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Summary

With the advent of novel foundational approaches to represent proteins, a race to evaluate and assess their effectiveness
to embed biological data for a variety of downstream tasks, from structure prediction to protein engineering [1], has
gained tremendous traction. While tasks like protein 3D structure prediction from sequence have well characterized
datasets and methodological approaches [2], many others, for instance probing the ability to encode protein function
from sequence, lack standardization. This becomes particularly relevant when employing experimental biological
datasets for machine learning, as curating biologically meaningful data splits requires biological intuition, whilst en-
gineering appropriate machine learning models requires data science expertise. Gold standard experimental datasets
annotated with machine learning relevant metadata are thus scarce and often scattered in different file formats in the
literature, using a variety of metrics to measure success, hindering rapid evaluation of new foundational representation
techniques or machine learning models built on top of them. To address these challenges, we propose a suite of solu-
tions including a) standards for sequence datasets and embedding interfaces, b) curated and machine learning metadata
annotated protein sequence datasets, c) machine learning architectures and training scripts, and d) an extensible, au-
tomatic evaluation pipeline connecting all these components. In practice, we described new, broad data standards for
machine learning protein sequence datasets, including definitions for predictions of a categorical attribute for a residue
in a sequence (e.g., secondary structure), or predicting a single value for the entire sequence (e.g., protein fitness). We
expanded a previous collection of datasets for protein engineering (FLIP [1]) by adding five traditional tasks from the
literature, like residue secondary structure [3, 4], residue conservation [5], and protein subcellular location prediction
[6, 7, 8]. We created a novel software solution (biotrainer) that collects machine learning architectures used for protein
predictions and exposes a reproducible training pipeline that can consume any dataset adhering to the newly proposed
data standards. Lastly, we connected all components in a new software solution (autoeval), which collects definitions
for embedding methods, datasets and downstream machine learning models to automatically evaluate them. With
these solutions, biological experimentalists can contribute new datasets and even train standard models using popular
embedding methods, while machine learning researchers can easily plug in new foundational models or architectures
in a common interface and test them on a variety of tasks against other solutions. In turn, the combination of solutions
presented here unlocks the ability of interest groups to create challenges around new biological datasets, new machine
learning architectures, new foundational models, or a combination thereof.

Availability: Biotrainer, the software solution containing machine learning architectures, reproducible training runs
and deployable models, is available open source at https://github.com/sacdallago/biotrainer. FLIP v2, the collection
of curated protein sequence sets annotated with machine learning-relevant attributes such as train, test and validation
assignations, is available at https://github.com/J-SNACKKB/FLIP/. Autoeval, assessing the accuracy of various foun-
dational protein representation models on protein tasks from FLIP v2 using architectures from biotrainer is available
open source at https://github.com/J-SNACKKB/autoeval/.

https://github.com/sacdallago/biotrainer
https://github.com/J-SNACKKB/FLIP/
https://github.com/J-SNACKKB/autoeval/


Figure 1: From foundational models to datasets, training frameworks and automatic evaluations unlocking
rapid advancement in machine learning for protein sequences. Foundational Models included in frameworks like
bio embeddings [9] or custom scripts for ESM-2 [10] allow to embed protein sequence sets in computable formats
storing the results in standardized hdf5 files. These files include sequences embedded either as matrices for residue
prediction tasks (s.a. secondary structure), or as vectors for protein prediction tasks (s.a. subcellular localization).
Training scripts and Architectures allow to train machine learning models to predict attributes of proteins using anno-
tated FASTA files and hdf5 embedding files. In particular, our novel solution biotrainer collects several architectures
from the literature (s.a. Light Attention [8]) intro reproducible workflows enabling the most common protein predic-
tion tasks, for instance predicting categorical attributes of residues (residue to class) or sequences (sequence to class).
Datasets stored as FASTA files with novel standards for curated sequence datasets with annotations relevant for ma-
chine learning pipelines. In particular, we expand FLIP [1] with several protein sequence machine learning datasets
(subcellular localization prediction (SCL) [8], secondary structure prediction [11], single amino acid variant (SAV)
effect prediction [5], and binding ability to metal, nucleic acids and small molecules (Bind) [12]), annotated with split
information (train, test and validation), and easy to parse labels. Evaluation Framework uses stored embeddings of
annotated FASTA files are linked to pre-defined machine learning training scripts to automatically evaluate the ability
of foundational models and machine learning architectures to predict a plethora of protein properties.
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[5] Céline Marquet, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Kyra Erckert, Michael Bernhofer,
Dmitrii Nechaev, and Burkhard Rost. Embeddings from protein language models predict conservation and vari-
ant effects. Human genetics, pages 1–19, 2021.
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