
 

Evaluating a Multi-Modal Robotic Approach for Deconstruction Inspection:  
A POP-Based Comparison with a Manual Approach 
 
Introduction 
As material scarcity and environmental concerns grow, material reuse and waste reduction have gained attention 
for their potential to reduce carbon emissions and enable net-zero buildings. Prior work combining multi-modal 
sensing including thermal, RGB and depth with machine learning-based data processing has shown a non-invasive 
method for deconstruction inspection, enabling the analysis of material conditions and reveals hidden geometries 
within existing buildings (Cabral et al. 2025). However, the previous pilot revealed that manual data collection 
involved multiple operators working together to mark distances, position the sensor, and trigger image capture, 
with the process repeated for each patch  (Cabral et al. 2025). To address this, we initiated efforts to integrate the 
multi-modal sensing system with a quadruped robot to enable automated data collection. Figure 1 illustrates the 
proposed end-to-end workflow, in which robot-collected multi-modal data will be processed by an AI system to 
generate material reuse suggestions. To assess the feasibility of the proposed robotic approach, we used the 
Construction Robot Evaluation Framework (Markenson, 2022) to compare the manual and robotic workflows in 
terms of product, organization, and process.  

 
Figure 1: Multi-modal AI-assisted deconstruction inspection workflow. 

 
Product 
The manual data capture setup consists of a multi-modal sensor rig mounted on a wheeled, height-adjustable 
tripod, allowing it to be repositioned throughout the site. The rig integrates an RGB-D camera and a thermal 
camera for simultaneous sensing. Operators manually measure the distance between the rig and the inspection 
target using a tape measure, and then trigger data capture via a laptop mounted on the rig. 
 
For the robotic system, ANYmal was selected for automated multi-modal data collection and deployed to inspect 
structures slated for demolition, with the goal of identifying opportunities for material reuse and repurposing. This 
inherently requires the robot to perform multi-task operations, including multi-modal sensing and navigation. 
 
For data collection, ANYmal is equipped with a 360° LiDAR, six RealSense RGB-D cameras positioned around 
its body (front, rear, left, and right), as well as wide-angle cameras mounted on the upper and lower front and rear. 
An embedded compute unit enables real-time data synchronization across all sensors. The robot actively corrects 
for motion-induced noise to maintain data quality during movement. While it provides a full 360-degree 
horizontal field of view, its vertical sensing is limited by its maximum standing height (890 mm) and a tilt range 



 

of only ±15°, making it difficult to directly capture elevated targets. In such cases, angled views may degrade scan 
quality, suggesting that a telescoping sensor mount could be considered to improve vertical coverage. For 
navigation, the onboard sensors mentioned above also support autonomous navigation and obstacle avoidance. In 
terms of mobilty, ANYmal’s four-legged, all-terrain mobility allows it to traverse both indoor and outdoor 
environments with uneven, dusty, or slippery surfaces, including grates, gravel, and wet floors. Its compact form 
factor (Length: 930 mm; Width: 530 mm; Height: 890 mm) and adjustable height (470–890 mm), along with its 
zero-turn capability, make it well-suited for navigating tight, cluttered, or obstructed deconstruction sites. 
 
The robot is powered by a lithium-ion battery with an operational runtime of 1–2 hours. Control is available via a 
tablet-based Workforce app or a PC-based ROS GUI. During operation, continuous Wi-Fi connectivity is required 
to maintain communication between the robot and the control interface. 
 
To evaluate the robot’s performance under realistic conditions, we selected the an academic building as the initial 
deployment site. The facility includes part of the ground floor, a multi-story staircase with a high ceiling, and a 
3,000-square-foot basement area. In this study, three testing areas were selected: (1) a construction area, (2) a 
stairwell, and (3) a hallway with minimal interference from glass walls. This selection enables testing of the 
robot’s capabilities across flat indoor surfaces, vertical movement, and active construction environments. 

 
Figure 2. Floor plan of the academic building and 3D scans of the testing areas, captured using the 3D Scanner app. 

 
Organization 
From an organizational perspective, the manual data capture workflow requires a team of three operators: one to 
measure distances and heights, another to adjust the tripod and align the sensor rig, and a third to operate the 
multi-modal sensor for data collection. 
 
In contrast, the robotic workflow with ANYmal typically requires only one or two people to supervise the robot in 
the area of interest and manage ROS (Robot Operating System) topic recording on a PC. With proper planning, 
the entire process can be handled by a single operator—especially when autonomous navigation is enabled via 
BIM or a pre-built map. The robot autonomously handles both motion and data packaging, generating complete 
ROS bag files that include multi-modal sensor data, precise positioning, sensor intrinsics and extrinsics, and 
synchronized timestamps. This significantly reduces manual input and coordination efforts, and streamlines team 
structure. 

 
Process 



 

The manual data collection process required three operators and a sensor box tripod for simultaneous RGB-D and 
thermal data capture. Specifically, one operator measured the sensor height and distance based on the desired field 
of view (FOV), another adjusted the tripod to match the measured position, and the third operated the sensor to 
capture the image. Each patch cycle began with manually measuring and marking distances from the wall using 
paper tape to establish different resolution levels. The selected resolution setting directly influenced the number of 
patches required. Higher resolutions demanded multiple captures at closer distances, while lower resolutions 
required fewer patches taken from farther away. For instance, capturing data for a 6.79 × 8 ft drywall section 
required nine patches at high resolution, two at mid-resolution, and one at low resolution (Cabral et al. 2025). 
Once the distances were marked, the team positioned the sensor at the designated point and triggered image 
capture—completing that patch. The cycle then repeated for the next patch, starting again with distance 
measurement. Throughout the data collection process, operators had to control and verify the scanning angle and 
motion, as both significantly impacted accuracy. The previous case study showed that vertical motion generally 
produced better results than horizontal scanning, especially for blank walls with minimal visual features. 
Additionally, a straight-on view of the object yielded more accurate results than angled views. 
 
Robotic data collection using ANYmal follows a different process structure. Initial deployment in a new 
environment typically requires manual mapping by a human operator using the tablet-based Workforce app. If a 
BIM model is available, it can be directly imported, eliminating the need for manual mapping. The manual 
mapping process employs SLAM (Simultaneous Localization and Mapping) to build a map of the surroundings, 
with a typical resolution of 10 to 15 cm. However, the system may face challenges with reflective surfaces such as 
glass, and in dynamic environments—such as active deconstruction sites—significant layout changes may require 
re-scanning to ensure accurate navigation. If pre-mapping is not performed, the robot must be manually controlled 
through the Workforce app for navigation throughout the operation. Once mapping is complete, users can define 
points of interest (POIs) via a PC-based GUI.  
 
ANYmal then computes an optimized path and navigates between POIs semi-autonomously. In its default 
autonomous mode, the robot follows a stop-and-go behavior when encountering obstacles—pausing until the 
obstruction is removed before resuming its path. If alternate POIs are predefined, ANYmal can reroute and revisit 
previously inaccessible locations once conditions improve. However, its navigation performance is generally more 
reliable in open obstacle -free spaces. In complex or highly obstructed environments, human teleoperation can 
enhance robustness by allowing manual intervention when needed.  
 
The robotic system improves the data collection workflow by enabling autonomous navigation, obstacle 
avoidance, and eliminating the need for manual distance measurement or physical repositioning of a sensor tripod. 
Its position can be continuously tracked through ROS topics, allowing for more precise and repeatable scanning. 
However, the current system still lacks 3D object-level understanding. Instead of recognizing specific inspection 
targets, the robot relies on operators to manually specify coordinate points through the GUI or Workforce app. 
Once it reaches the target location, operators often need to fine-tune the robot’s viewing angle to properly frame 
the object of interest—similar to the manual workflow. Figure 3 shows ANYmal during one of the site tests. 
While this approach streamlines setup and navigation, it still requires human input for target identification and 
final alignment.  



 

     
Figure 3:  AnyMal Capturing Multi-Modal Data in the testing area. 

Figure 4: ROS Bag Playback, visualized with FoxGlove. 
 

In terms of quality control, both manual and robotic workflows face similar limitations. During data collection, 
operators can only perform rough visual checks to verify framing and coverage. However, actual quality 
assessment depends on downstream data processing by the AI/ML team, which happens asynchronously. In 
robotic workflow, data is typically transmitted via ROS bag files for post-processing, and if the quality is found 
insufficient, the entire capture must be repeated. Figure 4 illustrates a playback of the collected data. As a result, 
despite improvements in automation and efficiency, the issue of real-time quality assurance remains unresolved. 
 

Real-World Deployability and Generalization Discussion 
This evaluation was conducted in a realistic built environment as a preliminary pilot, with testing areas covering 
flat floor surfaces, stairwells, and active construction zones—conditions that reflect common scenarios in real 
deconstruction projects. These diverse settings support the generalizability of the robotic workflow beyond 
controlled lab environments. 
 
The POP-based comparison with manual workflows shows that the robotic approach streamlines organizational 
structure and simplifies product setup. However, key limitations—specifically, the lack of object-level 
understanding and real-time data quality feedback—still hinder full autonomy and deployment efficiency, 
including fast execution, low rework rates, and reduced reliance on manual operation. These gaps are being 
addressed through ongoing research, including: (1) a 3D semantic perception module for recognizing and aligning 
with inspection targets; (2) real-time, object-level data quality assessment metrics to reduce rework; and (3) a 
mixed reality interface for live visualization and operator-robot alignment during scanning. We also plan hardware 
adaptations such as adjustable sensor mounts and the integration of thermal and RF sensors to expand 
multi-modal capabilities. These enhancements aim to make robotic data collection more deployable, robust, and 
generalizable across deconstruction inspection scenarios. 
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Appendix A. Feasibility Check and Detailed Metrics under Manual vs. Robotic Methods 

This appendix provides a comprehensive comparison of the manual and robotic workflows using the 
Product–Organization–Process (POP) section from the Robot Evaluation Framework (REF).  

 
POP Manual Robot Initial feasibility check 
Product    
Single / Multi-task Multi-task Multi-task OK 

Interior / Exterior Interior (Partition Walls) Interior, Exterior OK 

Hardware 

Tripod-mounted 
multi-modal sensor rig 
with external computer 
for data capture and 
processing 

ANYmal Gen D robot with 
onboard LiDAR, RGB 
cameras, embedded compute 
unit, optional mounted 
sensors OK 

Mobility 

Full mobility - but slow, 
given the huge system 
movements 

Full Mobility (four legged 
all-terrain mobility, zero-turn 
radius, high agility) OK 

Degree of 
mechanization / 
Autonomy - 

Between Level 3 and 4 
(semi-autonomous to high 
autonomy): requires human 
input for for initial mapping, 
complex environments, or 
remapping after layout 
change OK 

Control interface - 
Controlled using a tablet 
workforce APP or PC GUI OK 

Software / sensors 

RGB+depth camera, 
Thermal Camera, LiDAR 

Visual, Thermal cameras, 
LiDAR scanner, ultrasonic 
mic OK 

Power and 
communications 

Powered by batteries and 
external charging ports, 
WiFi for the systems 

Li Ion battery for the robot 
and Wi-Fi for ROS and 
remote communication OK 

Clearance 
3 meters by 3 meters to 
accommodate three workers 

Robot: approximately 1100 mm 
(L) × 700 mm (W) × 1000 mm 
(H) 
Human operator: 1 meter × 1 
meter OK 



 

Site conditions 

Has to be safe enough by 
construction standard 
practices 

Renovation Space with some 
equipment and scaffolding on 
the site. 

Feasible in open, flat indoor 
environments. Limited by 
clutter, low ceilings, Wi-Fi 
dead zones and dynamic 
layouts. Re-mapping required 
after major changes. 
Reflective surfaces can 
disrupt SLAM-based 
mapping;  

Reach (workspace) 
The total workspace 
(with the help of ladders) 

Sensors effective range up to 
4 m sensor-to-surface 
distance and also the tilt 
angle is less than 15 degrees. 

Insufficient for anything 
above 4 m. Needs lift or mast 
extension or additional 
mounting for sensors. 
(Thermal camera: 2.04 m 
diagonal at 4 m, RGB-D / 
LiDAR effective mapping 
range: 4 m). 
Vertical field of view is 
limited (tilt angle 
approximately +15° ~ -15°) 
and maximum camera height 
is 890 mm 

Project type(s) Deconstruction 

Deconstruction, Industrial 
Inspection, Construction Site 
Safety Monitoring, Forestry 
Inventory, Disaster Response 
(Search & Rescue) OK 

Number of units of 
work / zone 

Work zone segmentation 
depends on how the patches 
are arranged. 

 1 robot unit: scan + 
deconstruction of one wall 
section (105 ft²) or equivalent 
patches (up to 54 ft² per fixed 
robot position) OK 

Organization    

Types of skills and 
experience 

operating a sensor rig 
involves manual tripod 
setup, height 
measurement, layout 
marking, and local 
scanning 

Operating and controllong 
the robot: visual monitoring, 
basic understanding of space 
and obstacles, comfort with 
touchscreen-based control 
apps, reading simple 
on-screen system status 
messages, joystick-style or 
directional control OK 



 

Labor supply 

3 people needed for the 
tripod rig task (1 
adjusting height, 1 
operating the camera, 1 
measuring and marking) 

1 (1 person to operate the 
robot + one optional support 
technician for ROS) OK 

Organizations 

General contractor, 
sensor supplier, facility 
owner 

Sensor supplier, data 
processing team, robot 
provider, general contractor, 
facility owner OK 

Team experience in 
using robots NA 

Basic: familiarity with the 
interface and workflow, basic 
spatial awareness and 
troubleshooting ability OK 

Process    

Process changes 

Allocation of resources 
to inspect, assessing 
quality of data 

Scheduling around the 
availability of the operators 
and robot and robot's 
charging, assessing the 
quality of images before 
using them as an input into 
the downstream pipeline OK 

Number of handoffs of 
information 

3 (capture --> prepare 
data --> interpret) 

3 (capture --> prepare data 
--> interpret) OK 

Data acquisition and 
types 

Data acquired manually 
patch-by-patch using 
tripod-mounted RGB-D 
and thermal sensors; 
resolution and 
consistency depend on 
operator skill 

The robotic acquisition of 
data is continuous and 
smooth, uses onboard 
LiDAR, RGB, and optionally 
mounted sensors and 
supports more consistent and 
higher-volume capture OK 

QC 

Rough on-site inspection 
of image quality, with 
final quality assessment 
deferred to downstream 
processes; re-scanning 
may be required based on 
later evaluation. 

Rough on-site inspection of 
image quality, with final 
quality assessment deferred 
to downstream processes; 
re-scanning may be required 
based on later evaluation. OK, Improvement needed 



 

 

Appendix B. Robotic Workflow Diagram 

This appendix presents a detailed flow diagram of the robotic workflow, illustrating the key steps, decision points, 
and points of information handoff throughout the process. 
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