Varma et al., 2023), properties of the loss landscape (Not-
sawo et al., 2023), simplicity of the learned solution (Nanda
et al., 2023) and other feature learning mechanisms (Levi
et al., 2023; Rubin et al., 2024). Theoretically, Gromov
(2023) presented an analytical construction for a one-hidden-
layer MLP that solve modular addition and compatible with
a grokking pattern with vanilla gradient descent.1 Kumar
et al. (2023) demonstrated grokking when training a one-
hidden-layer MLP on a polynomial regression problem,
as did Xu et al. (2023) for XOR data. The notion of de-
layed generalization was perhaps earlier observed by Li
et al. (2022) when training diagonal linear networks with la-
bel noise SGD and through sharpness minimization, before
it was known as grokking (Power et al., 2022).

Lyu et al. (2023) present a rigorous theoretical framework
in which grokking can be provably demonstrated through a
dichotomy of early and late implicit biases of the training
algorithm. More specifically, they attribute the overfitting
stage of grokking to the initial behavior of gradient descent
as similar to a kernel predictor (Jacot et al., 2018; Arora
et al., 2019b; Lee et al., 2019), and the generalization stage
is then attributed to different late-phase implicit biases such
as sharpness minimization (Blanc et al., 2020; Li et al.,
2022; Damian et al., 2021; HaoChen et al., 2020), margin
maximization (Soudry et al., 2022; Nacson et al., 2019; Wei
et al., 2020; Lyu & Li, 2020), or parameter norm minimaza-
tion (Gunasekar et al., 2017; 2020; Arora et al., 2019a).
Consistent with this framework, Kumar et al. (2023) hypoth-
esized that grokking can be explained through the transition
from the kernel regime to the “rich” regime, as long as

1Gromov (2023) claims this solution is the one found by gradi-
ent descent, but this did not seem to be the case in our experience.

1



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

the size of the training dataset is neither too small (where
generalization would be impossible) nor too large (where
generalization would be easy). They provided empirical
support by considering scaling the model output, which is
a rough proxy for the rate of feature learning in modular
addition on one-hidden-layer MLPs.

This dichotomy between early kernel regime and late feature
learning triggered by weak implicit or explicit regularization
(i.e. the transition from lazy to rich regime) seems to be
the most promising theory to explain grokking. Even so,
two fundamental questions as to why grokking occurs on
the original problem of modular addition have remained
unanswered:

1. Why do a wide variety of architectures all fail to gener-
alize in the initial phase of training, i.e. in the kernel
regime? Is it because their kernels accidentally share
some common property, or it is indeed a property of
the modular addition task itself?

2. How does weak regularization encourage the network
to learn generalizable features later in training?

Our Contributions. In this work, we address these ques-
tions with rigorous theoretical analyses of learning modular
addition with gradient descent on one-hidden-layer MLPs.

We specifically focus on the problem

a+ b ≡ c (mod p) (1.1)

where a, b, c ∈ Zp for a fixed p ∈ N. We use (regularized)
gradient descent on a one-hidden-layer MLP with quadratic
activation on two different tasks: it is somewhat easier to
analyze a “regression” task where we use square loss to learn
a function of (a, b, c) that indicates whether (1.1) holds,
but we also study the “classification” task in which we
use cross-entropy loss to learn a p-way classifier to predict
which c value satisfies (1.1) for a given (a, b). This discrete,
noiseless setting has only a finite number of possible distinct
data points: p3 for regression, p2 for classification.

To address the first question, we prove in Sections 3.1
and 4.1 that this task is fundamentally hard for permutation-
equivariant kernel methods, due to inherent symmetries.
Thus, permutation-equivariant networks which are well-
approximated by their neural tangent kernel approximation
cannot generalize well. This result is highly suggestive of
why drastic overfitting with poor generalization has been
empirically observed on this problem across a wide variety
of architectures, losses, and learning algorithms (e.g. Power
et al., 2022; Liu et al., 2022a; Gromov, 2023). We also
prove that, although no such method can generalize, neural
tangent kernel approaches can achieve zero training error.

To prove these results, we have developed a novel general

technique to analyze the population ℓ2 loss of learning gen-
eral function classes with predictors of intrinsic dimension
n (for instance kernel predictors with n training points), and
present it in Appendix D.3. This framework allows us to
prove lower bounds on population ℓ2 loss for the general
case of learning modular addition on m (instead of 2 or
3) summands with kernels, and might be of independent
interest.

On the other hand, it has been consistently empirically ob-
served that as long as a certain threshold of the available
data is used for training, many different training algorithms
on this setup will eventually generalize. Lyu et al. (2023)
attribute this late phase generalization to the implicit biases
of these algorithms, such as parameter norm minimization
or margin maximization. This transition from kernel to rich
regime has been widely observed (Chizat et al., 2019; Mo-
roshko et al., 2020; Geiger et al., 2020; Telgarsky, 2022;
Lyu et al., 2023). Likewise, we empirically confirm that in
our setup, gradient descent drives the network to eventually
leave the kernel regime and begin learning features. To
address the second question – why this occurs – we prove
in Sections 3.2 and 4.2 that networks similar enough to
the min-norm or max-margin solution generalize with far
fewer samples than required in the kernel regime. Thus,
models with corresponding implicit biases can generalize
well, answering the second question. In regression, our
proofs are based on the smoothness of the ℓ2 loss and uti-
lize Rademacher complexity of networks whose weights
have bounded norm. In classification, our proof is based
on the PAC-Bayesian framework of McAllester (2003) for
networks with bounded weights.

In summary, our main contributions are as follows:

1. We prove that networks in the kernel regime can only
generalize if trained on at least a constant fraction of
all possible data points, i.e. an Ω(1) portion, for regres-
sion (Section 3.1) and classification (Section 4.1).

2. We prove that networks with appropriate regularization
can generalize with many fewer samples: O(1/p)
portion of all possible data points for square loss gen-
eralization on the regression task (Section 3.2), and
Õ(1/p1/3) for zero-one loss generalization on classi-
fication (Section 4.2).

2. Notations and Setup
We focus on learning modular addition, (1.1), with a one-
hidden-layer network with no biases and quadratic activa-
tion, following Gromov (2023). Specifically, let ei denote
the vector of length p with 1 in its ith component and 0 else-
where. In both models, our “base” network f maps the pair
of integers (a, b) – represented as the vector (ea, eb) ∈ R2p

2



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

102 103 104 5 104

Step

0

10000

20000

30000

40000

50000

60000

||
t

0||
F

Change of NTK

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train
Test

102 103 5 103 2.5 104

Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Scale of init

= 10
= 7.5
= 5
= 2.5

×10 9

2 p1.5 3 p1.5 4 p1.5 2 p5/3

Train Size

0.00

0.20

0.40

0.60

0.80

1.00

B
es

t T
es

t A
cc

ur
ac

y

Sample Complexity

p=113
p=233
p=313
p=433
p=547
p=613

Figure 1: Empirical investigation into grokking modular addition on one-hidden-layer networks in the classification task
with cross-entropy loss. Left: Change of empirical NTK1 (∥Θ̂t − Θ̂0∥F ) is negligible before fitting the training data. NTK
changes drastically after overfitting, implying that the delayed generalization might be caused by delayed a transitioning
from kernel to rich regime. Middle: Controlling the scale of initialization, as a means of controlling the rate of feature
learning, can mitigate grokking, to the point of completely eliminating the gap between train and test curves. α denotes
scale multiplied by θ0, the initial weights according to default PyTorch initialization (He et al., 2015). The dashed lines
indicate train set statistics, and the solid lines correspond to the test set. Right: Empirical evaluations support a sample
complexity of Õ(p5/3) on the classification task with cross-entropy loss. More details in Section 4.

– to a vector in Rp. We use the form

f(θ; (ea, eb)) = V (W (ea, eb))
⊙2
,

where the network weights are W ∈ Rh×2p, V ∈ Rp×h,
which we collect into a flattened vector θ ∈ R3hp where
a⊙2 denotes the element-wise square of the vector a. The
width of the hidden layer, h, will be set later.

We use [p] to denote the set {1, . . . , p}. For any nonempty
set X , a symmetric function K : X × X → R is called a
positive semi-definite kernel (p.s.d) kernel on X if for any
n ∈ N, any x1, . . . ,xn ∈ X and λ1, . . . , λn ∈ R, it holds
that

∑n
i=1

∑n
j=1 λiλjK(xi,xj) ≥ 0.

In classification, we train f with cross-entropy loss to iden-
tify the c such that a+b ≡ c (mod p): that is, we try to map
x = (ea, eb) to ea+b( (mod p)). Letting Z = {ei : i ∈ Zp},
the set of all possible inputs is X = Z × Z and outputs is
Y = Z; there are N = p2 distinct data points.

In regression, we instead try to map x = (ea, eb, ec) to the
scalar y = p1(a + b ≡ c (mod p)), where 1 is the 0-1
indicator function.2 Here X = (Z)3 and Y = {0, p}, and
N = p3; we train the model g(θ;x) = ⟨ec, f(θ; (ea, eb))⟩
to minimize the square loss.

In either setting, we use D to denote the distribution over
X × Y which is uniform over all N possible input-output
pairs, while Dtrain = {(xi, yi)}ni=1 is the sequence of train-
ing points, of size n. Using ψ to denote the predictor (g

1Θ̂t is the NTK on the training data, using the parameter at
step t: Θ̂t ≜ [Jθf(θt;Xtrain)][Jθf(θt;Xtrain)]

⊤.
2This scaling implies that the predictor ψ0(·) = 0 has popula-

tion square loss p; it is the scaling that allows bounded ∥θ∥∞.

for regression, f for classification), we train the model with
gradient descent on the possibly regularized objective

Lλ(ψ, θ,Dtrain) ≜
1

n

∑
(x,y)∈Dtrain

ℓ(ψ(θ;x), y) +
λ

2
∥θ∥ ,

(2.1)
where ℓ denotes either square (ℓ2) or cross-entropy loss,
λ ≥ 0 controls the strength of regularization, and ∥·∥ is a
parameter norm to be specified later. We define the pop-
ulation loss of a predictor ψ with a loss ℓ as Lℓ(ψ) =
Ex,y∼D ℓ(ψ(x), y). We also define ψ0 to be the predictor
which returns zero on any input (e.g. set V = 0).

Definition 2.1. A deterministic supervised learning algo-
rithm A is a mapping from a sequence of training data,
Dtrain ∈ (X × Y)n, to a hypothesis A(Dtrain) : X → Y .
The algorithm A could also be randomized, in which case
the output A(Dtrain) is a distribution on hypotheses. Two
randomized algorithms A and A′ are the same if for any
input, their outputs have the same distribution in function
space, written as A(Dtrain)

d
= A′(Dtrain).

Definition 2.2 (Equivariant Algorithms). A learning algo-
rithm is equivariant under group GX (or GX -equivariant)
if for any dataset Dtrain ∈ (X × Y)n and for all T ∈ GX
and x ∈ X , it holds that A({(T (xi), yi)}ni=1)(T (x)) =
[A({(xi, yi)}ni=1)](x).

3

3For randomized algorithms, the condition be-
comes A({(T (xi), yi)}ni=1) ◦ T

d
= A({(xi, yi)}ni=1) –

stronger than ∀x ∈ X ,A({(T (xi), yi)}ni=1)(T (x))
d
=

[A({(xi, yi)}ni=1)](x).

3



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

3. Regression Task
We will first present our theoretical analysis of the grokking
phenomenon on modular arithmetic with one-hidden-layer
quadratic networks. The regression task, although perhaps
a somewhat less natural way to model modular arithmetic,
admits some useful theoretical tools.

A recent line of work on the neural tangent kernel (NTK)
framework (Jacot et al., 2018; Arora et al., 2019b; Lee et al.,
2019; Chizat et al., 2019; Yang & Hu, 2021) has shown
that with typical initialization schemes, gradient descent in
over-parameterized neural networks locally approximates
the behavior of a kernel model using the empirical neural
tangent kernel (eNTK) Kθ(x,x

′) ≜ ∇g(θ;x)∇g(θ;x′)T.
In the “kernel regime,” the change in θ over the course of
gradient descent does not substantially change the eNTK
Kθ, and hence the neural network behaves similarly to a
kernel predictor trained with Kθ0 . With square loss, as in
the regression task at hand, these kernel predictors follow
a particularly simple optimization path for which a closed
form (corresponding to kernel regression) is available.

For networks of finite width (and in certain infinite-width
cases), the eNTK will stay roughly constant and the network
will closely track the kernel model for the first phase of
optimization, but it will eventually depart. Thus, bounds on
kernel models are informative about deep networks in the
first part of optimization.

3.1. Kernel Regime

In the first phase of grokking, the model overfits to the
training data, achieving very low training error but retaining
high error on test points. We prove in Appendix B that
kernel regression with the (empirical) neural tangent kernel
of our quadratic network achieves zero training error as long
as the network width h is Ω̃(n/p). Thus, networks trained
with gradient descent can achieve zero training error when,
for instance, n = Θ̃(p2) and h = Θ̃(p).

The remainder of this section shows that for any
permutation-equivariant kernel model (and hence networks
trained by gradient descent near initialization), generaliza-
tion is possible only when training on n = Ω(p3) samples,
i.e. the portion of all possible data points is n

N = Ω(1).

Definition 3.1. For Y ⊆ R, we say a learning algorithm
A is a kernel method if it first picks a (potentially ran-
dom) positive semi-definite kernel K on X before see-
ing the data,4 and then outputs some hypothesis h based
on Dtrain such that there exist {λi}ni=1 ∈ R for which
h(·) =

∑n
i=1K(·,xi)λi.

The key component of our analysis is the permutation equiv-

4Our definition of kernel methods does not cover learning algo-
rithms that choose the kernel based on the training data.

ariance of learning modular addition in this setting. We first
define the permutation group on the modular addition data:
Definition 3.2. Let Sp denote the set of all permutations on
Zp. We define the permutation group on X as the group{
(ea, eb, ec) 7→ (eσ1(a), eσ2(b), eσ3(c)) : σ1, σ2, σ3 ∈ Sp

}
,

with the operation being composition of each permutation.

The following lemma establishes that our learning algorithm
is permutation-equivariant, meaning that it is equivariant
under the permutation group in the sense of Li et al. (2020).
Note that this result applies to the actual process of gradient
descent on our neural network, not simply to its NTK ap-
proximation. (This result is not particularly specific to the
architecture defined in Section 2; it holds broadly.)
Lemma 3.3 (Permuation Invariance in Regression). Gra-
dient descent training of g(θ;x) with ℓ2 loss and i.i.d. ran-
domly initialized parameters in (2.1) on the modular ad-
dition problem is an equivariant learning algorithm with
respect to the permutation group of Definition 3.2.

More details and the full proof are in Appendix C.

Roughly speaking, this indicates that learning the modular
addition task on this setup is the exactly same difficulty as
learning any permuted version of the dataset. Following the
same argument, we can show that the kernel method corre-
sponding to the neural nets in the early phase of training is
also permutation-equivariant. Further, as the distribution D
is uniform and thus invariant under permutation, the above
Lemma 3.3 shows that the difficulty of learning the original
ground-truth is the same as simultaneously learning all the
permuted versions of the ground-truths, which turns out
to be difficult for any kernel method. The following theo-
rem formalizes this proof idea and establishes that any such
kernel predictor needs at least n = Ω(p3), or equivalently
n
N = Ω(1), to generalize on the modular addition task. A
full proof of this result is deferred to Appendix D.
Theorem 3.4 (Lower Bound). There exists a constant C >
0 such that for any p ≥ 2, training data size n < Cp3, and
any permutation-equivariant kernel method A, it holds that

E
(xi,yi)ni=1∼Dn

E
A
Lℓ2 (A ({(xi, yi)}ni=1)) ≥

1

2
Lℓ2 (h0) =

p

2
,

where EA is over the randomness in algorithm A.

All permutation-invariant kernel methods have error at least
half as large as that of the trivial all-zero predictor, unless we
see a constant fraction of all possible data points ( nN ≥ C).

Proposition 3.7 is in fact a special case of a more general
Theorem that lower bounds the population ℓ2 loss of learn-
ing modular addition with m-summands using permutation-
equivariant kernels. showing that poor generalization in ker-
nel regime in this setting is always inevitable. We present

4



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

102 103 104 105

Step

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

p=113
p=233
p=313
p=433

102 103 104 105

Step

0

1

2

3

4

5

||
||

 norm of parameters
p=113
p=233
p=313
p=433

102 103 104 105

Step

0

5000

10000

15000

20000

25000

30000

||
t

0||
F

Change of NTK

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train
Test

Figure 2: Empirical investigation of training the network with gradient descent on ℓ2 loss and ℓ∞ regularization. As problem
dimension (p) grows, generalization requires more training steps, but the ℓ∞ norm of parameters stay constant with respect
to p. The dashed lines in the left figure indicate train set statistics, and the solid line correspond to the test set.

an informal version of this result below and refer the reader
to Corollary D.7 for the formal version.
Theorem 3.5 (Informal). There exists a constant C > 0
such that for any p ≥ 2, training data size n < Cpm and
any permutateion equivariant kernel method A with kernel
K : [p]m × [p]m → R, it holds that

E
(xi,yi)ni=1

E
A
Lℓ2 (A ({(xi, yi)}ni=1)) ≥

1

2
Lℓ2 (h0)

where x1, x2, · · · , xt ∼ Unif ([p]m) and yi denotes the
corresponding label for i ∈ [t]. In other words, if n <
(1 − Ω(1))pm, then the expected population ℓ2 loss is at
least Ω(pm−1), which is of the same magnitude as the trivial
all-zero predictor.

Poor population error is thus inevitable for models which
are well-approximated by a permutation-equivariant kernel;
since our quadratic network can also achieve zero training
error in the kernel regime, this strongly suggests drastic
overfitting in early training. Fortunately, however, gradient
descent on finite networks will eventually leave the kernel
regime and begin learning features.

3.2. Rich Regime

While the transient behavior of gradient descent after leav-
ing the kernel regime may be complicated, it is often the case
that the limiting behavior can be better-understood based on
analyses of implicit bias. Motivated by this, we present a
generalization analysis of networks that achieve zero train-
ing error (as we expect in the long-term optimization limit)
with bounded ∥θ∥∞. This choice of regularizer is motivated
by recent work of Xie & Li (2024), who show that full-batch
AdamW can only converge to the KKT points of the ℓ∞
norm constrained optimization problem, min∥θ∥∞≤ 1

λ
L(θ)

where L is the training loss and λ is the weight-decay co-
efficient. We will discuss the feasibility of this assumption
more afterwards.

Theorem 3.6 (Upper Bound). For any width h ≥ 8p, with
probability at least 1 − δ over the randomness of train-
ing dataset Dtrain of size n, define the set of interpolating
solutions as Θ̃∗ = {θ | L(g, θ,Dtrain) = 0}. For any
interpolating solution θ̃∗ ∈ Θ̃∗ with small ℓ∞ norm, i.e.,
satisfying that ∥θ∗∥∞ = O(minθ∈Θ̃∗ ∥θ∥∞), it holds that

Lℓ2(g(θ; ·)) = O
(
p2

n

(
log3 n+

1

p
log

1

δ

))
· Lℓ2 (h0) .

Comparing Theorem 3.6 to Theorem 3.4, we see that when
n = ω̃(p2) and h = Θ(p), there is a strict separation be-
tween generalization in the kernel and rich regimes. Note
that the classifier ψ(a, b) ≜ argmaxc fc(θ

∗; (ea, eb)) has
population error rate at most 2

pLℓ2(g(θ; ·)), as shown in
Proposition E.6, and thus goes to zero when n = ω̃(p2).

The proof consists of showing all networks with small train-
ing error and small ℓ∞ norms generalize (Proposition 3.7),
and at least one such network exists (Proposition 3.8).
Proposition 3.7. Choose R, δ > 0 to be positive con-
stants. For any Dtrain of size n and θ∗ ∈ {θ = (W,V ) :
L(g, θ,Dtrain) = 0 ∧ ∥θ∥∞ ≤ R}, there exists a positive
constant C > 0 such that with probability at least 1 − δ
over the choice of Dtrain,

Lℓ2(g(θ∗; ·)) ≤
CR6h2

n

(
p log3 n+ log

1

δ

)
.

Proof sketch. We bound the Rademacher complexity of the
set of networks with small ℓ∞ weights, and then apply The-
orem E.5, due to Srebro et al. (2010), which gives an “opti-
mistic” bound on the excess risk of smooth loss functions.
Details in Appendix E.

Proposition 3.8. Let the set of models with zero population
loss be Θ∗ ≜ {θ | Lℓ2(g(θ; ·)) = 0}. For any p ≥ 2 and

h ≥ 8p, Θ∗ is nonempty and minθ∈Θ∗ ∥θ∥∞ ≤
⌊
h
8p

⌋− 1
3

.

5



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

102 103 104 105

Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Scale of init
= 0.1
= 0.05
= 0.01
= 0.005

Figure 3: Train (dashed) and test (solid) accuracy while
training in the regression setting with various initialization
scales α. Shrinking the scale of initialization can mitigate
grokking in the classification task, eventually eliminating
of the gap between train and test accuracies (at the cost of
slower improvement in each).

Proof sketch. The main difficulty is a manual Fourier-based
construction of a zero-loss solution with h = 8p and ℓ∞
norm at most one; this is inspired by similar constructions
of Gromov (2023) and Morwani et al. (2023) results of
Nanda et al. (2023). Once we have that, because our model
is 3-homogeneous in its parameters, we can easily reduce
the ℓ∞ norm by duplicating neurons, without changing the
input-output function. Details in Appendix F.

We know that an interpolating solution exists with small ℓ∞
norm, and that any such solution will generalize. Does gra-
dient descent find one? In Figure 2, we empirically evaluate
the ℓ∞ norm of weights learned by running gradient descent
on the regression task, with varying p, and a very small ℓ∞
regularizer.5 Consistent with our manual construction of
weights, the ℓ∞ norm of the network weights does not grow
with the problem dimension p. This supports the applica-
bility of Theorem 3.6 and a far better sample complexity
compared to the kernel regime.

3.3. Implications for Kernel and Rich Regimes

Networks in the kernel regime will provably fail to general-
ize as long as they do not have access to nearly all the points
in the dataset (Theorem 3.4), although they can achieve
zero training error (Appendix B). We further established
that if, once the network has departed the kernel regime, it
manages to achieve zero training error with bounded ∥θ∥∞,
it will generalize with only a n

N = ω̃(1/p) portion of the
overall dataset (Theorem 3.6). We also proved that such
networks exist (Proposition 3.8), and demonstrated that gra-
dient descent can find them with a small amount of explicit

5We used a regularization weight of 10−4. Without explicit
regularization, a small number of “unimportant” network weights
do grow with p, but we believe this phenomenon is not important
to the overall behavior of gradient descent on this task.

regularization (Figure 2).

We do not yet know, though, when the network will leave the
kernel regime. It is well-known that the rate of transitioning
between the kernel and rich regimes in the trajectory of gra-
dient descent can be controlled by the scale of initialization
(Chizat et al., 2019; Moroshko et al., 2020; Geiger et al.,
2020; Lyu et al., 2023; Telgarsky, 2022). Smaller scales of
initialization, e.g. smaller variance scales for weight initial-
izations in the scheme of He et al. (2015), lead training to
escape the kernel regime faster; larger scales prolong the
time spent in kernel regime. However, this comes at a cost:
training becomes exponentially more difficult as the scale
of initialization decreases (Moroshko et al., 2020). Figure 3
confirms that in our setting, using a very small weight ini-
tialization can substantially mitigate the grokking effect, at
the cost of much slower optimization.

In Figure 2, we evaluate the change of the empirical NTK
during training, by computing the difference in eNTK ma-
trices through training. To make this empirical investigation
computationally feasible, we evaluated the eNTK approxi-
mation of Mohamadi et al. (2023) on 20,000 random data
points, similar to previous schemes (Fort et al., 2020; Wei
et al., 2020; Mohamadi et al., 2023). We see that the change
in empirical NTK is orders of magnitude larger after over-
fitting the training set, implying that most feature learning
happens only later, supporting our hypothesis that the initial
overfitting occurs roughly in the kernel regime.

4. Classification Task
We now move onto the multi-class classification setting
established in Section 2, where we train with cross-entropy
loss. Similar to the regression problem, we first analyze the
early stage of training where the network operates like a
kernel machine, and then move onto the rich regime and
focus on the weights learned through margin-maximization
implicit bias of gradient descent.

4.1. Kernel Regime

In the multi-class setting, the output is p-dimensional, and
thus the eNTK for each pair of points is a p× p psd matrix
(see Alvarez et al., 2012). Our notion of kernel methods
(Definition 3.1) still holds, and the main lower bound result
is also similar to that in the regression case: kernel methods
must see a constant fraction of data before learning.

Theorem 4.1. There exists constant C > 0 such that for
any training data size n < Cp2 and any kernel method A
which is also permutation-equivariant, it holds that

E
(xi,yi)ni=1∼Dn

E
A
Lℓ2 (A ({xi, yi}ni=1)) ≥

1

2
Lℓ2 (h0) ,

where EA is the mean over the randomness in algorithm A.

6



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

102 103 104 5 104

Step

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

p=113
p=233
p=313
p=433

102 103 104 5 104

Step

1

2

3

4

5

6

||W
||

 norm of first layer

p=113
p=233
p=313
p=433

102 103 104 5 104

Step

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

||V
||

 norm of second layer
p=113
p=233
p=313
p=433

Figure 4: Empirical investigation into training the network with gradient descent on cross-entropy loss and ℓ∞ regularization.
As problem dimension (p) grows, generalization requires training longer, but the ℓ∞ norms of the weights do not grow. The
dashed lines in the left panel indicate train set statistics, and the solid lines correspond to the test set.

Intuitively, the classification setting is not very different
from the regression setting. They share the same goal and
the amount of knowledge contained in each data in the clas-
sification setting is exactly equal to p data in the regression
setting, where these p data share the same first two coordi-
nates and only differ in the last coordinate.

More formally, we can define the following correspondence:
given one data point in classification (x, y) ∈ R2p×Rp, we
can view it as p data points in regression, {((x, ei), yi)}pi=1,
denoted by F (x, y). Similarly, any function ψ mapping
from x = {(ei, ej)} to Rp can be viewed as a function map-
ping {(ei, ej , ek)} to R by defining ψ′(x, ek) = [ψ(x)]k.
Moreover, these two functions ψ and ψ′ share the same
population ℓ2 loss. Under this view, matrix-valued kernel
learning with n classification data points is exactly the same
as scalar-valued kernel learning with np regression data
points.

The only obstacle to directly applying Theorem 3.4 is that
the data distribution is different. For the regression setting,
each data is sampled independently and uniformly, and the
number of data points can be any integer; in the classifi-
cation setting, the data points are sampled in independent
groups and the number of data must be a multiple of p.
However, it is easy to see this new distribution is still invari-
ant under permutations as in Definition 3.2. Thus, we can
directly apply Theorem 3.4 on this new distribution to get
Theorem 4.1.

Therefore, for networks operating in the kernel regime, gen-
eralization to unseen data in ℓ2 loss is impossible unless
n/N = Ω(1), i.e. we have observed a constant fraction of
all the N = p2 possible data points.

It is worth emphasizing, however, that a large ℓ2 lower
bound does not necessarily imply large classification error,
or large cross-entropy; the proof technique is difficult to
generalize to those losses.

4.2. Rich Regime

To analyze the dynamics of the network in the rich regime,
we first introduce the notion of margin and elaborate on the
margin-maximization implicit bias of gradient descent. For
a multi-class classification problem with p classes with fixed
network f , the margin of a data point (x, y) is

q(θ;x, y) ≜ (f(θ;x))y −max
y′ ̸=y

(f(θ;x))y′ .

The margin for a dataset D is defined as the minimum mar-
gin of all points on the dataset:

qmin(θ) ≜ min
(x,y)∈D

q(θ;x, y).

When the network f is homogeneous with respect to its
parameters (as is the case in our setup), one can observe
that as long as θ linearly separates the dataset D such that
qmin(θ) > 0, it is possible to arbitrary scale the mini-
mum margin, through scaling the parameters of the network.
Hence, in such homogenous networks, one is usually con-
cerned with a normalized margin qmin(θ/ ∥θ∥) according to
some norm.

Lyu & Li (2020) proved that gradient descent on homoge-
neous models with the cross-entropy (or similar) losses, in
the absence of explicit regularization, maximizes the normal-
ized margin. Specifically, although ∥θ∥2 → ∞ as t → ∞,
θ/∥θ∥2 converges to a solution (or more generally, a KKT
point) of the following problem when one exists:

min
1

2
∥θ∥22 s.t. qmin(θ) ≥ 1. (4.1)

To establish our results in the classification setting, we bor-
row the following theorem from Wei et al. (2020), who
prove that when the strength of the regularization used in
(2.1) is small enough, the maximum normalized margin of
the regularized loss converges to that of the unregularized
loss.

7



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Proposition 4.2 (Wei et al., 2020, Theorem 4.1). Consider
a positively homogeneous function f with respect to pa-
rameters θ and a dataset Dtrain linearly separable with f .
Let ∥·∥ be any norm. Let γ∗ be the maximum normalized
margin of the unregularized loss and γλ be the maximum
normalized margin of the regularized loss with strength λ.
As λ→ 0, γλ → γ∗.

That is, if we use a small enough regularization weight λ
with any norm in (2.1), we will obtain approximately the
same solution as the unregularized problem. This justifies
again applying a small ℓ∞ regularizer.

We thus now present a generalization bound for one-hidden-
layer networks with quadratic activation with bounded
∥θ∥∞. Our proof is based on the PAC-Bayesian frame-
work (McAllester, 2003), specifically using Lemma 1 of
Neyshabur et al. (2018). This result provides a margin-
based high probability generalization bound for any predic-
tor based on the margin loss, which counts a prediction as
correct only if it predicts with a margin at least γ:

Lγ (f, θ,D) ≜ P(x,y)∈D [ q(θ,x, y) > γ ] . (4.2)

L0 is simply the misclassification rate, or 0-1 error.

Theorem 4.3 (Informal). Choose R,M, δ > 0 to be pos-
itive constants such that h ≤ Mp. For any Dtrain of size
n and θ with ∥θ∥∞ ≤ R, it holds with probability at least
1− δ over the randomness of Dtrain that

L0(f, θ,D) ≤ Lp(f, θ,Dtrain) + Õ

(√
p5/3

n

)
. (4.3)

Theorem 4.3 implies that as long as gradient descent with
cross-entropy loss finds a solution whose margin is larger
than p, a sample complexity of Õ(p5/3) on the modular
addition problem in multi-class classification setting is guar-
anteed. This confirms and explains previous observations
(e.g. Power et al., 2022; Gromov, 2023; Nanda et al., 2023;
Liu et al., 2022b) on the minimum threshold for the frac-
tion of data used to achieve generalization. In combination
with Theorem 4.2 of Lyu & Li (2020), this shows that with
enough training data, gradient descent will eventually find a
generalizing solution for this setting of the modular addition
problem.

The construction of Appendix F achieves a margin of p with
constant ∥θ∥∞, so a network satisfying the conditions of
Theorem 4.3 exists. In terms of whether gradient descent
finds a model satisfying these conditions: Figure 4 empiri-
cally evaluates the ℓ∞ norm of the learned weights through
gradient descent on the classification task, with tiny ℓ∞
regularization (weight of 10−20), across different values of
p. Again, it can be seen that the ℓ∞ norm of the weights
of the network do not grow with the problem dimension,

supporting the main assumption of Theorem 4.3. These
experiment use n = 2 p5/3 data points for each p, with a
learning rate of 10.

4.3. Implications of Results for Kernel and Rich
Regimes

Similar to our results for the regression task, we have es-
tablished that a sample complexity gap between kernel and
rich regime exists when learning a one-hidden-layer neural
network with gradient descent on modular addition modeled
as a multi-class classification task. Our results imply that as
long as the max-margin implicit bias of gradient descent on
exponential-type loss functions drives the net to leave the
kernel regime and Ω̂(p5/3) samples are used for training,
generalization to the whole population is guaranteed.

Similar to the regression setting, Figure 1 presents empir-
ical evidence on the impact of kernel regime on the poor
generalization capabilities in the early phase of training by
showing the minimal change of empirical NTK until after
overfitting in the classification setting.

Through changing the scale of initialization, in Figure 1
we demonstrate that by increase or decrease the scale of
initialization and controlling the rate of feature learning in
the classification task one can intensify or mitigate grokking
such that the gap between overfitting and generalization
becomes larger or smaller. This further supports that as
long as the network lies in the kernel regime, generalization
without having access to the full dataset is impossible.

5. Grokking Modular Addition in
Transformers

Figure 5 suggests that, similarly to the one-hidden-layer
network, grokking in the original Transformer studied by
Power et al. (2022) might be explainable through the same
mechanism. In fact, Lemma 3.3, albeit with small mod-
ifications to incorporate the embedding layer, applies to
this one-layer Transformer as well. Unfortunately, however,
AdamW is not known to initially follow a kernel method
the way gradient descent is, and so concrete rigorous claims
about this setup would rely on understanding this behavior.

6. Additional Related Work
Limitations imposed by Equivariance of Learning Al-
gorithms. Abbe & Boix-Adsera (2022) study the impact
of equivariance of the training algorithms on the efficiency
of learning different functions on different networks. In
particular, they consider two main setups: a) learning with
FCNs using noisy GD with clipped gradients throughout the
training, and b) learning a specific instance of the modular
addition task (p = 2 with noisy inputs) with FCNs using

8



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

102 103 104 5 104

Step

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

p=113
p=233
p=313

102 103 104 5 104

Step

0

5

10

15

20

25

30
Loss

p=113
p=233
p=313

102 103 104 5 104

Step

0

500

1000

1500

2000

2500

||
t

0||
F

Change of NTK

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train
Test

Figure 5: Empirical investigation of training a one-layer transformer with AdamW using cross-entropy loss on the modular
addition problem with various ps. Change of eNTK up to the point of fitting the training set is negligible. The eNTK has a
drastic change only after fitting the whole training set, implying minimal feature learning until past overfitting. The dashed
lines in the middle and left figures indicate train set statistics, and the solid lines correspond to the test set.

SGD. Although their approach in studying lower bounds for
efficient learning shares some high level similarity with ours
in using equivariance of the training algorithm, the settings
considered are significantly differs from ours. Moreover,
in Appendix D.3 we present a novel abstract framework
for analyzing lower bounds on population ℓ2 loss for gen-
eral function classes. Malach & Shalev-Shwartz (2022)
present another technique in analysis of population loss
lower bounds, which shares some high-level similarity with
our framework, albeit their analysis is more restrictive on
function classes. Ng (2004) also discusses rotational equiv-
ariance of many learning algorithms and presents a general
lower bound on the 0-1 population error of such algorithms
in the general case.

Margin Maximization as the Late Phase Implicit Bias.
Morwani et al. (2023) present an analytical solution for
the max-margin solution of learning modular addition in a
classification setting similar to Section 4 when using all of
the dataset in training the network. Similar to our analysis
of the rich regime in this setting, they face difficulties in
proving results under the assumption of bounded ℓ2 norm for
weights of the network, and assume an ℓ2,3 bound instead.

7. Discussion
In this work, we studied the phenomenon of grokking in
learning modular addition with gradient descent on one-
hidden-layer networks, modeled as regression or classifica-
tion. We showed that learning modular addition as presented
is fundamentally a difficult task for kernel models (for ex-
ample neural networks in kernel regime) due to the inherent
symmetry and permutation-equivariance of the task. We
theoretically established this difficulty by presenting sample
complexity lower bounds of order of constant fraction of the
whole dataset. We further showed that networks satisfying
certain conditions generalize far better than those in the ker-

nel regime, that such networks exist, and showed empirical
evidence that simple regularized gradient descent can even-
tually find them, once it escapes the kernel regime. These
results, in combination, attempt to address why grokking
is observed when learning modular addition. We provide
strong evidence to the hypothesis (Lyu et al., 2023; Kumar
et al., 2023) that, on this important problem, it is indeed due
to a separation between kernel and non-kernel behavior of
gradient descent.

Future Work. We have guaranteed large ℓ2 population loss
for networks in kernel regime on both regression and clas-
sification settings. It is possible, however, for networks to
have arbitrarily high ℓ2 loss while having perfect classifica-
tion accuracy. We conjecture that impossibility results for
accuracy-based generalization may also be possible based
on permutation equivariance in the early phase of train-
ing, but leave it as future work. Moreover, we only study
the cause of grokking in these settings, but do not analyze
possible training techniques to enable quick generalization
on this task. Although we are able to eliminate grokking
through changing the scale of initialization, doing so ac-
tually slows down the time to final generalization; finding
practical methods to enable quick generalization would be
more useful.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
We would like to thank Kaifeng Lyu and Wei Hu for helpful
discussions. This work was enabled in part by support

9



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

provided by the Natural Sciences and Engineering Research
Council of Canada, the Canada CIFAR AI Chairs program,
Advanced Research Computing at the University of British
Columbia, Calcul Québec, the BC DRI Group, and the
Digital Research Alliance of Canada.

References
Abbe, E. and Boix-Adsera, E. On the non-universality of

deep learning: quantifying the cost of symmetry, 2022.

Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. Kernels
for vector-valued functions: A review. Foundations and
Trends® in Machine Learning, 4(3):195–266, 2012.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-
nesensky, M., Bao, B., Bell, P., Berard, D., Burovski, E.,
Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y.,
Luk, C. K., Maher, B., Pan, Y., Puhrsch, C., Reso, M.,
Saroufim, M., Siraichi, M. Y., Suk, H., Zhang, S., Suo,
M., Tillet, P., Zhao, X., Wang, E., Zhou, K., Zou, R.,
Wang, X., Mathews, A., Wen, W., Chanan, G., Wu, P.,
and Chintala, S. PyTorch 2: Faster machine learning
through dynamic Python bytecode transformation and
graph compilation. In Architectural Support for Program-
ming Languages and Operating Systems, 2024.

Arora, S., Cohen, N., Hu, W., and Luo, Y. Implicit regular-
ization in deep matrix factorization, 2019a.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R.,
and Wang, R. On exact computation with an infinitely
wide neural net. NeurIPS, 32, 2019b.

Awasthi, P., Frank, N., and Mohri, M. On the rademacher
complexity of linear hypothesis sets, 2020.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: SGD
learns parities near the computational limit. NeurIPS, 35:
21750–21764, 2022.

Bhattamishra, S., Patel, A., Kanade, V., and Blunsom, P.
Simplicity bias in transformers and their ability to learn
sparse boolean functions, 2023.

Blanc, G., Gupta, N., Valiant, G., and Valiant, P. Implicit reg-
ularization for deep neural networks driven by an ornstein-
uhlenbeck like process, 2020.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Charton, F. Can transformers learn the greatest common
divisor?, 2023.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. In NeurIPS, 2019.

Courant, R. and Hilbert, D. Methods of Mathematical
Physics, volume 1. Interscience Publishers, 1953.

Damian, A., Ma, T., and Lee, J. D. Label noise sgd provably
prefers flat global minimizers, 2021.

Fort, S., Dziugaite, G. K., Paul, M., Kharaghani, S., Roy,
D. M., and Ganguli, S. Deep learning versus kernel
learning: an empirical study of loss landscape geometry
and the time evolution of the neural tangent kernel, 2020.

Geiger, M., Spigler, S., Jacot, A., and Wyart, M. Disentan-
gling feature and lazy training in deep neural networks.
Journal of Statistical Mechanics: Theory and Experiment,
2020(11):113301, November 2020. ISSN 1742-5468.

Gromov, A. Grokking modular arithmetic, 2023.

Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur,
B., and Srebro, N. Implicit regularization in matrix fac-
torization, 2017.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. Charac-
terizing implicit bias in terms of optimization geometry,
2020.

HaoChen, J. Z., Wei, C., Lee, J. D., and Ma, T. Shape
matters: Understanding the implicit bias of the noise
covariance, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
NeurIPS, 31, 2018.

Kumar, T., Bordelon, B., Gershman, S. J., and Pehlevan,
C. Grokking as the transition from lazy to rich training
dynamics, 2023.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
NeurIPS, 32, 2019.

Levi, N., Beck, A., and Bar-Sinai, Y. Grokking in linear
estimators – a solvable model that groks without under-
standing, 2023.

10

http://github.com/google/jax


Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Li, Z., Zhang, Y., and Arora, S. Why are convolutional nets
more sample-efficient than fully-connected nets? arXiv
preprint arXiv:2010.08515, 2020.

Li, Z., Wang, T., and Arora, S. What happens after sgd
reaches zero loss? –a mathematical framework, 2022.

Liu, Z., Kitouni, O., Nolte, N. S., Michaud, E., Tegmark,
M., and Williams, M. Towards understanding grokking:
An effective theory of representation learning. NeurIPS,
35:34651–34663, 2022a.

Liu, Z., Michaud, E. J., and Tegmark, M. Omnigrok:
Grokking beyond algorithmic data. arXiv preprint
arXiv:2210.01117, 2022b.

Lyu, K. and Li, J. Gradient descent maximizes the margin
of homogeneous neural networks. In ICLR, 2020.

Lyu, K., Jin, J., Li, Z., Du, S. S., Lee, J. D., and Hu, W.
Dichotomy of early and late phase implicit biases can
provably induce grokking, 2023.

Malach, E. and Shalev-Shwartz, S. When hardness of ap-
proximation meets hardness of learning. Journal of Ma-
chine Learning Research, 23(91):1–24, 2022.

McAllester, D. A. Simplified pac-bayesian margin bounds.
In COLT, 2003.

Mohamadi, M. A., Bae, W., and Sutherland, D. J. A fast,
well-founded approximation to the empirical neural tan-
gent kernel. In International Conference on Machine
Learning, pp. 25061–25081. PMLR, 2023.

Moroshko, E., Gunasekar, S., Woodworth, B., Lee, J. D.,
Srebro, N., and Soudry, D. Implicit bias in deep linear
classification: Initialization scale vs training accuracy,
2020.

Morwani, D., Edelman, B. L., Oncescu, C.-A., Zhao, R., and
Kakade, S. Feature emergence via margin maximization:
case studies in algebraic tasks, 2023.

Nacson, M. S., Gunasekar, S., Lee, J. D., Srebro, N., and
Soudry, D. Lexicographic and depth-sensitive margins in
homogeneous and non-homogeneous deep models, 2019.

Nanda, N., Chan, L., Liberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217, 2023.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. A
PAC-Bayesian approach to spectrally-normalized margin
bounds for neural networks. In International Conference
on Learning Representations, 2018.

Ng, A. Y. Feature selection, L1 vs. L2 regularization, and
rotational invariance. In ICML, 2004.

Notsawo, P. J. T., Zhou, H., Pezeshki, M., Rish, I., and
Dumas, G. Predicting grokking long before it happens: A
look into the loss landscape of models which grok, 2023.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfitting
on small algorithmic datasets, 2022.

Raab, M. and Steger, A. “Balls into bins” — a simple
and tight analysis. In Randomization and Approximation
Techniques in Computer Science, 1998.

Rubin, N., Seroussi, I., and Ringel, Z. Grokking as a first
order phase transition in two layer networks, 2024.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data, 2022.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low
noise and fast rates. NeurIPS, 23, 2010.

Telgarsky, M. Feature selection with gradient descent on
two-layer networks in low-rotation regimes, 2022.

Thilak, V., Littwin, E., Zhai, S., Saremi, O., Paiss, R.,
and Susskind, J. The slingshot mechanism: An em-
pirical study of adaptive optimizers and the grokking
phenomenon. arXiv preprint arXiv:2206.04817, 2022.

Tropp, J. A. An introduction to matrix concentration inequal-
ities. Foundations and Trends® in Machine Learning, 8
(1-2):1–230, 2015.

Varma, V., Shah, R., Kenton, Z., Kramár, J., and Kumar, R.
Explaining grokking through circuit efficiency, 2023.

Wainwright, M. J. High-Dimensional Statistics: A Non-
Asymptotic Viewpoint. Cambridge University Press, 2019.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. Regularization
matters: Generalization and optimization of neural nets
v.s. their induced kernel, 2020.

Xie, S. and Li, Z. Implicit bias of AdamW: ℓ∞ norm con-
strained optimization. arXiv preprint arXiv:2404.04454,
2024.

Xu, Z., Wang, Y., Frei, S., Vardi, G., and Hu, W. Benign
overfitting and grokking in ReLU networks for XOR
cluster data, 2023.

Yang, G. and Hu, E. J. Tensor Programs IV: Feature learning
in infinite-width neural networks. In ICML, 2021.

11



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

A. Experimental Setup
In this section, we briefly explain the setup used for our experimental evaluations.

A.1. Regression

We have used vanilla gradient descent with squared less for 100,000 or 200,000 for each experiment. In regression, our
learning has been fixed to 1, and the regularization strength has been set to 10−4. The network has been initialized according
to He et al. (2015). The amount of data used for training in regression task has been set to 2× p2.25.

A.2. Classification

In all experiments, we have used vanilla gradient descent with cross-entropy loss, for up to 100,000 steps. To accelerate the
training with cross-entropy loss, we use the "normalized" GD trick, where the learning rate of each step is scaled by the
inverse of the norm of the gradient:

θt+1 = θt − η
∇θℓ(θt)

∥∇θℓ(θt)∥2
(A.1)

where ℓ denotes the loss function and η denotes the learning rate. The learning rate in the presented experiments was set
to 10 and was kept constant during the training. The regularization strength of ℓ∞ regularizer has been set to 10−20. The
network has been initialized according to He et al. (2015). The amount of data used for training in regression task has been
set to 2× p5/3.

A.3. Transformer

To train the one-layer transformer we have used full-batch AdamW with a learning rate of η = 10−3 and a regularization
strength of 0.5. For AdamW, we have set β1 = 0.9 and β2 = 0.99. The network has been initialized according to default
PyTorch initialziation (migrated ot JAX). We have used 2× p5/3 of the data for training.

A.4. Logistics

We used the JAX framework (Bradbury et al., 2018) to implement and run the experiments on machines using NVIDIA
V100 or A100 GPUs.

B. Ability of Neural Tangent Kernel Models to Interpolate
In this section, we prove that neural tangent kernel models for our one-hidden-layer quadratic network are able to exactly
interpolate their training data, i.e. to achieve zero training loss, in the regression setting.

B.1. Full-Rank Kernels are Expressive

Recalling that neural tangent kernel models correspond to “ridgeless” kernel regression (e.g. Jacot et al., 2018; Lee et al.,
2019), we first notice that this method can interpolate any set of training labels when the kernel is strictly positive definite.

Specifically, empirical neural tangent kernel regression corresponds to ridgeless regression with a prior mean,

argmin
f

∥f − f0∥K s.t. ∀i, f(xi) = yi,

where f0 is given by the initial value of the network. This does not matter for the following two results, however; we can
simply change the labels to yi − f0(xi) and then assume that f0 = 0.

Lemma B.1. Let Dtrain = {(xi, yi)}i∈[n], and let K be a kernel such that the kernel matrix K = [K(xi,xj)]ij is strictly
positive definite. Then kernel ridgeless regression achieves zero training error on Dtrain.

Proof. This well-known result follows from the fact that kernel ridgeless regression finds the function f̂(x) =∑n
i=1K(x,xi)λi for λi = [K†y]i, where K† denotes the Moore-Penrose pseudo-inverse of K, and y ∈ Rn has ith

entry yi. Thus [f̂(xi)]i = KK†y. If K is strictly positive definite, K† = K−1, and so [f̂(xi)]i = y.

12



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

The following result is a partial converse.

Lemma B.2. Let {xi}i∈[n] and K be a kernel such that the kernel matrix K = [K(xi,xj)]ij is singular. Then there exists
an assignment of yi ∈ R such that kernel ridgeless regression achieves nonzero training error on Dtrain = {(xi, yi)}i∈[n].

Proof. Let y be any nonzero vector in the null space of K; this is possible since K is singular. Then y is also in the null
space of K†, and the training set predictions are KK†y = 0 ̸= y.

B.2. Expected NTK is Full-Rank

We next show that, in the regression setting, the expected neural tangent kernel is strictly positive definite. While perhaps of
interest of its own accord, this will be a key component in our analysis of finite-width networks that follows.

Proposition B.3. Let the entries of W follow a distribution PW , and those of V follow PV , all mutually independent.
Assume PW has mean zero, variance σ2

W > 0, skewness zero, and kurtosis κW > 0 such that Ew∼PW
w4 = κWσ

4
W .

Assume that PV has mean zero and variance σ2
V ≥ 0. Then the expected neural tangent kernel for the regression network

with any finite h ≥ 1 is strictly positive definite on any set of distinct inputs {xi : i ∈ [n]} ⊆ [p]3.

We first note that if PW = N (0, σ2
W ), κV = 3. If PW = Unif([−sW , sW ]), σ2

W = 1
3s

2
W and κW = 9

5 . These two
distributions cover the vast majority of initialization schemes used in practice. Their parameters likely depend on h and p;
for instance, PyTorch (Ansel et al., 2024) defaults to uniform distributions, following He et al. (2015), with sW = 1/

√
2p

and sV = 1/
√
h.

Proof. It will be more convenient in this proof to give different names to the sub-matrix of the parameter vector W that act
on the a inputs and the b inputs; we will write W =

[
Q R

]
, where Q,R are each h× p matrices. Then we can write the

full model as

g (θ; (ea, eb, ec)) = eTc V (Qea +Reb)
⊙2 =

h∑
k=1

Vck(Qka +Rkb)
2.

The empirical neural tangent kernel between two inputs x = (ea, eb, ec) and x′ = (ea′ , eb′ , ec′) is then given by

Kθ(x,x
′) =

h∑
k=1

[
p∑

c′′=1

∂g(θ;x)

∂Vc′′k

∂g(θ;x′)

∂Vc′′k
+

p∑
a′′=1

∂g(θ;x)

∂Qka′′

∂g(θ;x′)

∂Qka′′
+

p∑
b′′=1

∂g(θ;x)

∂Rkb′′

∂g(θ;x′)

∂Rkb′′

]
.

Evaluating the necessary derivatives gives

∂g(θ;x)

∂Vc′′k
=

{
(Qka +Rkb)

2 if c = c′′

0 otherwise
p∑

c′′=1

∂g(θ;x)

∂Vc′′k

∂g(θ;x′)

∂Vc′′k
=

{
(Qka +Rkb)

2(Qka′ +Rkb′)
2 if c = c′

0 otherwise

∂g(θ;x)

∂Qka′′
=

{
2Vck(Qka +Rkb) if a = a′′

0 otherwise,
p∑

a′′=1

∂g(θ;x)

∂Qka′′

∂g(x′)

∂Qka′′
=

{
4VckVc′k(Qka +Rkb)(Qka +Rkb′) if a = a′

0 otherwise

∂g(θ;x)

∂Rkb′′
=

{
2Vck(Qka +Rkb) if b = b′′

0 otherwise
p∑

b′′=1

∂g(x)

∂Rkb′′

∂g(x′)

∂Rkb′′
=

{
4VckVc′k(Qka +Rkb)(Qka′ +Rkb) if b = b′

0 otherwise.

13



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Combining, we can write

Kθ(x,x
′) =

h∑
k=1

Kθk(x,x
′) (B.1)

Kθk(x,x
′) = (Qka +Rkb)

2(Qka′ +Rkb′)
21(c = c′) + 4VckVc′k(Qka +Rkb)(Qka′ +Rkb′)[1(a = a′) + 1(b = b′)].

The Kθk functions are iid, so, we will now find Eθk Kθk(x,x
′) = 1

h EθKθ(x,x
′). Throughout, x = (ea, eb, ec) and

x′ = (ea′ , eb′ , ec′) are fixed, and all expectations are over the relevant set of parameters θk.

We have that

E
[
4VckVc′k(Qka +Rkb)(Qka′ +Rkb′)

]
= 4E

[
VckVc′k

]
E
[
(Qka +Rkb)(Qka′ +Rkb′)

]
.

If c ̸= c′, then E[VckVc′k] = E[Vck]E[Vc′k] = 0; if c = c′, it is EV 2
ck = σ2

V . Thus

EKθk(x,x
′) = E

[
(Qka +Rkb)

2(Qka′ +Rkb′)
2 + 4σ2

V (Qka +Rkb)(Qka′ +Rkb′)
[
1(a = a′) + 1(b = b′)

]]
1(c = c′).

If a ̸= a′ and b ̸= b′, we have that

E[(Qka +Rkb)
2] = EQ2

ka︸ ︷︷ ︸
σ2
W

+2EQka︸ ︷︷ ︸
0

ERkb︸ ︷︷ ︸
0

+ER2
kb︸ ︷︷ ︸

σ2
W

= 2σ2
W

and so
E[(Qka +Rkb)

2(Qka′ +Rkb′)
2] = E[(Qka +Rkb)

2]E[(Qka′ +Rkb′)
2] = 4σ4

W ;

in this case the remaining indicator functions are zero, leaving EKθk(x,x
′) = 4σ4

W1(c = c′).

If we have a = a′ but b ̸= b′, then

E [(Qka +Rkb)(Qka +Rkb′)] = EQ2
ka︸ ︷︷ ︸

σ2
W

+EQka︸ ︷︷ ︸
0

ERkb′︸ ︷︷ ︸
0

+ERkb︸ ︷︷ ︸
0

EQka︸ ︷︷ ︸
0

+ERkb︸ ︷︷ ︸
0

ERkb′︸ ︷︷ ︸
0

= σ2
W

E
[
(Qka +Rkb)

2(Qka +Rkb′)
2
]
= E

[
(Q2

ka + 2QkaRkb +R2
kb)(Q

2
ka + 2QkaRkb′ +R2

kb′)
]

= EQ4
ka︸ ︷︷ ︸

κWσ4
W

+2EQ3
ka︸ ︷︷ ︸

0

ERkb′︸ ︷︷ ︸
0

+EQ2
ka︸ ︷︷ ︸

σ2
W

ER2
kb′︸ ︷︷ ︸

σ2
W

+ 2EQ3
ka︸ ︷︷ ︸

0

ERkb︸ ︷︷ ︸
0

+4EQ2
ka︸ ︷︷ ︸

σ2
W

ERkb︸ ︷︷ ︸
0

ERkb′︸ ︷︷ ︸
0

+2EQka︸ ︷︷ ︸
0

ERkb︸ ︷︷ ︸
0

ER2
kb′︸ ︷︷ ︸

σ2
W

+ ER2
kb︸ ︷︷ ︸

σ2
W

EQ2
ka︸ ︷︷ ︸

σ2
W

+2ER2
kb︸ ︷︷ ︸

σ2
W

EQka︸ ︷︷ ︸
0

ERkb′︸ ︷︷ ︸
0

+ER2
kb︸ ︷︷ ︸

σ2
W

ER2
kb′︸ ︷︷ ︸

σ2
W

= (κW + 3)σ4
W

EKθk(x,x
′) =

[
(κW + 3)σ2

W + 4σ2
V

]
σ2
W1(c = c′);

the situation for a ̸= a′ but b = b′ is symmetric, and hence the mean kernel is the same.

Finally, when a = a′ and b = b′,

E
[
(Qka +Rkb)

4
]
= EQ4

ka︸ ︷︷ ︸
κWσ4

W

+4EQ3
ka︸ ︷︷ ︸

0

ERkb︸ ︷︷ ︸
0

+6EQ2
ka︸ ︷︷ ︸

σ2
W

ER2
kb︸ ︷︷ ︸

σ2
W

+4EQka︸ ︷︷ ︸
0

ER3
kb︸ ︷︷ ︸

0

+ER4
kb︸ ︷︷ ︸

κWσ4
W

= (2κW + 6)σ4
W

EKθk(x,x
′) =

[
(2κW + 6)σ4

W + 8σ2
V σ

2
W

]
1(c = c′).

14



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Combining the cases, it holds in general that

EKθk(x,x
′) = σ2

W1(c = c′)


4σ2

W if a ̸= a′, b ̸= b′

(κW + 3)σ2
W + 4σ2

V if a = a′, b ̸= b′

(κW + 3)σ2
W + 4σ2

V if a ̸= a′, b = b′

(2κW + 6)σ2
W + 8σ2

V if a = a′, b = b′

= 4σ4
W1(c = c′)

+
[
(κW − 1)σ2

W + 4σ2
V

]
σ2
W1(a = a′, c = c′)

+
[
(κW − 1)σ2

W + 4σ2
V

]
σ2
W1(b = b′, c = c′)

+ 4σ4
W1(a = a′, b = b′, c = c′).

The kurtosis of any probability distribution is at least 1 by Jensen’s inequality, so all the coefficients in this last form are
nonnegative. We can then use this to construct an explicit feature map, EKθk(x,x

′) = ϕ(x)Tϕ(x′), because if γ ≥ 0,

γ1(c = c′) =


√
γ1(c = 1)√
γ1(c = 2)

...√
γ1(c = p)


T 

√
γ1(c′ = 1)√
γ1(c′ = 2)

...√
γ1(c′ = p)

 (B.2)

corresponds to features in Rp. The other indicator functions can be implemented in the same way, in Rp2 or Rp3 ; their sum
can then be obtained by concatenating the individual features together.

This construction makes it clear that the function

J(x,x′) = 4σ4
W1(c = c′) +

[
(κW − 1)σ2

W + 4σ2
V

]
σ2
W1(a = a′, c = c′) +

[
(κW − 1)σ2

W + 4σ2
V

]
σ2
W1(b = b′, c = c′)

is a positive semi-definite kernel on [p]3, so J = [J(xi,xj)]ij is a positive semi-definite matrix for any {xi : i ∈ [n]} ⊆ [p]3.

Finally, since 1(a = a′, b = b′, c = c′) = 1(x = x′), when the {xi : i ∈ [n]} are distinct we have that the kernel
matrix K = [EKθk(xi,xj)]ij is given as J+ 4σ4

W I. Since J has minimum eigenvalue at least 0, K must have minimum
eigenvalue at least 4σ4

W > 0, and is hence full-rank. Thus the kernel matrix for EθKθ has minimum eigenvalue at least
4σ4

Wh > 0.

B.3. Empirical NTKs are Likely Full-Rank

Now, for bounded initialization schemes, we use matrix concentration inequalities to show that the empirical neural tangent
kernel is also likely to be full-rank when h is large enough.

Proposition B.4. In the setting of Proposition B.3, further assume that Prw∼PW
(|w| ≤ sW ) = 1, Prv∼PV

(|v| ≤ sV ) = 1.
Let the set of inputs {xi : i ∈ [n]} ⊆ [p]3 be distinct and such that no a value is seen more than ρa times, no b value is seen
more than ρb times, and no c value is seen more than ρc times. Then the empirical neural tangent kernel for the regression
network is strictly positive definite with probability at least 1− δ over the choice of random parameters θ as long as

h >
4s2W (s2V ρa + s2V ρb + s2W ρc)

σ4
W

log
n

δ
.

If PW is uniform on [−sW , sW ], this condition is equivalent to

h > 36

(
s2V
s2W

(ρa + ρb) + ρc)

)
log

n

δ
.

Under the default PyTorch (Ansel et al., 2024) initialization scheme where s2V = 1/h and s2W = 1/(2p), this condition is
guaranteed to hold if

h > 36ρc log
n

δ
+ 6

√
2p(ρa + ρb) log

n

δ
.

15



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Recall that we are primarily interested in n = ω(p); otherwise, in the regression setup we have almost no information about
the problem (corresponding to a constant number of samples in the classification framing). In this setting, with randomly
selected inputs, we expect ρa, ρb, ρc to each be roughly n/p. In fact, as long as n = ω(p log(p)3), Theorem 1 of Raab &
Steger (1998) shows that with high probability over the choice of training data selected uniformly (with replacement), the
asymptotic value of each ρ is

n

p
+

√
2
n

p
log p

(
1− log log p

2 log p

)
= Θ

(
n

p

)
.

Proposition B.4 thus shows high-probability interpolation for h which grow like n log n/p. Up to logarithmic factors,
this indeed explains the setting of most interest in our paper, when h = Θ(p) and n = Θ(p2): NTK-regime models
can interpolate the data (Proposition B.4) but not generalize (Theorem D.1), while rich-regime models can generalize
(Theorem G.7).

Proposition B.5, afterwards, shows that this n/p threshold on h is tight up to logarithmic factors.

Proof of Proposition B.4. Recall the decomposition of Kθ(x,x
′) =

∑h
k=1Kθk(x,x

′) from (B.1). For a fixed set of
inputs {xi : i ∈ [n]}, define the n × n matrix Kθ = [Kθ(xi,xj)]ij and h iid matrices Kθk = [Kθk(xi,xj)]ij , so that
Kθ =

∑h
k=1 Kθk .

We will next need to show that the operator norm ∥Kθk∥ is bounded. Using the operator diag : Rn → Rn×n to construct a
diagonal matrix from a vector, we can write

Kθk = diag(wθk) [diag(wθk)F diag(wθk) + diag(vθk)Gdiag(vθk)] diag(wθk) (B.3)
(F)ij = 1(ci = cj) (G)ij = 1(ai = aj) + 1(bi = bj)

(wθk)i = Qkai +Rkbi (vθk)i = 2Vcik.

Using ∥AB∥ ≤ ∥A∥∥B∥, ∥diag(v)∥ = maxi|vi|, and ∥A+B∥ ≤ ∥A∥+ ∥B∥, we obtain that

∥Kθk∥ ≤ (2sW )4∥F∥+ (2sW )2(2sV )
2∥G∥

= 16s4W ∥F∥+ 16s2W s
2
V ∥G∥.

Using (B.2), we can write F = ΦcΦ
T
c , G = ΦaΦ

T
a +ΦbΦ

T
b , where Φa ∈ Rn×p is given by

Φa =

1(a1 = 1) · · · 1(a1 = p)
...

. . .
...

1(an = 1) · · · 1(an = p)

 ,
and similarly for Φb and Φc. Moreover, ∥F∥ = ∥Φc∥2, and ∥G∥ ≤ ∥Φa∥2 + ∥Φb∥2. These norms are simple to evaluate:

(Φax)i =

p∑
ℓ=1

1(ai = ℓ)xℓ = xai

∥Φax∥2 =

n∑
i=1

x2ai =

p∑
ℓ=1

x2ℓ

(
n∑
i=1

1(ai = ℓ)

)

∥Φa∥2 = sup
∥x∥=1

p∑
ℓ=1

x2ℓ

(
n∑
i=1

1(ai = ℓ)

)
= max

ℓ∈[p]

n∑
i=1

1(ai = ℓ).

Thus it holds almost surely that
∥Kθk∥ ≤ 16s2W (s2V ρa + s2V ρb + s2W ρc) =: L.

We also know from the very end of the proof of Proposition B.3 that the smallest eigenvalue of EKθ is at least µmin := 4σ4
Wh.

Applying a matrix Chernoff bound (Tropp, 2015, Theorem 5.1.1), it holds for any ϵ ∈ [0, 1) that

Pr (λmin(Kθ) > (1− ϵ)µmin) ≥ 1− n

(
e−ϵ

(1− ϵ)1−ϵ

)µmin/L

.

16



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Because we only care about the smallest eigenvalue of Kθ being strictly positive, we can take the limit as ϵ ↗ 1; since
e−ϵ/(1− ϵ)1−ϵ → 1/e, this gives

Pr (λmin(Kθ) > 0) ≥ 1− n exp
(
−µmin

L

)
= 1− n exp

(
− 4σ4

Wh

16s2W (s2V ρa + s2V ρb + s2W ρc)

)
.

Thus, to achieve a full-rank Kθ with probability at least 1− δ, it suffices to have

h >
4s2W (s2V ρa + s2V ρb + s2W ρc)

σ4
W

log
n

δ
.

For uniform distributions, σ2
W = 1

3s
2
W , hence the condition becomes

h > 36

(
s2V
s2W

(ρa + ρb) + ρc

)
log

n

δ
.

With the PyTorch default initialization scheme, s2V = 1/h and s2W = 1/(2p), making the condition

h > 36

(
2p

h
(ρa + ρb) + ρc

)
log

n

δ

h2 > 36 (2p(ρa + ρb) + hρc) log
n

δ

h2 − 36ρc log
n

δ︸ ︷︷ ︸
β

h− 36 · 2p(ρa + ρb) log
n

δ︸ ︷︷ ︸
γ

> 0.

The final left-hand-side is a quadratic function of h, which is positive for very large or very negative h and negative at h = 0.
Thus, the condition holds when h exceeds 1

2β + 1
2

√
β2 + 4γ ≤ β +

√
γ, i.e. it suffices that

h > 36ρc log
n

δ
+ 6

√
2p(ρa + ρb) log

n

δ
.

This threshold is indeed tight up to logarithmic factors, in the sense that there are some labels which kernel ridgeless
regression cannot achieve when h = o(n/p).

Proposition B.5. In the setting of Proposition B.3, the empirical neural tangent kernel of the regression network Kθ is
guaranteed to be singular when h < n/(3p).

Proof. Recall the decomposition of Kθk from (B.3). By (B.2), the matrix F has rank at most p, and G has rank at most 2p;
thus Kθk has rank at most 3p, and rank(Kθ) ≤ 3ph. If 3ph < n, this n× n matrix cannot be full-rank.

C. Permutation-Equivariance of Gradient-Based Training
We first define the notion of permutation equivariance. Towards this, we borrow the following proof from Appendix C of Li
et al. (2020):

Definition C.1 (Gradient-Based Algorithm A). We borrow the definition of Algorithm 1 in Li et al. (2020) with the slight
modification of restricting the update rule F (U,M,Dtrain) where M : U → (X → R) to only allow gradient-based update
rules, such that

F (U,M,Dtrain) = U − η∇UL(g, U,Dtrain)

for some η ∈ R and loss function L where g : X → R denotes the neural network defined in Section 2.

Theorem C.2. Suppose GX is a group acting on X . The gradient-based iterative algorithm A (defined in Definition C.1) is
GX -equivariant if:

17



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

1. There exists a group Gθ acting on parameters U and a group isomorphism τ : GX → Gθ such that for all x ∈ X , T ∈
GX , U we have that f(U ;x) = f(τ(T )(U);T (x)).

2. The gradient update rule is invariant under joint group action (T, τ(T )) for all T ∈ GX : τ(T )(∇Ug(U ;x)) =
∇Ug(τ(T )(U);T (x)).

3. The initialization distribution Pinit is invariant under GX .

We now present our permutation-equivariance results.
Definition C.3. We define Gθ as a group of actions to be applied on U = (W,V ) as

Gθ ≜ {πσ1,σ2,σ3
| σ1, σ2, σ3 ∈ Sp}

where πσ1,σ2,σ3 is defined as πσ1,σ2,σ3(W,V ) ≜ (W ′, V ′), where ∀i ∈ [h], j ∈ [p],W ′
ij = Wi,σ1(j),W

′
i(j+p) =

Wi,σ2(j), V
′
σ3(j),i

= Vj,i. This means the concatenation of the row is permuted in the same way as the data does. Furthermore,
the rows of V also get permuted according to σ3.
Remark C.4. There is a one-to-one mapping τ between Gθ and GX , which is τ(σ1, σ2, σ3) = πσ1,σ2,σ3

.

Lemma C.5. For every x = (i, j, k) where i, j, k ∈ [p], T ∈ GX we have

g(U ;x) = g(τ(T )(U);T (x)).

Proof. For each x = (i, j, k) ∈ X ;σ1, σ2, σ3 ∈ Sp;U = (W,V ) we have that

g(τ(σ1, σ2, σ3)(U); (σ1, σ2, σ3)(x)) =

〈
eσ3(k), V

′
σ3



W ′⊤

1 (σ1(i), σ2(j))
W ′⊤

2 (σ1(i), σ2(j))
...

W ′⊤
h (σ1(i), σ2(j))




⊙2〉

=

〈
ek, V



W ′

1,σ1(i)
+W ′

1,σ2(j)+p

W ′
2,σ1(i)

+W ′
2,σ2(j)+p

...
W ′
h,σ1(i)

+W ′
h,σ2(j)+p




⊙2〉

=

〈
ek, V



W1,i +W1,j+p

W2,i +W2,j+p

...
Wh,i +Wh,j+p




⊙2〉

=
〈
ek, V (Wx)⊙2

〉
= g(U ;x).

Lemma C.6. For every x = (i, j, k) where i, j, k ∈ [p], T ∈ GX we have

τ(T )(∇Ug(U ;x)) = ∇Ug(τ(T )(U);T (x)).

Proof. We first consider the gradient of the second layer. For all a, b ∈ [p] and σ1, σ2, σ3 ∈ Sp:

τ−1(πσ1,σ2,σ3
) (∇Vb

g(τ(σ1, σ2, σ3)(U); (σ1, σ2, σ3)(x)))

= I(σ3(k) = σ3(b))∇Vb
g (τ(σ1, σ2, σ3)(U); (σ1, σ2, σ3)(x))

= I(k = b)(W ′(σ1, σ2)(x))
⊙2

= I(k = b)(Wx)⊙2

= ∇Vb
g(U ;x).

18



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

For the gradients of the first layer we have:

τ−1(πσ1,σ2,σ3
) (∇W g(τ(σ1, σ2, σ3)(U); (σ1, σ2, σ3)(x)))

= τ−1(πσ1,σ2,σ3)
(
2Vk ⊙ (W ′

(σ1,σ2)
(eσ1(i), eσ2(j))

⊤) (eσ1(i), eσ2(j))
)

= τ−1(σ1, σ2, σ3)
(
2Vk ⊙ (W (ei, ej)) (eσ1(i), eσ2(j))

⊤)
= 2Vk ⊙ (Wx) (σ1, σ2)

−1
(
(eσ1(i), eσ2(j))

)
= 2Vk ⊙ (W (ei, ej)

⊤) (ei, ej)

= ∇W g(U ;x).

Lemma C.7. Training a one-hidden-layer neural network with quadratic activations using gradient-based update rules on
modular addition data modeled as a regression task as defined in Equation (1.1) is permutation-equivariant, as defined in
Theorem C.2.

Proof. We show that training a neural network with gradient descent in our setting satisfies the three conditions proposed in
Theorem C.2 and thus, this theorem applies to the training process. Equivariance of the forward pass and the backward
pass (update rule) are settled through Lemmas C.5 and C.6. Finally, it is straightforward to see that the initialization is
invariant under Gθ defined in Definition C.3. Since the distribution of initialization is symmetric and each parameter is
initialized independently and identically from the same distribution, the action of swapping rows or columns doesn’t change
the distribution.

Corollary C.8 (Equivariance of Adam). Lemma C.7 applies to other gradient-based training algorithms that need memory,
such as Adam.

Sketch of Proof for Corollary C.8. To prove that other gradient-based algorithms, particularly Adam, are also equivariant
to the permutation group GX we just need to ensure that the update rule of these algorithms is equivariant under the joint
group action (T, τ(T )). First, note that linear operations (such as weight decay) on gradients and parameters equivariant. To
track the momentum at different steps of the algorithm we can apply an induction on equivariance of these variables on the
step number. At t = 0 they’re both zero. mt is a linear combination mt−1 and gt which both are equivarint under the joint
action (T, τ(T )). Since the gradient is equivariant, the coordinate-wise squared gradient is also equivariant and the linear
combination of it with vt1 is also equivariant. This settles the equivariance of the update rule of Adam and other similar
gradient-based algorithms that need memory and buffers.

D. Lower Bound of Population Loss for Kernel Methods
In this section we present the formal version of Theorem 3.4 alongside a proof of it. Note that a kernel-based predictor h on
a training data {(xi, yi)}ni=1 can be expressed as h(x) =

∑n
i=1 λiK(xi, x) where λi; i∈ [n] are constants. Assuming that

the kernel’s feature maps are of dimension d, the predictions are linear combinations of d-dimensional feature maps. We
first present a general proof that every permutation invariant kernel requires Ω(p2) training points to outperform the null
predictor in terms of ℓ2 loss, and then show that this theorem applies to the distribution of empirical NTKs at initialization.

D.1. Notation

We use [p] to denote the set {1, . . . , p}. We use Sp to denote the permutation groups over p elements, Sm as permutation
group over m elements and id is the identity mapping. For any nonempty set X , a symmetric function K : X × X → R is
called a positive semi-definite kernel (p.s.d) kernel on X if for any n ∈ N, any x1, . . . ,xn and λ1, . . . , λn ∈ R, it holds that∑n
i=1

∑n
j=1 λiλjK(xi,xj) ≥ 0. For a subspace V of Rn and vector x ∈ Rn, we define dist(x, V ) ≜ minv∈V ∥x− v∥2.

For any pm-dimensional vector v ∈ Rpm we denote by v(x) the vector v indexed by an m-dimensional index vector
x ∈ [p]m. We define the vector si,a ∈ Rpm whose entries are

si,a(x) ≜

{
1, x[i] = a;

0, otherwise.
(D.1)

19



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

which helps us denote the all-once slices in this vector space, Vs ≜ span{si,a}i∈[m],a∈[p]. We further define ∆(x, x′) where
x, x′ are two index vectors of size m as the number of equal indices between them, formally:

∆(x, x′) =

m∑
i=1

1x[i]=x′[i].

We also define Xa,b as the set of all x, x′ ∈ [p]b index vector pairs such that dist(x, x′) = a, formally:

Xa,b ≜ {(x, x′) : x, x′ ∈ [p]b ∧∆(x, x′) = a}.

When b = m, we drop the second index and write Xa (instead of Xa,m) for simplicity. It’s clear that the collection of all Xd
for 0 ≤ d ≤ m is a partitioning of the set of all pairs of index vectors. Unless stated otherwise, x refers to the m-dimensional
index vector. Finally, we define Um ≜ [Unif(Sp)]m as the product of m Uniform distribution on Sp.

D.2. Loss Lower Bound: 3-dimensional Case

For convenience of notation, we will use the (i, j, k) and ei + ej+p + ek+2p interchangebly for i, j, k ∈ [p]. We denote
the function K(xt, ·) : [p] × [p] × [p] → R as a tensor on Rp×p×p by vt(·) for each t ∈ [n]. We also define function

ψσ1,σ2,σ3
(i, j, k) ≜ 1

(
σ1(i) + σ2(j) ≡ σ3(k) (mod p)

)
. We can view a function mapping from [p]× [p]× [p] → R as a

vector of size p3 and define inner products and dist on the function space, i.e., ⟨ψ,ψ′⟩ ≜
∑
i,j,k∈[p] ψ(i, j, k)ψ

′(i, j, k) and

∥h∥22 ≜ ⟨h, h⟩.
Theorem D.1. For any integers n ≥ 1, p ≥ 2 and kernel K : ([p]× [p]× [p]) × ([p]× [p]× [p]) → R, suppose

xt = (it, jt, kt)
i.i.d.∼ Unif([p]× [p]× [p]) for each t ∈ [n], it holds that

E
x1,...,xn

E
σ1,σ2,σ3∼Unif(Sp)

inf
λ1,...,λn∈R

∥∥∥∥∥
n∑
t=1

λtK(xt, ·)− ψσ1,σ2,σ2(·)

∥∥∥∥∥
2

2

≥ p2
(
1− 1

p
− n

p3
exp

(
2

p− 1

))
(D.2)

In other words, if n ≤ (1− Ω(1))p3, then the expected population ℓ2 loss is at least Ω(p2), which is of the same magnitude
as the trivial all-zero predictor.

Proof of Theorem D.1. This Theorem is a direct result of Corollary D.7 for the case where m = 3.

Theorem 3.4 (Lower Bound). There exists a constant C > 0 such that for any p ≥ 2, training data size n < Cp3, and any
permutation-equivariant kernel method A, it holds that

E
(xi,yi)ni=1∼Dn

E
A
Lℓ2 (A ({(xi, yi)}ni=1)) ≥

1

2
Lℓ2 (h0) =

p

2
,

where EA is over the randomness in algorithm A.

Proof of Theorem 3.4. Because A is permutation-equivariant, we have that

E
(xi,yi)ni=1∼Dn

E
A
Lℓ2 (A ({(xi, yi)}ni=1))

= E
(xi,yi)ni=1∼Dn

E
A
∥A ({(xi, yi)}ni=1)− p · ψid,id,id∥2/p3

= E
(xi,yi)ni=1∼Dn

E
A
∥A ({(xi, yi)}ni=1) /p− ψid,id,id∥2/p

= E
(xi,yi)ni=1∼Dn

E
σ1,σ2,σ3∼Unif(Sp)

E
A
∥A ({(xi, yi)}ni=1) /p− ψσ1,σ2,σ3

∥2/p.

Because A is a kernel method, we have for any (xi, yi)
n
i=1 and σ1, σ2, σ3 ∈ Sp

∥A ({(xi, yi)}ni=1) /p− ψσ1,σ2,σ3
∥2 ≥ inf

λ1,...,λn∈R

∥∥∥∥∥
n∑
t=1

λtK(xt, ·)− ψσ1,σ2,σ2
(·)

∥∥∥∥∥
2

2

.

Applying Theorem D.1 completes the proof.

20



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

D.3. Loss Lower Bound: General Theorem For Arbitrary Functions

Lemma D.2. For any subspace V of Rn and vector x ∈ Rn, let {vi}mi=1 be an orthonormal basis of V . It holds that
dist2(x, V ) = ∥x∥22 −

∑m
i=1 ⟨x, vi⟩

2.

The proof of Lemma D.2 is straightforward and thus omitted.

Lemma D.3. For any distribution D over functions mapping from X → R and n functions {ki}ni=1 where ki : X → R for
each i ∈ [n] it holds that

E
h∼D

min
α∈Rn

1

|X |
∑
x∈X

(
ψ(x)−

n∑
i=1

αiki(x)

)2
 ≥ 1

|X |

|X |∑
i=n+1

λi(Σ).

where ΣD(x, x
′) ≜ Eψ∼D [ψ(x)ψ(x′)] and λi denotes the i’th largest eigenvalue function. For notational convenience, we

also view ΣD as a R|X |×|X| matrix.

Proof of Lemma D.3. For each h, we define rh ∈ R|X | whose entries are realization of the function h on inputs x ∈ X . It
suffices to show that

E
h∼D

[
dist2(rh, V )

]
≥

|X |∑
i=n+1

λi(ΣD)

for any subspace V = span{v1, v2, · · · , vn} ⊂ R|X |×|X| where vi for i ∈ [n] are orthonormal vectors. Note that

E
h∼D

[
dist2(rh, V )

]
= E
h∼D

[
∥rh∥22 −

n∑
t=0

⟨vt, rh⟩2
]

= Tr

(
E

ψ∼D

[
ψψ⊤])−

n∑
t=1

v⊤t

(
E

h∼D

[
ψψ⊤]) vt

≥ Tr (ΣD)−
n∑
i=1

λi (ΣD)

=

|X |∑
i=n+1

λi(ΣD) (D.3)

where the inequality in the second to last line is due to the min-max theorem (also called Courant–Fischer–Weyl min-max
principle) (Courant & Hilbert, 1953). This completes the proof.

The following Corollary D.4 is a direct consequence of Lemma D.3, noting that Eψ∼D

[
1

|X |
∑
x∈X ψ(x)

2
]
= Tr(ΣD).

Corollary D.4. For any distribution D over functions mapping from X → R and n functions {ki}ni=1 where ki : X → R
for each i ∈ [n], if

∑n
i=1 λi(ΣD) ≤ 1

2 Tr(ΣD) then it is guaranteed that

E
ψ∼D

min
α∈Rn

1

|X |
∑
x∈X

(
ψ(x)−

n∑
i=1

αiki(x)

)2
 ≥ 1

2
E

ψ∼D

[
1

|X |
∑
x∈X

ψ(x)2

]

where the right-hand side denotes the expected loss of the all-0 predictor.

Lemma D.5. For any matrix Σ ∈ Rd×d, subspace V and projection matrix PV ∈ Rd×d corresponding to V , it holds that

n∑
i=1

λi(Σ) ≤ n · λ1
(
(I − PV )Σ(I − PV )

)
+Tr (PV ΣPV ) .

21



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Proof. Let Vn = span{αi}ni=1 where αi ∈ Rd is the i’th eigenvector of Σ and let PVn
be its corresponding projection

matrix. Let PVn+V be the projection onto the sum of two subspaces Vn + V , it holds that

n∑
i=1

λi(Σ) = Tr(PVn
ΣPVn

)

≤ Tr(PVn+V ΣPVn+V )

= Tr(PV ΣPV ) + Tr
(
(PVn+V − PV )Σ(PVn+V − PV )

)
≤ Tr(PV ΣPV ) + n · λ1

(
(PVn+V − PV )Σ(PVn+V − PV )

)
≤ Tr(PV ΣPV ) + n · λ1

(
(I − PV )Σ(I − PV )

)
. (D.4)

Here the second to last inequality is because PVn+V −PV is at most rank-n and so is (PVn+V −PV )Σ(PVn+V −PV ). The
last inequality is because PVn+V ≤ I and thus (PVn+V − PV )Σ(PVn+V − PV ) ⪯ (I − PV )Σ(I − PV ).

D.4. Loss Lower Bound: Modular Addition with m Summands

Lemma D.6. Let D be the uniform distribution over

H ≜

{
ψ(x) = 1

( m∑
i=1

σi(xi) ≡ 0 (mod p)

) ∣∣∣∣∣ σi ∈ Sp for all i ∈ [m]

}
(D.5)

and ΣD(x, x
′) = Eψ∼D [ψ(x)ψ(x′)]. It holds that

n∑
i=1

λi(Σ) ≤ pm−2 +
n

p
exp

(
m− 1

p− 1

)
.

Proof of Lemma D.6. Consider the vector space Vs defined in Equation (D.1) and the projection matrix PVs ∈ R|X |×|X|

onto VS . To find Tr
(
PVs

ΣPVs

)
we can first derive Tr

(
PVs

ψψ⊤PVs

)
where ψ ∈ R|X | is a sample from D. Note that since

(I − PVs
)h should be orthogonal to Vs (the sum of each slice of the projected vector should be zero) we have that

(I − PVs)ψ(x) =

{
− 1
p ψ(x) = 0

p−1
p ψ(x) = 1

.

Hence, PVs
ψ(x) = 1

p for all x ∈ X . Thus,

Tr

(
PVs

ΣPVs

)
= E
ψ∼D

[
Tr

(
PVs

ψψ⊤PVs

)]
= E
ψ∼D

[
Tr

(
1

p2
1|X |×|X|

)]
=

|X |
p2

= pm−2 (D.6)

where 1|X |×|X| denotes the all-one square matrix of size |X |. Moreover, by Lemma D.8 we have that

n · λ1
(
(I − PVs)Σ(I − PVs)

)
= sup

∥v∥2≤1,v⊥Vs

v⊤ΣDv ≤ n

p
exp

(
m− 1

p− 1

)
. (D.7)

Combining the two equations above, we can see that

n∑
i=1

λi(Σ) ≤ pm−2 +
n

p
exp

(
m− 1

p− 1

)
.

This concludes the proof.

22



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Corollary D.7. Consider the function class H defined in Equation (D.5) and the uniform distribution over it denoted by D.
For any integers n ≥ 1, p ≥ 2, 1 ≤ m < p, kernel K : [p]m × [p]m → R it holds that

E
x1,x2,···xn

E
ψ∼D

inf
α∈Rn

∥∥∥∥∥
n∑
t=1

λtK(xt, ·)− ψ

∥∥∥∥∥
2

2

≥ pm−1

(
1− 1

p
− n

pm
exp

(
m− 1

p− 1

))
.

where x1, x2, · · · , xt ∼ Unif ([p]m). In other words, if n < (1− Ω(1))pm, then the expected population ℓ2 loss is at least
Ω(pm−1), which is of the same magnitude as the trivial all-zero predictor.

Proof of Corollary D.7. It suffices to show that for any n-dimensional subspace V ⊂ Rpm it holds that

E
ψ∼D

dist2(V, ψ) ≥ pm−1

(
1− 1

p
− n

pm − 1
exp

(
m− 1

p− 1

))
.

Combining Lemma D.6 and Corollary D.4 yields this statement.

Lemma D.8. For any v ∈ Rpm such that ∥v∥ = 1 and v ⊥ Vs (defined in Equation (D.1)), it holds that

E
σ∼Um

[
⟨ψσ, v⟩2

]
≤ 1

p
exp

(
m− 1

p− 1

)
.

The main implication of this Lemma D.8 is that for any n-dimensional space V ⊂ Rpm can not "cover" the vector space
of all ψσ functions for different permutations σ ∈ Sp. To prove this Lemma, we decompose the inner product ⟨v, hσ⟩
to d + 1 sums using the Multinomial Theorem. This decomposition is enabled through observing the fact that there are
d+ 1 equivalence groups in the possible set of indices of v. Based on Lemma D.9, we can use the Binomial Theorem to
decompose the expectation of the inner product as follows

E
σ∼Um

[
⟨v, ψσ⟩2

]
= E
σ∼Um

(∑
x

v(x)ψσ(x)

)2


= E
σ∼Um

 m∑
d=0

∑
x,x′

dist(x,x′)=d

ψσ(x)ψσ(x
′)v(x)v(x′)


=

m∑
d=0

Cd
∑
x,x′

dist(x,x′)=d

v(x)v(x′) (D.8)

where Cd ≜ Eσ∼Um [ψσ(x)ψσ(x
′)] for any (x, x′) ∈ Xd.

To complete the proof, we now have to bound two terms. First, we need to show that the expectation Eσ∼Um
[ψσ(x)ψσ(x

′)]
for each (x, x′) in the same equivalence group is bounded. Next, we need to show that for each set Xd, the sum∑

(x,x′)∈Xd
v(x)v(x′) is also bounded. These are correspondingly shown in Lemmas D.9 and D.10. Based on these

two Lemmas, we can now present the proof of Lemma D.8.

23



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Proof of Lemma D.8.

E
σ∼Um

[
⟨v, ψσ⟩2

]
=

m∑
d=0

Cd
∑
x,x′

dist(x,x′)=d

v(x)v(x′)

=

m∑
d=0

1

p2

(
1− 1

(1− p)d−1

)
(−1)d

(
m

d

)

=
1

p

(
1 +

1

p− 1

)m−1

≤ 1

p
exp

(
m− 1

p− 1

)
. (D.9)

where the second to last step is due to the binomial Theorem and the last step is due to the fact that for all x ∈ R,
1 + x ≤ exp(x).

Lemma D.9. For any (x, x′) ∈ Xd index vector pair it holds that

E
σ∼Um

[ψσ(x)ψσ(x
′)] =

1

p2

(
1− 1

(1− p)d−1

)
.

Proof of Lemma D.9. Let us re-iterate the definition of h:

ψσ(x) = 1

( m∑
i=1

σi(xi) ≡ 0 (mod p)

)
.

First, note that when d = ∆(x, x′) = ∆(y, y′) = 0, it’s clear that Eσ∼Um [ψσ(x)ψσ(x
′)] = Eσ∼Um [ψσ(y)ψσ(y

′)] since
there exists a permutation σ′ ∈ Sm such that x = σ′(y) and x′ = σ′(y′) (as x = x′ and y = y′).

Next, for each pair (x′, x′) we define I(x, x′) ≜ {i : x[i] ̸= x′[i]} and E(x, x′) ≜ {i : x[i] = x′[i]}. Note that for each
(x, x′) ∈ Xd for any 1 ≤ d ≤ m it holds that

E
σ∼Um

[ψσ(x)ψσ(x
′)] = E

σ∼Um

[
1

( m∑
i=1

σi(xi) ≡
m∑
i=1

σi(x
′
i) ≡ 0 (mod p)

)]

= E
σ∼Um

1( ∑
i∈I(x,x′)

σi(xi) +
∑

i∈E(x,x′)

σi(xi) ≡
∑

i∈I(x,x′)

σi(x
′
i) +

∑
i∈E(x,x′)

σi(xi) ≡ 0 (mod p)

)
= E
σ∼Um

1( ∑
i∈I(x,x′)

σi(xi) ≡
∑

i∈I(x,x′)

σi(x
′
i) ≡ −

∑
i∈E(x,x′)

σi(xi) (mod p)

)
= E

σ∼Um

ζ∼Unif([p])

1( ∑
i∈I(x,x′)

σi(xi) ≡
∑

i∈I(x,x′)

σi(x
′
i) ≡ ζ (mod p)

)
= E

(a,b)∼Unif(Xd,d)
ζ∼Unif([p])

[
1

( d∑
i=1

ai ≡
d∑
i=1

bi ≡ ζ (mod p)

)]
(D.10)

where in the second to last line, we replaced Eσ∼Um

[
−
∑
i∈E(x,x′) σi(xi)

]
with Eζ∼Unif([p])[ζ] (assuming d ≥ 1).

Now we define

Cd ≜ E
σ∼Um

[ψσ(x)ψσ(x
′)] = Pr

ζ∼Unif([p])
(y,y′)∼Unif(Xd,d)

[
1

(
d∑
i=1

yi ≡
d∑
i=1

y′i ≡ ζ (mod p)

)]
. (D.11)

24



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

It’s easy to see that C0 = 1
p (probability of ζ being 0) and C1 = 0 (since y1 ̸= y′1). We aim to find the closed form formula

for the general d ≥ 2. As ζ ∼ Unif([p]) is independent of the two sums, we can absorb it and write (from here until the rest
of the proof we drop (mod p) from equivalences for ease of presentation)

Qd ≜ Pr
(y,y′)∼Unif(Xd,d)

[
1

(
d∑
i=1

yi ≡
d∑
i=1

y′i

)]
= p · Cd. (D.12)

Note that for d ≥ 2 we have that

Qd = Pr
(y,y′)∈Unif(Xd,d)

[
1

(
d−1∑
i=1

yi ≡
d−1∑
i=1

y′i

)
· 1(yd = y′d)

]

+ Pr
(y,y′)∈Unif(Xd,d)

[
1

(
d−1∑
i=1

yi ̸≡
d−1∑
i=1

y′i

)
· 1

(
yd ≡ y′d +

d−1∑
i=1

y′i −
d−1∑
i=1

yi

)]

= (1−Qd−1) ·
1

p− 1
. (D.13)

Hence for d ≥ 2 we have that

Cd =
1

p(p− 1)
(1− p · Cd−1)

=
1

p(p− 1)
− Cd−1

p− 1

=
1

p2

(
1− 1

(1− p)d−1

)
. (D.14)

This completes the proof.

Lemma D.10. For any Xd where d ∈ [m] and v ∈ Rpm such that ∥v∥2 = 1 and v ⊥ Vs (defined in Equation (D.1)) it holds
that ∑

(x,x′)∈Xd

v(x)v(x′) = (−1)d
(
m

d

)
.

Proof of Lemma D.10. Let us define G(d) as

G(d) ≜
1(
m
d

) ∑
(x,x′)∈Xd

v(x)v(x′)

= E
σ∈Sm

∑
y∈[p]m−d

∑
(t,t′)∈Xd,d

v
(
σ(y∥t)

)
v
(
σ(y∥t′)

)
. (D.15)

Since v ⊥ Vs we have that

0 =
∑
y∈[p]d

∑
(t,t′)∈Xd−1,d−1

∑
s∈[p]

v
(
σ(y∥s∥t)

)∑
s∈[p]

v
(
σ(y∥s∥t′)

)
=

∑
(y∥s)∈[p]m−d+1

∑
(t,t′)∈Xd−1,d−1

v
(
σ(y∥s∥t)

)
v
(
σ(y∥s∥t′)

)
+

∑
y∈[p]m−d

∑
(s∥t,s′∥t′)∈Xd,d

v
(
σ(y∥s∥t′)

)
v
(
σ(y∥s′∥t′)

)
= G(d− 1) +G(d). (D.16)

Note that G(0) =
∑
x v(x)

2 = ∥v∥22 = 1. Hence, G(d) = (−1)d. This completes the proof.

25



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

E. Generalization Upper Bound for Regression

The original model is f
((
ei, ej

)⊤)
= V (W

(
ei, ej

)⊤
)⊙2. We consider the model g

((
ei, ej , ek

)⊤)
=〈

ek, f
((
ei, ej

)⊤)〉
and the function class H is defined over g with different weights θ = (W,V ) where W ∈ Rh×2p

and V ∈ Rp×h. For an input x ∈ R3p, we define two slices x′ ≜ x [: 2p] and x′′ ≜ x [2p: ]. We also define
Wh,r ≜ {W ∈ Rh×2p : ∥W∥∞ ≤ r} and Vh,r ≜ {V ∈ Rp×h : ∥V ∥∞ ≤ r} which we will use later to denote
parameters of our function. We further define Dn = {x1, x2, · · · , xn} such that for all a ∈ [n] we have xa =

(
ei, ej , ek

)⊤
for some i, j, k ∈ [p]. For this section, we fix the set {x1, x2, · · · , xn} ∼ Unif(X ) and denote by Rn(H) the empirical
Rademacher complexity of the function class H defined as

Rn(H) ≜ E
σ∼Unif({±1}n)

[
sup
ψ∈H

1

n

n∑
i=1

ψ(xi)σi

]
(E.1)

where H maps X → R and n ∈ N.

Lemma E.1. Consider the function classes

Hw
r,r′ ≜

{
ψ : R3p → R | ∃

[
W⊤ ∈ Ww,r ∧ V ∈ Vw,r′

]
s.t. ψ(x) =

〈
x′′, V ⟨W,x′⟩2

〉}
(E.2)

and

Gr ≜

{
g : R3p → R | ∃

[
U ∈ R4×3p ∧ ∥U∥∞ ≤ r

]
s.t. g(x) =

4∑
i=1

⟨U⊤
i , x⟩3

}
(E.3)

where Ui denotes the i’th row of U . The function class H1
r,r′ is contained in Gmax(r,r′) (and hence Rn(Hr,r′) ≤

Rn(Gmax(r,r′))).

Proof of Lemma E.1. We prove this lemma by showing that for each pair of matrices W,V of ψ ∈ H1
r,r′ , we can construct

a matrix U of g ∈ Gmax(r,r′) such that for all x ∈ R3p, h(x) = g(x). Consider an arbitrary parameterization W,V of h

such that ψ(x) =
〈
x′′, V ⟨W,x′⟩2

〉
. We can construct U = 3

√
2
9

(
Q1, Q2, Q3, Q4

)⊤
where

Q1 =

(
W
V

)
, Q2 =

(
−W
V

)
, Q3 =

(
−W/2
V

)
, Q4 =

(
W/2
−V

)
. (E.4)

Observe that

g(x) =

4∑
i=1

〈
U⊤
i , x

〉3
=

2

9

[
⟨U1, x⟩3 + ⟨U2, x⟩3 + ⟨U3, x⟩3 + ⟨U4, x⟩3

]
=

2

9

[
(⟨W,x′⟩+ ⟨V, x′′⟩)3 − (⟨W,x′⟩ − ⟨V, x′′⟩)3 −

(
⟨W,x′⟩

2
+ ⟨V, x′′⟩

)3

+

(
⟨W,x′⟩

2
− ⟨V, x′′⟩

)3
]

=
〈
x′′, V ⟨W,x′⟩2

〉
= ψ(x). (E.5)

It is straightforward to see that ∥U∥∞ = max (∥W∥∞ , ∥V ∥∞), which completes the proof.

Lemma E.2. Consider the function class Gr defined in Equation (E.3). It holds that

Rn(Gr) ≤
12r3

√
p

√
n

.

26



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Proof of Lemma E.2. We can derive the Rademacher complexity of Gr as

Rn(Gr) = E
σ∼Unif({±1}n)

[
sup

U∈R4×3p,∥U∥∞≤r

1

n

n∑
a=1

σa

4∑
c=1

⟨U⊤
c , xa⟩3

]

≤ E
σ∼Unif({±1}n)

[
sup

U∈R3p,∥U∥∞≤r

4

n

n∑
a=1

σa⟨U, xa⟩3
]

≤ E
σ∼Unif({±1}n)

[
sup

U∈R3p,∥U∥∞≤r

12r2

n

n∑
a=1

σa⟨U, xa⟩

]
(E.6)

where we used Talagrand’s contraction principal using 3r2-Lipschitzness of ⟨U, xa⟩3 with respect to ⟨U, xa⟩, and we can
continue:

≤ E
σ∼Unif({±1}n)

[
sup

U∈R3p,∥U∥∞≤r

12r2

n
∥U∥2

∥∥∥∥∥
n∑
a=1

σaxa

∥∥∥∥∥
2

]

≤ 12r3
√
3p

n
E

σ∼Unif({±1}n)

[∥∥∥∥∥
n∑
a=1

σaxa

∥∥∥∥∥
2

]

≤
36r3

√
p

√
n

. (E.7)

where the last step follows from Rademacher complexity of linear model and the fact that ∥x∥2 =
√
3 for all x ∈ Dn

(Awasthi et al., 2020) .

Remark E.3. Lemma E.2 directly implies the following Rademacher complexity bound for the function class H1
r,r′ defined

in Equation (E.2):

Rn(H1
r,r′) ≤

36
√
p

√
n

max(r, r′)3.

Lemma E.4.
Rn(Hh

r,r′) ≤
36h

√
p

√
n

max(r, r′)3.

Proof of Lemma E.4.

Rn(Hh
r,r′) = E

σ∼Unif({±1}n)

 sup
ψ∈Hh

r,r′

1

n

n∑
i=1

σiψ(xi)


= E
σ∼Unif({±1}n)

[
sup

W∈Wh,r,V ∈Vh,r′

1

n

n∑
a=1

σa

〈
eka , V

(
W

(
eia
eja

))⊙2
〉]

= E
σ∼Unif({±1}n)

[
sup

W∈Wh,r,V ∈Vh,r′

1

n

n∑
a=1

σa

〈
eka ,

h∑
b=1

V:,b

(
Wb

(
eia
eja

))⊙2
〉]

≤ E
σ∼Unif({±1}n)

[
sup

W∈W1,r,V ∈V1,r′

h

n

n∑
a=1

σa

〈
eka , V

〈
W,

(
eia
eja

)〉2
〉]

= hRn(H1
r,r′) (E.8)

where in the second to last line we used the fact that the Rademacher complexity of a two-layer NN with h hidden neurons
is bounded by h times that of a single-hidden-neuron counterpart. Thus, applying Remark E.3 we can conclude that

Rn(Hh
r,r′) ≤

36h
√
p

√
n

max(r, r′)3.

27



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

We are now ready to present the proof of the sample complexity upper bound for one-hidden-layer networks in the regression
task. We first present the following Theorem from Srebro et al. (2010) on bounding the excess risk of H-smooth loss
functions.

Theorem E.5 (Theorem 1 from Srebro et al. (2010)). For an H-smooth non-negative loss ℓ such that for all
x, y, ψ, |ℓ(ψ(x), y)| ≤ b , for any δ > 0 we have with probability at least 1 − δ over a random sample size of n, for
any ψ ∈ H,

L(ψ) ≤ L̂(ψ) +K

(√
L̂(ψ)

(
√
H log1.5 nRn(H) +

√
b log(1/δ)

n

)
+H log3 nR2

n(H) +
b log(1/δ)

n

)

where K is a positive constant, L(h) denotes the population loss of h according to ℓ and L̂(h) denotes the loss of h on the
mentioned sample of size n according to ℓ.

We now present the proof of Proposition 3.7.

Proposition 3.7. Choose R, δ > 0 to be positive constants. For any Dtrain of size n and θ∗ ∈ {θ = (W,V ) :
L(g, θ,Dtrain) = 0 ∧ ∥θ∥∞ ≤ R}, there exists a positive constant C > 0 such that with probability at least 1 − δ
over the choice of Dtrain,

Lℓ2(g(θ∗; ·)) ≤
CR6h2

n

(
p log3 n+ log

1

δ

)
.

Proof. Consider the function class Hh
R,R for whom we have already proved a Rademacher complexity upper bound. As

∥θ∥∞ ≤ R, and all the inputs are one-hot, for all x = (ei, ej , ek) and g ∈ Hh
R,R it holds that g(x) ≤ 4hR3. This

boundedness accordingly implies smoothness of ℓ2 loss on this function class with H = 1. Hence, Theorem E.5 directly
applies to our function class, yielding:

Ll2(g(θ, ·)) ≤
CR6h2

n

(
p log3 n+ log(1/δ)

)
for some positive constant C independet of other values.

Finally, we remark that if the ℓ2 loss is small enough, then the misclassification error is guaranteed to be zero.

Proposition E.6. Consider a predictor g : X → R. The population misclassification error is upper-bounded by 2Lℓ2(g)/p.

Proof. Note that each (x, y) ∈ X ×Y that is misclassified induces an ℓ2 loss of at least p2/2. To see that why, for each pair
(ea, eb) to be misclassified while attaining minimum possible ℓ2 loss we need

g((ea, eb, ec)) <
p

2

g((ea, eb, ed)) >
p

2
g((ea, eb, ek)) = 0 for all k ̸∈ {c, d}

where c = a+ b (mod p), d ∈ [p] ̸= c and k. Hence, each of (ea, eb, ec) and (ea, eb, ed) introduce an ℓ2 loss of at least
p2/4.

F. Construction of Interpolating Solution with Small ℓ∞ Norm
Proposition 3.8. Let the set of models with zero population loss be Θ∗ ≜ {θ | Lℓ2(g(θ; ·)) = 0}. For any p ≥ 2 and

h ≥ 8p, Θ∗ is nonempty and minθ∈Θ∗ ∥θ∥∞ ≤
⌊
h
8p

⌋− 1
3

.

In this section, we prove Proposition 3.8. We present a construction of weights that interpolates the dataset for h = 8p. Then

we generalize this result to any h ≥ 8p by duplicating the first 8p neurons
⌊
h
8p

⌋
times, where each copy is

⌊
h
8p

⌋− 1
3

times
smaller in magnitude.

28



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Proof of Proposition 3.8. We begin by constructing 8 matrices of size p× 2p denoted by W (i).

W
(1)
k,n = cos

(
2πk

p
n

)
W

(1)
k,m+p = +cos

(
2πk

p
m

)
W

(2)
k,n = cos

(
2πk

p
n

)
W

(2)
k,m+p= − cos

(
2πk

p
m

)
W

(3)
k,n = sin

(
2πk

p
n

)
W

(3)
k,m+p = +sin

(
2πk

p
m

)
W

(4)
k,n = sin

(
2πk

p
n

)
W

(4)
k,m+p = − sin

(
2πk

p
m

)
W

(5)
k,n = sin

(
2πk

p
n

)
W

(5)
k,m+p = +cos

(
2πk

p
m

)
W

(6)
k,n = sin

(
2πk

p
n

)
W

(6)
k,m+p = − cos

(
2πk

p
m

)
W

(7)
k,n = cos

(
2πk

p
n

)
W

(7)
k,m+p = +sin

(
2πk

p
m

)
W

(8)
k,n = − cos

(
2πk

p
n

)
W

(8)
k,m+p = sin

(
2πk

p
m

)

(F.1) Vq, 8k:8(k+1) =



+cos
(

2πk
p q
)

− cos
(

2πk
p q
)

− cos
(

2πk
p q
)

+cos
(

2πk
p q
)

+sin
(

2πk
p q
)

− sin
(

2πk
p q
)

+sin
(

2πk
p q
)

− sin
(

2πk
p q
)



⊤

(F.2)

Each W (i) for 1 ≤ i ≤ 8 is a p× 2p matrix, whose elements are given by the equations presented above. Hence, in each
equation k, n,m ∈ [p]. The construction of the first layer is based on stacking W (i) for 1 ≤ i ≤ 8 to construct W ∈ R8p×2p.
The weights of the second layer are given in Equation (F.2), where Vq, 8k:8(k+1) presents a slice of the second layer and
q, k ∈ [p].

To show that this construction solves the modular addition problem analytically, we will analytically perform the inference
step for two arbitrary inputs n,m where x = (en, em). We denote h = (Wx)⊙2 ∈ R8p as the post-activations of the first
layer, which is given by

h8k:8(k+1) =



cos
(

2πk
p n

)
+ cos

(
2πk
p m

)
cos
(

2πk
p n

)
− cos

(
2πk
p m

)
sin
(

2πk
p n

)
+ sin

(
2πk
p m

)
sin
(

2πk
p n

)
− sin

(
2πk
p m

)
sin
(

2πk
p n

)
+ cos

(
2πk
p m

)
sin
(

2πk
p n

)
− cos

(
2πk
p m

)
cos
(

2πk
p n

)
+ sin

(
2πk
p m

)
cos
(

2πk
p m

)
− sin

(
2πk
p n

)



2

. (F.3)

Note that for each k, we have that (after dropping (en, em) for simplicity)

h8k − h8k+1 = 2 cos

(
2πk

p
(n+m)

)
+ 2 cos

(
2πk

p
(n−m)

)
(F.4)

and

h8k+2 − h8k+3 = 2 cos

(
2πk

p
(n−m)

)
− 2 cos

(
2πk

p
(n+m)

)
(F.5)

and

h8k+4 − h8k+5 = 4 sin

(
2πk

p
n

)
cos

(
2πk

p
m

)
(F.6)

and

h8k+6 − h8k+7 = 4 cos

(
2πk

p
n

)
sin

(
2πk

p
m

)
. (F.7)

29



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

113 233 313 433 547
p

1.90E-05

5.29E-06

3.06E-06

1.59E-06

1.05E-06

Normalized Margin

Empirical
1/P2

1/P1.5

Figure 6: Normalized margin for different values of p after training with ce loss for 500,000 steps of normalized GD.

Hence,

h8k − h8k+1 − h8k+2 + h8k+3 = 4 cos

(
2πk

p
(n+m)

)
(F.8)

and

h8k+4 − h8k+5 + h8k+6 − h8k+7 = 4 sin

(
2πk

p
(n+m)

)
. (F.9)

Using the fact that cos(a− b) = cos(a) cos(b)− sin(a) sin(b), we can see that

[f(en, em)]q = ⟨Vq,:, h⟩ = 4

p−1∑
k=0

cos

(
2πk

p
q

)
cos

(
2πk

p
(n+m)

)
− sin

(
2πk

p
q

)
sin

(
2πk

p
(n+m)

)

= 4

p−1∑
k=0

cos

(
2πk

p
(m+ n− q)

)
= 4p1

(
(m+ n− q) mod p = 0

)
(F.10)

where the last equality follows from Euler’s identity and needs p to be odd.

Remark F.1. Assuming p is odd, we need at most 4p hidden neurons to interpolate the modular addition task.

Observing the fact that cos(2π − a) = cos(a), we can see that

p−1∑
k=0

cos

(
2πk

p
(m+ n− q)

)
= 1 + 2

p−1
2∑

k=1

cos

(
2πk

p
(m+ n− q)

)
(F.11)

where we replaced cos
(

2π0
p (m+ n− q)

)
with 1. Based on Equation (F.11), we can cut out half of the weights of the first

and second layer, and only construct the frequencies up to p−1
2 , which results in only needing 4p hidden neurons to construct

the interpolating solution.

G. Margin-Based Generalization Bound for Classification
We begin by providing some background and notation on sub-exponential random variables, which will be later used in the
proof of our margin-based generalization bound.

30



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

G.1. Background on sub-exponential variables

The following proofs rely heavily on concentration inequalities for sub-exponential random variables; we will first review
some background on these quantities.

A real-valued random variable X with mean µ is called sub-exponential (see e.g. Wainwright, 2019) if there are non-negative
parameters (ν, α) such that

E[eλ(X−µ)] ≤ e
ν2λ2

2 for all |λ| < 1

α
. (G.1)

We use X ∼ SE(ν, α) to denote that X is a sub-exponential random variable with parameters (ν, α), but note that this is
not a particular distribution.

One famous sub-exponential random variable is the product of the absolute value of two standard normal distributions,
zi ∼ N (0, 1), such that the two factors are either independent (X1 = |z1||z2| ∼ SE(νp, αp) with mean 2/π) or the same
(X2 = z2 ∼ SE(2, 4) with mean 1). We now present a few lemmas regarding sub-exponential random variables that will
come in handy in the later subsections of the appendix.
Lemma G.1. Assume X is sub-exponential with parameters (ν, α). It holds that the random variable sX where s ∈ R+ is
also sub-exponential, but with parameters (sν, sα).

Proof. Consider X ∼ SE(ν, α) and X ′ = sX with E[X ′] = sE[X]. Based on the definition of sub-exponential random
variables

E [exp (λ(X − µ))] ≤ exp(
ν2λ2

2
) for all |λ| < 1

α

=⇒ E
[
exp

(
λ

s
(sX − sµ)

)]
≤ exp(

ν2s2 λ
2

s2

2
) for all |λ

s
| < 1

sα

λ′=λ
s====⇒ E [exp (λ′(X ′ − µ′))] ≤ exp(

ν2s
2
λ′

2

2
) for all |λ′| < 1

sα

(G.2)

Defining α′ = sα and ν′ = sν we see that X ′ ∼ SE(sν, sα).

Proposition G.2. If all of the random variables Xi for i ∈ [N ] for N ∈ N+ are sub-exponential with param-

eters (νi, αi), and all of them are independent, then
∑N
i=1Xi ∈ SE(

√∑N
i=1 ν

2
i ,maxi αi), and 1

N

∑N
i=1Xi ∼

SE

(
1√
N

√
1
N

∑N
i=1 ν

2
i ,

1
N maxi αi

)
.

Proof. This is a simplification of the discussion prior to equation 2.18 of Wainwright (2019).

Proposition G.3. For a random variable X ∼ SE(ν, α), the following concentration inequality holds:

Pr (|X − µ| ≥ t) ≤ 2 exp

(
−min

(
t2

2ν2
,
t

2α

))
.

Proof. The proof is straightforward from multiplying the result derived in Equation 2.18 of Wainwright (2019) by a
scalar.

Corollary G.4. Consider X ∼ SE(ν, α), the following bound holds with probability at least 1− δ:

|X − µ| < max

(
ν

√
2 log

2

δ
, 2α log

2

δ

)
.

A sub-Gaussian random variable, SG(ν), is one which satisfies (G.1) for all λ, i.e. it is the limit of SE(ν, α) as α→ 0.

Proposition G.5 (Chernoff bound). If X is SG(ν), then with probability at least 1− δ, |X − µ| ≤ ν
√
2 log 2

δ .

Proposition G.6 (Hoeffding’s inequality). If X1, . . . , Xn are independent variables with means µi and each SG(νi), then

|
∑n
i=1Xi −

∑n
i=1 µi| ≤

√
2 (
∑n
i=1 ν

2
i ) log

2
δ with probability at least 1− δ.

31



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

G.2. Generalization Bound

We are now ready to state the main theorem for proving an upper bound on the number of training points needed to
generalize.
Theorem G.7. Let f : R2p → Rp be a one-hidden-layer network with h = O(p) hidden neurons and quadratic activation,
parameterized by θ = vec (W,V ) where W ∈ Rh×2p and V ∈ Rp×h. For any δ > 0, it holds with probability at least
1− δ over the choice of training set Dtrain of size m that, for all θ satisfying 1) ∥W∥∞ = O(1), 2) ∥V ∥∞ = O(1) and 3)∑h

i Vqi = 0 for all q ∈ [p],

L0(f,D) ≤ Lp(f,Dtrain) + Õ

(√
p5/3

m

)
. (G.3)

Proof. We’ll start by obtaining high probability bounds over the output logits of the network after perturbing each scalar
weight with N (0, σ2) noise. Let x represent the two-hot vector corresponding to inputs m and n and fq represnet the
q’th output logit of the neural network f . W̃ and Ṽ denote the perturbation noises. Moreover, assume CV = ∥V ∥∞ and
CW = ∥W∥∞ are positive constants.

f̃q (W + W̃ , V + Ṽ ;x) =
(
Vq + Ṽq

)(
(W + W̃ )x

)⊙2

= fq (W,V ;x) + Vq

(
(W̃x)⊙2 + 2Wx⊙ W̃x

)
+ Ṽq

(
(W + W̃ )x

)⊙2
(G.4)

Starting with the first term, we can see that

Vq

(
W̃x

)⊙2

=

h∑
i=1

Vqi

(
W̃im + W̃in

)⊙2

= 2σ2
h∑
i=1

Vqi χi

∼
√
2σ2CV SE(2

√
h, 4)

(G.5)

where
(
W̃im + W̃in

)⊙2

is distributed as a chi-squared random variable denoted by χi (as the second power of sum of two

i.i.d Gaussian random variables each having a variance of σ2). χ2(1) is a sub-exponential random variable with parameters
SE(2, 4) with mean 1. Based on assumption 3, we can see that the sum has a zero mean . We can further apply Corollary G.4
to show that with probability at least 1− δ1 over randomness of perturbation∣∣∣∣Vq (W̃x

)⊙2
∣∣∣∣ ≤ σ2 max

(
4CV

√
h log

2

δ1
, 4
√
2 log

2

δ1

)
. (G.6)

For the second term, we can see that

2VqWx⊙ W̃x = 2

h∑
i=1

Vqi(Wim +Win)(W̃im + W̃in) = 2
√
2σ

h∑
i=1

Vqi(Wim +Win)Ni (G.7)

where (W̃im + W̃in) is distributed as a Gaussian with N (0, 2) parameters and is replaced with
√
2Ni where Ni ∼ N (0, 1).

Once again, we can see that this sum has a zero mean. Applying Proposition G.6 on this sum we can show that with
probability at least 1− δ2 over randomness of perturbation

∣∣∣2VqWx⊙ W̃x
∣∣∣ ≤ 2σCV CWC2

√
2h log

2

δ2
(G.8)

where C2 is a positive constant.

Accordingly, we can decompose the second term into three sums. For the first component, we can see that

Ṽq (Wx)
2 ∼ N

(
0, σ2

∥∥∥(Wx)
2
∥∥∥2
2

)
. (G.9)

32



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Applying the Proposition G.5 on this Gaussian random variable, one can see that with probability at least 1 − δ3 over
randomness of perturbation

∣∣∣Ṽq (Wx)
2
∣∣∣ ≤ 4σ

√
h log

2

δ3
(G.10)

and for the second term in the decomposition we can see that

2ṼqWx⊙ W̃x = 2

h∑
i=1

Ṽqi(Wim +Win)(W̃im + W̃in) ∼ 2
√
2σ2

h∑
i=1

(Wim +Win)N (1)
i N (2)

i (G.11)

where N (1)
i and N (2)

i are random variables distributed as N (0, 1). Note that the sum has a zero mean, the product of two
independent Gaussian distributions can be written as the sum of two chi-squared distributions. Applying this technique and
Corollary G.4 we can see that with probability at least 1− δ4 over randomness of perturbation

∣∣∣2ṼqWx⊙ W̃x
∣∣∣ ≤ C3CWσ

2 max

(√
h log

2

δ4
, log

2

δ4

)
(G.12)

where C3 is a positive constant. Finally, for the last term, we can show that,

Ṽq

(
W̃x

)2
=

h∑
i=1

Ṽqi

(
W̃im + W̃in

)2
∼

√
2σ3

h∑
i=1

Niχi (G.13)

where χi is a random variable distributed according to χ2(1) and Ni is a random variable distributed according to N (0, 1).
The sum has mean zero. To bound this sum, we can first treat the chi-squared variables as bounded random variables with
high probability, and pull them out of the sum. Then, we can apply the Hoeffding’s inequality to bound the sum of Gaussians.
Note that for each yi ∼ χ2(1), we have that

Pr

[
|yi − 1| < C4 max

(√
2 log

2

δ
, log

2

δ

)]
≥ 1− δ (G.14)

where C4 is a positive constant. Applying a union bound on all yi for i ∈ [h] we have that

Pr

[
∀i ∈ [h]; |yi − 1| < C4 max

(√
2 log

2h

δ
, log

2h

δ

)]
≥ 1− δ. (G.15)

Pulling this out of the sum, we can see that

Pr

[∣∣∣∣Ṽq (W̃)2 x∣∣∣∣ ≤ √
2C ′

4σ
3 log

2h

δ

h∑
i=1

N (0, 1)

]
≥ 1− δ (G.16)

where C ′
4 is a positive constant. Applying Proposition G.6 to bound the sum of Gaussians, we can show that

Pr

[∣∣∣∣Ṽq (W̃)2 x∣∣∣∣ ≤ √
2C ′

4σ
3 log

2h

δ

√
2h log

2

δ′

]
≥ 1− δ − δ′. (G.17)

33



Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition

Combining the two high probability events, we can conclude that with probability at least 1− δ5 over perturbation noise∣∣∣∣Ṽq (W̃x
)2∣∣∣∣ ≤ C ′′

4 σ
3
√
h

(
log

2h

δ5

)3/2

(G.18)

where C ′′
4 is a positive constant.

Applying a union bound on δ1, · · · , δ5, and then another union bound on each logit, we can show that for each x,

max
q

∣∣∣f̃q(x)− fq(x)
∣∣∣ ≤ Õ

(
√
hσ3

(
log

2h

δ

)3/2
)

(G.19)

with probability at least 1− δ over the perturbation noise.

Since p is the margin of solution achieved with W,V , applying Lemma 1 from Neyshabur et al. (2018) with σ2 = h
1
3

concludes the proof.

Proposition G.8. Condition 3 from Theorem G.7 which implies that ∀q,
∑h
i=1 Vqi = 0 is not necessary.

Proof. Assume we have a network with weights θ = (W,V ) that satisfies all conditions of Theorem G.7 except

∀q,
∑h
i=1 Vqi = 0. We can construct a new network with weights θ′ = (W ′, V ′) such thatW ′ =

[
W
W

]
and V ′ =

[
V −V

]
.

This network has the same outputs as the original one with parameters θ, while each row in V ′ has a zero sum. Hence,
Theorem G.7 shows that the constructed network follows the provided genearlization bound, which subsequently shows that
the original network with parameters θ does so too, since the outputs of these two networks are exactly identical.

34


	Introduction
	Notations and Setup
	Regression Task
	Kernel Regime
	Rich Regime
	Implications for Kernel and Rich Regimes

	Classification Task
	Kernel Regime
	Rich Regime
	Implications of Results for Kernel and Rich Regimes

	Grokking Modular Addition in Transformers
	Additional Related Work
	Discussion
	Experimental Setup
	Regression
	Classification
	Transformer
	Logistics

	Ability of Neural Tangent Kernel Models to Interpolate
	Full-Rank Kernels are Expressive
	Expected NTK is Full-Rank
	Empirical NTKs are Likely Full-Rank

	Permutation-Equivariance of Gradient-Based Training
	Lower Bound of Population Loss for Kernel Methods
	Notation
	Loss Lower Bound: 3-dimensional Case
	Loss Lower Bound: General Theorem For Arbitrary Functions
	Loss Lower Bound: Modular Addition with m Summands

	Generalization Upper Bound for Regression
	Construction of Interpolating Solution with Small  Norm 
	Margin-Based Generalization Bound for Classification
	Background on sub-exponential variables
	Generalization Bound


