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Abstract—Material reuse and waste reduction are gaining
attention for their role in lowering carbon emissions and enabling
net-zero buildings. Prior work has shown the potential of non-
invasive deconstruction inspection using multi-modal sensing and
machine learning to generate reuse recommendations. However,
manual data collection remains operator-dependent, limiting
consistency and repeatability. To address this, we integrated
a quadruped robot for automated sensing and evaluated its
feasibility using a product—organization—process (POP) frame-
work. While the robotic workflow streamlines the organizational
structure and simplifies the product setup, it still requires manual
fine-tuning of viewpoints, as the robot lacks awareness of inspec-
tion targets and the ability to determine appropriate scanning
behavior, and offers no real-time data quality feedback—relying
instead on asynchronous review, which may lead to rework.
Future work will focus on developing 3D object-level semantic
perception, real-time quality assessment metrics, and mixed
reality visualization to enhance human-robot collaboration, along
with hardware adaptations and sensor integration to expand the
robot’s multi-modal capabilities.

I. INTRODUCTION

As material scarcity and environmental concerns grow,
material reuse and waste reduction have gained attention for
their potential to reduce carbon emissions and enable net-
zero buildings. Prior work combining multi-modal sensing
including thermal, RGB and depth with machine learning-
based data processing has shown a non-invasive method for
deconstruction inspection, enabling the analysis of material
conditions and reveals hidden geometries within existing build-
ings (Cabral et al. 2025). However, the previous pilot revealed
that manual data collection involved multiple operators work-
ing together to mark distances, position the sensor, and trigger
image capture, with the process repeated for each patch Cabral
et al. [[1]]. To address this, we initiated efforts to integrate the
multi-modal sensing system with a quadruped robot to enable
automated data collection. Figure [I] illustrates the proposed
end-to-end workflow, in which robot-collected multi-modal
data will be processed by an Al system to generate material
reuse suggestions. To assess the feasibility of the proposed
robotic approach, we used the Construction Robot Evaluation
Framework Markenson [2] to compare the manual and robotic
workflows in terms of product, organization, and process.

Area: 90 sq.ft

Accuracy: 93%

Material Savings ($) : $164.61

Waste handling savings ($) : 11.97
Carbon offsets (kgco2) : 23.90
Disposal Savings : 4.73

Total Estimated Benefits : 205.21

Fig. 1. Multi-modal Al-assisted deconstruction inspection workflow.

II. POP-BASED EVALUATION
A. Product

The manual data capture setup consists of a multi-modal
sensor rig mounted on a wheeled, height-adjustable tripod,
allowing it to be repositioned throughout the site. The rig
integrates an RGB-D camera and a thermal camera for si-
multaneous sensing. Operators manually measure the distance
between the rig and the inspection target using a tape measure,
and then trigger data capture via a laptop mounted on the rig.

For the robotic system, ANYmal was selected for automated
multi-modal data collection and deployed to inspect structures
slated for demolition, with the goal of identifying opportunities
for material reuse and repurposing. This inherently requires the
robot to perform multi-task operations, including multi-modal
sensing and navigation.

For data collection, ANYmal is equipped with a 360°
LiDAR, six RealSense RGB-D cameras positioned around its
body (front, rear, left, and right), as well as wide-angle cameras
mounted on the upper and lower front and rear. An embedded
compute unit enables real-time data synchronization across



all sensors. The robot actively corrects for motion-induced
noise to maintain data quality during movement. While it
provides a full 360-degree horizontal field of view, its vertical
sensing is limited by its maximum standing height (890 mm)
and a tilt range of only +15°, making it difficult to directly
capture elevated targets. In such cases, angled views may
degrade scan quality, suggesting that a telescoping sensor
mount could be considered to improve vertical coverage. For
navigation, the onboard sensors mentioned above also support
autonomous navigation and obstacle avoidance. In terms of
mobilty, ANYmal’s four-legged, all-terrain mobility allows it
to traverse both indoor and outdoor environments with uneven,
dusty, or slippery surfaces, including grates, gravel, and wet
floors. Its compact form factor (Length: 930 mm; Width: 530
mm; Height: 890 mm) and adjustable height (470-890 mm),
along with its zero-turn capability, make it well-suited for
navigating tight, cluttered, or obstructed deconstruction sites.

The robot is powered by a lithium-ion battery with an
operational runtime of 1-2 hours. Control is available via a
tablet-based Workforce app or a PC-based ROS GUI. Dur-
ing operation, continuous Wi-Fi connectivity is required to
maintain communication between the robot and the control
interface.

To evaluate the robot’s performance under realistic con-
ditions, we selected the an academic building as the initial
deployment site. The facility includes part of the ground floor,
a multi-story staircase with a high ceiling, and a 3,000-square-
foot basement area. In this study, as shown in Figure [2]
three testing areas were selected: (1) a construction area,
(2) a stairwell, and (3) a hallway with minimal interference
from glass walls. This selection enables testing of the robot’s
capabilities across flat indoor surfaces, vertical movement, and
active construction environments.

Fig. 2.  Floor plan of the academic building and 3D scans of the testing
areas, captured using the 3D Scanner app.

B. Organization

From an organizational perspective, the manual data capture
workflow requires a team of three operators: one to measure
distances and heights, another to adjust the tripod and align
the sensor rig, and a third to operate the multi-modal sensor
for data collection.

In contrast, the robotic workflow with ANYmal typically
requires only one or two people to supervise the robot in the
area of interest and manage ROS (Robot Operating System)
topic recording on a PC. With proper planning, the entire
process can be handled by a single operator, especially when

autonomous navigation is enabled via BIM or a pre-built
map. The robot autonomously handles both motion and data
packaging, generating complete ROS bag files that include
multi-modal sensor data, precise positioning, sensor intrinsics
and extrinsics, and synchronized timestamps. This significantly
reduces manual input and coordination efforts, and streamlines
team structure.

1) Process: The manual data collection process required
three operators and a sensor box tripod for simultaneous
RGB-D and thermal data capture. Specifically, one operator
measured the sensor height and distance based on the desired
field of view (FOV), another adjusted the tripod to match the
measured position, and the third operated the sensor to capture
the image. Each patch cycle began with manually measuring
and marking distances from the wall using paper tape to estab-
lish different resolution levels. The selected resolution setting
directly influenced the number of patches required. Higher res-
olutions demanded multiple captures at closer distances, while
lower resolutions required fewer patches taken from farther
away. For instance, capturing data for a 6.79 x 8 ft drywall
section required nine patches at high resolution, two at mid-
resolution, and one at low resolution (Cabral et al. 2025). Once
the distances were marked, the team positioned the sensor at
the designated point and triggered image capture—completing
that patch. The cycle then repeated for the next patch, starting
again with distance measurement. Throughout the data collec-
tion process, operators had to control and verify the scanning
angle and motion, as both significantly impacted accuracy.
The previous case study showed that vertical motion generally
produced better results than horizontal scanning, especially
for blank walls with minimal visual features. Additionally, a
straight-on view of the object yielded more accurate results
than angled views.

Robotic data collection using ANYmal follows a different
process structure. Initial deployment in a new environment
typically requires manual mapping by a human operator using
the tablet-based Workforce app. If a BIM model is available,
it can be directly imported, eliminating the need for manual
mapping. The manual mapping process employs SLAM (Si-
multaneous Localization and Mapping) to build a map of the
surroundings, with a typical resolution of 10 to 15 cm. How-
ever, the system may face challenges with reflective surfaces
such as glass, and in dynamic environments—such as active
deconstruction sites—significant layout changes may require
re-scanning to ensure accurate navigation. If pre-mapping is
not performed, the robot must be manually controlled through
the Workforce app for navigation throughout the operation.
Once mapping is complete, users can define points of interest
(POIs) via a PC-based GUI.

ANYmal then computes an optimized path and navigates
between POIs semi-autonomously. In its default autonomous
mode, the robot follows a stop-and-go behavior when en-
countering obstacles—pausing until the obstruction is removed
before resuming its path. If alternate POIs are predefined,
ANYmal can reroute and revisit previously inaccessible lo-
cations once conditions improve. However, its navigation



performance is generally more reliable in open obstacle -free
spaces. In complex or highly obstructed environments, human
teleoperation can enhance robustness by allowing manual
intervention when needed.

The robotic system improves the data collection workflow
by enabling autonomous navigation, obstacle avoidance, and
eliminating the need for manual distance measurement or
physical repositioning of a sensor tripod. Its position can
be continuously tracked through ROS topics, allowing for
more precise and repeatable scanning. However, the current
system still lacks 3D object-level understanding. Instead of
recognizing specific inspection targets, the robot relies on
operators to manually specify coordinate points through the
GUI or Workforce app. Once it reaches the target location,
operators often need to fine-tune the robot’s viewing angle to
properly frame the object of interest—similar to the manual
workflow. Figure [3] shows ANYmal during one of the site
tests. While this approach streamlines setup and navigation,
it still requires human input for target identification and final
alignment. In terms of quality control, both manual and robotic
workflows face similar limitations. During data collection,
operators can only perform rough visual checks to verify
framing and coverage. However, actual quality assessment
depends on downstream data processing by the AI/ML team,
which happens asynchronously. In robotic workflow, data is
typically transmitted via ROS bag files for post-processing,
and if the quality is found insufficient, the entire capture must
be repeated. Figure [ shows a sample of processed multi-
modal data collected from the construction site. As a result,
despite improvements in automation and efficiency, the issue
of real-time quality assurance remains unresolved.
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Fig. 3. AnyMal Capturing Multi-Modal Data in the testing area.

Fig. 4. Collected data from multi-modal sensors.

III. CONCLUSION

This evaluation was conducted in a realistic built envi-
ronment as a preliminary pilot, with testing areas cover-
ing flat floor surfaces, stairwells, and active construction
zones—conditions that reflect common scenarios in real de-
construction projects. These diverse settings support the gen-
eralizability of the robotic workflow beyond controlled lab
environments.

The POP-based comparison with manual workflows shows
that the robotic approach streamlines organizational struc-
ture and simplifies product setup. However, key limita-
tions—specifically, the lack of object-level understanding and
real-time data quality feedback—still hinder full autonomy and
deployment efficiency, including fast execution, low rework
rates, and reduced reliance on manual operation. These gaps
are being addressed through ongoing research, including: (1) a
3D semantic perception module for recognizing and aligning
with inspection targets; (2) real-time, object-level data quality
assessment metrics to reduce rework; and (3) a mixed reality
interface for live visualization and operator-robot alignment
during scanning. We also plan hardware adaptations such
as adjustable sensor mounts and the integration of thermal
and RF sensors to expand multi-modal capabilities. These
enhancements aim to make robotic data collection more
deployable, robust, and generalizable across deconstruction
inspection scenarios.

The conclusion goes here.
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APPENDIX A: COMPARISON OF MANUAL AND ROBOTIC WORKFLOWS USING THE POP FRAMEWORK

This appendix provides a comprehensive comparison of the manual and robotic workflows using the Prod-

uct—Organization—Process (POP) section from the Robot Evaluation Framework (REF).

POP | Manual | Robot
Product
Single / Multi-task Multi-task Multi-task

Interior / Exterior

Interior (Partition Walls)

Interior, Exterior

Hardware Tripod-mounted multi-modal sensor rig with | ANYmal Gen D robot with onboard LiDAR,
external computer for data capture and process- | RGB cameras, embedded compute unit, op-
ing tional mounted sensors

Mobility Full mobility — but slow, given the huge system | Full Mobility (four-legged all-terrain mobility,

movements

zero-turn radius, high agility)

Degree of mechanization
/ Autonomy

Between Level 3 and 4: semi-autonomous to
high autonomy; human input needed for initial
mapping or layout changes

Control interface

Controlled via tablet app or PC GUI

Software / sensors

RGB+Depth camera, Thermal Camera, LiDAR

Visual, Thermal cameras, LiDAR scanner, ul-
trasonic mic

Power and communica-
tions

Battery-powered with external charging; Wi-Fi
connection

Li-ion battery, Wi-Fi for ROS and remote com-
munication

Clearance

3m x 3m for 3 workers

Robot: 1100x700x1000mm; Operator: 1m X
1m

Site conditions

Must meet construction safety standards

Feasible in open, flat indoor space. May be
limited by clutter, low ceilings, Wi-Fi dead
zones, etc.

Reach (workspace)

Requires ladder to reach high areas

Max sensor-to-surface distance: 4m. Limited

by sensor height and tilt angle.

Project types

Deconstruction

Deconstruction, Inspection, Safety Monitoring,
Disaster Response, etc.

Units of work / zone

Depends on patch layout

105 ft2 per section, or 54 ft? per fixed position

Organization

Skills / experience

Manual tripod setup, marking, scanning

Visual monitoring, basic spatial awareness,
touchscreen control, joystick navigation

Labor supply

3 people (height, camera, measurement)

1 operator, optionally 1 support technician

Organizations involved

General contractor, sensor supplier, facility
owner

Robot provider, data team, GC, facility owner

Team experience

N/A

Basic interface familiarity, troubleshooting

Process

Process changes

Allocate human resources; data assessment

Schedule robot time and charging; check image
quality before downstream use

Handoffs of information

3 (capture — prepare — interpret)

3 (capture — prepare — interpret)

Data acquisition

Manual patch-by-patch RGB-D and thermal
sensing; quality depends on operator

Continuous autonomous capture with more
consistent results

Quality control (QC)

Rough on-site check; full QC deferred; rescans
may be needed

Same, but smoother acquisition; improvement
still needed

TABLE 1

COMPARISON OF MANUAL AND ROBOTIC WORKFLOWS USING THE POP SECTION FROM THE ROBOT EVALUATION FRAMEWORK (REF).



APPENDIX B: ROBOTIC WORKFLOW DIAGRAM

This appendix presents a detailed flow diagram of the robotic workflow, illustrating the key steps, decision points, and points
of information handoff throughout the process.
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Fig. 5. Role-Based Diagram of the Robotic Deconstruction Workflow.



	Introduction
	POP-based evaluation
	Product
	Organization
	Process


	Conclusion

