
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATE-THEN-TEST: AUTOMATED TEST CASE
GENERATION FOR WEBASSEMBLY USING LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The reliability and security of WebAssembly (Wasm) binaries are crucial for mod-
ern web development, yet effective testing methodologies remain undeveloped.
This paper addresses the gap in Wasm binary testing by proposing a novel ap-
proach for test cases generation, leveraging Large Language Models (LLMs) to
enhance test coverage and bug detection. Traditional testing approaches typically
require access to source code, which is often unavailable for Wasm binaries. Our
generate-then-test methodology overcomes this limitation by generating equiva-
lent C++ code to simulate expected Wasm behavior, creating and mutating test
cases in C++, and compiling these tests to evaluate them against the Wasm bi-
nary. Key contributions include automated test case generation using LLMs and
improved code coverage through type-aware mutations, with comprehensive eval-
uation demonstrating the effectiveness of our approach in detecting subtle bugs in
Wasm binaries, thereby ensuring more reliable Wasm applications.

1 INTRODUCTION

WebAssembly (Wasm) is a low-level, portable bytecode language designed for high-performance
computations, providing near-native execution speeds and extensive cross-platform compatibility.
Initially developed for web applications (Haas et al., 2017), Wasm is now supported by all major
browsers, including Chrome, Firefox, Safari, and Edge (McConnell, 2017). Its use has since ex-
panded to various domains, including mobile devices (Pop et al., 2022), smart contracts (McCallum,
2019), blockchains (Bian et al., 2019; Protzenko et al., 2019), and the Internet of Things (Gur-
deep Singh & Scholliers, 2019; Liu et al., 2021).

With its increasing adoption, the demand for in-depth analysis and testing of Wasm has become
increasingly critical. While Wasm is commonly used for legitimate applications, it has also been
exploited for malicious purposes, such as cryptojacking, where Wasm code is covertly executed in
browsers to mine cryptocurrencies (Konoth et al., 2018; Kharraz et al., 2019; Musch et al., 2019b;
Romano et al., 2020), highlighting the importance of thoroughly understanding Wasm. As a com-
pilation target for high-level languages such as C, C++, Go, and Rust, Wasm presents unique chal-
lenges, particularly when distributed as third-party modules without access to the original high-level
source code (Musch et al., 2019a; Romano & Wang, 2023). These challenges are further exacerbated
by the fact that 28.8% of Wasm binaries are minified (Hilbig et al., 2021), often with obfuscated
variable names and potentially flaky test suites (Liu et al., 2024b), making interpretation and testing
more difficult. These issues underscore the urgent need for developing robust test suites to ensure
WebAssembly modules are both benign and functionally correct.

Despite Wasm’s growing significance in modern web development, effective testing methods re-
main underdeveloped. A key challenge in testing Wasm binaries is the lack of access to original
source code and corresponding test cases, which renders traditional testing approaches that depend
on source code availability not applicable (Pacheco et al., 2007; Choi et al., 2019; Han et al., 2019;
Watson et al., 2020). This calls for an automated solution capable of generating relevant test cases
to validate the functionality of Wasm binaries without relying on the original source code.

This paper addresses the gap in Wasm binary testing by proposing a novel approach for test case
generation, leveraging Large Language Models (LLMs) to improve test coverage and bug detection.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The core of our approach lies in a generate-then-test methodology, inspired by Yu et al. (2022),
designed to evaluate the functionality and correctness of WebAssembly binaries. We begin by gen-
erating functionally equivalent C++ code based on a high-level understanding of the Wasm binary’s
intended functionality. This step allows us to leverage the extensive toolsets and debugging capa-
bilities available for C++, facilitating more robust and efficient testing. Moreover, using C++ as an
intermediate representation streamlines test case generation and mutation, ultimately leading to a
more comprehensive evaluation of the Wasm binary. This generated C++ code serves as the founda-
tion for crafting initial test cases, covering various aspects of the binary’s functionality. To improve
test coverage, we apply type-aware mutations to refine these initial tests, producing diverse inputs
to uncover edge cases and potential bugs. Finally, these mutated test cases are compiled with the
original Wasm binary to verify its behavior across all scenarios. This approach is implemented in
our tool, WasmTest, which automates test generation and validation for Wasm binaries.

In summary, our work makes the following contributions:

• Automated Test Case Generation: We leverage LLMs to automate the generation of in-
termediate C++ code and test cases from high-level descriptions of Wasm functionalities.

• Enhanced Code Coverage: Our type-aware mutation strategy significantly enhances test
case diversity and coverage, enabling the detection of subtle bugs in Wasm binaries.

• Evaluation and Validation: We demonstrate the effectiveness of WasmTest through met-
rics such as compile rate, code coverage, test correctness, and bug detection rate.

2 RELATED WORKS

2.1 WEBASSEMBLY INTERPRETATION

In the realm of WebAssembly understanding, significant efforts have been made towards recover-
ing data and function types, generating function summaries, and decompiling Wasm to high-level
programming languages. For example, Lehmann & Pradel (2022) leveraged LSTM to recover high-
level input parameters and return data types for Wasm functions. Romano & Wang (2023) devel-
oped semantics-aware intermediate representations for Wasm functions and trained effective ma-
chine learning classifiers to predict module and function purposes. Huang & Zhao (2024) pretrained
a BERT language model for WebAssembly on a multi-modal corpus of C/C++ source code, natural
language documentation and corresponding WebAssembly, achieving boosted performance on type
recovery and code summarization. Furthermore, efforts to decompile Wasm into high-level C/C++
snippets have incorporated fine-tuning or symbolic program analysis into LLMs (She et al., 2024;
Fang et al., 2024). Despite these advances, no prior work has focused on automatically generating
software tests for WebAssembly, making our approach as the first to address this need.

There are several fuzzing tools that generate valid, randomized WebAssembly binaries to test run-
times or tools. Wasm-smith (Nick Fitzgerald, Alex Crichton, 2024) focuses on creating fuzzed mod-
ules for testing the robustness of runtimes, validators, or parsers; Wasm-mutate (Cabrera-Arteaga
et al., 2024; Arteaga et al., 2022) mutates Wasm programs to produce semantically equivalent vari-
ants for fuzzing compilers; and Wasm-maker (Cao et al., 2024) performs differential testing of
runtimes with syntactically and semantically rich binaries. These works target the infrastructure
around Wasm, while our approach, WasmTest, directly generates test cases for Wasm code to verify
its functionality and ensure it is bug-free.

2.2 LLMS FOR CODE

Recent progress in LLMs, particularly code-specific models like CodeLlama (Rozière et al., 2023),
have demonstrated their remarkable proficiency in handling code-related tasks (Hou et al., 2023; Fan
et al., 2023). Their ability to grasp intricate semantics and structural nuances makes them highly ef-
fective in tasks requiring deep insights into program semantics and structures. These advancements
have opened new possibilities for the automated generation of test suites for code snippets. Recently,
LLMs have shown strong performance in binary or assembly-level code reverse engineering (Pearce
et al., 2022; Xu et al., 2023; Wong et al., 2023; Al-Kaswan et al., 2023; She et al., 2024; Fang et al.,
2024). Our work builds on these advancements by applying LLMs to generate comprehensive, se-
mantically meaningful test inputs for Wasm binaries.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Researchers have also integrated LLMs with traditional test generation techniques to enhance auto-
mated testing. CODAMOSA (Lemieux et al., 2023) uses LLMs to generate inputs when traditional
fuzzing stalls; ChatUniTest (Xie et al., 2023) refines Java test cases iteratively; MuTAP (Dakhel
et al., 2024) generates targeted tests with intentionally created program errors; TitanFuzz (Deng
et al., 2023a) and FuzzGPT (Deng et al., 2023b) specialize in creating inputs for deep learning li-
braries; and Fuzz4All (Xia et al., 2024) provides a generic framework for generating tests across
programming languages using documentation or specifications.

2.3 AUTOMATED TEST GENERATION

Automated test generation is a widely-used approach for identifying software bugs. Black-box
testing, such as fuzz testing (Miller et al., 1990; Woo et al., 2013), feeds random inputs to the
system under test (SUT) or function under test (FUT) without accessing its source code (Nidhra &
Dondeti, 2012; Woo et al., 2013). In contrast, white-box testing analyzes the source code to produce
higher-quality test cases (Pacheco et al., 2007; Nidhra & Dondeti, 2012). For example, symbolic
execution (King, 1976) overcomes coverage limitations by solving symbolic path constraints to
generate tests that explore deeper paths. Coverage-guided fuzzing (Serebryany, 2016), or grey-box
testing, strikes a balance by using coverage information from the SUT to refine input generation
and mutation. Recently, LLMs have been used to generate semantically meaningful test inputs for
problems coded in dynamically-typed languages when traditional approaches fail (Liu et al., 2024a).
Our work focuses on directly generating tests for binary-level languages like WebAssembly, using
LLMs to create high-quality, semantically rich test inputs (i.e., white-box), which are then scaled to
a larger amount through type-aware mutation (i.e., black-box).

3 METHODOLOGY

Figure 1 provides an overview of WasmTest, which takes as input a Wasm snippet, its intended
functionality summary, and optionally example tests. WasmTest begins by constructing a prompt to
generate multiple functionally equivalent C++ implementations filtered by the example tests and a
majority-voting approach. Then, WasmTest utilizes LLMs and the validated C++ implementations to
generate seed test cases. To enhance test coverage, type-aware mutations are applied to the seed tests,
modifying input values while preserving their types to explore edge cases. Afterward, WasmTest
compiles the C++ test cases with the original Wasm code and evaluates them in a WebAssembly
runtime. Finally, metrics are reported to evaluate the effectiveness of the generated tests.

Figure 1: Overview of WasmTest.

Figure 2 is a running example of WasmTest. Wasm code summary (with example usage tests)
(Figure 2a) and Wasm code under test (Figure 2b) are the inputs to the pipeline. This Wasm code
is intended to remove elements from the first list that are present in the second list. Based on the
summary, we first prompt the LLM to generate a few functionally equivalent C++ code samples

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 / Write a function removeElements to remove
all elements from a given list present
in another list.

↪→
↪→

2 /**
3 * In: {1, 2, 3, 4, 5, 6, 7}, {2, 4, 6}
4 * Out: {1, 3, 5, 7}
5 */

(a) Wasm code summary.

1 (func $removeElements (type 2) (param i32
i32 i32)↪→

2 (local i32 i32 i32 i32 i32 i32)
3 local.get 0
4 i32.const 0
5 i32.store offset=8
6 (;...;)
7 loop ;; label = @1
8 (;...;)
9 end)

(b) Wasm code under test.

1 vector<int> removeElements(vector<int> list1,
vector<int> list2) {↪→

2 vector<int> result;
3 for(int i=0; i<list1.size(); i++){
4 if(find(list2.begin(), list2.end(),

list1[i]) == list2.end())↪→
5 result.push_back(list1[i]);
6 }
7 return result;
8 }

(c) Function code generated by Codeqwen1.5-7B.

1 vector<int> l1 = {1, 2, 3, 4, 5, 6, 7, 8, 9,
10};↪→

2 vector<int> l2 = {5, 7};
3 vector<int> new_3 = {1, 2, 3, 4, 6, 8, 9, 10};
4 assert((removeElements(l1, l2) == new_3));
5 // Mutated tests
6 vector<int> new_5 = {1, -8, 3, 4, 6, 8, 9, 10};
7 assert((removeElements(vector<int> {1, -8, 3,

4, 5, 6, 7, 8, 9, 10}, vector<int> {5, 5,
7}) == new_5));

↪→
↪→

(d) Generated tests after mutation and correction.

Figure 2: A running example of WasmTest.

(Figure 2c). Next, based on the correct implementations, we prompt the LLMs to generate high-
quality seed test cases (line 1-4 on Figure 2d). These seed tests are then mutated according to their
data types (line 5-7, highlighted on Figure 2d) and corrected to ensure proper output. Finally, we
compile the tests in C++ with the original Wasm code (Figure 2b) and run dynamic analysis to
collect test coverage and bug detection statistics.

3.1 GENERATING FUNCTIONALLY EQUIVALENT C++ CODE.

The first step in WasmTest is generating C++ code that accurately represents the Wasm binary’s
high-level functionality. This step is critical as it enables the use of C++’s extensive toolsets and
debugging capabilities, thereby enhancing the robustness of correctness validation. The input to this
process is a natural language description of the Wasm snippet’s functionality, which can be pro-
vided directly or derived through summarization and decompilation techniques (Fang et al., 2024;
She et al., 2024; Huang & Zhao, 2024). WasmTest constructs a code generation prompt by com-
bining few-shot demonstration examples with the functionality summary and feeds it into a LLM.
The LLM generates multiple C++ implementations, which are then validated using example tests.
Additionally, a majority-voting filtering step is employed, where an implementation is considered
correct only if it produces the same output as more than half of the other generated implementations
for the given use cases. Only those implementations deemed correct proceed to the next phase.

3.2 GENERATING SEED C++ TEST CASES

After generating the correct C++ implementations, WasmTest proceeds to create seed test cases.
We restrict the LLMs to generating test inputs only, excluding their suggested expected outputs
due to observed inconsistencies in their output values. To address this limitation, WasmTest runs
these LLM-generated inputs through the validated C++ implementations (as discussed in Section
3.1) to compute the correct expected outputs. This guarantees that the tests faithfully reflect the
code’s actual behavior. By taking this approach, WasmTest capitalizes on the LLM’s strengths in
generating high-quality test inputs, while mitigating potential inaccuracies in its output generation.

3.3 TYPE-AWARE MUTATION OF C++ TEST CASES

To further enhance test coverage, WasmTest applies type-aware mutations to the seed test cases,
generating a wider array of inputs that can reveal edge cases and potential bugs. This type-aware
mutation strategy, guided by Liu et al. (2024a), systematically alters test inputs based on the data
types involved in the Wasm snippet. The mutation rules, listed in Table 1, are governed by the
types and structures defined in the code summary and the C++ implementations. For example, if the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: List of basic type-aware mutations over input x.

Type Mutation Type Mutation

int/float Returns x± randint(−10, 10) List Remove/repeat a random item x[i]
Insert/replace x[i] with Mutate(x[i])

bool Returns a random boolean Tuple Returns Tuple(Mutate(List(x)))

NoneType Returns None Set Returns Set(Mutate(List(x)))

str Remove a sub-string s Dict Remove a key-value pair k → v
Repeat a sub-string s Update k → v to k → Mutate(v)
Replace s with Mutate(s) Insert Mutate(k) → Mutate(v)

Table 2: Data statistics for HumanEval-X and MBXP benchmarks from Zan et al. (2023).

Benchmark Num. Working Num. S. PL T/N. W/C. W/L. S/C. S/L.

HumanEval-X (2023) 164 161 C++ 7.8 6784.9 295.2 252.5 10.4
MBXP (2022) 974 773 C++ 3.1 6063.9 160.1 192.9 9.2

input is a string, mutations may introduce variations such as altering string lengths, adding special
characters, or changing case sensitivity. Similar to Section 3.2, these mutated test cases are passed to
the validated C++ implementations to ensure the validity of the tests. These mutations ensure that the
generated test cases probe deeper into the logic of the Wasm code, uncovering flaws missed by initial
seed tests. As LLM-generated tests may come in different forms, our mutation can handle the all
types of assertion tests observed across models, including direct function call (isPrime(n) ==
true), container elements test (v[0] == 10), variable comparison (result == expected),
and assertions joined by the logical AND (a == 1 && b == 2).

3.4 COMPILING C++ TESTS TO WASM FOR TEST EXECUTION

With a comprehensive set of C++ tests ready, WasmTest compiles these tests using Emscripten,
enabling test execution against the original Wasm snippet in a WebAssembly runtime. To gauge
the test suite’s thoroughness, WasmTest reports C++ and WebAssembly code coverage, with high
coverage across both languages indicating thorough testing of the code’s functionality.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

When selecting evaluation datasets, two key factors guide our decision. First, the datasets must
be compilable to WebAssembly. Second, they must include natural language descriptions. To meet
these criteria, we utilize two code benchmark datasets. Each dataset sample provides example usage,
which we convert into example tests, and a corresponding natural language task description, making
them well-suited for our evaluation.

HumanEval-X HumanEval-X (Zheng et al., 2023) is a widely adopted Natural Language to Code
(NL2Code) dataset which has a split in C++. It is an adaptation of the HumanEval (Chen et al.,
2021) dataset, which is curated by human experts, therefore reducing the risk of data contamination.

MBXP MBXP (Athiwaratkun et al., 2023) is another NL2Code dataset that includes a C++
split. It is generated using a parsing-based conversion framework that converts Python snippets
in MBPP (Austin et al., 2021) to C++.

Detailed dataset statistics are presented in Table 2, which outlines key metrics including the number
of instances (Num.), the number of instances that successfully compile to WebAssembly (Working
Num.), the solution’s programming language (S.PL), the average number of test cases per function
(T.N.), and metrics that capture the average number of characters and lines for compiled WebAssem-
bly Text (WAT) files (W.C., W.L.), as well as canonical solutions (S.C., S.L.).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The models that we focus on are listed in Table 3. We include 7 open-source LLMs. The models
include both general-purpose LLMs and code-specific LLMs, with sizes ranging from 3 to 16 billion
parameters. We evaluate WasmTest by integrating 7 LLMs into the testing pipeline, utilizing default
settings with 0.8 temperature and generating three samples for each task. We implement LLM
inference with vLLM (Kwon et al., 2023) and PyTorch 2.2.1 (cuda 12.1). We deploy them onto a
server with an AMD EPYC Milan 7643 48-Core CPU@2.30GHz, 1TB RAM, and an NVIDIA L40
ADA 48GB GPU.

Table 3: Large language models used.

Model Parameter Size Context Length

DeepSeek-Coder-V2-Lite-Instruct (Zhu et al., 2024) 16B 128k
DeepSeek-Coder-Instruct-v1.5 (Guo et al., 2024) 7B 4k
Starcoder2 (Lozhkov et al., 2024) 3B,7B 16k
CodeQwen1.5-Chat (Bai et al., 2023) 7B 64k
Qwen1.5-Chat (Bai et al., 2023) 14B 32k
Meta-Llama-3-Instruct (AI@Meta, 2024) 8B 8k

4.2 EVALUATION METRICS

Compile Rate. We measure the percentage of generated test cases that successfully compile with
both the original C++ and WebAssembly code under test. For C++ compilation, we use GCC with
the -std=c++17 flag to compile the tests alongside the function code. For WebAssembly, we
use Emscripten with the -sMAIN MODULE=1 flag, compiling the test cases as the main module,
aligning function name, and linking them to the WebAssembly code. We report the percentages of
successfully compiled test cases in C++ (% C++ Compile) and WebAssembly (% Wasm Compile).

Code Coverage. Code coverage, also referred to as test coverage, is a metric that measures how
much of a program’s source code is executed during testing. Higher code coverage generally sug-
gests a lower likelihood of undetected software bugs. We measure two types of coverage: C++
code coverage and WebAssembly code coverage. For C++ code coverage, we use Gcov (Project,
2024), which can be used in conjunction with GCC to measure how frequently each line of code
is executed and identify which lines are actually covered during testing. For WebAssembly, we
use Wasabi (Lehmann & Pradel, 2019), a dynamic analysis tool for WebAssembly based on binary
instrumentation. Wasabi inserts additional WebAssembly code between the program’s original in-
structions to call into JavaScript-based analysis functions. We implement these analysis functions
as hooks to perform operations whenever a particular instruction is executed. To obtain instruction
coverage, we record the location of each executed instruction.

Pass Rate. Pass rate measures the percentage of generated tests that run successfully with function
under test without errors. A higher pass rate indicates that the generated test cases align with the ex-
pected functionality. Our assumption is that if the Wasm binary under test is correctly implemented,
all generated tests should pass, which indicate that the test inputs are valid, the expected outputs are
correct, and the tests compile successfully with the original Wasm binary.

Bug Detection Rate. Achieving high coverage does not necessarily mean that bugs will be detected.
To address this, we evaluate the effectiveness of our generated tests in detecting bugs within a subset
of buggy implementations. A higher bug detection rate suggests that the generated test cases are
comprehensive and robust in identifying incorrect code. In addition to evaluating existing buggy
code, we also apply mutation testing to randomly selected evaluation data, manually inserting bugs
into the code. Mutation testing (Budd, 1980) is considered as a more precise assessment of test qual-
ity than code coverage alone (Petrović & Ivanković, 2018). This process creates multiple artificial
buggy versions of the program, called a mutant, each containing one deliberately inserted, subtle
error. The test suite’s quality is measured by the number of mutants it can detect, a process known
as “killing” the mutants. In line with previous works (Shi et al., 2014; Liu et al., 2024a), we use the
percentage of mutants killed as a key metric for evaluating bug detection rate.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Compile and pass rates with coverage metrics.

Model % C++ Compile % Wasm Compile C++ Coverage Wasm Coverage Pass

HumanEval-X
DeepSeek-Coder-V2 89.1% 89.1% 99.4% 94.6% 78.1%
DeepSeek-Coder-v1.5 85.2% 85.2% 99.4% 95.2% 80.3%
Starcoder2-3B 81.7% 81.7% 98.7% 94.6% 72.9%
Starcoder2-7B 91.4% 91.4% 99.2% 94.8% 85.5%
CodeQwen1.5-Chat 86.4% 86.4% 99.3% 95.2% 76.5%
Qwen1.5-Chat-14B 49.2% 49.2% 99.4% 96.4% 47.2%
Meta-Llama-3 88.9% 88.9% 99.1% 93.4% 81.7%

MBXP
DeepSeek-Coder-V2 84.8% 84.8% 99.6% 96.6% 39.6%
DeepSeek-Coder-v1.5 81.4% 81.4% 89.5% 93.5% 45.1%
Starcoder2-3B 72.2% 72.2% 92.2% 96.9% 62.3%
Starcoder2-7B 80.5% 80.5% 93.7% 96.6% 61.7%
CodeQwen1.5-Chat 87.6% 87.6% 89.6% 91.3% 50.0%
Qwen1.5-Chat-14B 68.2% 68.0% 90.6% 91.4% 39.2%
Meta-Llama-3 90.3% 90.3% 88.9% 95.5% 57.4%

5 ANALYSIS

• RQ1 (Generation of Compilable Tests): What is the success rate of WasmTest in gen-
erating C++ functions that pass provided example tests and in producing compilable test
cases across various evaluation tasks?

• RQ2 (Test Coverage and Correctness): For test cases generated by WasmTest, how com-
prehensive is their code coverage, and do they produce accurate test outputs?

• RQ3 (Ablation on Mutation): How does type-aware mutation affect code coverage and
compile rate metrics?

• RQ4 (Bug Detection): How does WasmTest improve the detection of subtle and complex
bugs in WebAssembly binaries?

• RQ5 (Accuracy of Test Case Prediction): To what extent can a LLM accurately predict
test outputs during the initial generation of test cases before any correction is applied?

5.1 RQ1: GENERATION OF COMPILABLE TESTS

In this research question, we evaluate WasmTest’s ability to generate compilable C++ functions and
test cases across evaluation tasks, using the performance of various LLMs. Figure 3 shows the valid
file counts that were successfully generated and compiled at each task stage for each model.

In Figure 3, # Tasks represents the number of WebAssembly binaries under test. WasmTest first
generates equivalent C++ function code samples (Section 3.1). The Function Generation phase
counts tasks where at least one generated function sample passes example tests. Subsequently, LLMs
generate seed test cases (Section 3.2), which undergo type-aware mutation and output correction
(Section 3.3). The Test Generation phase indicates the number of tasks yielding a full suite of test
cases. Finally, WasmTest compiles the generated test cases with the original code to keep those that
are C++ Compilable and Wasm Compilable.

Correctness of Generated C++ Function Code: The decline in valid tasks during the Function
Generation phase illustrates initial challenges in producing syntactically correct C++ code. As il-
lustrated in Figure 3, model performance varies significantly. Models, such as DeepSeek-Coder and
CodeQwen, achieve a compile and pass rate of approximately 79.6%, demonstrating their ability
to translate functionality summaries into accurate, executable code. In contrast, some LLMs show
sharp declines, indicating challenges in generating correct implementations from functionality sum-
maries. Qwen1.5-14B showed the lowest performance on HumanEval-X, with a 36.7% compile and
pass rate. StarCoder2-7B achieves just 24.6% rate on MBXP dataset.

Compilability of Generated Test Cases: The subsequent decline during the Test Generation to
C++ Compilable transition is less steep but still notable, with an average failure rate of 18.8% across

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Number of successful, compilable generation through each stage of the WasmTest pipeline.

models. DeepSeek-Coder-V2-16B exhibits relatively better resilience in this transition, maintaining
an average success rate of 87.0% across the two datasets, indicative of superior C++ syntax and
semantics comprehension. In contrast, models like Qwen1.5-14B and StarCoder2-3B demonstrate
significant drop-offs in this stage, where around only 77.0% and 58.7% of tasks succeed.

This analysis highlights the differing capabilities of the models in handling the complexity of gen-
erating functionally equivalent and compilable code and tests. Three models stand out in this re-
gard: DeepSeek-Coder-v1.5-7B, DeepSeek-Coder-V2-16B, and CodeQwen1.5-7B. They consis-
tently show fewer declines through stages compared to others, suggesting that certain models are
better equipped to handle the nuances of both C++ and WebAssembly environments.

5.2 RQ2: TEST COVERAGE AND CORRECTNESS

This research question delves into the effectiveness of WasmTest-generated test cases, focusing on
their coverage and correctness. We assess this by analyzing code coverage and pass rates from com-
pilable test cases as detailed in Table 4. These metrics provide insights into how comprehensively
the test cases exercise the code and their accuracy in validating the functionality as intended.

Comprehensive Code Coverage: Table 4 details the code coverage metrics for both C++ and
Wasm. Overall, all models exhibit high coverage percentages, with most exceeding 90% in both en-
vironments. Notably, DeepSeek-Coder-V2 achieves nearly complete coverage on the HumanEval-X
dataset, with 99.4% in C++ and 94.6% in Wasm, suggesting a robust capability to cover a wide
range of code functionalities and edge cases. However, variations exist across datasets and mod-
els; for instance, Meta-Llama-3 shows slightly lower C++ coverage on the MBXP dataset (88.9%).
Comparing C++ coverage with Wasm coverage, we see a high consistency across datasets and mod-
els, with the majority differ within 5%. Most code coverage metrics exceed 90%, indicating that
WasmTest-generated test cases perform equally well in both C++ and Wasm environments.

Pass Rate Analysis: The pass rate is crucial for assessing the correctness of the generated test
cases, where a high pass rate indicates that the generated tests not only compile but also execute suc-
cessfully, confirming alignment with expected functional outcomes. In the HumanEval-X dataset,
Starcoder2-7B and Meta-Llama-3 stand out with 85.5% and 81.7% pass rate, respectively, indicat-
ing a high level of correctness in test execution. In contrast, Qwen1.5-Chat-14B exhibits challenges,
with only 47.2% of tests passing, potentially indicating issues in function implementation and inac-
curacy in test output generation. The pass rates are notably lower across all models on the MBXP
dataset. This is partly because some function canonical solutions are incorrect with bugs, thus lead-
ing to buggy Wasm binaries under test. This discrepancy motivates a deeper investigation into bug
detection, which is discussed in Section 5.4.

Overall, the analysis reveals that WasmTest can generate highly compilable test cases with high
code coverages and correctness across models. The high coverage rates across models suggest that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

WasmTest is capable of generating comprehensive test cases. However, the variability in pass rates
is notable. For example, Qwen1.5-Chat-14B have a significantly lower pass rate (47.2% and 39.2%
respectively), suggesting that these tests may not be accurate enough for downstream tasks like code
review and bug detection. This variance underscores the importance of careful model selection when
generating test cases for WebAssembly binaries in achieving effective test coverage and correctness.

5.3 RQ3: ABLATION ON MUTATION

Table 5: Compile rate and code coverage for pre-mutated test cases for HumanEval-X benchmark.

Model %Wasm Compile Wasm Coverage %C++ Compile C++ Coverage

DeepSeek-Coder-V2 90.6% (+1.5%) 91.4% (-3.2%) 93.0% (+3.9%) 97.3% (-2.1%)
DeepSeek-Coder-v1.5 89.1% (+3.9%) 91.0% (-4.2%) 91.4% (+6.2%) 94.4% (-5.0%)
Starcoder2-3B 83.1% (+1.4%) 90.6% (-4.0%) 87.3% (+5.6%) 93.6% (-5.1%)
Starcoder2-7B 95.1% (+3.7%) 88.9% (-5.8%) 97.5% (+6.1%) 95.2% (-4.0%)
CodeQwen1.5-Chat 88.8% (+2.4%) 92.6% (-2.6%) 91.2% (+4.8%) 97.0% (-2.3%)
Qwen1.5-Chat-14B 54.2% (+5.0%) 94.1% (-2.3%) 55.9% (+6.7%) 98.2% (-1.2%)
Meta-Llama-3 91.1% (+2.2%) 90.2% (-3.2%) 94.4% (+5.5%) 97.9% (-1.2%)

Table 5 presents the compile rates and code coverage metrics for pre-mutated test cases on
HumanEval-X, with differences between tests before and after mutation indicated in parentheses.
We observe an around 4% decrease in code coverage for pre-mutated tests across models, while
the compile rate improves by approximately 5% for C++ and 3% for WebAssembly. This trade-off
suggests that while mutations enhance the breadth of code coverage, they may reduce the ability of
tests to compile successfully.

The compile rate drop is due to invalid input formats introduced by mutations, which sometimes
create edge cases the Wasm function cannot handle. For instance, mutating a non-empty array to
empty or inserting negative integers to a positive array may present challenges in the function’s
handling of edge inputs, leading to compilation errors. Since Wasm binaries operate at a low level,
verifying whether mutated inputs are compatible with the function becomes inherently challenging.
Still, the lower compile rate suggests the function could improve its handling of edge inputs.

Increased coverage indicates that mutations broaden the test scenarios, revealing hidden bugs and
verifying edge cases. As our evaluation dataset is relatively simple, the coverage gains may become
more significant for complex codebases. Depending on the code complexity and goals, WasmTest
can adjust mutation intensity to balance compile rates and coverage.

5.4 RQ4: BUG DETECTION

Table 6: Bug detection rates for generated test cases.

Model HumanEval-X MBXP

DeepSeek-Coder-V2 94.0% 98.7%
DeepSeek-Coder-v1.5 93.0% 98.3%
CodeQwen1.5-Chat 93.6% 94.4%

To investigate the effectiveness of WasmTest in detecting bugs in WebAssembly binaries, we have
identified a subset of the MBXP dataset known for containing incorrect implementations or bugs.
These code snippets, often synthesized by a code generation model, pass standard example tests but
frequently fail to meet the original functional objectives (Athiwaratkun et al., 2023). To further gen-
erate a rigorous testing environment, we artificially introduce bugs or logical errors into a random
set of code snippets in our evaluation set. Specifically, we manually crafted 20 buggy C++ imple-
mentations for HumanEval-X and 30 for MBXP. These implementations were then compiled into
WebAssembly binaries to evaluate WasmTest’s bug detection capabilities. During the creation of
these buggy C++ implementations, we took the perspective of novice programmers, introducing er-
rors such as edge case failures, misinterpretations of task requirements, and hard-coded responses to
potential test cases. These manually created bugs often led to deviations from the expected behavior

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

for specific inputs. We run the generated test cases by WasmTest to distinguish between correctly
implemented and buggy code, thereby assessing its capability to identify and handle complex bug
patterns. Section A.2 presents a case study that further demonstrates WasmTest’s effectiveness in
detecting subtle issues within these buggy implementations.

We report bug detection rates for the top three performant models in Section 5.1 in Table 6. Results
for the rest models are in Appendix A.1. The results highlight high bug detection rates through
the application of our generate-then-test pipeline, especially when combined with test case muta-
tion. DeepSeek-Coder-V2 shows exemplary performance with a bug detection rate of 98.7% on
the MBXP dataset, indicating a high efficacy in identifying complex bugs within WebAssembly
binaries. Similarly, DeepSeek-Coder-v1.5 and CodeQwen1.5-Chat exhibit strong bug detection ca-
pabilities, though with slightly lower effectiveness compared to DeepSeek-Coder-V2. The ability
of WasmTest to achieve high bug detection rates across different models sheds light on how it may
improve the reliability and security of WebAssembly binaries.

5.5 RQ5: ACCURACY OF TEST CASE PREDICTION

Table 7: Correct test output prediction rates.

Model HumanEval-X MBXP

DeepSeek-Coder-V2 40.9% 51.0%
DeepSeek-Coder-v1.5 38.3% 49.4%
Starcoder2-3B 41.6% 51.2%
Starcoder2-7B 38.3% 51.7%
CodeQwen1.5-Chat 37.5% 49.5%
Qwen1.5-Chat-14B 37.7% 50.4%
Meta-Llama-3 40.3% 51.2%

We evaluate the effectiveness of LLM-generated test cases without applying the correction process
described in Section 3.2. The “correct test output prediction rates” presented in Table 7, mea-
sures how often the outputs of LLM-generated test cases align with the expected outputs based on
the provided inputs without correction. We observe that the outputs generated by LLM are often
inaccurate. For instance, an LLM might generate assert(removeElements(l1, l2) ==
vector {1, 4, 9}) instead of the correct cases shown in Figure 2d, lines 1–4. Comparing Ta-
ble 7 with the pass rates in Table 4 shows that nearly half of the passing cases have incorrect outputs,
underscoring the importance of the correction process.

6 DISCUSSION

The generate-then-test approach leverages LLMs for automated test case generation for binary-level
code like WebAssembly, significantly improving test coverage and bug detection for WebAssembly
binaries. Despite these strengths, the mutation process introduces a slight reduction in compile rates,
suggesting that refinement of mutation strategies is possible to maintain a balance between test thor-
oughness and compile success. Additionally, WasmTest currently relies on C++ as an intermediate
language. When switched to other programming languages, this approach may be less applica-
ble, especially for some low-resource languages that are not commonly seen during LLM training.
Future work may aim to extend the methodology to support additional languages and evaluate its
effectiveness across a wider range of real-world Wasm applications to ensure broader applicability.

7 CONCLUSION

This paper presents WasmTest, a novel approach for robust testing of Wasm binaries. To address the
challenges of testing Wasm binaries without source code, WasmTest employs a generate-then-test
methodology that uses LLMs to automatically generate equivalent C++ code, create and mutate test
cases, and compile these tests for evaluation against the Wasm binary. Results show that WasmTest
is capable of generating comprehensive test cases and significantly enhances the detection of subtle
bugs, making it a valuable resource for developers and security analysts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premkumar Devanbu, and
Arie van Deursen. Extending source code pre-trained language models to summarise decompiled
binaries. In 2023 IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 260–271, 2023. doi: 10.1109/SANER56733.2023.00033.

Javier Cabrera Arteaga, Nicholas Fitzgerald, Martin Monperrus, and Benoit Baudry. Wasm-mutate:
Fuzzing webassembly compilers with e-graphs. In E-Graph Research, Applications, Practices,
and Human-factors Symposium, 2022.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta
Sengupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation models. In
The Eleventh International Conference on Learning Representations, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Weikang Bian, Wei Meng, and Yi Wang. Poster: Detecting webassembly-based cryptocurrency
mining. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2685–2687, 2019.

Timothy Alan Budd. Mutation analysis of program test data. Yale University, 1980.

Javier Cabrera-Arteaga, Nicholas Fitzgerald, Martin Monperrus, and Benoit Baudry. Wasm-mutate:
Fast and effective binary diversification for webassembly. Computers & Security, 139:103731,
2024.

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang. Wasmaker:
Differential testing of webassembly runtimes via semantic-aware binary generation. In Proceed-
ings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
1262–1273, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. Grey-box concolic testing on
binary code. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 736–747. IEEE, 2019.

Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and Michel C Des-
marais. Effective test generation using pre-trained large language models and mutation testing.
Information and Software Technology, 171:107468, 2024.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models.
In Proceedings of the 32nd ACM SIGSOFT international symposium on software testing and
analysis, pp. 423–435, 2023a.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Ling-
ming Zhang. Large language models are edge-case fuzzers: Testing deep learning libraries via
fuzzgpt. arXiv preprint arXiv:2304.02014, 2023b.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and
Jie M Zhang. Large language models for software engineering: Survey and open problems. arXiv
preprint arXiv:2310.03533, 2023.

Weike Fang, Zhejian Zhou, Junzhou He, and Weihang Wang. Stacksight: Unveiling webassembly
through large language models and neurosymbolic chain-of-thought decompilation. In Forty-first
International Conference on Machine Learning. PMLR, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Robbert Gurdeep Singh and Christophe Scholliers. Warduino: a dynamic webassembly virtual ma-
chine for programming microcontrollers. In Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes, pp. 27–36, 2019.

Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan Gohman,
Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with webassembly.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 185–200, 2017.

HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. Codealchemist: Semantics-aware code gen-
eration to find vulnerabilities in javascript engines. In NDSS, 2019.

Aaron Hilbig, Daniel Lehmann, and Michael Pradel. An empirical study of real-world webassembly
binaries: Security, languages, use cases. In Proceedings of the web conference 2021, pp. 2696–
2708, 2021.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. arXiv preprint arXiv:2308.10620, 2023.

Hanxian Huang and Jishen Zhao. Multi-modal learning for webassembly reverse engineering. arXiv
preprint arXiv:2404.03171, 2024.

Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew Miller, Nikita Borisov,
Manos Antonakakis, and Michael Bailey. Outguard: Detecting in-browser covert cryptocurrency
mining in the wild. In The World Wide Web Conference, WWW ’19, pp. 840–852, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366748.

James C King. Symbolic execution and program testing. Communications of the ACM, 19(7):
385–394, 1976.

Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina Lindorfer, Christopher
Kruegel, Herbert Bos, and Giovanni Vigna. Minesweeper: An in-depth look into drive-by cryp-
tocurrency mining and its defense. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pp. 1714–1730, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN 9781450356930.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically analyzing webassem-
bly. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 1045–1058, 2019.

Daniel Lehmann and Michael Pradel. Finding the dwarf: recovering precise types from webassem-
bly binaries. In Proceedings of the 43rd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pp. 410–425, 2022.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. Codamosa: Es-
caping coverage plateaus in test generation with pre-trained large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp. 919–931. IEEE,
2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024a.

Renju Liu, Luis Garcia, and Mani Srivastava. Aerogel: Lightweight access control framework for
webassembly-based bare-metal iot devices. In 2021 IEEE/ACM Symposium on Edge Computing
(SEC), pp. 94–105. IEEE, 2021.

Xinyue Liu, Zihe Song, Weike Fang, Wei Yang, and Weihang Wang. Wefix: Intelligent automatic
generation of explicit waits for efficient web end-to-end flaky tests. In Proceedings of the ACM
on Web Conference 2024, pp. 3043–3052, 2024b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Timothy McCallum. Diving into ethereum’s virtual machine(evm): the future of ewasm, 2019.

Judy McConnell. Webassembly support now shipping in all major browsers, 2017. URL https:
//blog.mozilla.org/en/mozilla/webassembly-in-browsers/. The Mozilla
Blog.

Barton P Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of unix utilities.
Communications of the ACM, 33(12):32–44, 1990.

Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. New kid on the web: A
study on the prevalence of webassembly in the wild. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 16th International Conference, DIMVA 2019, Gothenburg, Sweden,
June 19–20, 2019, Proceedings 16, pp. 23–42. Springer, 2019a.

Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. Thieves in the browser:
Web-based cryptojacking in the wild. In Proceedings of the 14th International Conference on
Availability, Reliability and Security, ARES ’19, New York, NY, USA, 2019b. Association for
Computing Machinery. ISBN 9781450371643.

Nick Fitzgerald, Alex Crichton. wasm-smith: A webassembly test case genera-
tor., 2024. URL https://github.com/bytecodealliance/wasm-tools/tree/
main/crates/wasm-smith.

Srinivas Nidhra and Jagruthi Dondeti. Black box and white box testing techniques-a literature re-
view. International Journal of Embedded Systems and Applications (IJESA), 2(2):29–50, 2012.

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. Feedback-directed random
test generation. In 29th International Conference on Software Engineering (ICSE’07), pp. 75–84.
IEEE, 2007.

Hammond Pearce, Benjamin Tan, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, and
Brendan Dolan-Gavitt. Pop quiz! can a large language model help with reverse engineering?
arXiv preprint arXiv:2202.01142, 2022.

13

https://blog.mozilla.org/en/mozilla/webassembly-in-browsers/
https://blog.mozilla.org/en/mozilla/webassembly-in-browsers/
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Goran Petrović and Marko Ivanković. State of mutation testing at google. In Proceedings of the
40th international conference on software engineering: Software engineering in practice, pp.
163–171, 2018.

Vasile Adrian Bogdan Pop, Arto Niemi, Valentin Manea, Antti Rusanen, and Jan-Erik Ekberg. To-
wards securely migrating webassembly enclaves. In Proceedings of the 15th European Workshop
on Systems Security, pp. 43–49, 2022.

GNU Project. Gcov: a test coverage program, 2024. URL https://gcc.gnu.org/
onlinedocs/gcc/Gcov.html. Accessed: 2024-08-11.

Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhargavan. Formally
verified cryptographic web applications in webassembly. In 2019 IEEE Symposium on Security
and Privacy (SP), pp. 1256–1274. IEEE, 2019.

Alan Romano and Weihang Wang. Automated webassembly function purpose identification with
semantics-aware analysis. In Proceedings of the ACM Web Conference 2023, pp. 2885–2894,
2023.

Alan Romano, Yunhui Zheng, and Weihang Wang. Minerray: Semantics-aware analysis for ever-
evolving cryptojacking detection. In 2020 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 1129–1140, 2020.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code, 2023.

Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In 2016 IEEE Cyberse-
curity Development (SecDev), pp. 157–157. IEEE, 2016.

Xinyu She, Yanjie Zhao, and Haoyu Wang. Wadec: Decompile webassembly using large language
model. arXiv preprint arXiv:2406.11346, 2024.

August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. Balancing trade-offs
in test-suite reduction. In Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, pp. 246–256, 2014.

Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk. On learning
meaningful assert statements for unit test cases. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, pp. 1398–1409, 2020.

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang, Qiyi Tang, Sen Nie, and Shi
Wu. Refining decompiled c code with large language models. arXiv preprint arXiv:2310.06530,
2023.

Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. Scheduling black-box mu-
tational fuzzing. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, pp. 511–522, 2013.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4all:
Universal fuzzing with large language models. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, pp. 1–13, 2024.

Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. Chatunitest: a chatgpt-
based automated unit test generation tool. arXiv preprint arXiv:2305.04764, 2023.

Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye, Zian Su, Nan Jiang, Siyuan Cheng, Lin Tan,
and Xiangyu Zhang. Lmpa: Improving decompilation by synergy of large language model and
program analysis. arXiv preprint arXiv:2306.02546, 2023.

14

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang
Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are
strong context generators. arXiv preprint arXiv:2209.10063, 2022.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and
Jian-Guang Lou. Large language models meet NL2Code: A survey. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 7443–7464, Toronto, Canada,
July 2023. Association for Computational Linguistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model
for code generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 5673–5684,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL EVALUATION RESULTS

Table 8: Bug detection rates for generated test cases.

Model HumanEval-X MBXP

DeepSeek-Coder-V2 94.0% 98.7%
DeepSeek-Coder-v1.5 93.0% 98.3%
Starcoder2-3B 84.9% 93.5%
Starcoder2-7B 81.1% 97.9%
CodeQwen1.5-Chat 93.6% 94.4%
Qwen1.5-Chat-14B 100% 100%
Meta-Llama-3 88.1% 95.6%

A.2 BUG DETECTION CASE STUDY

Consider the example illustrated in Figure 2. The Wasm Code Summary describes a function in-
tended to remove all elements from a given list that are present in another list. For the manually
created buggy code in Figure 4, we implemented a C++ version that only operates correctly when
the elements to be removed are in the same order as they appear in the original list. If the order
differs, the function fails to remove the elements correctly. This implementation passes the example
tests where both the elements to be removed and those in the given list are sorted in ascending or-
der. In contrast, WasmTest’s ability to generate and mutate tests help to detect the subtle bug. For
instance, in the generated test case (see line 7 of Figure 2d), two instances of 5 appear in list2
before 7. In the buggy implementation, the variable j never increments beyond 1, as there are no
additional occurrences of 5 in list1, the removal of 7 will never happen. Thus, an Assertion Error
occurs in the generated test case, highlighting WasmTest’s capability to detect subtle bugs.

1 vector<int> removeElements(vector<int> list1, vector<int> list2) {
2 vector<int> result;
3 int i = 0;
4 int j = 0;
5 while (i < list1.size()) {
6 if (list2.size() > j) {
7 while (list1[i] == list2[j]) {
8 i++;
9 j++;

10 if (list1.size() == i || list2.size() == j) {
11 break;
12 }
13 }
14 }
15 result.push_back(list1[i]);
16 i++;
17 }
18 return result;
19 }

Figure 4: Buggy code example.

16

	Introduction
	Related Works
	WebAssembly Interpretation
	LLMs for Code
	Automated Test Generation

	Methodology
	Generating Functionally Equivalent C++ Code.
	Generating Seed C++ Test Cases
	Type-Aware Mutation of C++ Test Cases
	Compiling C++ Tests to Wasm for Test Execution

	Experiments
	Experimental Setup
	Evaluation Metrics

	Analysis
	RQ1: Generation of Compilable Tests
	RQ2: Test Coverage and Correctness
	RQ3: Ablation on Mutation
	RQ4: Bug Detection
	RQ5: Accuracy of Test Case Prediction

	Discussion
	Conclusion
	Appendix
	Additional Evaluation Results
	Bug Detection Case Study

