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Abstract
We develop EigenVI, a new approach for black-
box variational inference (BBVI). EigenVI fits
a novel class variational approximations based
on orthogonal function expansions. For distri-
butions over RD, the lowest order term in these
expansions provides a Gaussian variational ap-
proximation, while higher-order terms provide a
systematic way to model non-Gaussianity. These
variational approximations are flexible enough to
model complex distributions (multimodal, asym-
metric), but they are simple enough that one
can calculate their low-order moments and draw
samples from them. Further, by choosing dif-
ferent families of orthogonal functions, EigenVI
can model different types of random variables
(e.g., real-valued, nonnegative, bounded). To fit
the approximation, EigenVI matches score func-
tions by minimizing a Fisher divergence. No-
tably, this optimization reduces to solving a min-
imum eigenvalue problem, so that EigenVI ef-
fectively sidesteps the iterative gradient-based
optimizations that are required for many other
BBVI algorithms. (Gradient-based methods can
be sensitive to learning rates, termination cri-
teria, and other tunable hyperparameters.) We
study EigenVI on a variety of target distributions,
including a benchmark suite of Bayesian mod-
els from posteriordb. Compared to existing
methods for BBVI, EigenVI is more accurate.

1. Introduction
Probabilistic modeling is a cornerstone of modern data anal-
ysis, uncertainty quantification, and decision making. A key
challenge of probabilistic inference is computing a target
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distribution of interest; for instance, in Bayesian modeling,
the goal is to compute a posterior distribution, which is
often intractable. Variational inference (VI) (Jordan et al.,
1999; Wainwright et al., 2008; Blei et al., 2017) is a popu-
lar method that has enabled scalable probabilistic inference
across a range of applications. The idea behind VI is to
target distribution with the closest member of a tractable
family.

One major focus of variational inference is black-box varia-
tional inference (BBVI) algorithms (Ranganath et al., 2014;
Kingma and Welling, 2014; Titsias and Lázaro-Gredilla,
2014; Kucukelbir et al., 2017; Locatello et al., 2018; Gior-
dano et al., 2024; Wang et al., 2024; Modi et al., 2023; Cai
et al., 2024). In BBVI, the target needs only to be available
as the log of an unnormalized distribution, which is also
typically assumed to be differentiable. Because it is so eas-
ily applicable, BBVI algorithms are now widely available
in popular probabilistic programming languages, providing
automated VI algorithms to data analysis practitioners (Sal-
vatier et al., 2016; Carpenter et al., 2017; Ge et al., 2018;
Bingham et al., 2019; Abril-Pla et al., 2023).

One thread of BBVI research focuses on Gaussian varia-
tional approximations (Ranganath et al., 2014; Kucukelbir
et al., 2017). Traditionally, the approximation is optimized
by minimizing the Kullback-Leibler (KL) divergence be-
tween the variational family and the target (equivalently,
maximizing the ELBO). This strategy is powerful and scal-
able, but it relies on stochastic gradient descent, which can
be difficult to tune (Dhaka et al., 2020; 2021; Zhang et al.,
2022).

More recently, researchers have proposed Gaussian BBVI
algorithms that do not require the use of SGD (Modi et al.,
2023; Cai et al., 2024). These methods aim to match the
scores, or the gradients of the log densities, between the
variational distribution and the target density. Thanks to
the Gaussian family, these algorithms implement closed-
form proximal point updates for solving the score matching
problem. The resulting methods are as inexpensive as SGD,
but are not as brittle.

In this paper, we develop a new way to perform score-based
BBVI. We propose a new class of variational families built
from orthogonal function expansions, inspired by wave func-
tions from quantum mechanics. This class is both expres-
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sive enough to capture a variety of target distributions, and
tractable enough to be able to sample from and calculate
low-order moments. For distributions supported on RD, a
first-order expansion recovers the Gaussian distribution and
higher-order expansions allow for increasing amounts of
non-Gaussianity. Depending on the choice of basis set, this
construction can also produce variational families over other
spaces.

To optimize over a variational family from this class, we
minimize an estimate of the Fisher divergence, which mea-
sures the scores of the variational distribution against those
of the target distribution. We show that the optimization
objective is equivalent to solving an eigenvalue problem,
thus avoiding the need for gradient-based optimization. For
this reason, we call our approach EigenVI.

We study EigenVI with a variational family constructed
from weighted Hermite polynomials. We first demonstrate
its expressiveness on a variety of complex target distribu-
tions, such as multimodal, asymmetric, and heavy-tailed
target distributions. We then study a suite of non-Gaussian
target distributions from posteriordb (Magnusson et al.,
2022), a benchmark suite of Bayesian hierarchical models.
Compared to leading implementations of Gaussian BBVI
based on KL minimization and score matching, EigenVI
provides more accurate posterior approximations.

In Section 2 we introduce the orthonormal family, a new
variational family built from orthogonal function expan-
sions, and we show how score matching with this family is
equivalent to an eigenvalue problem. In Section 3, we eval-
uate EigenVI on a variety of synthetic and real-data targets.
In Section 4, we discuss limitations and future work.

2. Score-based variational inference with the
orthonormal family

In this section we develop a variational family for approxi-
mate probabilistic inference based on orthogonal function
expansions. In Section 2.1, we show that the approximations
in this family are expressive enough to model complex dis-
tributions, but also that they are simple enough to calculate
their moments and draw samples from them. In Section 2.2,
we show how to optimize these variational approximations
by minimizing a score-based divergence; notably, for this
divergence, the optimization reduces to an eigenvalue prob-
lem. Finally in Section 2.3, we consider how to use these
variational approximations for unstandardized distributions;
in these settings we must carefully manage the trade-off
between expressiveness and computational cost.

2.1. Orthogonal function expansions

Let Z ⊆ RD denote the support of the target distribution p.
Suppose that there exists a complete set of orthonormal ba-

sis functions {ϕk(z)}∞k=1 on this set. By complete, we mean
that any sufficiently well-behaved function f : Z → R can
be approximated, to arbitrary accuracy, by a particular
weighted sum of these basis functions, and by orthonor-
mal, we mean that the basis functions satisfy∫

ϕk(z)ϕk′(z) dz =

{
1 if k = k′,
0 otherwise, (1)

where the integral is over Z . We define the K th-order varia-
tional family QK to be the set containing all distributions
of the form

q(z) =

(
K∑

k=1

αkϕk(z)

)2

where
K∑

k=1

α2
k = 1, (2)

where αk ∈ R for k = 1, . . . ,K are the parameters of the
family QK . In words, QK contains all distributions that can
be obtained by taking weighted sums of the first K basis
functions and then squaring the result.

Eq. 2 involves a squaring operation, a sum-of-squares con-
straint, and a weighted sum. The squaring operation ensures
that the density functions in QK are nonnegative (i.e., with
q(z)≥0 for all z ∈ Z), while the sum-of-squares constraint
ensures that they are normalized:

∫
q(z) dz =

∫ ( K∑
k=1

αkϕk(z)

)2

dz

=

∫ K∑
k,k′=1

αkαk′ϕk(z)ϕk′(z) dz

=

K∑
k=1

α2
k = 1. (3)

The weighted sum in Eq. 2 bears a superficial similarity to
a mixture model, but we emphasize that neither the basis
functions ϕk(z) nor the weights αk in Eq. 2 are constrained
to be nonnegative. Distributions of this form arise naturally
in physics from the quantum-mechanical wave functions
that satisfy Schrödinger’s equation (Griffiths and Schroeter,
2018).

The simplest examples of orthogonal function expansions
arise in one dimension. For example, functions on the in-
terval [−1, 1] can be represented as weighted sums of Leg-
endre polynomials, while functions on the unit circle can
be represented by Fourier series of sines and cosines; see
Table 1. Distributions on unbounded intervals can also be
represented in this way. On the real line, for example, we
may consider approximations of the form in Eq. 2 where

ϕk+1(z) =
(√

2πk!
)− 1

2
(
e−

1
2 z

2
) 1

2

Hk(z), (4)
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and Hk(z) are the probabilist’s Hermite polynomials given
by

Hk(z) = (−1)ke
z2

2
dk

dzk

[
e−

z2

2

]
. (5)

Note how the lowest-order basis function ϕ1(z) in this fam-
ily gives rise (upon squaring) to a Gaussian distribution with
zero mean and unit variance.

Figure 1 shows how various multimodal distributions with
one-dimensional support can be approximated by computing
weighted sums of basis functions and squaring their result.
We emphasize that the more basis functions in the sum, the
better the approximation.

Orthogonal function expansions in one dimension are also
important because their Cartesian products can be used to
generate orthogonal function expansions in higher dimen-
sions. For example, we can approximate distributions over
(say) R3 by

q(z1, z2, z3) =

K1∑
i=1

K2∑
j=1

K3∑
k=1

βijk ϕi(z1)ϕj(z2)ϕk(z3)

2

where
∑
ijk

β2
ijk = 1, (6)

where βi,j,k ∈ R now parametrize the family. Note that
there are a total K1K2K3 parameters in the above expan-
sion, so that this method of Cartesian products does not
scale well to high dimensions if multiple basis functions are
used per dimension. Note that the same strategy can also be
used for random variables of mixed type: for example, from
Table 1, we can create a variational family of distributions
over R×[−1, 1]×[0,∞) from the Cartesian product of or-
thogonal function expansions involving Hermite, Legendre,
and Laguerre polynomials.

As shown in Figure 1, the approximating distributions from
K th-order expansions can model the presence of multiple
modes as well as many types of asymmetry, and this expres-
siveness also extends to higher dimensions. Nevertheless,
it remains tractable to sample from these distributions and
even to calculate (analytically) their low-order moments, as
we show in Appendices B and C.

For concreteness, consider the distribution over R3 in Eq. 6.
The marginal distribution q(z1) is

q(z1) =

∫
q(z1, z2, z3) dz2 dz3

=
∑
ii′

∑
jk

βijkβi′jk

ϕi(z1)ϕi′(z1), (7)

and from this expression, moments such as E[z1] and
Var[z1] can be calculated by evaluating integrals involv-
ing the elementary functions in Table 1. (In practice, these

integrals are further simplified by recursion relations that
relate basis functions of different orders.) We can sam-
ple z1 ∼ q(z1) by computing the cumulative distribution
function (CDF) of this marginal distribution and then nu-
merically inverting this CDF. Finally, extending these ideas,
we can calculate higher-order moments and obtain joint
samples via the nested draws

z1 ∼ q(z1), z2 ∼ q(z2|z1), z3 ∼ q(z3|z1, z2). (8)

The overall complexity of these procedures scales no worse
than quadratically in the number of basis functions in the
expansion. These extensions are discussed further in Ap-
pendices B and C.

2.2. EigenVI

In variational inference, we posit a variational family of
distributions and then fit the free variational parameters to
find the member that is close to a target distribution of in-
terest. Consider a target density p(z), which is intractable
to compute. Eq. 2 defines a variational family QK based
on orthonormal functions, and where the free variational pa-
rameters are the weights {αk}Kk=1. We now derive EigenVI,
a method to find q ∈ QK that is close to p(z).

We first define the measure of closeness that we will min-
imize. EigenVI measures the quality of an approximate
density by the Fisher divergence,

D(q, p) =

∫
∥∇ log q −∇ log p∥2 dq, (9)

where ∇ log q and ∇ log p are the score functions of the vari-
ational approximation and target, respectively. The Fisher
divergence vanishes if and only if the scores of q and p are
everywhere equal.

Though p is, by assumption, intractable, in many applica-
tions it is possible to efficiently compute the score ∇ log p
at any point z ∈ Z . For example, in Bayesian models the
score of the target posterior is equal to the gradient of the
log joint. This is the main motivation for score-based meth-
ods in probabilistic modeling (Liu and Wang, 2016; Yu and
Zhang, 2023; Modi et al., 2023; Cai et al., 2024).

Here we seek the q ∈ QK that minimizes D(q, p). But
a challenge arises: it is generally difficult to evaluate the
integral for D(q, p) in Eq. 9, let alone to minimize it as a
function of q. To proceed, we construct an unbiased estima-
tor of D(q, p) by importance sampling. Let {z1, z2, . . . zB}
denote a batch of B samples drawn from some proposal
distribution π on Z . From these samples we can form the
unbiased estimator

D̂π(q, p)=

B∑
b=1

q(zb)

π(zb)

∥∥∇ log q(zb)−∇ log p(zb)
∥∥2. (10)
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Table 1: Examples of orthogonal function expansions in one dimension. The basis functions in the table are not normalized,
but they can be rescaled so that their squares integrate to one.

support orthogonal family basis functions ϕk(·)

z ∈ [−1, 1] Legendre polynomials {1, z, 3z2−1, 5z3−3z, . . .}
z = eiθ∈ S1 Fourier basis {1, cos θ, sin θ, cos 2θ, sin 2θ, . . .}
z ∈ [0,∞) weighted Laguerre polynomials e−

z
2 {1, 1−z, z2−4z+2, . . .}

z ∈ R weighted Hermite polynomials e−
z2

4 {1, z, (z2−1), (z3−3z), . . .}

-1 0 1
0

1

2

3

Legendre polynomial expansion

K=1
K=3
K=6
K=12
target

0 2
0

0.2

0.4

0.6

Fourier series expansion

K=1
K=3
K=6
K=12
target

-3 0 3
0

0.2

0.4

Hermite polynomial expansion

K=1
K=4
K=9
target

Figure 1: Target probability distributions (in black) on the interval [−1, 1] (left), the unit circle (middle), and the real line
(right), and their approximations by orthogonal function expansions from different families and of different orders; see Eq. 2
and Table 1.

This estimator should be accurate for appropriately broad
proposal distributions and for sufficiently large batch sizes.
We can therefore attempt to minimize Eq. 10 in place of
Eq. 9.

Now we show that minimizing Eq. 10 over q ∈ QK sim-
plifies to an eigenvalue problem for the weights {αk}Kk=1

in Eq. 2. We note that this simplification arises from the
particular choice of variational family (based on orthogonal
function expansions) and the particular choice of divergence
(based on score-matching). This eigenvalue problem stands
in contrast to the gradient-based optimizations—involving
learning rates, terminating criteria, and perhaps other al-
gorithmic hyperparameters—that are typically required for
ELBO-based BBVI (Dhaka et al., 2020; 2021).

To obtain the eigenvalue problem, we substitute the orthogo-
nal function expansion in Eq. 2 into Eq. 10 for the unbiased
estimator of D(q, p). As an intermediate step, we differenti-
ate Eq. 2 to obtain the scores

∇ log q(zb) =
2
∑

k αk∇ϕk(z
b)∑

k αkϕk(zb)
. (11)

Further substitution of the scores provides the key result
behind our approach: the unbiased estimator in Eq. 10 is a
simple quadratic form in the weights α = [α1, . . . , αK ]⊤

of the orthogonal function expansion,

D̂π(q, p) = α⊤Mα, (12)

where the coefficients of the quadratic form are given by

Mjk =

B∑
b=1

1

π(zb)
[2∇ϕj(z

b)− ϕj(z
b)∇ log p(zb)]

·[2∇ϕk(z
b)− ϕk(z

b)∇ log p(zb)]. (13)

Note the elements of the K×K symmetric matrix M capture
all of the dependence on the batch of samples, the scores
of p and q at these samples, and the choice of the family
of orthogonal functions. Next we minimize the quadratic
form in Eq. 12 subject to the sum-of-squares constraint∑

k α
2
k = 1 in Eq. 2. In this way (see Appendix D for

a proof) we obtain the eigenvalue problem (Courant and
Hilbert, 1924)

min
q∈QK

[
D̂(q, p)

]
= min

∥α∥=1

[
α⊤Mα

]
=: λmin(M), (14)

where λmin(M) is the minimal eigenvalue of M , and the
optimal weights are given (up to an arbitrary sign) by its
corresponding eigenvector. EigenVI solves Eq. 14.

Computationally, the size of the eigenvalue problem is equal
to the number of basis functions K in the orthogonal expan-
sion. The eigenvalue problem also generalizes to orthogonal
function expansions that are formed from Cartesian prod-
ucts of one-dimensional families, but in this case, if multiple
basis functions are used per dimension, then the overall ba-
sis size grows exponentially in the dimensionality. Thus, for
example, the eigenvalue problem would be of size K1K2K3

for the approximation in Eq. 6, as can be seen by “flattening”
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the tensor of weights β in Eq. 6 into the vector of weights
α = vec(β) in Eq. 2. Finally, we note that only the minimal
eigenvector of M needs to be computed, which can be much
less expensive than computing a full diagonalization.

2.3. Standardization in RD

In the previous section, we discussed that the size of the
eigenvalue problem grows linearly with the number of basis
functions. In practice one should therefore use the least
number of basis functions that are required for a suitable
approximation. For target distributions on RD, this num-
ber can be reduced by simple linear transformations of the
domain—transformations which standardize the random
variables so that they have approximately zero mean and
unit variance. Consider, for instance, the special case that
the target distribution p(z) is in fact multivariate Gaussian,
with mean µ and covariance Σ. In this case, the standardized
variable

z̃ = Σ− 1
2 (z−µ) (15)

will have zero mean and identity covariance, and the induced
distribution p̃(z̃) will be perfectly fitted by a product of sin-
gle basis functions in the orthogonal family of reweighted
Hermite polynomials. More generally, when p is not Gaus-
sian, EigenVI can use a low-order expansion to approximate
p̃(z̃) and then undo the change-of-variables to obtain the
approximation p(z) = p̃(z̃)|Σ|−1/2.

Figure 2 shows why it is more difficult to approximate
distributions that are badly centered or poorly scaled. The
left panel shows the effect of translating a standard Gaussian
away from the origin and shrinking its variance; note how
a comparable approximation to the uncentered Gaussian
now requires a 16th-order expansion. The right panel shows
the similar effect of translating the mixture distribution in
Figure 1 (right panel); comparing these panels, we see that
twice as many basis functions (K = 12 versus K = 6)
are required to provide a comparable fit of the uncentered
mixture.

We emphasize that it is not necessary to know the exact
mean and covariance of a target distribution over Rd for
EigenVI to benefit from these types of standardizing trans-
formations. Sometimes domain-specific knowledge may be
enough to provide rough estimates of these quantities; if
not, they might alternatively be estimated by a Laplace or
Gaussian variational approximation (Shun and McCullagh,
1995; Ranganath et al., 2014; Kucukelbir et al., 2017; Galy-
Fajou et al., 2021; Xu and Campbell, 2022; Modi et al.,
2023; Cai et al., 2024). Indeed, the latter strategy suggests
one compelling use case of EigenVI for target distributions
on RD; after a standardizing transformation, it provides a
systematic framework to model non-Gaussian effects via
low-order orthogonal function expansions.

3. Experiments
We evaluate EigenVI on 9 synthetic targets and 8 real data
targets. The focus of the experiments is the orthogonal
family induced from normalized Hermite polynomials (see
Table 1), which has a Gaussian base distribution. Thus, this
variational family can be viewed as a more flexible Gaus-
sian variational family. In what follows, we first study 2D
synthetic targets, which allow us to show the expressiveness
of the basis using higher order expansions. Next, we study
this approach under varying amounts of non-Gaussianity.
Finally, we evaluate this approach on Bayesian modeling
applications with real data, comparing with several BBVI
algorithms.

3.1. 2D synthetic targets

In Figure 3, we show the resulting fits for three 2D target
distributions; details on the target densities are in the ap-
pendix. We report the forward KL divergence in Figure 6
for varying number of samples B and families constructed
using different orders K = K1 = K2; we report time
comparisons between the different orders. These targets
were not standardized before fitting, as they were already
centered by construction. The Gaussian distribution is fit
using a score-based divergence (Cai et al., 2024; Modi et al.,
2023).

3.2. Non-Gaussianity: varying skew and tails in the
sinh-arcsinh distribution

We now consider a non-Gaussian target, where we can
control the amount of skew and tails in the target. The
sinh-arcsinh normal distribution (Jones and Pewsey, 2009;
2019), which has parameters s ∈ RD, τ ∈ RD

+ ,Σ ∈ S++,
is the distribution induced by transforming a Gaussian
Z0 ∼ N (0,Σ) to Z = Ss,τ (Z0), where

Ss,τ (z) := [Ss1,τ1(z1), . . . , SsD,τD (zD)]⊤,

Ssd,τd(zd) := sinh
(

1
τd

sinh−1(zd) +
sd
τd

)
. (16)

Here sd controls the amount of skew in the dth dimension,
and τd controls the tail weight in that dimension. When
sd = 0 and τd = 1 in all dimensions d, the distribution is
the Gaussian distribution.

In Figure 4, we show the effect of changing the parameters
to highlight increasing amounts of non-Gaussianity in the
skew or the tails of the distribution (see the appendix for
the precise parameters); the 2D targets are visualized in
the top row. Before applying EigenVI, we standardize the
target using a mean and covariance estimated from batch
and match VI (Cai et al., 2024). For EigenVI, we measure
the forward KL under varying numbers of samples B and
across increasing numbers of basis functions, given by K1×
. . .×KD. We also present the forward KL resulting from
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-3 0 3 6
0

0.5

1
K=1
K=4
K=9
K=16
target

-3 0 3 6 9
0

0.3

0.6
K=1
K=4
K=9
K=16
target

Figure 2: Higher-order expansions may be required to approximate target distributions that are not standardized. Left:
approximation of a normal distribution. Right: approximation of the mixture distribution in Figure 1 after translating its
largest modes away from the origin.
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K=6: KL=0.99

2.5 0.0 2.5
4

2

0

2

4
K=10: KL=5.2E-01
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K=18: KL=2.0E-01
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4
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0
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4
target

2.5 0.0 2.5
4
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0
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2.5 0.0 2.5
4

2

0

2
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K=6: KL=0.14

2.5 0.0 2.5
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2

4
K=8: KL=5.2E-02

2.5 0.0 2.5
4

2

0

2

4
K=14: KL=1.8E-02

Figure 3: 2D target functions (column 1): a 3-component Gaussian mixture distribution (row 1), a funnel distribution (row
2), and a cross distribution (row 3). We report the KL(p; q) for the resulting optimal variational distributions obtained using
score-based VI with a Gaussian variational family (second column) and the EigenVI variational family (columns 3–4),
where K1=K2=K.

batch and match VI (BaM) and automatic differentiation
VI (ADVI), which both use Gaussian variational families.
Next we consider similar targets in 5 dimensions; for the
parameters and visualizations of the targets and examples of
the resulting EigenVI variational distributions, see Figure 7.
In Figure 4c, we observe greater differences in the number of
importance samples needed to lead to good approximations,
especially as the number of basis functions increase.

3.3. Hierarchical modeling benchmarks from
posteriordb

We now evaluate EigenVI on a set of hierarchical Bayesian
models (Carpenter et al., 2017; Magnusson et al., 2022;
Roualdes et al., 2023), which are summarized in Table 2.

The goal is posterior inference: given data observations
x1:N , the posterior of z is

p(z |x1:N ) ∝ p(z)Lz(x1:N ) =: ρ(z), (17)

where p(z) is the prior and Lz(x1:N ) denotes the likelihood.

We compare EigenVI to 1) automatic differentation VI
(ADVI) (Kucukelbir et al., 2017), which minimizes the
ELBO over full covariance Gaussian family (ADVI-G), 2)
Gaussian score matching (GSM) (Modi et al., 2023), a score-
based BBVI approach with a full covariance Gaussian fam-
ily, and 3) batch and match VI (BaM) (Cai et al., 2024),
which minimizes a regularized score-based divergence over
a full covariance Gaussian family. In these examples, we
standardize the target using either GSM or BaM before ap-
plying EigenVI; for this reason, we do not compare the costs
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(a) Example 2D targets (left) varying the skew s or tail weight τ components and their EigenVI fits (right).
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Figure 4: Sinh-arcsinh normal distribution synthetic target. Panel (a) shows the three targets we consider in 2D, and their
resulting EigenVI fit. Panel (b) shows measures KL(p; q) for D = 2, and panel (c) shows KL(p; q) for D = 7; the x-axis
shows the number of basis functions, K1 × . . .×KD.

of these methods to EigenVI.

In these models, we do not have access to the target distri-
bution, p(z |x1:N ), only the unnormalized target ρ. Thus,
we cannot evaluate an estimate of the forward KL. Instead,
to evaluate the fidelity of the fitted variational distributions,
we compute the empirical Fisher divergence using reference
samples from the posterior obtained via Hamiltonian Monte
Carlo (HMC):

1

S

S∑
s=1

∥∇ log ρ(zs)−∇ log q(zs)∥2 , zs ∼ p(z |x1:N ).

(18)

Note that this measure is not the objective that EigenVI
minimizes; it is analogous to the forward KL divergence,
as the expectation is taken with respect to p. We report
the results in Figure 5, computing the Fisher divergence for
EigenVI with increasing numbers of basis functions. We
typically found that with more basis functions, the the scores
becomes closer to that of the target.

Finally, we also used Real-NVP normalizing flows
(NFs) (Dinh et al., 2016) for VI by minimizing reverse KL.
We found that by tuning the batch-size and learning rate,

NFs generally could fit these models. However, these NFs
do not have access to reliable scores (Köhler et al., 2021;
Zeghal et al., 2022), hence we do not show their Fisher
divergence in Figure 5. Instead we visualize the posterior
marginals for a subset of dimensions from 8schools in
the top three rows, comparing EigenVI, VI with a normal-
izing flow, and BaM. In this example, we observe that the
Gaussian struggles to fit the tails of this target distribution.
While the normalizing flow appears to fit the tails a little
better than EigenVI, it also includes other biases. In the
appendix, we also show the full corner plot in Figure 8 and
marginals of the garch11 model in Figure 9.

4. Discussion of limitations and future work
In this work, we introduced EigenVI, a new approach for
score-based variational inference. We propose a new vari-
ational family built from orthogonal function expansions
that supports analytical moments and exact sampling. We
show that minimizing a score-based objective is equivalent
to solving an eigenvalue problem, which leads to an alterna-
tive approach to gradient-based optimization. Importantly,
in EigenVI many computations with respect to the batch
of samples can be performed in parallel, unlike in iterative

7
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Figure 5: Results on posteriordb models. Top three rows: marginal distributions of the even dimensions from
8-schools. Reference samples from HMC are outlined in gray, and the VI samples are in green. Bottom two rows:
evaluation of methods with the (forward) Fisher divergence. The x-axis shows the number of basis functions, K1× . . .×KD.
Shaded regions represent standard errors computed with respect to 5 random seeds.

methods. With experiments on synthetic and real-world
targets, we show that EigenVI provides a principled way of
improving upon Gaussian variational families.

Many future directions remain. First, the approach described
in this paper uses importance sampling, and may benefit
from using more sophisticated adaptive importance sam-
pling methods. We leave this for future work. Second, our
empirical study focused on a variational family built using
normalized Hermite polynomials. Without utilizing higher-
order function expansions, which are expensive in higher
dimensions, this family is limited to target functions that
are close to Gaussian. As we observed in our simulation
studies, this was sufficient for many of the targets we con-
sidered. In future work, designing new orthogonal basis sets

will be crucial for extension to highly non-Gaussian targets.
Finally, a future direction is developing alternative families
using orthogonal function expansions that have more favor-
able scaling with the dimension, such ones with low rank
structure.
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A. Related work
Several recent works have considered black-box variational inference methods based on minimizing the scores between the
variational distribution and the target distribution. However, in many cases, the focus of these methods all are limited to
Gaussian variational families (Modi et al., 2023; Cai et al., 2024). The Fisher divergence has been previously studied as a
divergence for variational inference by several others, e.g., Yang et al. (2019). In the context of non-Gaussian variational
families, Yu and Zhang (2023) propose minimizing a Fisher divergence for semi-implicit variational families; the divergence
is minimized using gradient-based optimization. In another line of work, Zhang et al. (2018) minimize the Fisher divergence
with an energy-based model as the variational family, and they show it can be minimized with a closed-form solution.

More generally, variational inference has been applied to more expressive variational families such as energy-based models
(Zhu et al., 1998; LeCun et al., 2006; Kim and Bengio, 2016; Dai et al., 2019; Lawson et al., 2019; Zoltowski et al., 2021)
and normalizing flows (Rezende and Mohamed, 2015; Kingma et al., 2016; Louizos and Welling, 2017; Berg et al., 2018;
Kobyzev et al., 2020; Papamakarios et al., 2021). However the performance of these models, especially the normalizing
flows, is often sensitive to the hyperparameters of the flow architecture, optimization algorithm and parameters of the base
distribution (Dhaka et al., 2021; Agrawal et al., 2020). Futhermore, these models do not support closed-form computations
for lower-order moments. In the case of energy-based models, they cannot be sampled from or evaluated, and for normalizing
flows, the scores are not available, thus precluding the use of score-based divergences.

The idea of using a squaring a sum of basis functions as a way to model a distribution has appeared elsewhere in the
machine literature. Novikov et al. (2021) propose a tensor train-based model for density estimation, but they do not consider
orthogonal basis sets. Similarly, Loconte et al. (2024) consider squaring a set of basis functions as a mixture model with
negative weights, studying this model in conjunction with probabilistic circuits.

B. Sampling from orthogonal function expansions
In this appendix we show how to sample from a density on RD constructed from a Cartesian product of orthogonal function
expansions. Specifically, we assume that the density is of the form

q(z1, z2, . . . , zD) =

(
K1∑

k1=1

· · ·
KD∑

kD=1

αk1k2...kD
ϕk1

(z1)ϕk2
(z2) · · ·ϕkD

(zD)

)2

, (19)

where {ϕk(·)}∞k=1 define a family of orthonormal functions on R and where the density is normalized by requiring that∑
k1k2...kD

α2
k1k2...kD

= 1. (20)

To draw samples from this density, we describe a sequential procedure based on inverse transform sampling. In particular,
we obtain a sample z ∈ RD by the sequence of draws

z1 ∼ q(z1), (21)
z2 ∼ q(z2|z2), (22)
...

...
... (23)

zD ∼ q(zD|z1, z2, . . . , zD−1). (24)

This basic strategy can also be used to sample from distributions whose domains are Cartesian products of different
one-dimensional spaces.

CORE PRIMITIVE

First we describe the core primitive that we will use for each of the draws in eqs. (21–24). To begin, we observe the
following: if S is any positive semidefinite matrix with trace(S)=1, then

ρ(ξ) =

K∑
k,ℓ=1

Skℓϕk(ξ)ϕℓ(ξ), (25)
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defines a normalized density over R. In particular, since S ⪰ 0, it follows that ρ(ξ)≥0 for all ξ∈R, and since trace(S)=1,
it follows that ∫ ∞

−∞
ρ(ξ) dξ =

K∑
k,ℓ=1

Skℓ

∫ ∞

−∞
ϕk(ξ)ϕℓ(ξ) dξ =

K∑
k,ℓ=1

Skℓδkl = trace(S) = 1. (26)

The core primitive that we need is an efficient procedure to sample from a normalized density of this form. We will see later
that all of the densities in eq. (21–24) can be expressed in this form.

INVERSE TRANSFORM SAMPLING

Since the density in eq. (25) is one-dimensional, we can obtain the draw we need by inverse transform sampling. In particular,
let C(ξ) denote the cumulative distribution function (CDF) associated to (25), which is given by

C(ξ) =
∫ ξ

−∞
ρ(z) dz, (27)

and let C−1(ξ) denote the inverse CDF. Then at least in principle, we can draw a sample from ρ by the two-step procedure

u ∼ Uniform[0, 1], (28)

ξ = C−1(u). (29)

Next we consider how to implement this procedure efficiently in practice, and in particular, how to calculate the definite
integral for the CDF in eq. (27). As shorthand, we define the doubly-indexed set of real-valued functions

Φkℓ(ξ) =

∫ ξ

−∞
ϕk(z)ϕℓ(z) dz. (30)

It follows from orthogonality that Φkl(+∞) = δkl and from the Cauchy-Schwartz inequality that |Φkℓ(ξ)| ≤ 1 for all
ξ ∈ R. Our interest in these functions stems from the observation that

C(ξ) =

K∑
k,ℓ=1

SkℓΦkl(ξ) = trace[SΦ(ξ)], (31)

so that if we have already computed the functions Φkℓ(ξ), then we can use eq. (31) to compute the CDF whose inverse we
need in eq. (29). In practice, we can use numerical quadrature to pre-compute Φkℓ(ξ) for many values along the real line
and then solve eq. (29) quickly by interpolation; that is, given u, we find ξ satisfying trace[SΦ(ξ)] = u. The result is an
unbiased sample drawn from the density ρ(ξ) in eq. (25).

SEQUENTIAL SAMPLING

Finally we show that each draw in eqs. (21–24) reduces to the problem described above. As in section 2.1, we work
out the steps specifically for an example in D = 3, where we must draw the samples z1 ∼ q(z1), z2 ∼ q(z2|z1) and
z3 ∼ q(z3|z1, z2). This example illustrates all the ideas needed for the general case but with a minimum of indices. Consider
the joint distribution given by

q(z1, z2, z3) =

K1∑
i=1

K2∑
j=1

K3∑
k=1

βijk ϕi(z1)ϕj(z2)ϕk(z3)

2

where
∑
ijk

β2
ijk = 1. (32)

From this joint distribution, we can compute marginal distributions by integrating out subsets of variables, and each
integration over R gives rise to a contraction of indices, as in eq. (7), due to the property of orthogonality. In this way we find

q(z1, z2) =

K2∑
j,j′=1

 K1∑
i,i′=1

K3∑
k=1

βijkβi′j′kϕi(z1)ϕi′(z1)

ϕj(z2)ϕj′(z2), (33)

q(z1) =

K1∑
i,i′=1

K2∑
j=1

K3∑
k=1

βijkβi′jk

ϕi(z1)ϕi′(z1). (34)
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Now we note from the brackets in eq. (34) that this marginal distribution is already in the quadratic form of eq. (25) with
coefficients

S
(1)
ii′ =

K2∑
j=1

K3∑
k=1

βijkβi′jk. (35)

From this first quadratic form, we can therefore use inverse transform sampling to obtain a draw z1 ∼ q(z1) Next we
consider how to sample from q(z2|z1) = q(z1, z2)/q(z1). Again, from the brackets in eq. (33), we see that this conditional
distribution is also in the quadratic form of eq. (25) with coefficients

S
(2)
jj′ =

∑K1

i,i′=1

∑K3

k=1 βijkβi′j′kϕi(z1)ϕi′(z1)

q(z1)
. (36)

From this second quadratic form, we can therefore use inverse transform sampling to obtain a draw z2 ∼ q(z2|z1).
Finally, we consider how to sample from q(z3|z1, z2) = q(z1, z2, z3)/q(z1, z2). From eq. (32, we see that this conditional
distribution is also in the quadratic form of eq. (25) with coefficients

S
(3)
kk′ =

∑K1

i,i′=1

∑K2

j,j′=1 βijkβi′j′k′ϕi(z1)ϕi′(z1)ϕj(z2)ϕj′(z2)

q(z1, z2)
(37)

From this third quadratic form, we can therefore use inverse transform sampling to obtain a draw z3 ∼ q(z3|z1, z2). Finally,
from the sums in eq. (37, we see that the overall cost of this procedure is O(K2

1K
2
2K

2
3 ), or quadratic in the total number of

basis functions.

C. Calculation of moments
In this appendix we show how to calculate the low-order moments of a density constructed from the Cartesian product of
orthogonal function expansions. In particular, we assume that the density is over RD and of the form

q(z1, z2, . . . , zD) =

(
K1∑

k1=1

· · ·
KD∑

kD=1

αk1k2...kD
ϕk1

(z1)ϕk2
(z2) · · ·ϕkD

(zD)

)2

, (38)

where {ϕk(·)}∞k=1 are orthogonal functions on R and where the coefficients are properly normalized so that the density
integrates to one. For such a density, we show that the calculation of first and second-order moments boils down to evaluating
one-dimensional integrals of the form

µij =

∫ ∞

−∞
ϕi(z)ϕj(z) z dz, (39)

νij =

∫ ∞

−∞
ϕi(z)ϕj(z) z

2 dz. (40)

We also show how to evaluate these integrals specifically for the orthogonal family of weighted Hermite polynomials.

First we consider how to calculate moments such as Eq[z
p
d ], where p ∈ {1, 2}, and without loss of generality we focus

on calculating Eq[z
p
1 ]. We start from the joint distribution in eq. (38) and proceed by marginalizing over the variables

(z2, z3, . . . , zD). Exploiting orthogonality, we find that

Eq[z
p
1 ] =

∫
q(z1, z2, . . . , zD) zp1 dz1 dz2 . . . dzD, (41)

=

∫ ( K1∑
k1=1

· · ·
KD∑

kD=1

αk1k2...kD
ϕk1(z1)ϕk2(z2) · · ·ϕkD

(zD)

)2

zp1 dz1 dz2 . . . dzD, (42)

=

K1∑
k1,k′

1=1

[
K2∑

k2=1

· · ·
KD∑

kD=1

αk1k2...kD
αk′

1k2...kD

]∫
ϕk1

(z1)ϕk′
1
(z1) z

p
1 dz1. (43)
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We can rewrite this expression more compactly as a quadratic form over integrals of the form in eqs. (39–40). To this end,
we define the coefficients

Aij =

K2∑
k2=1

· · ·
KD∑

kD=1

αik2...kD
αjk2...kD

(44)

which simply encapsulate the bracketed term in eq. (43). Note that there are K2
1 of these coefficients, each of which can be

computed in O(K2K3 . . .KD). With this shorthand, we can write

Eq[z1] =

K1∑
i,j=1

Aijµij , (45)

Eq[z
2
1 ] =

K1∑
i,j=1

Aijνij , (46)

where µij and νij are the integrals defined in eqs. (39–40). Thus the problem has been reduced to a weighted sum of
one-dimensional integrals.

A similar calculation gives the result we need for correlations. Again, without loss of generality, we focus on calculating
Eq[z1z2]. Analogous to eq. (44), we define the tensor of coefficients

Bijkℓ =

K3∑
k3=1

· · ·
KD∑

kD=1

αikk3...kD
αjℓk3...kD

, (47)

which arises from marginalizing over the variables (z3, z4, . . . , zD). There are K2
1K

2
2 of these coefficients, each of which

can be computed in O(K3K4 . . .KD). With this shorthand, we can write

Eq[z1z2] =

K1∑
i,j=1

K2∑
k,ℓ=1

Bijkℓµijµkℓ. (48)

where µij is again the integral defined in eq. (39). Thus the problem has been reduced to a weighted sum of (the product of)
one-dimensional integrals.

Finally, we show how to evaluate the integrals in eqs. (39–40) for the specific case of orthogonal function expansions with
weighted Hermite polynomials. Recall in this case that

ϕk+1(z) =
(√

2πk!
)− 1

2
(
e−

1
2 z

2
) 1

2

Hk(z), (49)

where Hk(z) are the probabilist’s Hermite polynomials given by

Hk(z) = (−1)ke
z2

2
dk

dzk

[
e−

z2

2

]
. (50)

To evaluate the integrals for this particular family, we can exploit the following recursions that are satisfied by Hermite
polynomials:

Hk+1(z) = zHk(z)−H ′
k(z), (51)

H ′
k(z) = kHk−1(z). (52)

Eliminating the derivatives H ′
k(z) in eqs. (51–52), we see that zHk(z) = Hk+1(z) + kHk−1(z). We can then substitute

eq. (49) to obtain a recursion

zϕk(z) =
√
kϕk+1(z) +

√
k−1ϕk−1(z) (53)
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for the orthogonal basis functions themselves. With the above recursion, we can now read off these integrals from the
property of orthogonality. For example, starting from eq. (39), we find that

µij =

∫ ∞

−∞
ϕi(z)ϕj(z) z dz, (54)

=

∫ ∞

−∞
ϕi(z)

[√
jϕj+1(z) +

√
j−1ϕj−1(z)

]
dz, (55)

= δi,j+1

√
j + δi,j−1

√
i, (56)

where δij is the Kronecker delta function. Next we consider the integral in eq. (40), which involves a power of z2 in the
integrand. In this case we can make repeated use of the recursion:

νij =

∫ ∞

−∞
ϕi(z)ϕj(z) z

2 dz, (57)

=

∫ ∞

−∞

[√
iϕi+1(z) +

√
i−1ϕi−1(z)

] [√
jϕj+1(z) +

√
j−1ϕj−1(z)

]
dz, (58)

= δij

[√
ij +

√
(i−1)(j−1)

]
+ δi−1,j+1

√
j(j+1) + δj−1,i+1

√
i(i+1). (59)

Note that the matrices in eqs. (56) and (59) can be computed for whatever size is required by the orthogonal basis function
expansion in eq. (38). Once these matrices are computed, it is a simple matter of substitution1 to compute the moments
Eq[z1], Eq[z

2
1 ], and Eq[z1z2] from eqs. (45–46) and eq. (48). Finally, we can compute other low-order moments (such as

Eq[z5] or Eq[z3z7]) by an appropriate permutation of indices.

D. Eigenvalue problem
In this appendix we show in detail how the optimization for EigenVI reduces to a minimum eigenvalue problem. In particular
we prove the following.

Lemma D.1. Let {ϕk(z)}∞k=1 be an orthogonal function expansion, and let q ∈ QK be the variational approximation
parameterized by

q(z) =

[
K∑

k=1

αkϕk(z)

]2
, (60)

where the weights satisfy
∑K

k=1 α
2
k = 1, thus ensuring that the distribution is normalized. Suppose furthermore that q is

chosen to minimize the empirical estimate of the Fisher divergence given, as in eq. (10), by

D̂π(q, p) =
B∑

b=1

q(zb)

π(zb)

∥∥∇ log q(zb)−∇ log p(zb)
∥∥2.

Then the optimal variational approximation q in this family can be computed by solving the minimum eigenvalue problem

min
q∈QK

[
D̂(q, p)

]
= min

∥α∥=1

 K∑
j,k=1

Mjkαjαk

 =: λmin(M), (61)

and the optimal weights α are given (up to an arbitrary sign) by the corresponding eigenvector of this minimal eigenvalue.

Proof. The scores of q in this variational family are given by

∇ log q(zb) =
2
∑

k αk∇ϕk(z
b)∑

k αkϕk(zb)
.

1With further bookkeeping, one can also exploit the sparsity of µij and νij to derive more efficient calculations of these moments.
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Substituting the above into the empirical divergence, we find that

D̂π(q, p) =

B∑
b=1

q(zb)

π(zb)

∥∥∇ log q(zb)−∇ log p(zb)
∥∥2

=

B∑
b=1

(∑
k αkϕk(z

b)
)2

π(zb)

∥∥∥∥2∑k αk∇ϕk(z
b)∑

k αkϕk(zb)
−∇ log p(zb)

∥∥∥∥2

=

B∑
b=1

1

π(zb)

∥∥∥∥∥2∑
k

αk∇ϕk(z
b)−

∑
k

αkϕk(z
b)∇ log p(zb)

∥∥∥∥∥
2

=

B∑
b=1

1

π(zb)

∥∥∥∥∥∑
k

αk

(
2∇ϕk(z

b)− ϕk(z
b)∇ log p(zb)

)∥∥∥∥∥
2

= α⊤Mα,

where M is given in (13) and α = [α1, . . . , αK ] ∈ RK . Thus the empirical divergence is a convex quadratic function of α.
Furthermore, since the gradient of the constraint α⊤α = 1 is always non-zero, it follows that the constraint qualification
holds and the solution to eq. (61) must satisfy the KKT equations.

The Lagrangian associated with eq. (61) is given by

L(α, µ) := D̂π(q, p) + µ

(∑
k

α2
k − 1

)
,

where µ ∈ R is the Lagrange multiplier. The associated KKT equations are

0 = ∇αD̂π(q, p) + µ∇α

(∑
k

α2
k − 1

)
, (62)

0 =
∑
k

α2
k − 1. (63)

Computing the gradients in α of the above, we find that

Mα+ 2µα = 0. (64)

Left multiplying the above by α⊤, then enforcing the constraint, we find that

α⊤Mα+ 2µ = 0,

or equivalently that
µ = − 1

2α
⊤Mα.

Finally, isolating µ and substituting back into (64) gives

Mα = (α⊤Mα)α.

Consequently α is an eigenvector of M , with an associated eigenvalue (α⊤Mα). Though any eigenvalue-eigenvector pair
provides a valid solution to the KKT equations, we want the solution that minimizes the objective function. Since ths
objective is equivalent to α⊤Mα, we have that α should be the eigenvector associated to the smallest eigenvalue. Since M
is also a symmetric matrix, we have that the smallest eigenvalue is given by minimizing the Rayleigh quotient (Courant and
Hilbert, 1924), which is equivalent to the right hand side of eq. (61).

E. Additional experiments and details
E.1. Computational resources

The experiments were run on a Linux workstation with a 32-core Intel(R) Xeon(R) w5-3435X processor and with 503 GB
of memory. Experiments were run on CPU. In the sinh-arcsinh and posteriordb experiments, computations to construct the
matrix M were parallelized over 28 threads.

16



EigenVI: score-based variational inference with orthogonal function expansions

102 103 104

Number of score samples

10 5

10 4

10 3

10 2

10 1

100

Fo
rw

ar
d 

KL

3-component Gaussian mixture

full-3
full-6
full-10
Gaussian

10 3 10 2 10 1

Time (s)

10 5

10 4

10 3

10 2

10 1

100

Fo
rw

ar
d 

KL

102 103 104

Number of score samples

100

Fo
rw

ar
d 

KL

Funnel

full-6
full-10

full-18
Gaussian

10 3 10 2 10 1 100

Time (s)

100

Fo
rw

ar
d 

KL

102 103 104

Number of score samples

10 1

100

Fo
rw

ar
d 

KL

Cross

full-3
full-6
full-10
Gaussian

10 3 10 2 10 1 100

Time (s)

10 1

100

Fo
rw

ar
d 

KL

Figure 6: We compare # of score evaluations wallclock vs FKL divergence for the target distributions in Figure 3: the
Gaussian mixture (column 1), the funnel (column 2), and the cross (column 3) distributions. The K used for EigenVI is
reported in each figure legend, where K1 = K2 = K. The black star denotes the number of gradient evaluations for the
Gaussian method.

E.2. 2D synthetic targets

We considered the following targets.

3-component Gaussian mixture:

p(z) = 0.4N (z | [−1, 1]⊤,Σ) + 0.3N (z | [1.1, 1.1]⊤, 0.5I) + 0.3N (z | [−1,−1]⊤, 0.5I),

where Σ =

[
2 0.1
0.1 2

]
.

Funnel distribution with σ2 = 1.2:

p(z) = N (z1 | 0, σ2)N (z2 | 0, exp(z1/2)).

Cross distribution:

p(z) = 1
4N (z | [0, 2]⊤,Σ1) +

1
4N (z | [−2, 0]⊤,Σ2) +

1
4N (z | [2, 0]⊤,Σ2) +

1
4N (z | [0,−2]⊤,Σ1),

where Σ1 =

[
0.150.9 0

0 1

]
and Σ2 =

[
1 0
0 0.150.9

]
.

These experiments were conducted without standardization with a Gaussian VI estimate. The EigenVI proposal distribution
π used was a uniform([−5, 5]2).

In Figure 7, we run EigenVI for increasing numbers of importance samples B and report the resulting forward KL divergence.
The blue curves denote variational families with different K1 = K2 = K values used, i.e., 3, 6, and 10 (resulting in a total
number of basis functions of 32, 62, and 102). In the bottom row of the plot, we also show wall clock timings (computed
without parallelization) to show how the cost grows with the increase in the number of basis functions and importance
samples. The horizontal dotted line denotes the result from batch and match VI, which fits a Gaussian via score matching;
here a batch size of 16 was used and a learning rate of λt =

BD
t+1 .

The black star denotes the number of score evaluations used by the Gaussian VI method.
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Figure 7: Targets (top) for the 5D sinh-arcsinh normal distribution example and EigenVI fits (bottom) with the KL divergence
in the figure title.

E.3. Sinh-arcsinh targets

The sinh-arcsinh normal distribution has the following density:

p(z; s, τ,Σ) = [(2π)D|Σ|]− 1
2

D∏
d=1

{
(1 + z2d)

− 1
2 τd Csd,τd(zd)

}
exp

(
−1

2
Ss,τ (z)

⊤Σ−1Ss,τ

)
, (65)

where we define the functions

Csd,τd(zd) := (1 + S2
sd,τd

(z))
1
2 , (66)

and

Ssd,τd(zd) := sinh(τd sinh
−1(zd)− sd), Ss,τ (z) = [Ss1,τ1(z1), . . . , SsD,τD (zD)]⊤. (67)

We constructed 3 targets in 2 dimensions and 3 targets in 5 dimensions, each with varying amounts of non-Gaussianity. The
details of each target are below. In all experiments, EigenVI was applied with the standardization, where a Gaussian was fit
using batch and match VI with a batch size of 16 and a learning rate λt =

BD
t+1 .

For all experiments, we used a proposal distribution π that was uniform on [−5, 5]2.

2D sinh-arcsinh normal experiment For D = 2 (Figure 4b), we consider the slight skew and tails target with parameters
s = [0.2, 0.2], τ = [1.1, 1.1], the more skew and tails target with s = [0.2, 0.5], τ = [1.1, 1.1], and the slight skew and
heavier tails with s = [0.2, 0.2], τ = [1.4, 1.1]. Note that s = [0, 0], τ = [1, 1] recovers the multivariate Gaussian. These
three target are visualized in Figure 4a.
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Table 2: Summary of posteriordb models

Name Dimension Model description

kidscore 3 linear model with a Cauchy noise prior
sesame 3 linear model with uniform prior
gp_regr 3 Gaussian process regression with squared exponential kernel
garch11 4 generalized autoregressive conditional heteroscedastic model
logearn 4 log-log linear model with multiple predictors
arK-arK 7 autoregressive model for time series

logmesquite 7 multiple predictors log-log model
8-schools 10 non-centered hierarchical model for 8-schools

5D sinh-archsinh normal experiment We constructed three targets P1 (slight skew and tails), P2 (more skew and tails),
and P3 (slight skew and heavier tails) each with

Σ =


2.2 0.3 0 0 0.3
0.3 2.2 0 0 0
0 0 2.2 0.3 0
0 0 0.3 2.2 0
0.3 0 0 0 2.2

 . (68)

The skew and tail weight parameters used were: s1 = [0., 0., 0.2, 0.2, 0.2]; τ1 = [1., 1., 1., 1., 1.1], s2 =
[0.0, 0.0, 0.6, 0.4,−0.5]; τ2 = [1., 1., 1., 1., 1.1], and s3 = [0.2, 0.2, 0.2, 0.2, 0.2]; τ3 = [1.1, 1.1, 1., 1.4, 1.6]. See Fig-
ure 7 for a visualization of the marginals of each target distribution. In the second row, we show examples of resulting
EigenVI fit (visualized using samples from q) from B = 20,000 and K = 10.

E.4. Posteriordb experiments

We consider 8 real data targets from posteriordb, a suite of benchmark Bayesian models for real data problems. In
Table 2, we summarize the models considered in the study. These target distributions are non-Gaussian, typically with some
skew or different tails. To access the log target probability and their gradients, we used the BridgeStan library (Roualdes
et al., 2023), which by default transforms the target to be supported on RD.

For all experiments, we fixed the number of importance samples to be B = 40,000; to construct the EigenVI matrix M , the
computations were parallelized over the samples. These experiments were repeated over 5 random seeds, and we report the
mean and standard errors in Figure 5; for lower dimensions, there was little variation between runs.

The target distributions were standardized using a Gaussian fit from score matching before applying EigenVI. In most cases,
the proposal distribution π was chosen to be uniform over [−6, 6]D. For the models 8-schools, which has a longer tail,
we used a multivariate Gaussian proposal with zero mean and a scaled diagonal covariance σI , with σ = 32.

For the Gaussian score matching (GSM) method (Modi et al., 2023), we chose a batch size of 16 for all experiments. We
generally found the results were not too sensitive in comparison to other batch sizes of 4,8, and 32. For the batch and
match (BaM) method (Cai et al., 2024), we chose a batch size of 16. The learning rate was fixed at λt =

BD
t+1 , which was a

recommended schedule for non-Gaussian targets.

For all ELBO optimization methods (full covariance Gaussian family and normalizing flow family), we used Adam to
optimize the ELBO. We performed a grid search over the learning rate 0.01, 0.02, 0.05, 0.1 and batch size B = 4, 8, 16, 32.
For the normalizing flow model, we used a real NVP (Dinh et al., 2016) with 8 layers and 32 neurons.

In Figure 8 and Figure 9, we show the corner plots that compare an EigenVI fit, a normalizing flow fit, and a Gaussian
fit (BaM). In each plot, we plot the samples from the variational distribution against samples from Hamiltonian Monte
Carlo. We observe that the two more expressive families EigenVI and the normalizing flow are able to model the tails of the
distribution better than the Gaussian fit.

19



EigenVI: score-based variational inference with orthogonal function expansions

Figure 8: Comparison of EigenVI, normalizing flow, and Gaussian score-based BBVI methods on 8schools.
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Figure 9: Comparison of EigenVI, normalizing flow, and Gaussian score-based BBVI methods on garch11. Note that the
Gaussian approximation over/underestimates the tails, while the more expressive families fit the tails better.
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