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ABSTRACT

Generative Flow Networks (GFlowNets) are a family of probabilistic generative
models recently invented that learn to sample compositional objects proportional
to their rewards. One big challenge of GFlowNets is training them effectively
when dealing with long time horizons and sparse rewards. To address this, we
propose Evolution guided generative flow networks (EGFN), a simple and powerful
augmentation to the GFlowNets training using Evolutionary algorithms (EA). Our
method can work on top of any GFlowNets training objective, by training a set
of agent parameters using EA, storing the resulting trajectories in the prioritized
replay buffer, and training the GFlowNets agent using the stored trajectories. We
present a thorough investigation over a wide range of toy and real-world benchmark
tasks showing the effectiveness of our method in handling long trajectories and
sparse rewards.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; 2023) are a family of probabilistic
amortized samplers that learn to sample from a space proportionally to some reward function R(x),
effectively sampling compositional objects over some probability distribution. As a generative
process, it composes objects by some sequence of actions, terminating by reaching a termination
state.

GFlowNets have shown great potential for diverse challenging applications, such as molecule discov-
ery (Jain et al., 2023a), biological sequence design (Jain et al., 2022), combinatorial optimization
(Zhang et al., 2023), latent variable sampling (Liu et al., 2023) and road generation (Ikram et al.,
2023). The key advantage of GFlowNets over other methods such as reinforcement learning (RL) is
that GFlowNets’s key objective is not reward maximization, allowing them to sample diverse samples
proportionally to the reward function. Although entropy-regularized RL also encourages randomness
when taking actions, it is not general in when the underlying graph is not a tree (i.e., a state can have
multiple parent states) (Zhao et al., 2019).

Despite the recent advancements, the real-world adaptation of GFlowNets is still limited by a major
problem: temporal credit assignment for long trajectories and sparse rewards. For example, real-world
problems such as protein design often are often long-horizon problems, necessitating long trajectories
for sampling. Since reward is given only when the agent reaches the terminal states, associating
actions with rewards over a lengthy trajectory becomes challenging. Additionally, reward space is
sparse in real-world tasks, making temporal credit assignment more difficult. Trajectory balance (TB)
objective (Malkin et al., 2022) attempts to tackle the problem by matching the flow across the entire
trajectory, but in practice, it induces larger variance and is highly sensitive to sparse rewards (Madan
et al., 2023), making the training unstable.

Evolutionary algorithms (EA) (Bäck & Schwefel, 1993), a class of optimization algorithms inspired
by natural selection and evolution, can be a promising candidate for tackling the said challenges.
Indeed, the shortcomings of GFlowNets are the advantages of EA, which makes it promising to
consider incorporating EA into the learning paradigm of GFlowNets to leverage the best from both
worlds. First, the selection operation in EA is achieved by fitness evaluation throughout the entire
trajectory, which makes them robust to long trajectories and sparse rewards as they naturally bias
towards regions with high expected returns. Secondly, mutation makes EA naturally exploratory,
which is crucial for GFlowNets training and mode-finding as they rely on diverse samples for better
training (Pan et al., 2022). Third, EA’s natural selection biases towards parameters that generate high
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Figure 1: The proposed EGFN architecture. Step one provides high-quality trajectories to the replay buffer
by evolving the agents using the trajectory rewards as fitness. Step two gathers training trajectories from both
online and offline trajectories. Step three trains the star agent using the training trajectories.

reward samples, which, coupled with a replay buffer, can provide sample redundancy, resulting in a
better gradient signal for stable GFlowNets training.

In this work, we introduce Evolution guided generative flow networks (EGFN), a novel training
method for GFlowNets combining gradient-based and gradient-free approaches and benefit from
the best of both worlds. Our proposed approach is a three-step training process, as summarized
in Figure 1. First, using a fitness metric across sampled trajectories taken over a population of
GFlowNets agents, we perform selection, crossover, and mutation on neural network parameters of
GFlowNets agents to generate a new population. To reuse the population’s experience, we store the
evaluated trajectories in the prioritized replay buffer (PRB). For the second step, we sample the stored
trajectories from a PRB and combine them with online samples from a different GFlowNets agent.
Finally, using the gathered samples, we train a GFlowNets agent using gradient descent over some
objectives such as Flow matching (FM), Detailed balance (DB), and Trajectory balance (TB), where
they optimize at the transition-level (FM, DB), and trajectory level (TB). The reward-maximizing
capability of EA enhances gradient signal through high reward training samples, ensuring stable
GFlowNets training even in conditions with sparse rewards and long trajectories. Through extensive
evaluation in experimental and a wide range of real-world settings, our method proves effective in
addressing weaknesses related to temporal credit assignment in sparse rewards and long trajectories,
surpassing GFlowNets baselines in terms of both the number of re-discovered modes and top-K
rewards.

2 PRELIMINARIES

2.1 GENERATIVE FLOW NETWORKS (GFLOWNETS)

Generative Flow Networks (GFlowNets) are a family of generative models that samples compositional
objects through a sequence of actions. We define the flow network as a single source initial state
s0 with in-flow Z, and one sink for each terminal state x ∈ X with out-flow R(x) > 0. We denote
the Markovian composition trajectory (s0 → s1 −→ · · · → x) as τ ∈ T , where T is the set of all
trajectories. Thus, the problem is formulated as a directed acyclic graph (DAG), (S, E), where each
node in S denotes a state with an initial state s0, and each edge in E denotes a transition st → st+1

with a special terminal action indicating s = x ∈ X . We specifically consider DAGs that are not
tree-structured, thus there exist different paths leading to the same state in the DAG, except for the
root, which has no parent. Given a terminal state space X , GFlowNets aim to learn a stochastic
policy π that can sample terminal states x ∈ X proportionally to a non-negative reward function
R(x), i.e., π(x) ∝ R(x). GFlowNets construct objects x ∈ X by sampling constructive, irreversible
actions a ∈ A that transition st to st+1. An important advantage of GFlowNets is that GFlowNets’s
probability of generating an object is proportional to a given positive reward for that object and we
can train it in both online and offline settings, allowing us to train from replay buffers.
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The key objective of GFlowNets training is to train PF such that π(x) ∝ R(x), where,

π(x) =
∑
τ∈T
x∈τ

|τ |−1∏
t=0

PF (st+1|st; θ) (1)

where, PF is a parametric model representing the forward transition probability of st to st+1 with
parameter θ. There are several widely used loss functions to optimize GFlowNets including FM, DB
and TB.

Flow matching Following Bengio et al. (2021), we define the state flow and edge flow functions
F (s) =

∑
s∈τ F (τ) and F (s→ s′) =

∑
τ=(...s→s′...) F (τ), respectively, where F (τ) the trajectory

flow is a nonnegative function F : T → R+ so that probability measure of a trajectory τ ∈ T is
P (τ) = F (τ)/

∑
τ∈T F (τ). Then, the FM criterion matches the in-flow and the out-flow for all

states s ∈ S, formally – ∑
s′∈Parent(s)

F (s′ → s) =
∑

s′′∈Child(s)

F (s→ s′′). (2)

To achieve the criterion, using an estimated edge flow Fθ : E → R+, we turn equation 2 to a loss
function –

LFM(s; θ) =

[
log

∑
s′∈Parent(s) Fθ(s

′ → s)∑
s′′∈Child(s) Fθ(s→ s′′)

]2

(3)

Detailed balance Following Bengio et al. (2023), we parameterize F (s), F (s → s′), and
F (s′ → s) with Fθ(s), PF (s

′|s, θ), and PB(s|s′, θ), respectively, where PF (s
′|s, θ) ∝ F (s →

s′) and PB(s|s′, θ) ∝ F (s′ → s). Then, the DB loss for a sampled trajectory τ ∈ T is –

LDB(s, s
′; θ) =

[
log

Fθ(s)PF (s
′|s, θ)

Fθ(s′)PB(s|s′, θ)

]2
(4)

for all (s→ s′) ∈ τ .

Trajectory balance Malkin et al. (2022) extends the detail balance objective to the trajectory level,
via a telescoping operation of Eq. (4). Specifically, Zθ is a learnable parameter that represents the
total flow:

∑
x∈X R(x) =

∑
s:s0→s∈τ∀τ∈T PF (s|s0; θ), and the TB loss is defined as:

LTB(τ ; θ) =

[
log

Zθ

∏|τ |−1
t=0 PF (st+1|st, θ)

R(x)
∏|τ |−1

t=0 PB(st|st+1, θ)

]2

. (5)

This can incur larger variance as demonstrated in Madan et al. (2023).

We train the GFlowNets parameter θ by minimizing the loss L by performing stochastic gradient
descent.

2.2 EVOLUTIONARY ALGORITHMS (EA)

Evolutionary algorithms (EA) (Bäck, 2006; Spears et al., 1993) are a class of optimization algorithms
that generally rely on three key techniques: mutation, crossover, and selection as in biological
evolution. The crossover operation is responsible for generating new samples based on exchange of
information among a population of samples. The mutation operation alters the generated samples,
usually with some probability pmutation. Finally, the selection operation evaluates the fitness score
of the population and is responsible for generating the next population. In this work, we apply EA
in the context of the weights of the neural networks, often referred to as neuroevolution (Stanley &
Miikkulainen, 2002b; Risi & Togelius, 2014; Floreano et al., 2008; Lüders et al., 2017).

3 EVOLUTION GUIDED GENERATIVE FLOW NETWORKS (EGFN)
EGFN is a strategy to augment existing training methods of GFlowNets. The evolutionary part
in EGFN (Step one) samples discrete objects, e.g., a molecular structure, using a population of
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Algorithm 1 Evolution Guided GFlowNet Training
Input:
P ∗
F : Forward flow of the star agent with weights θ∗

popF : Population of k agents with randomly initiated weights
D : Prioritized replay buffer
E : Number of episodes in an evaluation
ϵ: percent of greedily selected elites
δ: online-to-offline sample ratio
γ: mutation strength
for each episodes do

for each PF ∈ popF do
fitness, D = EVALUATE(PF , E , noise = None, D); // store experience in
replay buffer

Sort popF based on fitness in a descending order
Select the first ϵk PF from popF as elite
Select (1 - ϵ) PF from popF stochastically based on fitness as S
while |S| < k do

crossover between PF ∈ elite and PF ∈ S and append to S

for each PF ∈ S do
Apply mutation ∼ N (0, γ) to θPF

with probability pmutation

Sample a minibatch of δT online trajectories Tonline from P ∗
F and store them to D

Sample a minibatch of (1− δ)T offline trajectories Toffline from D
Compute loss L using trajectory balance loss from Tonline ∪ Toffline
Update parameters θ∗ using stochastic descent on loss L

GFlowNets agents, evaluates the fitness of the agents based on the samples, and generates better
samples by manipulating the weights of the agent population. We store the samples obtained from
the population in a PRB that the GFlowNets sampler uses to, alongside on-policy samples, train its
weights (Step two & three). To differentiate the GFlowNets agent trained by gradient descent in step
two and three from the agent population trained using EA in step one, we refer to the agent trained
by gradient descent as the star agent and GFlowNets agents trained using EA as EA GFlowNets
agents. The training loop can be summarized in the following three steps:

Step One Generate a population of EA GFlowNets agents. Evaluate the fitness of the agents’
weights by evaluating the samples gathered from the agents’. Apply the necessary selection,
mutation, and crossover to the weights to generate the next population. Store the generated
trajectories {(τ1, . . . , τE)1, (τ1, . . . , τE)2, . . . , (τ1, . . . , τE)k} to the PRB.

Step Two Gather online trajectories from star agent P ∗
F and offline samples from PRB.

Step Three Train P ∗
F using {τ1, τ2, . . . , τT } using gradient descent on any GFlowNets loss function

such as equations 3, 4, or 5.

3.1 STEP ONE: EVOLVE

This step involves optimizing EA GFlowNets agent weights to produce trajectories that accelerate
P ∗
F training using the PRB. To this end, before the train begins, we initialize pop, a population of k

EA GFlowNets agents with random weights. We optimize the population weights in a standard EA
process that contains selection, crossover, and mutation. Algorithm 2 in the appendix C details the
evaluation process.

Selection The selection process begins with an evaluation of the population by calculating each
agent’s fitness scores. We define the fitness score of an agent by the mean reward of E trajectories
{τ1, τ2, . . . , τE} sampled from the agent. Next, based on fitness scores, we transfer the top ϵ% elite
agents’ weights to the next population, unmodified. Notably, we store the kE trajectories sampled
from this step to the PRB in this step. Optionally, we restore the star agent parameters to the agent
population by replacing the parameters with the worst fitness periodically.
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Figure 3: Left: An example hypergrid environment for dimension D = 2, horizon H = 16. Here, the 22 = 4
yellow tiles refer to the high reward modes. Right: Experimental results comparison for the hypergrid task
between EGFN, GFlowNets, RL, and MCMC baseline across increasing dimensions for 2500 training steps.
Right top: the ℓ1 error between the learned distribution density and the true target density. Right bottom: the
number of discovered modes across the training process. As the dimension of the grid increases, the trajectory
length also increases. The proposed EGFN method achieves better performance than all baselines, with broader
performance gap between EGFN and GFlowNets with increasing trajectory length.

Figure 2: The crossover operation in EGFN. Here, we
fill a proportion of population through the crossover
between agents selected proportionally to their fitness.
We fill the rest with the crossover between the unselected
agents and the elite agents.

Crossover The crossover step ensures weight
mixing between agents’ weights, ensuring
stochasticity (Spears, 1995). Here, we per-
form the crossover in two steps. First, we per-
form a selection tournament process among the
agents to get pop - elite agents, sampling pro-
portionally to their fitness value and perform-
ing crossover among them. Next, we perform
a crossover between the unselected agents and
elite. We combine the two sets of agents and
pass them on to the mutation process.

Mutation The mutation process ensures natural
exploratory policy in agents. We apply mutation
by adding a gaussian perturbation N (0, γ) to
the agent weights. In this work, we only apply
mutation to the non-elite agents.

3.2 STEP TWO: SAMPLE

In this step, we gather trajectory samples
{τ1, τ2, . . . , τT } to train the star agent. We use
both online trajectories sampled by the star agent
and offline trajectories stored in the PRB. For
online trajectories, we construct a trajectory τ
by applying P ∗

F to get s0 → s1 → · · · → x, x ∈
X , where X is the set of all terminal states. It is noteworthy that there are many works (Rector-Brooks
et al., 2023; Kim et al., 2023; Pan et al., 2023a; 2022) that augment or perturb the online trajectories by
applying stochastic exploration, temperature scaling, etc. In this work, we choose a simple on-policy
sampling from P ∗

F to get the online trajectories. For offline samples, we simply use PRB to sample
trajectories collected from step one proportionally to the terminal reward. For this work, we take
a simple approach for PRB, uniformly sampling 50% trajectories from the 20 percentile and 50%
trajectories from the rest.

3.3 STEP THREE: TRAIN

We train the star agent by calculating loss L using equation 3, 4, or 5 and minimizing the loss by
applying stochastic gradient descent to the parameter θ.
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Figure 4: Experimental results comparison for the hypergrid task between EGFN, GFlowNets (GFlowNets,
GAFN), RL (PPO, SAC, IQL), and MCMC (MARS) baseline across increasing dimensions for 2500 training
steps. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the number
of discovered modes across the training process. Here, H = 20, D = 5. As the R0 value decreases, the reward
sparsity increases. The proposed EGFN method achieves better performance than all baselines, with broader
performance gap between EGFN and GFlowNets with increasing sparsity.

4 EXPERIMENTS

In this section, we validate EGFN for different synthetic and real-world tasks. 4.1 presents an
investigation of EGFN’s performance in long trajectory and sparse rewards, generalizability across
multiple GFlowNets objectives, and an ablation study on different components. Next, we present
five real-world molecule generation experiments. In 4.2 and 4.4, we offer large-scale molecule
experiments to confirm EGFN’s ability to produce longer sequences. Additionally, we compare our
method with experiments relevant to previous literature in 4.3, D.2, and D.3. For all the following
experiments, we use k = 5, E = 4, ϵ = 0.2, and γ = 1. All baselines are equipped with replay
buffers that have parameters similar to the EGFN in order to conduct fair comparisons. The exception
to this is PPO, where we double the sample size to guarantee fairness. All result figures report the
mean and variance over three random seeds.

4.1 SYNTHETIC TASKS

We first study the effectiveness of EGFN investigating the well-studied hypergrid task introduced
by Bengio et al. (2021). The hypergrid is a D-dimensional environment of H horizons, with a HD

state-space, D + 1 action-space, and 2D modes. The ith action in the action space corresponds to
moving 1 unit in the ith dimension, with the Dth action being a termination action with which the
agent completes the trajectory and gets a reward specified by equation 6.

In this empirical experiment, two questions interest us.

• Does EGFN augmentation provide improvement against the best GFlowNets baseline for
longer trajectories and sparse rewards?

• Is this method generally applicable to other baselines?

Setup. We run all hypergrid experiments for D ∈ {3, 4, 5}, H = 20, and R0 ∈
{10−3, 10−4, 10−5}. To determine the best GFlowNets baseline, we run three objectives ∈
{FM,TB,DB} (please see Figure 10 in appendix D.1) and decide to use DB with a PRB of size
1000. For a fair comparison, we use DB for implementing EGFN. We use R0 = 10−5 for the
long trajectory experiment and D = 5 for the reward sparsity experiment, keeping other variables
fixed. Finally, we present an ablation study on different components used in our experiments for
H = 16, D = 5, and R0 = 10−5.

For a complete picture, we compare our method with RL baselines such as PPO (Schulman et al.,
2017), SAC (Haarnoja et al., 2018; Christodoulou, 2019), and IQL (Kostrikov et al., 2022) and
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Figure 5: Experimental results for the hypergrid task on different components of EGFN. Top: the ℓ1 error
between the learned distribution density and the true target density. Bottom: the number of discovered modes
across the training process. Here, H = 20, D = 5, and we use DB objective.

MCMC baseline such as MARS (Xie et al., 2020), and recent GFlowNet baseline such as GAFN.
Besides, we also compare it against a simpler variation to our method that involves GFlowNets with
its offline trajectories sampled by random policy ensembles.

Long time horizon result. In this experiment, as D increases, |τ | increases, showing the perfor-
mance over increasing |τ |. Figure 3 demonstrates that EGFN outperforms GFlowNets baseline both
in terms of mode finding efficiency and L1 error. Notably, as |τ | increases, the performance gap
increases, confirming its efficacy in challenging environments. Unexpectedly, MARS prove to be
very slow for these challenging environments. Besides, while RL baseline such PPO competes with
GFlowNets and EGFN in the beginning, it fails to discover all modes due to its mode maximization
objective.

Reward sparsity result. Next, to understand the effect of sparse rewards, we compare our method
against GFlowNets for R0 ∈ {10−3, 10−4, 10−5}. With a decreasing R0, reward sparsity increases.
Figure 4 shows that EGFN outperforms GFlowNets. Similar to the previous experiment, we see an
increasing performance gap as the reward sparsity increases. Similar to previous experiment, both RL
and MCMC baselines are no match for such difficult environments.

Ablation study result. To understand the individual effect of each component of our method, we
run the hypergrid experiment by comparing our method against the same without PRB and mutation.
Figure 5 details the results of the experiment, underscoring the importance of the mutation operator
in EGFN. It shows that PRB individually is not effective for improved results, but when it is coupled
with mutation, our method delivers better results.

4.2 ANTIBODY SEQUENCE OPTIMIZATION TASK
(
|X | ≈ 1066

)

Figure 6: Experimental results comparison for an-
tibody sequence optimization task for 2500 train-
ing steps. EGFN achieves the best performance in
terms of mode discovery.

Top-K Ed ↑ Top-K index ↓
GFlowNet 34.91 39.04

EGFN 40.47 35.95
GAFN 17.46 38.08
SAC 0.0 40.41

Table 1: Experiment results for antibody sequence optimiza-
tion between EGFN, GFlowNets, GAFN, and SAC baseline
task after training for 2500 steps. EGFN achieves the low-
est instability index while retaining the best diversity. The
performances measures are taken from 1000 samples after
training and K = 100
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Figure 7: From left to right. Example binder produced in the Soluable Epoxy Hydrolase (sEH)
binder generation task. Here the structure corresponds to the molecule with SMILES representation
O=P([O-])(O)c1ccc2ccccc2c1. sEH binder generation experiment over 2.5 × 104 training steps.
GFlowNets implementation uses FM objective. The number of modes with a reward threshold of 7.5 and
8.0. The average reward across the top-100 and 1000 molecules. The proposed augmentation with EGFN
achieves better results both in terms of mode discovery and average reward.

Setup. In this task, our goal is to generate an antibody heavy chain sequence of length 50 that,
augmented with a pre-defined suffix sequence, optimizes the instability index (Guruprasad et al.,
1990) of the antibody sequence. We represent antibody sequences as x = (x1, . . . , xd), where
xi ∈ 1, . . . , 21 refers to the 20 amino acid (AA) type, with the gap token ’-’ to ensure variable
length. We label the training sequences using BioPython (Cock et al., 2009) and transform the
instability index to a reward by performing the following transformation: R(x) = 2

index−5
10 where

index is the instability index of x. Finally, we define sequences with an instability index less than 35
as modes1.

Results. For comparison, we include GFlowNets, GAFN, and SAC. We train all the baselines for
2500 steps and sample 1000 sequences afterwards. To calculate the diversity of the samples, we use
the edit distance (Ed). Figure 4.2 reports the results from both training and post-training. During
training, EGFN discovers a significant number of modes compared to the other baselines. We can see
that this translates to post-training sample quality, as EGFN samples have a lower mean instability
index and higher diversity.

4.3 SOLUABLE EPOXY HYDROLASE (SEH) BINDER GENERATION TASK
(
|X | ≈ 1016

)
Setup. In this experiment, we are interested in generating molecules with desired chemical proper-
ties that are not too similar to one another. Here, we represent molecules states as graph structures
and actions as a vocabulary of blocks specified by junction tree modeling (Bickerton et al., 2012; Shi
et al., 2020). In the pharmaceutical industry, drug-likeliness (Bickerton et al., 2012), synthesizability
(Shi et al., 2020), and toxicity are crucial properties. Hence, we are interested in finding diverse
candidate molecules for a given criteria to increase chances for post-selection. Here, the criteria is the
molecule’s binding energy to the 4JNC inhibitor of the soluble epoxide hydrolase (sEH) protein. To
this end, we train a proxy reward function for predicting the negative binding energy that serves as the
reward function. We perform the experiment following the experimental details and reward function
specifications from Bengio et al. (2021). Since we are interested in both the diversity and efficacy
of drugs, we define a mode as a molecule with a reward greater than 7.5 and a tanimoto similarity
among previous modes less than 0.7. We use FM as the GFlowNets baseline and implement EGFN
for the same objective.

Results. Since the state space is large, we show the result of the number of modes > 7.5, the
number of modes > 8.0, the top-100, and the top 1000 over the first 2.5× 104 states visited. Figure
7 confirms that EGFN outperforms GFlowNets baseline for mode discovery. Remarkably, EGFN
discovers rare molecule with a very high reward (R > 8) that GFlowNets fails to discover. Besides,
EGFN has a better top-100 and top-1000 reward performance than GFlowNets baseline, soliciting its
mode diversity.

1Based on the literature, any index greater than 40 is unstable, but we define modes with index < 35 to make
the reward space more sparse.
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4.4 HU4D5 CDR H3 MUTATION GENERATION TASK

Setup. To further show the robustness, here we consider the task of generating CDR mutants on a
hu4D5 antibody mutant dataset (Mason et al., 2021). After de-duplication and removal of multi-label
samples, this dataset contains 9k binding and 25k non-binding hu4D5 CDR mutants up to 10
mutations. To classify the generated samples, we train a binary classifier that achieves 85% accuracy
on an IID validation set. For this task, we define samples, which are classified as binders with a high
probability (> 96%) as modes. The reward transformation in this task is R(x) = 2pbind − 1.

Figure 8: Experimental comparison of discovered
modes across the training process for the hu4D5
CDR H3 mutation generation task between EGFN,
GFlowNets, SAC, and GAFN baseline for 2500 train-
ing steps. Right top: the ℓ1 error between the learned
distribution density and the true target density. EGFN
augmentation achieves better mode discovery compared
to other baselines.

Results. We compare EGFN against
GFlowNets, GAFN, and SAC and train the
baselines for 2500 steps. As shown in Figure 8,
the modes discovered by EGFN during training
exceed the other baselines.

4.5 RESULT SUMMARY

In both the synthetic and real-world experiments,
EGFN performs well for mode discovery using
fewer training steps than GFlowNets baseline.
The performance gap increases with increasing
trajectory length and reward sparsity. We also
discover that the mutation operator is the most
important factor for performance improvement.

5 DISCUSSION AND LIMITATIONS

Why does EGFN work? To explore this, we com-
pare the trajectories stored in the training step
for GFlowNets and EGFN across training steps
∈ {500, 1000, 1500, 2000, 2500} in the hyper-
grid task in Figure 9 for different levels of spar-
sity (R0 ∈ {10−2, 10−5}. We see that when
there is low reward sparsity (left), the training trajectory length distribution of both methods is similar.
However, when the reward sparsity increases (right), GFlowNets training trajectories center around
a lower trajectory length than that of EGFN. However, for a reward-symmetrical environment like
hypergrid, the sampled trajectory length must be uniformly distributed to truly capture the data distri-
bution. EGFN can achieve this through population variation, diversifying the sampled trajectories in
the PRB.

Figure 9: Experimental results for the trajectory lengths
of the trajectories stored in the training samples across
different training steps for R0 = 10−2 (left) and 10−4

(right). Top: GFlowNets Bottom: EGFN

A potential limitation of this work is that it is
based on GFlowNets, which is an amortized
sampler with the provable objective of fitting
the reward distribution instead of RL’s reward
maximization. Thus, depending on the perspec-
tive, this method may seem slower than RL. Be-
sides, because of the evolution step, the method
takes longer than the vanilla GFlowNets. For
example, we report the runtime analysis on the
QM9 task (appendix D.3) in table 2, which is
performed with an Intel Xeon Processor (Sky-
lake, IBRS) with 512 GB of RAM and a single
A100 NVIDIA GPU. We can see that the run-
time has increased by 35%. However, we do
note that there is no additional cost for increas-
ing the population size, except for increased
memory requirement, since we perform the population sampling by utilizing threading.

9
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Table 2: Runtime analysis comparing EGFN and GFlowNets on the QM9 task.

Wall-clock time per step K number of eval samples number of online samples

EGFN 3.033 ± 0.004 10 1 24
GFN 2.243 ± 0.016 0 0 32

6 RELATED WORK

6.1 EVOLUTION IN LEARNING

There has been many attempts to augment learning, especially RL, with EA. Early works such
Whiteson (2006) combine NEAT (Stanley & Miikkulainen, 2002a) and Q Learning (Watkins &
Dayan, 1992) by using evolutionary strategies to better tune the function approximators. In a similar
manner, Colas et al. (2018) uses EA for exploration in policy gradient, generating diverse samples
using mutation. Fernando et al. (2017) use EA for allowing parameter reuse without catastrophic
forgetting. Recently, many methods use EA to enhance deep RL architectures such as Proximal Policy
Optimization (PPO) (Hämäläinen et al., 2020), Soft-Actor Critic (SAC) (Hou et al., 2020), and Policy
Gradient (Khadka & Tumer, 2018). The key idea from these approaches is to use EA to overcome
the temporal credit assignment and improve exploration by getting diverse samples (Lee et al., 2020),
with some exceptions such as Gangwani & Peng (2018); Fujimoto et al. (2018); Pourchot & Sigaud
(2019) where they utilize EA to tune the parameter of the actor itself.

6.2 GFLOWNETS

GFlowNets have recently been applied to various problems (Liu et al., 2023; Bengio et al., 2021).
There have also been recent efforts in extending GFlowNets to continuous (Lahlou et al., 2023) and
stochastic worlds (Pan et al., 2023b), and also leveraging the power of pre-trained models (Pan et al.,
2024). In GFlowNets training, exploration is an important concept for training convergence, which
many works attempt in different ways. For example, Bengio et al. (2021) use ϵ-greedy exploration
strategy, Kim et al. (2023) learn the logits conditioned on different annealed temperatures, Pan et al.
(2022) introduces augmented flows into the flow network represented by intrinsic rewards, etc. The
temporal credit assignment for long trajectories and sparse reward is a more recently studied topic for
GFlowNets. Recent works such as Malkin et al. (2022) attempt to tackle this problem by minimizing
the loss over an entire trajectory as opposed to state-wise FM proposed by Bengio et al. (2021),
however, it may incur large variance as demonstrated in Madan et al. (2023).

7 CONCLUSION

In this work, we presented EGFN, a simple and effective EA based strategy for training GFlowNets,
especially for credit assignment in long trajectories and sparse rewards. This strategy mixes the best
of both worlds: EA’s population-based approach biases towards regions with long-term returns, and
GFlowNet’s gradient-based objectives handle the matching of the reward distribution with the sample
distribution by leveraging better gradient signals. Besides, EA promotes natural diversity of the
explored region, removing the need to use any other exploration strategies for GFlowNets training.
Furthermore, by incorporating PRB for offline samples, EA promotes redundancy of high region
samples, stabilizing the GFlowNet training with better gradient signals. We validate our method on a
wide range of challenging toy and real-world benchmarks with exponentially large combinatorial
search spaces, showing that our method outperforms the best GFlowNet baselines on long time
horizon and sparse rewards.

In this work, we implement a standard evolutionary algorithm for EGFN. Incorporating more complex
sub-modules of EA for GFlowNets training such as Covariance Matrix Adaptation and Evolution
Strategy (CMA-ES) such as the work in Pourchot & Sigaud (2019) can be an exciting future work.
Another future direction could be integrating the gradient signal from the GFlowNets objectives into
the EA strategy, creating a feedback loop. Besides, while we use a reward-maximization formulation
for the EA in this work, there are works such as Parker-Holder et al. (2020) that directly improves
diversity by formulation. We leave that for the future work.
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A CODES

Our code is available at https://anonymous.4open.science/r/EGFN. The hyper-
grid and sEH binder task is based on the code from https://github.com/zdhNarsil/
Distributional-GFlowNets. The QM9 and TFBind8 task is based on the code from
https://github.com/maxwshen/gflownet. All our implementation code uses the Py-
Torch library (Paszke et al., 2019). We used MolView https://molview.org/ to visualize the
molecule diagrams for our paper.

B SUMMARY OF NOTATIONS

We summarize the notations used in our paper in the table 3 below.

Table 3: Notations summary

Symbol Description

S state space
X terminal state space
A action space (s→ s′)
T trajectory space
s0 initial state in S
s state in S
x terminal state in X
τ trajectory in T
PF forward flow
PB backward flow
k population size
D replay buffer
ϵ elite population ratio
γ mutation strength

C FITNESS EVALUATION ALGORITHM

Algorithm 2 Evaluation of Forward Flows
Data: Forward flow PF

Result: Updated replay buffer with trajectories and fitness of PF

Procedure EVALUATE(PF , E ,D)
fitness← 0

for iter = 1 to E do
Initialize start state s ; // Can also be parallelized
Initialize trajectory T to an empty list
while s not a terminal state do

Sample action a based on PF (s|θPF
)

s′ ← transition(s, a)
Append (s′, a) to the T
s← s′

ComputeR(s) using reward function using the last state in T
fitness← fitness +R(s)
Append T to D

Return fitness
E , D
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Figure 10: Experimental results for the hypergrid task between EGFN and GFN across different GFlowNets
objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the
number of discovered modes across the training process. The proposed augmentation with EGFN achieves better
results for all three objectives.

D ADDITIONAL EXPERIMENTS

D.1 GENERALIZABILITY EXPERIMENT

To see how well EGFN works with different GFlowNets objectives, we show the result of augmen-
tation of our method over all three GFlowNets objectives in Figure 10. We see that EGFN offers a
steady improvement across all three GFlowNets objectives.

D.2 TRANSCRIPTION FACTOR BINDER GENERATION TASK (|X | ≈ 70000)

Figure 11: Experiment results for transcription fac-
tor binder generation task over 2000 training steps for
β = 3. Top: the number of discovered modes across
the training process. Bottom: the relative mean error.
The proposed augmentation with EGFN achieves better
results. GFlowNets implementation uses TB objective.

Setup In this experiment, we generate a
nucleotide as a string of length 8. Al-
though the string could be generated autore-
gressively, in this experiment setting, we use a
Prepend-Append Markov decision process (PA-
MDP), used in similar settings by Shen et al.
(2023); Ikram et al. (2023). Using this MDP,
GFlowNets agent actions prepend or append to
the nucleotide string. The reward is a DNA
binding affinity to a human transcription factor
provided by Trabucco et al. (2022). We attempt
three GFlowNets objectives, finally deciding to
use TB as the best GFlowNets baseline and im-
plement EGFN with the same using a reward
exponent β = 3.

Results Figure 11 shows the result over 2000
training steps, showing that GFlowNets outper-
forms GFlowNets baseline both in terms of the
number of modes discovered and the mean rela-
tive error.

D.3 SMALL MOLECULE GENERATION TASK (|X | ≈ 60000)

Setup In this experiment, we generate a small molecule graph based on the QM9 data (Ramakrishnan
et al., 2014) that maximizes the energy gap between its HOMO and LUMO orbitals, thereby increasing
its stability. The resulting molecule is a 5-block molecule, having a choice among 12 blocks for its
two stems. For the reward function, we use a pre-trained MXMNet proxy by Zhang et al. (2020) with
a reward exponent β = 1. Similar to D.2, we use TB for this experiment.

Results In Figure 12, we report the mode discovery and L1 error results over 2000 training steps.
Similar to previous experiments, EGFN maintains a steady improvement over the GFlowNets baseline
for mode discovery while decreasing the L1 error quicker.
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Figure 12: From top to bottom: Example molecule produced in the qm9 task with SMILES representation
C1CCCCC1NOCFO. Experiment results for small molecule generation task on the QM9 data over 2000 training
steps for β = 1. The number of discovered modes across the training process. The relative mean error. The
proposed augmentation with EGFN achieves better results. GFlowNets implementation uses TB objective.

E ADDITIONAL IMPLEMENTATION DETAILS

E.1 HYPERGRID TASK

The hypergrid reward function is defined by -

R(x) = R0 +R1

D∏
d=1

I
[∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣ ∈ (0.25, 0.5]

]
+R2

D∏
d=1

I
[∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣ ∈ (0.3, 0.4]

]
(6)

where I is the indicator function and R0, R1, and R2 are reward control parameters. In our ex-
periments, R1 and R2 stay at a fixed value of 0.5 and 2. In our experiments, R0 varies within
{10−3, 10−4, 10−5}. A mode is the terminal state x for which R(x) = Rmax. From the equation 6,
it is evident that there are 2D distinct reward regions, with each region having M number of modes
(M = 1 for our experiments). Besides, H refers to the horizon of the environment, meaning each
dimension of x can be equal to i ∈ {0, 1, 2, . . . ,H − 1}. For example, Figure 4 uses D = 5 and
H = 20. Clearly, while increasing both D and H increases the complexity of the task, effecting the
trajectory length |τ | and the number of states |X |, only increasing D increases the number of modes.
To calculate the empirical probability density, we collect the past visited 200000 states and calculate
the probability density.

Architecture We model the forward layer with a 3-layer MLP with 256 hidden dimensions, followed
by a leaky ReLU. The forward layer takes the one-hot encoding of the states as inputs and outputs
action logits. For FM, we simply use the forward layer to model the edge flow. For TB and DB,
we double the action space and train the MLP as both the forward and backward flow. We use a
learning rate of 10−4 for FM and 10−3 for both TB and DB, including a learning rate of 0.1 for Zθ.
The replay buffer uses a maximum size of 1000, and we use a worst-reward first policy for replay
replacement. For RL and MCMC baselines, we use the implementation provided by Bengio et al.
(2021). For GAFN baseline, we use the official code provided by Pan et al. (2022), performing a
hyper-parameter tuning of intrinsic reward and using intrinsic reward = {0.05, 0.03, 0.01} for our
experiments with D ∈ {3, 4, 5}, respectively.

E.2 ANTIBODY SEQUENCE OPTIMIZATION TASK

In this task, we are interested in generating the mutation of the first 50 charac-
ters of a heavy-chain antibody sequence. To adapt to the variable length of the se-
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quence, we use a gap token of ’-’, making the total number of actions 21 2. The
heavy and light chain suffixes appended to the generated 21-length sequences are
QVQLVQSGTEVKKPGSSVKVSCKASGGTFSSYAVSWVRQAPGQGLEWMGRFIPIL-
NIKNYAQDFQGRVTITADKSTTTAYMELINLGPEDTAVYYCARGSLSGREGLPLEYWGQGTLV
SVSS and EVVMTQSPATLSVSPGESATLYCRASQIVTSDLAWYQQIPGQAPRLLIFAASTRAT-
GIPARFSGSGSETDFTLTISSLQSEDFAIYYCQQYFHWPPTFGQGTKVEIK, respectively. We
collect the chain pair from the observed antibody space (OAS) database. Finally, we use a reward
policy to reduce the instability index of the mutated sequences. The main goal of this task is to assess
the GFlowNet’s ability to perform on longer sequences with long trajectories. To the best of our
knowledge, no GFlowNets literature has experimented with tasks with such a long trajectory length,
mainly because GFlowNets struggle with longer trajectories.

Architecture This task’s architecture closely resembles the hypergrid setting. Careful architecture
choice may improve the observed results of the task, but this is outside the scope of this work.

E.3 SEH BINDER GENERATION TASK

Figure 13: Illustration of GFlowNets policy for sEH binder generation task. Figure adopted from Pan et al.
(2022)

For this task, the number of actions is within 100 to 2000, depending on the state, making |X | ≈ 1016.
We allow the agent to choose from a library of 72 blocks. Similar to Bengio et al. (2021), we include
the different symmetry groups of a given block, making the action count 105 per stem. We also
allow the agent to select up to 8 blocks, choosing them as suggested by Sterling & Irwin (2015)
from the ZINC dataset (Sterling & Irwin, 2015). Following Zhang et al., we use Tanimoto similarity,
defined by the ratio between the intersection and the union of two molecules based on their SMILES
representation. To maintain diversity, we define a mode to be a terminal state for which the normalized
negative binding energy to the 4JNC inhibitor of the soluble epoxide hydrolase (sEH) protein is
more than 7.5 and the tanimoto similarity of other discovered modes is less than 0.7. Note that this
objective is more limiting than simply counting the number of different Bemis-Murcko scaffolds
that reach the reward threshold like Bengio et al. (2021). Since we are focusing on both molecule
separation and optimization, our approach is more applicable for de novo molecule design, while the
scaffold-based metric is suitable for lead optimization.

Architecture Following Bengio et al. (2021), we use a message passing neural network (MPNN)
(Gilmer et al., 2017) that receives the atom graph to calculate the proxy reward of the molecules.
Similarly, we use another MPNN that receives the block graph for flow estimation. The block graph
is a tree of learned node embeddings that represent the blocks and edge embeddings that represent
the bonds. To represent the flow, we pass the stems through a 10-layer graph convolution followed
by GRU to calculate their embedding and pass the embedding through a 3-layer MLP to get a
105-dimension logit. Similarly, to represent the stop action, we pass the global mean pooling to the
3-layer MLP. The MLPs use 256 hidden dimensions, followed by a leakyReLU. We use a learning
rate of 0.0005 and a minibatch size of 4. For EGFN, we use an offline sample probability of 0.2.
Besides, we use a reward exponent β = 10 and a normalizing constant of 8.

2A = 22, as we still need a stop token for the GFlowNets agent.
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Figure 14: Molecule blocks for the sEH protein task. Figure adapted from Bengio et al. (2021)

E.4 HU4D5 CDR H3 MUTATION GENERATION TASK

Following Frey et al. (2023), we consider the task of generating CDR3 10-length mutations on a
hu4D5 antibody mutant dataset. The dataset contains both non-binder and binder sequences. We
train a discriminator model on the binding likelihood of a sequence and then compare the starting
points for making sequences that improve both the binding likelihood and the diversity shown by the
pairwise edit distance of the new sequences.

Archtecture The architecture of different baselines follows the baselines of the previously discussed
tasks. We use a 35-layer Bytenet architecture with a hidden layer of 128 for the discriminator model.
This is followed by a 3-layer 1D-CNN and a 3-layer MLP, with leakyReLU activations added between
the layers. We train the model on the hu4D5 antibody mutant dataset, which achieves 85% accuracy
on the test set.

E.5 TFBIND8 TASK

For this task, the goal is to generate an 8-length DNA sequence that maximizes the binding activity
score with a particular transcription factor SIX6REFR1 (Barrera et al., 2016). We use a precalculated
oracle for the proxy reward calculation. Using a PA-MDP, we prepend or append a neucleotide in
each step. Note that this formulation reduces the trajectory length significantly despite our effort to
showcase better performance in long trajectories, but we use it following previous works.

Architecture Following Shen et al. (2023), the GFlowNets architecture uses a 2-layer MLP with
128-dimension hidden layer parameterizing SSR (S,S ′ → R+). For each training step, we train on
both online and offline trajectories for three steps, using a minibatch of 32. Besides, we use a learning
rate of 10−4 for policy and 0.01 for Zθ. Finally, we use a reward exponent β = 3 and an exploration
probability of 0.01 (we do not use any exploration for EGFN).

E.6 QM9 TASK

The goal here is to generate diverse molecules based on the QM9 data (Ramakrishnan et al., 2014)
that maximize the HOMO-LUMO. To that end, we use the reward proxy that Jain et al. (2023b)
provides based on Zhang et al. (2020). Similar to the sEH task, we generate molecules with atoms
and bonds. The blocks used here are the following: C, 0, N, C-F, C=0, C#C, c1ccccc1,
C1CCCCC1, C1CCNC1, CCC.

Architecture Using a PA-MDP, we use a 2-layer MLP with 1024 hidden dimensions for flow
estimation. The reward proxy is a MXMNet proxy trained on the QM9 data. We use a reward
exponent β = 1. The learning rate and training style follow the ones used for the TFBind8 task, with
the exception of exploration probability (0.1 here) and hidden dimension (1024 here).

We detail the summary of the training hyperparameters in table 4.
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Table 4: Summary of the hyperparameters for all experiments

Hypergrid/Antibody/CDR3 sEH Small Molecules TFBind8 QM9

Learning Rate 10−4 (FM), 10−3 5× 10−4 10−4 10−4

Zθ Learning Rate 0.1 N/A 0.01 0.01
β 1 10 3 1

MDP Enumerate Sequence Insert PA-MDP PA-MDP
Exploration ϵ (none for EGFN) 0 0 0.01 0.1

Replay Buffer Training 50% 0 (20% for egfn) 50% 50%
MLP layers 3 3 2 2

MLP hidden dimensions 256 256 128 1024

F ADDITIONAL ABLATION EXPERIMENTS

F.1 NUMBER OF POPULATION

To investigate the effect of population size, we vary the k ∈ {5, 10, 15}, while keeping ϵ = 0.2, D =
5, H = 20, R0 = 10−5. We plot the results of the experiment in Figure 15. It shows that increasing
k beyond 10 leads to diminishing returns, motivating our choice of k = 10 for all the experiments.
For DB, however, increasing k leads to considerable improvement. Indeed, this is useful because
increased population size leads to more evaluation round required. While these evaluation round can
be parallelized with threads as we do in our work, massive population size requirement is difficult to
satisfy.

Figure 15: Experimental results for the hypergrid task for EGFN among different values of k across the three
training objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom:
the number of discovered modes across the training process. Here, H = 20, D = 5. The results show that
increasing population size leads to diminishing returns.

F.2 ELITE POPULATION

Following ablation on k, we next perform ablation on the elite population ratio, ϵ ∈ {0.2, 0.4, 0.6}.
For this experiment, we use the same hypergrid settings for k = 10. We plot the results of the
experiment in Figure 16. It shows that low ϵ improves mode discovery, especially for FM and
TB objectives. This result is reasonable: we apply mutation and crossover only to the non-elite
population, so having a low number of elite population means we have a better chance at exploring
using the non-elite population’s mutation and crossover.

F.3 REPLAY BUFFER SIZE

To understand the effect of replay buffer size, we run GFlowNets baseline with PRB and EGFN on a
20x20x20x20x20 environment with R0 = 10−5 for replay buffer size ∈ {1000, 5000, 10000}. We
present the findings in Figure 17. From the figure, we see that increasing buffer size generally has
little effect for GFlowNets, but it improves EGFN’s robustness a little.
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Figure 16: Experimental results for the hypergrid task for EGFN among different values of ϵ across the three
training objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom:
the number of discovered modes across the training process. Here, H = 20, D = 5. We observe that lower ϵ
leads to better results for FM and TB.

Figure 17: Experimental results for the hypergrid task between GFlowNets and EGFN across different values of
|D|. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the number
of discovered modes across the training process. Here, we use DB for H = 20, D = 5. The results show that
while increasing replay buffer size improves the robustness of the result, it has little effect otherwise.

F.4 MUTATION STRENGTH

We now turn our attention to the mutation. To observe the effect of the mutation strength γ, we
run the hypergrid experiment for the three training objectives using EGFN for γ ∈ {1, 5, 10}. The
hypergrid configurations follow the the same configurations as before. We plot the mode discovery
and ℓ1 error between the learned distribution density and the true target density over 2500 training
steps in Figure 18. While the results indicate that having a higher γ leads to better result for DB, the
improvement is not extraordinary. Besides, in our work, we experience training instability for higher
γ. Thus, we restrict γ to be 1 throughout in our work.

Figure 18: Experimental results for the hypergrid task for EGFN among different values of γ across the three
training objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom:
the number of discovered modes across the training process. Here, H = 20, D = 5. We observe that lower γ
leads to better results for FM and TB, while higher γ leads to better results for DB.
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F.5 PRIORITY PERCENTILE

Figure 19: Experimental results for the hypergrid task for EGFN among different percentiles of priority samples
for the TB objective. Throughout the experiment, we keep a 50-50 split between the priority and non-priority
samples. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the
number of discovered modes across the training process. Here, H = 20, D = 5. We observe that higher
percentile priority samples lead to better results for TB.

PRB is an important component of our EGFN setup. Therefore, an important question is how
the definition of priority samples stored in the replay buffer affects the results. To answer this
question, we run the hypergrid experiment in the hardest setting while changing the priority percentile
∈ {50, 70, 90} controlling the sampling split, i.e., while sampling offline trajectories from the PRB,
50% of them come from the priority samples and the rest come from the non-priority samples. Figure
20 shows the results. It indicates that having high-reward priority samples stored in the replay buffer
benefits the training in terms of mode discovery, but there is little improvement in distribution fitting.

F.6 PRIORITY SPLIT

Figure 20: Experimental results for the hypergrid task for EGFN among different splits of priority sampling for
the TB objective. Throughout the experiment, we used 90 percentile samples as priority samples. Top: the ℓ1
error between the learned distribution density and the true target density. Bottom: the number of discovered
modes across the training process. Here, H = 20, D = 5. We observe that having a high priority-non-priority
split leads to better results for TB.

Finally, a decision just as important as the priority percentile is the sampling ratio between the priority
and non-priority offline trajectories. This time, we keep the priority percentile fixed at 90%, while
changing the priority to non-priority ratio splits between {20, 50, 80}. We run an experiment similar
to the previous experiments with the aforementioned setting and report the results in Figure 20. The
results clearly demonstrate that, despite their collection from a small subset of states, sampling more
from the priority samples is beneficial for both mode discovery and distribution fitting.
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G BASELINES

MARS. MArkov moleculaR Sampling method (MARS) is a multi-objective molecular design
method that define a Markov chain over the explicit molecular graph space and design a kernel to
navigate high probable candidates with acceptance-rejection sampling.

GAFN. Generative Augmented Flow Networks (GAFN) is a GFlowNets variant that aims to address
the exploration challenge of GFlowNets by enabling intermediate rewards in GFlowNets and thus
intrinsic rewards.

SAC. Soft Actor-Critic (SAC) is an off-policy RL algorithm that maximizes a trade-off between
expected reward and entropy, encouraging diverse and stable exploration.

PPO. Proximal Policy Optimization (PPO) is a policy-gradient method that simplifies training by
constraining policy updates, ensuring stable and reliable improvement during optimization.

IQL. Implicit Q-Learning (IQL) is an offline reinforcement learning approach that effectively
extracts value-based policies by decoupling value estimation from policy improvement, achieving
stable learning from static datasets.

H ADDITIONAL ANALYSIS

Long time horzion results with reward evalutations. To understand the sample complexity of
EGFN in comparison to GFlowNets, we plot the results for long time horizon task against the number
of R(x) calls for the default hyperparameters in this paper. We see that EGFN captures the R(x)
distribution better than GFlowNets with comparable trajectory evaluations.

Figure 21: Experimental results comparison for the hypergrid task between EGFN and GFlowNets across
increasing dimensions for 2500 training steps. The results shows that for similar amount of evaluation calls,
EGFN performs better than GFlowNets with increasing difficulty.

Population performances against the star agent. To understand the contribution of the population
during the training of the star agent, we plot the performances of the population and the star agent of
EGFN while training in an increasingly complex environment. For fair comparison, we choose mean
fitness for the population (K= 4) and top 10% reward for the star agent as a performance metric, as it
is trained on a GFlowNets loss. The results in Figure 22 show that the population are more resistant
to the increasing difficulty, which ultimately drives the PRB samples, improving GFlowNets training.
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Figure 22: Comparing the star agent and population on increasing dimensions for 2500 training steps. For star
agent, we report the top 10% reward, and for population, we report the mean reward.

I ADDITIONAL ALGORITHMS

I.1 CROSSOVER

Algorithm 3 Crossover step
Data: Agent weights θPF1

, θPF2

Result: Crossover between agent weights
Procedure CROSSOVER(θPF1

, θPF2
)

for weights w1, w2 in θPF1
, θPF2

do
N = NUM_ROW(w1)

num_mutations ∼ U(N)
for count = 1 to num_mutations do

index ∼ U(N)
if r() < 0.5 then

w1[index] = w2[index]

else
w2[index] = w1[index]
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