
Under review as a conference paper at ICLR 2023

PVT++: A SIMPLE END-TO-END LATENCY-AWARE
VISUAL TRACKING FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual object tracking is an essential capability of intelligent robots. Most existing
approaches have ignored the online latency that can cause severe performance
degradation during real-world processing. Especially for unmanned aerial vehicle,
where robust tracking is more challenging and onboard computation is limited,
latency issue could be fatal. In this work, we present a simple framework for end-
to-end latency-aware tracking, i.e., end-to-end predictive visual tracking (PVT++).
PVT++ is capable of turning most leading-edge trackers into predictive trackers
by appending an online predictor. Unlike existing solutions that use model-based
approaches, our framework is learnable, such that it can take not only motion
information as input but it can also take advantage of visual cues or a combination
of both. Moreover, since PVT++ is end-to-end optimizable, it can further boost
the latency-aware tracking performance by joint training. Additionally, this work
presents an extended latency-aware evaluation benchmark for assessing an any-
speed tracker in the online setting. Empirical results on robotic platform from
aerial perspective show that the motion-based PVT++ can obtain on par or better
performance than existing approaches. Further incorporating visual information
and joint training techniques, PVT++ can achieve up to 60% performance gain
on various trackers and exhibit better robustness than prior model-based solution,
essentially removing the degradation brought by their latency onboard.

1 INTRODUCTION

Visual object tracking1 is fundamental for many robotic applications like navigation (Nishida et al.,
2018), cinematography (Bonatti et al., 2019), and multi-agent cooperation (Chen et al., 2020a), etc.
Most existing trackers are developed and evaluated under an offline setting (Li et al., 2020c; Huang
et al., 2019b; Li et al., 2018; 2019; Cao et al., 2021b; 2022), where the trackers are assumed to
have zero processing time. However, in real-world applications, the online latency caused by the
trackers’ processing time cannot be ignored, since the world would have already changed when the
trackers finish processing the captured frame, as in Fig. 1(a). If not handled well, this can lead
to severe failure of robotic applications such as obstacle avoidance (Aguilar et al., 2019) and self-
localization (Ye et al., 2022) for UAVs.

The existence of the latency in real-world applications calls for trackers with prediction capabilities,
i.e., predictive trackers. While a standard tracker yields the objects’ location in the input frame (i.e.,
when it starts processing the input frame, as in Fig. 1(a)), a predictive tracker predicts where the
objects could be when it finishes processing the input frame, as illustrated in Fig 1(b).

Existing solutions to the latency resort to model-based approaches for predicting objects’ future
locations (Li et al., 2021b; 2020b). Essentially, they use traditional Kalman filter (KF) (Kalman,
1960) to estimate the potential objects’ location based on objects’ past locations. However, the rich
and readily available visual information is primarily overlooked, including the objects’ appearance
and the surrounding environments, which can be naturally exploited to predict the objects’ possible
future paths (Rudenko et al., 2020).

This work presents a simple framework PVT++ for end-to-end predictive visual tracking. Composed
of a tracker and a predictor, PVT++ is able to convert most off-the-shelf trackers into a predictive

1We focus on single object tracking in this work.

1

Under review as a conference paper at ICLR 2023

Tracker
rf

(a) Standard Tracker

r0
r1

r2

0

1

2

3

4
r3

Realtime

r0
0

2

1

2

3

r1

r2

Non-realtime

(b) Latency-Aware Tracker

b̂1
b̂2
b̂3
b̂4

0

1

2

3

4

Realtime

b̂2

2
b̂3, b̂4

b̂5

0

1

2

Non-realtime

(c) Comparison between Li et al. (2020b) and PVT++

PVT++

rf−1 rf

xf−1 xf

b̂f+1

Motion predictor

Visual predictor

Joint predictor

. . .

Kalman filter

rf−1 rf b̂f+1

. . .

. . .

Input timestamp Output timestamp latency Tracker output (boxes) Predictor output (boxes) Visual feature from trackers

Tracker Predictor

b̂f+1

Object box

Visual feature

Figure 1: (a) Standard tracker suffers from onboard latency (height of the red boxes). Hence, its
result lags behind the world, i.e., rf is always obtained after If on the timestamp. (b) Latency-
aware trackers introduce predictors to compensate for the latency, which predict the word state,
b̂f+1, when finishing the processed frame. (c) Compared with prior KF-based solutions (Li et al.,
2020b; 2021b), our end-to-end framework for latency-aware tracking PVT++ leverages both motion
and visual feature for prediction.

tracker. Unlike Li et al. (2021b; 2020b) that uses traditional KF (Kalman, 1960) for prediction,
our predictor is end-to-end learnable. This allows PVT++ to not only leverage historical motion
information but also take advantage of the visual features provided by the tracker, as in Fig. 1(c).
To this end, we present a simple, effective, efficient, and unified model structure for integrating
motion-based and vision-based predictors. Since both the motion and visual features are taken from
an existing tracker, the predictor in PVT++ is lightweight, which is crucial for online tracking tasks.

Additionally, we found that the existing latency-aware evaluation benchmark (LAE) (Li et al.,
2021b) is unable to provide an effective latency-aware comparison for real-time trackers, since it
evaluates the result for each frame as soon as it is given. In this case, the latency for any real-time
trackers is one frame. Hence, we present an extended latency-aware evaluation benchmark (e-LAE)
for any-speed trackers. Evaluated with various thresholds for the processing time, real-time trackers
with different speeds can now be distinguished by our e-LAE.

Empirically, we provide a more general, comprehensive, and practical aerial tracking evaluation
for state-of-the-art trackers using our new e-LAE. Converting them into predictive trackers, the
motion-based PVT++ obtains comparable or higher performance gain compared with model-based
solutions (Li et al., 2020b; 2021b). Further incorporating visual cues and the end-to-end learning
strategy, PVT++ achieves up to 60% improvement under the online setting, essentially eliminating
the negative effect of onboard latency. Extensive experiments on multiple tracking models and
datasets show that PVT++ provides a generic framework for latency-aware tracking, which we hope
could facilitate more applicable research in online visual tracking.

2 RELATED WORK

2.1 VISUAL TRACKING AND ITS AERIAL APPLICATIONS

Visual trackers generally fall into two paradigms, respectively based on discriminative correlation
filters (Bolme et al., 2010; Henriques et al., 2015; Danelljan et al., 2015; Danelljan et al., 2017)
and Siamese networks (Bertinetto et al., 2016; Li et al., 2018; Zhu et al., 2018; Li et al., 2019; Guo
et al., 2020; Xu et al., 2020). Compared with general scenarios, aerial tracking is more challenging
due to large motions and limited onboard computation resources. Hence, for efficiency, early ap-
proaches focus on correlation filters (Li et al., 2020c; Huang et al., 2019b; Li et al., 2020d;a). Later,
the development of onboard computation platforms facilitates more robust and applicable Siamese
network-based approaches (Fu et al., 2021; Cao et al., 2021a;b; 2022).

Most of these trackers are designed under offline settings, ignoring the online latency onboard UAVs,
which can lead to severe accuracy degradation.

2

Under review as a conference paper at ICLR 2023

2.2 LATENCY-AWARE PERCEPTION.

Latency of perception systems is first studied in (Li et al., 2020b), which introduces a baseline
based on the Kalman-filter (Kalman, 1960) to compensate for the online latency of object detectors.
Inspired by this, (Yang et al., 2022) converts a real-time detector into a latency-aware one. More
closely related to our work, Li et al. (2021b) present a similar baseline to the solution in (Li et al.,
2020b), featuring aerial tracking. Overall, existing works on latency-aware perception adopt only
one input modality, i.e., either object’s motion (Li et al., 2020b) or visual feature (Yang et al., 2022).
In this work, we target aerial tracking and aim to combine both modalities in a unified and end-to-end
structure.

2.3 VISUAL TRACKING BENCHMARKS.

Various benchmarks are built for large-scale tracking evaluation (Fan et al., 2019; Müller et al.,
2018; Huang et al., 2019a; Dunnhofer et al., 2020; Liu et al., 2020; Mueller et al., 2016; Li et al.,
2021a) with different challenges such as first-person perspective (Dunnhofer et al., 2020), aerial
scenes (Mueller et al., 2016), illumination conditions (Li et al., 2021a), and thermal infrared inputs
(Liu et al., 2020). Since they all adopt offline evaluation, the influence of the trackers’ latency is
ignored. A recent benchmark targets online evaluation (Li et al., 2021b), but it falls short in real-
time trackers and we aim to improve it in this work.

3 PRELIMINARY

We first introduce the latency-aware tracking task here. The input is an image sequence broadcasting
with a certain framerate κ, denoted as (If , tWf), f ∈ {0, 1, 2, · · · }, where tWf = f

κ is the timestamp
of each frame and f is the frame index. Provided with the ground truth box b0 = [x0, y0, w0, h0] at
initial 0-th frame, the tracker estimates the boxes in the following frames b̂f , (f > 0).

Inference. During inference, the tracker finds the latest frame to process when finishing the previous
one. Due to the latency, for the j-th frame that the tracker processes, its index j may differ from its
frame index fj in the image sequence. The frame to be processed (frame fj) is determined by the
time tTfj−1

when the model finishes frame fj−1 as follows:

fj =

{
0 , j = 0

argmaxf t
W
f ≤ tTfj−1

, others
. (1)

With the frame index fj , the tracker processes frame Ifj to obtain the corresponding box rfj =

[xfj , yfj , wfj , hfj], forming the raw result of the tracker on the frame (rfj , t
T
fj
). Since tracker may

be non-real-time, input frame ids fj , j ∈ {0, 1, 2, · · · } may not be consecutive numbers. For exam-
ple, in Fig. 2 (a), considering a non-real-time tracker, the processed frames are fj = 0, 2, 4, 8, · · · .

Evaluation. Latency-aware evaluation (LAE) (Li et al., 2021b) compares the ground-truth bf in
frame If with the latest result b̂f from the tracker at at tWf for evaluation. For standard trackers,
the latest result b̂f to be compared with the ground-truth is obtained as b̂f = rϕ(f), where ϕ(f) is
defined as follows:

ϕ(f) =

{
0 , tWf < tTp0

argmaxfj
tTfj ≤ tWf , others

. (2)

For instance, in Fig. 2 (b), LAE compares the ground truth b3 with the raw tracker result r2.

4 EXTENDED LATENCY-AWARE BENCHMARK

Existing latency-aware evaluation (Li et al., 2020b; 2021b) adopt Eq. equation 2 to match the raw
output (rfj , t

T
fj
) to every input frame f . However, such a policy fails to reflect the latency difference

among real-time trackers. As shown in Fig. 2, since the real-time methods is faster than frame rate,
every frame will be processed, i.e., [f0, f1, f2, · · ·] = [0, 1, 2, · · · , F]. In this case, the latest results
will always be from the previous one frame, i.e., using Eq. equation 2 ϕ(f) = f − 1. Differently,

3

Under review as a conference paper at ICLR 2023

𝑡0
W 𝑡1

W 𝑡2
W 𝑡3

W 𝑡4
W 𝑡5

W 𝑡6
W 𝑡7

W 𝑡8
W 𝑡9

W 𝑡10
W 𝑡11

W 𝑡12
W 𝑡13

W
𝑡𝑓
W

𝑡0
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13

𝑡1
T 𝑡2

T 𝑡3
T 𝑡4

T 𝑡5
T 𝑡6

T 𝑡7
T 𝑡8

T 𝑡9
T 𝑡10

T 𝑡11
T 𝑡12

T 𝑡13
T

𝜙(𝑓) 0 1 2 3 4 5 6 7 8 9 10 11 120

𝜙𝑒(𝑓)0 1 2 3 4 5 6 7 8 9 10 11 12 13

𝝈

0 2 5 8 10

𝑡𝑓𝑗
T

𝑡𝑓𝑗
T

𝑡0
T 𝑡2

T 𝑡5
T 𝑡8

T

Tracker
Search

Template
𝐦2𝐫2

𝐳𝐱2
Predictor

መ𝐛11

መ𝐛12

𝐦5 𝐦8

𝐱2 𝐱5 𝐱8 𝐳

𝐫8𝐦2

(a)

(b)

Δ11 Δ12

Figure 2: (a) Framework overview of PVT++ for a non-real-time tracker. The tracker has processed
frame 0, 2, 5, 8 and obtained corresponding motions m and visual features x, z. The predictor needs
to predict future box b̂11, b̂12 based on tracker result r8. (b) Comparison between LAE (ϕ(f)) (Li
et al., 2021b) and our e-LAE (ϕe(f)). For real-time trackers, the mismatch between output and input
frames will always be one in LAE (ϕ(f) − f ≡ 1) regardless of the tracker latency. Differently,
e-LAE introduces permitted latency thresholds σ ∈ [0, 1), which effectively evaluates the latency.

we extend Eq. equation 2 to:

ϕ(f)e =

{
0 , tWf < tTf0

argmaxfj
tTfj ≤ tWf + σ , others

, (3)

where σ ∈ [0, 1) is the variable permitted latency. Under e-LAE, ϕ(f)e can be f − 1 or f for real-
time trackers depending on σ, and ϕ(f)e turns from f − 1 to f at different permitted latency σ for
real-time trackers with different latency. This extension distinguishes different real-time trackers.

5 PREDICTIVE VISUAL TRACKING

Because of the unavoidable latency introduced by the processing time, there is always a mismatch
between ϕ(f) (or ϕ(f)e) and f (when σ is small), where ϕ(f) is always smaller than f , i.e.,
ϕ(f) < f, f > 0. To compensate for the mismatch, we resort to predictive trackers that predicts
possible location of the object in frame f . For the evaluation of f -th frame, prior attempts (Li et al.,
2020b; 2021b) adopt traditional KF (Kalman, 1960) to predict the result based on the raw tracking
result rϕ(f) in Iϕ(f) (Li et al., 2020b), i.e., b̂f = KF(rϕ(f)). Since it is not learnable, it cannot
leverage existing large-scale datasets or the visual feature. Differently, our predictive visual tracking
framework PVT++ aims for an end-to-end predictive tracker, which takes both the historical motion
and visual features for a more robust and accurate prediction of b̂f . Note that we use ·̂ to represent
the prediction and others are from the tracker output or ground-truth in the following subsections.

5.1 GENERAL FRAMEWORK

As in Fig. 2 (a), PVT++ consists of a tracker T and a predictor P . For the f -th frame at tWf , the
latest result from the tracker is rϕ(f) obtained from frame Iϕ(f), i.e., rϕ(f) = T (xϕ(f), z), where
xϕ(f) is the search feature from Iϕ(f) and z is the template feature.

After this, the predictor P takes input from the information generated during tracking of the k past
frames (including Iϕ(f)), denoted as Inputϕ(f), and predict the position offset normalized by object’s
scale, i.e., motion m̂f :

m̂f = [
∆x̂(f)

wϕ(f)

,
∆ŷ(f)

hϕ(f)

,Log(
ŵf

wϕ(f)

),Log(
ĥf

hϕ(f)

)] = P
(

Inputϕ(f),∆f

)
, (4)

where ∆f = f − ϕ(f) indicates the frame interval between the latest frame and the f -th frame.
∆x̂(f) and ∆ŷ(f) denote the predicted box distance between the f -th and ϕ(f)-th frame. wϕ(f)

4

Under review as a conference paper at ICLR 2023

(a) Motion branch

DW-Corr

2D Conv

2D Conv

(b) Visual branch

FC

FCFC

FC

(c) Shared branch

Concat

𝐦2 𝐦5 𝐦8

AvgPool

1D Conv

FC

Cat Speed

Norm+ReLU

Norm+ReLU

𝐳 𝐱𝟐 𝐱𝟓 𝐱𝟖

Norm+ReLU

2D Conv

Norm+ReLU

AvgPool

3D Conv

ෝ𝐦11 ෝ𝐦12

Norm+ReLU

ReLU

Norm+ReLU

Stack

𝐫8 መ𝐛11 መ𝐛12

Norm+ReLU

Template Search patches

2D Conv

AvgPool

Norm+ReLU
Temporal

Interaction

Feature

Encoder

Predictive

decoder

𝑁

Δ12

Δ11

Figure 3: Detailed model structure of the predictor modules in PVT++. The models shares similar
architecture, i.e., feature encoder, temporal interaction, and predictive decoder. We present the
motion branch, visual branch, and share decoding branch in (a), (b), and (c), respectively. Note that
the dashed blocks denote auxiliary branch, which only exists in training. The input and output are
in correspondence to the case in Fig. 2 (a).

and hϕ(f) are the tracker’s output box scale in frame ϕ(f) and ŵf , ĥf are the predicted scale in f -th
frame. Here, the history information Inputϕ(f) can both be object motion and the visual cue from
the tracker, depending on the type of predictor. With the raw output rϕ(f) at ϕ(f) and the motion
m̂f from Iϕ(f) to the f -th frame, the predicted box b̂f can be easily calculated.

Due to the large gap between the datasets for training (Russakovsky et al., 2015) and evaluation (Li
& Yeung, 2017) in terms of the absolute motion scale, we find directly using the absolute motion
value m̂f as the objective can result in poor performance. In practice, we predict the relative motion
factor based on the average moving speed pfj from the past k frames, which is easier to generalize
to datasets with various motion scales after training:

m̂f = P
(
Inputϕ(f),∆f

)
⊙ pfj , pfj =

k∑
i=1

(1
k
⊙

mfj−i+1

∆fj−i+1

)
, (5)

where ∆fj−i+1 = fj−i+1−fj−i denotes the frame interval and ⊙ is the element-wise multiplication.
mfj is the normalized input motion defined as follows:

mfj = [
∆x(fj)

wfj−1

,
∆y(fj)

hfj−1

,Log(
wfj

wfj−1

),Log(
hfj

hfj−1

)] , (6)

where ∆x(fj) = xfj − xfj−1
and ∆y(fj) = yfj − yfj−1

are the distance from rfj and rfj−1
.

We introduce three types of predictors, which are motion-based PM, visual-appearance-based PV

and multi-modal-based PMV. All predictors share a similar structure consisting of feature encoding,
temporal interaction, and predictive decoding as in Fig. 3. Based on each set of k past frames, a
predictor may need to predict the result for multiple frames depending on the tracker’s latency. In
this case, we share most of the structure except for the second last fully connected layer as in Fig. 3
(c), which we select based on the frame distance ∆f for prediction during inference.

5.2 MOTION-BASED PREDICTOR

Our motion-based predictor PM only relies on the past motion, i.e., Inputϕ(f) = mfj−k+1:fj ,

m̂f,M = PM

(
mfj−k+1:fj ,∆f

)
⊙ pfj , (7)

where mfj−k+1:fj = [mfj−k+1
, · · · ,mfj] ∈ Rk×4.

The detailed model structure of the motion predictor PM is presented in Fig. 3(a). For pre-
processing, the motion data mfj−k+1

, · · · ,mfj are first concatenated. Then we apply a fully con-
nected layer with non-linearity for feature encoding and a 1D convolution followed by activation

5

Under review as a conference paper at ICLR 2023

Figure 4: The performance of the SOTA trackers in authoritative UAV tracking benchmarks under
our e-LAE benchmark. We report [online mAUC and mDP, offline AUC and DP] in the legend. All
trackers struggle to overcome onboard latency in online tracking.

and global average pooling to obtain the temporally interacted motion feature. In the predictive de-
coding head, a share fully connected layer (FC) with non-linearity is used for feature mapping. N
independent FCs map the feature to N future latent spaces. Finally, the latency features are stacked
and transformed to 4 dimension output using a shared FC.

For training, we adopt L1 loss between prediction and ground-truth LM = L1(m̂f,M ,mf).

5.3 VISUAL APPEARANCE-BASED PREDICTOR

Since our PVT++ is learnable, more information like visual appearance can be leveraged for better
prediction. For efficiency, our visual predictor PV takes search and template features from the
tracker backbone as input. Specifically, template feature z ∈ R1×CV×a×a is extracted from the
given object template patch in the initial frame and search feature xfj ∈ R1×CV×s×s is extracted
from the patch cropped around the center of the object in the last processed image, frame fj−1.
This also enables joint training to make the visual features more ready for prediction. Given k past
search features xfj−k+1:fj = [xfj−k+1

, · · · ,xfj] ∈ Rk×CV×s×s and z, our visual predictor can be
expressed as:

m̂f,V = PV

(
xfj−k+1:fj , z,∆f

)
⊙ pfj . (8)

The detailed model structure of PV is shown in Fig. 3(b). Inspired by Siamese trackers (Li et al.,
2019), the feature encoding stage adopts 1×1 convolution before depth-wise correlation (DW-Corr)
to produce the similarity map xe

fj−k+1:fj
∈ Rk×CV×s′×s′ . For temporal interaction, we apply 3D

convolution and global average pooling.

We find directly training PV meets convergence difficulty. We hypothesize this is because xe
fj−k+1:fj

doesn’t contain explicit motion information and to accelerate convergence, we introduce an auxiliary
branch A, which takes xe

fj−k+1:fj
as input to predict the corresponding motion m̂fj−k+1:fj ,

m̂fj−k+1:fj = A(xe
fj−k+1:fj). (9)

For training, we supervise both the auxiliary branch and the predictive decoder, i.e., LV =
L1(m̂f,V,mf) + L1(m̂fj−k+1:fj ,mfj−k+1:fj).

5.4 MULTI-MODAL-BASED PREDICTOR

The multi-modal predictor is constructed as a combination of motion PM and visual predictors PV,
which takes both visual and motion information as input, i.e.,

m̂f,MV = PMV

(
mfj−k+1:fj ,xfj−k+1:fj , z,∆f

)
⊙ pfj . (10)

As shown in Fig. 3, the encoding and temporal interaction parts of PM and PV run in parallel to form
the first two stages of PMV. We concatenate the encoded feature vectors to obtain the multi-modal

6

Under review as a conference paper at ICLR 2023

Table 1: The effect of PVT++ on the three SOTA trackers with different speeds. Our models work
generally and can achieve up to 60% performance gain. The best scores are marked out in gray for
clear reference. We present some qualitative visualization in Appendix D and supplementary video.

Dataset DTB70 UAVDT UAV20L UAV123
Tracker PVT++ AUC@La0∆% DP@La0∆% AUC@La0∆% DP@La0∆% AUC@La0∆% DP@La0∆% AUC@La0∆% DP@La0∆%

SiamRPN++Mob
(21FPS)

N/A 0.305+0.00 0.387+0.00 0.494+0.00 0.719+0.00 0.448+0.00 0.619+0.00 0.472+0.00 0.678+0.00
PM 0.385+26.2 0.523+35.1 0.529+7.10 0.745+3.60 0.481+7.40 0.647+4.50 0.537+13.8 0.737+8.70
PV 0.352+15.4 0.472+22.0 0.564+14.2 0.799+11.1 0.488+8.90 0.675+9.00 0.504+6.80 0.703+3.70

PMV 0.399+30.8 0.536+38.5 0.576+16.6 0.807+12.2 0.508+13.4 0.697+12.6 0.537+13.8 0.741+9.30

SiamRPN++Res
(5FPS)

N/A 0.136+0.00 0.159+0.00 0.351+0.00 0.594+0.00 0.310+0.00 0.434+0.00 0.349+0.00 0.505+0.00
PM 0.199+46.3 0.258+62.3 0.449+27.9 0.684+15.2 0.404+30.3 0.560+29.0 0.442+26.6 0.627+24.2
PV 0.179+31.6 0.225+41.5 0.403+14.8 0.665+12.0 0.398+28.4 0.548+26.3 0.398+14.0 0.559+10.7

PMV 0.205+50.7 0.256+61.0 0.488+39.0 0.726+22.2 0.416+34.2 0.568+30.9 0.442+26.6 0.619+22.6

SiamMask
(12FPS)

N/A 0.247+0.00 0.313+0.00 0.455+0.00 0.703+0.00 0.405+0.00 0.571+0.00 0.436+0.00 0.639+0.00
PM 0.370+49.8 0.508+62.3 0.531+16.7 0.760+8.10 0.449+10.9 0.607+6.30 0.532+22.0 0.743+16.9
PV 0.292+18.2 0.405+29.4 0.532+16.9 0.777+10.5 0.430+6.20 0.601+5.30 0.503+15.4 0.705+10.3

PMV 0.342+29.5 0.463+47.9 0.566+24.4 0.797+13.4 0.469+15.8 0.644+12.8 0.536+22.9 0.749+17.2

Table 2: Attribute-based analysis of PVT++ on SiamRPN++Mob in UAVDT dataset. We found dif-
ferent modality has their specific advantage. Together, the joint model can utilize both and become
the most robust under complex UAV tracking challenges. Gray denotes best results.

Metric AUC@La0 DP@La0

Att. BC CR OR SO IV OB SV LO BC CR OR SO IV OB SV LO
base 0.448 0.45 0.438 0.494 0.539 0.525 0.49 0.422 0.659 0.643 0.638 0.779 0.777 0.772 0.68 0.569
PM 0.461 0.495 0.481 0.549 0.578 0.542 0.505 0.521 0.666 0.684 0.681 0.815 0.811 0.778 0.691 0.717
PV 0.504 0.52 0.538 0.525 0.588 0.568 0.584 0.436 0.733 0.72 0.753 0.793 0.835 0.822 0.796 0.585

PMV 0.505 0.535 0.549 0.545 0.599 0.589 0.586 0.511 0.727 0.732 0.764 0.814 0.848 0.846 0.794 0.694

feature. The predictive decoder follows the same structure to obtain future motions m̂f,MV. We also
tried different fusion strategy in Appendix G.

For training, we add two additional predictive decoders respectively after motion and visual pre-
dictors to help them predict m̂f,M and m̂f,V, which yields the loss LMV = αMLM + αVLV +

L1(M̂f,MV,Mf). During inference, we only use the joint predictive decoder.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

Platform and datasets. PVT++ is trained on VID (Russakovsky et al., 2015), LaSOT (Fan et al.,
2019), and GOT10k (Huang et al., 2019a) using one Nvidia A10 GPU. The evaluation takes authori-
tative UAV tracking datasets, UAV123, UAV20L (Mueller et al., 2016), DTB70 (Li & Yeung, 2017),
and UAVDT (Du et al., 2018) on typical UAV computing platform, Nvidia Jetson AGX Xavier, for
realistic robotic performance. Since the online latency can fluctuate, we run three times and report
the average performance.

Metrics. Following (Fu et al., 2022), we use two basic metrics, the distance precision (DP) based
on center location error (CLE) and area under curve (AUC) based on intersection over union. Under
e-LAE, different permitted latency σ corresponds to different DP and AUC, i.e., DP@Laσ and
AUC@Laσ. We use mDP and mAUC to indicate the area under cure for DP@Laσ and AUC@Laσ,
σ ∈ [0 : 0.02 : 1).

Parameters. For e-LAE, all the evaluated trackers use their official parameters for fairness. For
all PVT++ models, we use k = 3 past frames, while N varies for different models with different
latency. Detailed training parameters can be referred to the code and Appendix B.

6.2 EXTENDED LATENCY-AWARE EVALUATION

We evaluate a total of 17 SOTA trackers2 under e-LAE: SiamRPN (Li et al., 2018),
SiamRPN++Mob (Li et al., 2019), SiamRPN++Res (Li et al., 2019), SiamMask (Wang et al.,
2019), SiameseFC++ (Xu et al., 2020), DaSiamRPN (Zhu et al., 2018), SiamAPN (Fu et al.,
2021), SiamAPN++ (Cao et al., 2021a), HiFT (Cao et al., 2021b), SiamGAT (Guo et al., 2021),

2Subscripts denote the backbone used, i.e., MobileNet (Sandler et al., 2018), and ResNet 18 or 50 (He et al.,
2018).

7

Under review as a conference paper at ICLR 2023

Table 3: Ablation studies on DTB70 (Li & Yeung, 2017). Official version of PVT++ is marked out
in Blackbody. Red denotes improvement and blue represents dropping.

Discrip. Motion factor Auxiliary branch Joint training

Method Base PM P†
M

PV P†
V

PMV P†
MV

PV P‡
V

PMV P‡
MV

AUC@La0 0.305 0.385+26.2 0.3−1.60 0.352+15.4 0.278−8.90 0.399+30.8 0.294−3.60 0.352+15.4 0.311+2.00 0.399+30.8 0.323+5.90
DP@La0 0.387 0.523+35.1 0.383−1.00 0.472+22.0 0.349−9.80 0.536+38.5 0.387−0.00 0.472+22.0 0.412+6.50 0.536+38.5 0.429−10.9

Table 4: Dimension analysis of different modules in PVT++ on DTB70 (Li & Yeung, 2017) and
UAVDT (Du et al., 2018). Enc.M and Enc.V represent the motion and visual encoders, respectively.
Dec.MV denotes the joint decoder. * indicates our default setting. We find the channel dimension of
PVT++ can be small, so that it introduces very few extra latency on robotics platforms.

Dim. DTB70 UAVDT Dim. DTB70 UAVDT Dim. DTB70 UAVDT
Enc.M mAUC mDP mAUC mDP Enc.V mAUC mDP mAUC mDP Dec.MV mAUC mDP mAUC mDP

N/A 0.305 0.387 0.494 0.719 N/A 0.305 0.387 0.494 0.719 N/A 0.305 0.387 0.494 0.719
16 0.357 0.479 0.565 0.797 16 0.362 0.487 0.545 0.772 16 0.369 0.496 0.572 0.804
32 0.359 0.483 0.575 0.81 32 0.363 0.493 0.554 0.784 32* 0.399 0.536 0.576 0.807

64* 0.399 0.536 0.576 0.807 64* 0.399 0.536 0.576 0.807 64 0.373 0.503 0.567 0.807
128 0.373 0.504 0.571 0.803 128 0.364 0.486 0.558 0.788 128 0.362 0.485 0.561 0.791

SiamBAN (Chen et al., 2020b), SiamCAR (Guo et al., 2020), ATOM (Danelljan et al., 2019),
DiMP50 (Bhat et al., 2019), DiMP18 (Bhat et al., 2019), PrDiMP (Danelljan et al., 2020), and
TrDiMP (Wang et al., 2021).

As in Fig. 4, we draw curve plots to reflect their performance in AUC and DP metrics under different
permitted latency σ. We report the [online mAUC and mDP, offline mAUC and mDP] in the legend.
Some offline highly accurate trackers like SiamRPN++Res (Li et al., 2019), SiamCAR (Guo et al.,
2020), SiamBAN (Chen et al., 2020b), and ATOM (Danelljan et al., 2019) can degrade by up to 70%
in our online evaluation setting.

Note that e-LAE can better assess the real-time trackers by taking the efficiency into account. In
DTB70, SiamAPN++ and HiFT are real-time trackers with HiFT slightly more accurate (in success).
However, since SiamAPN++ is much faster, its e-LAE performance is better.

6.3 EMPIRICAL ANALYSIS

Performance of PVT++. To evaluate PVT++, we construct predictive trackers with three well-
known trackers, i.e., SiamRPN++Mob (Li et al., 2019), SiamRPN++Res (Li et al., 2019), and
SiamMask (Wang et al., 2019). As in Table 1, with PVT++, their online performance can be signif-
icantly boosted by up to 60%. Further, although real-time trackers (Li et al., 2020c; Fu et al., 2022;
Li et al., 2021a; Fu et al., 2021; Cao et al., 2021a;b; 2022) perform generally better than non-real-
time trackers in online evaluation, we observe that non-real-time trackers empowered by PVT++ can
notably outperform real-time ones without PVT++ (e.g., 0.807 mDP of SiamRPN++Mob with PMV

in UAVDT vs. 0.745 of the real-time tracker SiamRPN).

Attribute-based analysis. For a comprehensive evaluation, we follow (Du et al., 2018) and eval-
uate PVT++ on various challenge attributes3. We found that motion and vision have advantages in
different attributes. PV improves CR and OR, while PM is good at SO and LO. The joint model
PMV makes use of both and is the most robust under various complex aerial tracking challenges.
For the full attribute analysis, please see Appendix H.

Ablation studies. We ablate the effect of motion factor prediction, auxiliary branch, and the joint
training of PVT++ on DTB70 (Li & Yeung, 2017) with SiamRPN++Mob in Table 3. Compared with
directly predicting the motion value (P†

M), using motion factor as the prediction target (PM) can
yield much better performance. Removing auxiliary branch A in PV and PMV to be P†

V and P†
MV,

we observe a significant performance drop due to the difficulty in convergence. Joint training the
tracker and the predictor (PV & PMV) perform much better than fixing the tracker (P‡

V and P‡
MV).

Training loss curves of the ablation studies are further presented in Appendix I.

3Background cluter (BC), camera rotation (CR), object rotation (OR), small object (SO), illumination vari-
ation (IV), object blur (OB), scale variation (SV), and large occlusion (LO).

8

Under review as a conference paper at ICLR 2023

Table 5: Comparison between our learning based PVT++ and prior KF-based solution (Li et al.,
2020b). The motion based PVT++ can achieve on par or better results. Further introducing visual
cues, PVT++ can acquire higher robustness. We also designed stronger learnable KF baselines, KF†

and ‡, which are still less robust than our PMV. Best scores are marked out in gray .
Tracker SiamRPNMob SiamRPNRes SiamMask

Pred. KF KF† KF‡ PM PV PMV KF KF† KF‡ PM PV PMV KF KF† KF‡ PM PV PMV
mAUC 0.462 0.466 0.481 0.483 0.477 0.505 0.441 0.458 0.468 0.471 0.439 0.478 0.361 0.376 0.386 0.374 0.345 0.388
mDP 0.639 0.642 0.658 0.663 0.662 0.695 0.607 0.631 0.639 0.655 0.622 0.663 0.502 0.527 0.532 0.532 0.499 0.542

Test 1 - container
150 300 450 600 750 900 1050 1200

Frame (#)

0
10
20
30
40

C
L

E

UAV

Test 2 50 100 150 200 250 300 350 400 450 500
Frame (#)

0
10
20
30
40

C
L

E

Test 3 - building
150 300 450 600 750 900 1050 1200

Frame (#)

0
10
20
30
40

C
L

E

UAV

Test 4 - island
50 100 150 200 250 300 350 400 450 500

Frame (#)

0
10
20
30
40

C
L

E

SiamMask
[11.95 FPS]

SiamRPN++
[15.57 FPS]

Test 2 - person

Occlusion

Figure 5: Real-world tests of PVT++. Thanks to PVT++, the non-real-time trackers work effectively
under real-world tracking challenges like scale variation in Test 1 and occlusion in Test 2.

Dimension analysis. In addition to its promising performance, PVT++ can also work with small
channel dimensions, which contributes to its light weight and efficiency on low-powered UAVs. We
analyse the modules of PVT++ with different feature channels in Table 4, where 64 channels for
encoders (Enc.M, Enc.V) and 32 channels for the joint decoder (Dec.J) work best.

Comparison with KF. Prior attempts to latency-aware perception (Li et al., 2020b; 2021b) have
introduced model-based approach, i.e., KF (Kalman, 1960), as predictors. Based on traditional
KF, we also designed stronger learnable baselines, KF† and KF‡, which adopt the same training
as PVT++. Basically, KF† learns the two noise matrix and KF‡ denotes joint training of KF† and
trackers. We compare such solutions with our PVT++ in Table 5, where the same base tracker
models are adopted. We present averaged mAUC and mDP in 4 datasets, DTB70 (Li & Yeung,
2017), UAVDT (Du et al., 2018), UAV20L (Mueller et al., 2016), and UAV123 (Mueller et al.,
2016). Compared with KF, our learning framework holds the obvious advantage in complex UAV
tracking scenes. For more exhaustive comparison, please refer to Appendix E nad Appendix F.

6.4 REAL-WORLD TESTS

We further deploy SiamMask (Wang et al., 2019) (∼11FPS) and SiamRPN++Mob (Li et al., 2019)
(∼15FPS) with PVT++ on a UAV with Nvidia Jetson AGX Xavier as onboard processor. The
result is shown in Fig. 5. Despite that the original tracker is not real-time, our PVT++ framework
can convert it into a predictive tracker and achieve a good result (CLE < 20 pixels) in real-world
tracking. We present more real-world tests in Appendix L.

7 DISCUSSIONS

Limitation. (1) Consider SiamRPN++ Mob with ∼ 45ms latency, PVT++ introduces an extra
latency of ∼ 5ms per frame, which is higher than KF (2 ∼ 3ms), slightly affecting the performance
(further discussion in Appendix J). (2) For e-LAE, the performance is usually influenced by the state
of the hardware, which requires multiple runs for a proper assessment.

Conclusion. In this work, we present a simple end-to-end learnable framework for latency-aware
visual tracking, PVT++, which practically eliminates onboard latency. PVT++ integrates a predictor
module that predicts objects’ future location based on both motion and visual appearance. Jointly
optimizing the predictor and the tracker yields a strong performance. Extensive evaluations on
robotics platform from the challenging aerial perspective show the effectiveness of PVT++ frame-
work, which improves the offline tracker by up to 60% in the online setting. We hope that our
approach can facilitate more research on predictive visual tracking for real-world tracking tasks.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Wilbert G Aguilar, Leandro Álvarez, Santiago Grijalva, and Israel Rojas. Monocular Vision-Based
Dynamic Moving Obstacles Detection and Avoidance. In Proceedings of the International Con-
ference on Intelligent Robotics and Applications (ICIRA), pp. 386–398, 2019.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-
convolutional Siamese Networks for Object Tracking. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 850–865, 2016.

Goutam Bhat, Martin Danelljan, L. Gool, and R. Timofte. Learning Discriminative Model Prediction
for Tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 6181–6190, 2019.

D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual Object Tracking Using Adaptive
Correlation Filters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2544–2550, 2010.

Rogerio Bonatti, Cherie Ho, Wenshan Wang, Sanjiban Choudhury, and Sebastian Scherer. Towards
a Robust Aerial Cinematography Platform: Localizing and Tracking Moving Targets in Unstruc-
tured Environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 229–236, 2019.

Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li. SiamAPN++: Siamese Attentional
Aggregation Network for Real-Time UAV Tracking. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 3086–3092, 2021a.

Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li. HiFT: Hierarchical Feature Trans-
former for Aerial Tracking. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 15457–15466, 2021b.

Ziang Cao, Ziyuan Huang, Liang Pan, Shiwei Zhang, Ziwei Liu, and Changhong Fu. TCTrack:
Temporal Contexts for Aerial Tracking. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–8, 2022.

Yu-Jia Chen, Deng-Kai Chang, and Cheng Zhang. Autonomous Tracking Using a Swarm of UAVs:
A Constrained Multi-Agent Reinforcement Learning Approach. IEEE Transactions on Vehicular
Technology, 69(11):13702–13717, 2020a.

Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang, and Rongrong Ji. Siamese Box Adaptive
Network for Visual Tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6668–6677, 2020b.

M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Learning Spatially Regularized Correla-
tion Filters for Visual Tracking. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 4310–4318, 2015.

M. Danelljan, L. Van Gool, and R. Timofte. Probabilistic Regression for Visual Tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7181–7190, 2020.

Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. ECO: Efficient Con-
volution Operators for Tracking. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6638–6646, 2017.

Martin Danelljan, Goutam Bhat, F. Khan, and M. Felsberg. ATOM: Accurate Tracking by Overlap
Maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4655–4664, 2019.

Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan, Guorong Li, Weigang Zhang,
Qingming Huang, and Qi Tian. The Unmanned Aerial Vehicle Benchmark: Object Detection and
Tracking. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 370–386,
2018.

10

Under review as a conference paper at ICLR 2023

Matteo Dunnhofer, Antonino Furnari, G. Farinella, and C. Micheloni. Is First Person Vision
Challenging for Object Tracking? The TREK-100 Benchmark Dataset. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 300–317,
2020.

Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao,
and Haibin Ling. LaSOT: A High-Quality Benchmark for Large-Scale Single Object Tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5369–5378, 2019.

Changhong Fu, Ziang Cao, Yiming Li, Junjie Ye, and Chen Feng. Siamese Anchor Proposal Net-
work for High-Speed Aerial Tracking. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 510–516, 2021.

Changhong Fu, Bowen Li, Fangqiang Ding, Fuling Lin, and Geng Lu. Correlation Filters for Un-
manned Aerial Vehicle-Based Aerial Tracking: A Review and Experimental Evaluation. IEEE
Geoscience and Remote Sensing Magazine, 10(1):125–160, 2022.

Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen. SiamCAR: Siamese
Fully Convolutional Classification and Regression for Visual Tracking. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6269–6277,
2020.

Dongyan Guo, Yanyan Shao, Ying Cui, Zhenhua Wang, Liyan Zhang, and Chunhua Shen. Graph
Attention Tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9543–9552, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2018.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-Speed Tracking with Kernelized Corre-
lation Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3):583–596,
2015.

L. Huang, Xin Zhao, and K. Huang. GOT-10k: A Large High-Diversity Benchmark for Generic
Object Tracking in the Wild. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1–1, 2019a.

Ziyuan Huang, C. Fu, Y. Li, Fuling Lin, and Peng Lu. Learning Aberrance Repressed Correlation
Filters for Real-Time UAV Tracking. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 2891–2900, 2019b.

Rudolph Emil Kalman. A New Approach to Linear Filtering and Prediction Problems. Transactions
of the ASME-Joural of Basic Engineering, pp. 35–45, 1960.

B. Li, J. Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High Performance Visual Tracking with Siamese
Region Proposal Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8971–8980, 2018.

B. Li, Wei Wu, Q. Wang, Fangyi Zhang, Junliang Xing, and J. Yan. SiamRPN++: Evolution of
Siamese Visual Tracking With Very Deep Networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4277–4286, 2019.

Bowen Li, Changhong Fu, Fangqiang Ding, Junjie Ye, and Fuling Lin. ADTrack: Target-Aware Dual
Filter Learning for Real-Time Anti-Dark UAV Tracking. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 496–502, 2021a.

Bowen Li, Yiming Li, Junjie Ye, Changhong Fu, and Hang Zhao. Predictive Visual Tracking: A
New Benchmark and Baseline Approach. arXiv preprint arXiv:2103.04508, pp. 1–8, 2021b.

F. Li, C. Fu, Fuling Lin, Y. Li, and Peng Lu. Training-Set Distillation for Real-Time UAV Object
Tracking. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 9715–9721, 2020a.

11

Under review as a conference paper at ICLR 2023

M. Li, Yu-Xiong Wang, and D. Ramanan. Towards Streaming Perception. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 473–488, 2020b.

Siyi Li and Dit-Yan Yeung. Visual Object Tracking for Unmanned Aerial Vehicles: A Bench-
mark and New Motion Models. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 4140–4146, 2017.

Y. Li, C. Fu, Fangqiang Ding, Ziyuan Huang, and Geng Lu. AutoTrack: Towards High-Performance
Visual Tracking for UAV with Automatic Spatio-Temporal Regularization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11920–11929,
2020c.

Y. Li, C. Fu, Ziyuan Huang, Yinqiang Zhang, and Jia Pan. Keyfilter-Aware Real-Time UAV Object
Tracking. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 193–199, 2020d.

Q. Liu, Zhenyu He, Xin Li, and Yuan Zheng. PTB-TIR: A Thermal Infrared Pedestrian Tracking
Benchmark. IEEE Transactions on Multimedia, 22:666–675, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In Proceedings of the
International Conference on Learning Representations (ICLR), pp. 1–18, 2018.

Matthias Mueller, Neil Smith, and Bernard Ghanem. A Benchmark and Simulator for UAV Track-
ing. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 445–461,
2016.

M. Müller, Adel Bibi, Silvio Giancola, Salman Al-Subaihi, and Bernard Ghanem. TrackingNet:
A Large-Scale Dataset and Benchmark for Object Tracking in the Wild. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 300–317, 2018.

Yuya Nishida, Takashi Sonoda, Shinsuke Yasukawa, Kazunori Nagano, Mamoru Minami, Kazuo
Ishii, and Tamaki Ura. Underwater Platform for Intelligent Robotics and its Application in Two
Visual Tracking Systems. Journal of Robotics and Mechatronics, 30(2):238–247, 2018.

Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila, and Kai O
Arras. Human motion trajectory prediction: A survey. The International Journal of Robotics
Research, 39(8):895–935, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520, 2018.

Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li. Transformer Meets Tracker: Exploiting
Temporal Context for Robust Visual Tracking. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1571–1580, 2021.

Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast Online Object
Tracking and Segmentation: A Unifying Approach. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1328–1338, 2019.

Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu. SiamFC++: Towards Robust and Accu-
rate Visual Tracking with Target Estimation Guidelines. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pp. 12549–12556, 2020.

Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, and Jian Sun. Real-time Object Detection
for Streaming Perception. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1–8, 2022.

12

Under review as a conference paper at ICLR 2023

Junjie Ye, Changhong Fu, Fuling Lin, Fangqiang Ding, Shan An, and Geng Lu. Multi-Regularized
Correlation Filter for UAV Tracking and Self-Localization. IEEE Transactions on Industrial
Electronics, 69(6):6004–6014, 2022.

Zheng Zhu, Q. Wang, B. Li, Wei Wu, J. Yan, and W. Hu. Distractor-aware Siamese Networks for
Visual Object Tracking. In Proceedings of the European Conference on Computer Vision (ECCV),
2018.

13

Under review as a conference paper at ICLR 2023

APPENDIX

A OVERVIEW

To make our end-to-end predictive visual tracking framework (PVT++) reproducible, we present
the detailed configuration in Appendix B, covering the specific model structure, the training settings
(with specific hyper-parameters), and the inference settings. Moreover, we provide the PVT++ code
library and official models to ensure reproducability. For clear reference of the notations used in
method section, we provide a notation table in Appendix C. In Appendix D, we display representa-
tive qualitative visualization results from the authoritative datasets, UAV123 (Mueller et al., 2016),
UAV20L (Mueller et al., 2016), DTB70 (Li & Yeung, 2017), and UAVDT (Du et al., 2018), where
the superiority of our PVT++ is clearly shown. In Appendix E and Appendix F, we present detailed
results comparison between KF (Kalman, 1960) and PVT++ to better demonstrate the superiority
of our method. We also tried to fuse the motion and visual cues earlier in Appendix G, where we
give an analysis to the strategy adopted in PVT++. The full attribute-based results from all the four
datasets (Mueller et al., 2016; Li & Yeung, 2017; Du et al., 2018) are reported in Appendix H, where
we exhaustively analyse the specific advantages of two modalities for prediction under various UAV
tracking challenges. The training process of different PVT++ models is visualized in Appendix I,
where we present the loss curves to indicate the converging process. The extra latency introduced
by the PVT++ predictor modules is unavoidable, which can have some negative effect to online per-
formance. We provide such analysis in Appendix J. We further find PVT++ is capable of converging
well in smaller training set (using only 3563 videos from Imagenet VID (Russakovsky et al., 2015)),
which is shown in Appendix K. Finally, we present additional real-world tests in Appendix L, cov-
ering more target objects and tracking scenes.

B DETAILED CONFIGURATION

Specific Model Structure. Corresponding to Fig. 3 in the paper, we present the detailed model
structure of each layer in Table I. Consider B batch inputs and k history frames, the output sizes are
also shown in Table I for clear reference. Subscripts are used to distinguish between different layers,
i.e., ·t denotes encoding layer for template feature, ·s denotes encoding layer for search feature, ·e
denotes encoding layer for the similarity map. ·a represents the auxiliary branch.

Training Settings. All the predictive modules need temporal video data for training. However,
to our disappointment, existing training pipeline (Li et al., 2019) takes a detection-like paragdim.
Basically, the raw search patches are independently cropped from the object center location, then the
random shift, padding are applied to generated the training search patch. In this case, the training
patches from consecutive frames actually contain no temporal information.

To solve this, we construct a new pipeline termed as dynamic temporal training. The search patch
from fj-th frame is cropped around the object’s center location in the previous frame Ifj−1

, so that
past motion Mϕ(f) and past search patch Xϕ(f) correspond to each other and contain real temporal
information from Ifj−k+1

to Ifj .

Remark 1: The new training pipeline is dynamic, i.e., [fj−k, fj−k+1, · · · , fj] can be adjusted as
hyper-parameters to fit different models’ different latency.

All the PVT++ models are optimized by AdamW (Loshchilov & Hutter, 2018). The motion predic-
tor is trained for 100 epochs with a base learning rate equalling to 0.03, which is multiplied by 0.1
at epoch 30 and 80. The visual and multi-modal predictors are trained for 300 epochs with a base
learning rate of 0.003, which is multiplied by 0.1 at epoch 200. In all the three base trackers, PV

and PMV both take the visual feature from the neck to implement vision-aided prediction. During
joint training, the tracker backbone is fixed and the tracker neck, together with the head are freed in
the first 20 epochs with a small learning rate of 10−4.

A ”fast” tracker may only need to predict future three frames to compensate for its latency, while
a ”slow” one may have to output ten future state. To make this possible, the second last layer
of PVT++ predictive decoder is N parallel fully connected layers for predicting N future state, i.e.,
future 1 ∼ N frames. Therefore, different models vary in the pre-defined N and ∆f during training.
we set N = 3,∆f = [1 : 3] for SiamRPN++ Mob (Li et al., 2019), N = 12,∆f = [1 : 12] for

14

Under review as a conference paper at ICLR 2023

Table I: Detailed structure and output sizes of PVT++ models. We use subscript to distinguish
between different layers. The output sizes correspond to B batch input.

Branch Layer Kernel In. Channel Out. Channel Out. Size

Motion
FC - 8 32 B × k × 32

1D Conv 3 32 32 B × k × 32
Avg. Pool - 32 32 B × 32

Visual

2D Convt 3× 3 256 64 B × k × 64× 29× 29
2D Convs 3× 3 256 64 B × k × 64× 25× 25
2D Conve 1× 1 64 64 B × k × 64× 25× 25
3D Conv 3× 3× 3 64 64 B × k × 64× 25× 25
Avg. Pool - 64 64 B × 64
2D Conva 1× 1 64 64 B × k × 64× 25× 25
2D Conva 1× 1 64 4 B × k × 4× 25× 25
Avg. Poola - 4 4 B × k × 4

Shared
FC - [32, 64, 96] 32 B × 32
FC - 32 32 B ×N × 32
FC - 32 4 B ×N × 4

Table II: Attribute-based analysis of the three trackers with PVT++ models in DTB70 (Li & Yeung,
2017) dataset.

Tracker SiamRPN++Mob

(21FPS)
SiamRPN++Res

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

ARV 0.330 0.386 0.349 0.418 0.156 0.233 0.214 0.253 0.247 0.375 0.291 0.393
BC 0.257 0.330 0.276 0.319 0.079 0.077 0.102 0.102 0.168 0.264 0.202 0.167

DEF 0.357 0.410 0.358 0.438 0.144 0.217 0.198 0.241 0.253 0.398 0.287 0.364
FCM 0.277 0.373 0.333 0.376 0.091 0.144 0.122 0.138 0.195 0.327 0.258 0.301
IPR 0.302 0.368 0.324 0.387 0.133 0.187 0.169 0.204 0.217 0.346 0.256 0.316
MB 0.198 0.305 0.277 0.321 0.056 0.073 0.069 0.085 0.147 0.236 0.187 0.254

OCC 0.280 0.337 0.281 0.304 0.149 0.214 0.204 0.224 0.233 0.290 0.285 0.274
OPR 0.278 0.314 0.334 0.439 0.161 0.158 0.208 0.225 0.202 0.360 0.265 0.362
OV 0.292 0.405 0.372 0.399 0.054 0.099 0.076 0.102 0.168 0.227 0.258 0.289
SV 0.354 0.470 0.419 0.489 0.145 0.187 0.192 0.220 0.278 0.435 0.347 0.418

SOA 0.238 0.301 0.261 0.302 0.140 0.196 0.184 0.200 0.227 0.326 0.275 0.315

DP@La0

ARV 0.340 0.466 0.385 0.498 0.101 0.220 0.171 0.234 0.247 0.474 0.333 0.472
BC 0.352 0.477 0.396 0.498 0.118 0.106 0.141 0.139 0.228 0.385 0.291 0.237

DEF 0.374 0.512 0.398 0.525 0.083 0.203 0.144 0.214 0.246 0.509 0.326 0.449
FCM 0.363 0.517 0.470 0.525 0.106 0.188 0.156 0.171 0.241 0.456 0.353 0.414
IPR 0.349 0.475 0.398 0.495 0.124 0.212 0.170 0.224 0.236 0.454 0.310 0.400
MB 0.246 0.418 0.379 0.453 0.051 0.110 0.090 0.088 0.167 0.349 0.248 0.327

OCC 0.408 0.496 0.426 0.459 0.223 0.327 0.316 0.344 0.361 0.439 0.458 0.404
OPR 0.213 0.312 0.317 0.453 0.083 0.083 0.113 0.127 0.128 0.382 0.224 0.357
OV 0.413 0.590 0.564 0.586 0.062 0.166 0.101 0.161 0.222 0.363 0.385 0.439
SV 0.366 0.569 0.467 0.569 0.123 0.186 0.180 0.208 0.287 0.528 0.402 0.492

SOA 0.333 0.432 0.379 0.447 0.217 0.306 0.295 0.302 0.340 0.479 0.429 0.462

SiamRPN++ Res (Li et al., 2019), and N = 6,∆f = [1 : 6] for SiamMask (Wang et al., 2019).
Note that these hyper-parameter are roughly determined by the averaged latency of the base trackers.

Inference Settings. During inference, when fj+1−th frame comes, the predictor P first conducts
(fj+1 − fj) to fj+1 + N frames prediction with k = 3 past frames information, then the tracker
processes fj+1 − th frame and updates the history information (motion and visual).

Note that we take the latency of both tracker and predictor modules into account in the online
evaluation.

C COMPLETE NOTATION REFERENCE TABLE

We provide the important notations, their meaning, and dimension in Table III, for clear reference.

15

Under review as a conference paper at ICLR 2023

Table III: List of the important notations in this work.

Symbol Meaning Dimension

f World frame number R
If f -th image frame RW×H×3

j Serial number of the processed frame R
fj World frame id of the processed j-th frame R
tWf World timestamp R
tTfj

Tracker timestamp R

ϕ(f), ϕ(f)e Input frame id to be paired with frame f R
σ Permitted latency during evaluation R

rf = [xf , yf , wf , hf] Raw output by the tracker in frame f R1×4

b̂f = [x̂f , ŷf , ŵf , ĥf] Final output bounding box to be evaluated R1×4

T Tracker model −

P Predictor model −

mfj
Normalized input motion from frame fj−1 to fj R1×4

pfj
Average moving speed from frame fj−k+1 to fj R1×4

m̂f Predicted motion from frame ϕ(f) to f R1×4

mf Ground-truth motion from frame ϕ(f) to f R1×4

∆f Frame interval between the latest frame and the f -th frame R
∆x̂(f),∆ŷ(f) Predicted box distance between the f -th and ϕ(f)-th frame R
∆x(fj),∆y(fj) Distance from rfj to rfj−1

R
xϕ(f) Search patch feature in frame ϕ(f) from tracker backbone RC×W×H

z Template feature from tracker backbone RC×a×a

k(= 3) Number of past frames for the history information R
N Number of the parallel FC layers in the predictive decoder R

Table IV: Attribute-based analysis of the three trackers with PVT++ models in UAVDT (Du et al.,
2018) dataset.

Tracker SiamRPN++Mob

(21FPS)
SiamRPN++Res

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

BC 0.448 0.461 0.504 0.505 0.332 0.410 0.375 0.445 0.404 0.465 0.488 0.520
CR 0.450 0.495 0.520 0.535 0.296 0.371 0.402 0.452 0.425 0.503 0.498 0.522
OR 0.438 0.481 0.538 0.549 0.318 0.389 0.416 0.477 0.404 0.491 0.504 0.541
SO 0.494 0.549 0.525 0.545 0.318 0.420 0.361 0.457 0.468 0.536 0.495 0.540
IV 0.539 0.578 0.588 0.599 0.382 0.495 0.459 0.537 0.475 0.558 0.563 0.596
OB 0.525 0.542 0.568 0.589 0.382 0.460 0.408 0.498 0.471 0.542 0.527 0.560
SV 0.490 0.505 0.584 0.586 0.366 0.422 0.406 0.484 0.438 0.526 0.541 0.566
LO 0.422 0.521 0.436 0.511 0.320 0.379 0.368 0.429 0.389 0.421 0.494 0.520

DP@La0

BC 0.659 0.666 0.733 0.727 0.591 0.637 0.647 0.671 0.628 0.672 0.718 0.731
CR 0.643 0.684 0.720 0.732 0.462 0.585 0.572 0.645 0.620 0.702 0.696 0.712
OR 0.638 0.681 0.753 0.764 0.515 0.619 0.606 0.688 0.612 0.709 0.723 0.752
SO 0.779 0.815 0.793 0.814 0.645 0.711 0.706 0.759 0.803 0.818 0.787 0.819
IV 0.777 0.811 0.835 0.848 0.657 0.747 0.755 0.801 0.743 0.797 0.817 0.829
OB 0.772 0.778 0.822 0.846 0.676 0.714 0.700 0.766 0.756 0.802 0.801 0.813
SV 0.680 0.691 0.796 0.794 0.581 0.618 0.622 0.684 0.650 0.729 0.763 0.783
LO 0.569 0.717 0.585 0.694 0.504 0.554 0.566 0.608 0.571 0.590 0.696 0.711

D VISUALIZATION

We present some typical tracking visualization in Fig. I. The sequences, ManRunning2, Paraglid-
ing5, Wakeboarding1, and Wakeboarding2 are from DTB70 (Li & Yeung, 2017).S0303, S0304,
S0310, and S1604 are from UAVDT (Du et al., 2018). In UAV20L and UAV123 (Mueller et al.,
2016), we also present car3, car17, group2 2, and uav1 2. With extremely limited onboard com-
putation, the original trackers (red dashed boxes) will easily fail due to high latency. Once coupled

16

Under review as a conference paper at ICLR 2023

ManRunning2

#0001 #0008 #0063

Paragliding5

#0001 #0039 #0185

Wakeboarding1

#0001 #0023 #0041

Wakeboarding2

#0001 #0038 #0058

S0303

#0001 #0045 #0142

S0304

#0001 #0087 #0111

S0310

#0001 #0067 #0112

S1604

#0001 #0124 #0554

car3

#0001 #0048 #0473

car17

#0001 #0223 #0943

group2_2

#0001 #0318 #0647

uav1_2

#0001 #0418 #0497

Baseline Baseline + Ground-truth

Figure I: Representative sequences from authoritative UAV tracking datasets, DTB70 (Li & Yeung,
2017), UAVDT (Du et al., 2018), UAV20L (Mueller et al., 2016), and UAV123 (Mueller et al.,
2016). We use dashed red lines to demonstrate the original trackers, which are severely affected
by onboard latency. Coupled with our PVT++ (PMV), the robustness can be significantly improved
(solid red boxes). Green boxes denote ground-truth. Some typical sequences are also made into
supplementary video for better reference.

Table V: Per dataset results of different predictor modules. For all the three base trackers in various
datasets, our PVT++ outperforms traditional KF (Kalman, 1960).

Dataset DTB70 UAVDT UAV20L UAV123
Tracker Pred. AUC@La0 DP@La0 AUC@La0 DP@La0 AUC@La0 DP@La0 AUC@La0 DP@La0

SiamRPN++Mob

(21FPS)

N/A 0.305 0.387 0.494 0.719 0.448 0.619 0.472 0.678
KF 0.349 0.482 0.527 0.737 0.458 0.624 0.515 0.712

PVTMV 0.399 0.536 0.576 0.807 0.508 0.697 0.537 0.741

SiamRPN++Res

(5FPS)

N/A 0.247 0.313 0.455 0.703 0.405 0.571 0.436 0.639
KF 0.294 0.407 0.535 0.758 0.436 0.582 0.499 0.679

PVTMV 0.342 0.463 0.566 0.797 0.469 0.644 0.536 0.749

SiamMask
(12FPS)

N/A 0.136 0.159 0.351 0.594 0.31 0.434 0.349 0.505
KF 0.189 0.232 0.451 0.667 0.387 0.528 0.415 0.582

PVTMV 0.205 0.256 0.488 0.726 0.416 0.568 0.442 0.619

with our PVT++ (PMV), the models (solid red boxes) are much more robust. We use greed boxes to
denote ground-truth for clear reference.

E PREDICTION QUANTITATIVE COMPARISON

To provide a thorough quantitative comparison of the predictor performance, we reported the re-
sults per dataset in Table V. We observe that for different tracker models in various benchmarks,

17

Under review as a conference paper at ICLR 2023

S0102

Baseline Baseline + Baseline + KF

S0103

#0001 #0198 #0202 #0272 #0306

#0001 #0096 #0243 #0248 #0254

S0304

#0001 #0054 #0179 #0187 #0302

S0602

#0001 #0052 #0061 #0082 #0178

Figure II: Prediction comparison from UAVDT (Du et al., 2018). We use red lines to demonstrate
the original trackers, green for the KF (Kalman, 1960) prediction, and blue for PVT++ prediction.
Compared to KF, PVT++ is better at handling challenges like rotation, scale variation, and view
point change.

Table VI: Results comparison between two fusion strategy. PMV denotes our default PVT++, the
modalities fuse after independent temporal interaction (late fusion). P†

MV indicates that the two cues
fuse before temporal interaction (early fusion).

DTB70 UAVDT
Pred. AUC@La0 DP@La0 AUC@La0 DP@La0

N/A 0.305 0.387 0.494 0.719
PMV (late fuse) 0.399 0.536 0.576 0.807
P†

MV (early fuse) 0.370 0.498 0.571 0.800

our PVT++ (PMV) is more robust than prior solutions (Li et al., 2021b; 2020b), which adopted
traditional KF (Kalman, 1960).

F PREDICTION QUALITATIVE COMPARISON

We also present some qualitative comparison between KF (Kalman, 1960) and PVT++ in Fig. II.
To provide a valid comparison of the prediction results, we set the latency of the models the same,
which all adopt SiamRPN++ Mob (∼21FPS). We find that compared with KF, PVT++ is better at
predicting in-plane rotation (S0103) and view point change (S0304, S0602).

G FUSION STRATEGY COMPARISON

As introduced in the paper, inside PVT++, the three modules, Feature encoder, temporal interaction,
and predictive decoder run one after another. For the default setting, the fusion of the motion and
visual cues happens after temporal interaction, using the concatenate function. Here, we also tried
to integrate the two modality earlier before temporal interaction and right after feature encoder, still
adopting concatenation. The results comparison of two strategies is shown in Table VI, where we
find both are effective and the late fusion is better.

18

Under review as a conference paper at ICLR 2023

Table VII: Attribute-based analysis of the three trackers with PVT++ models in UAV20L (Mueller
et al., 2016) dataset.

Tracker SiamRPN++Mob

(21FPS)
SiamRPN++Res

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

SV 0.437 0.470 0.483 0.500 0.300 0.395 0.392 0.410 0.395 0.437 0.420 0.461
ARC 0.425 0.411 0.438 0.451 0.291 0.352 0.360 0.371 0.373 0.409 0.392 0.438
LR 0.267 0.354 0.344 0.352 0.215 0.295 0.276 0.279 0.244 0.263 0.275 0.290
FM 0.410 0.357 0.394 0.418 0.269 0.304 0.325 0.315 0.319 0.375 0.329 0.442
FOC 0.256 0.272 0.234 0.241 0.170 0.227 0.184 0.164 0.221 0.237 0.231 0.255
POC 0.418 0.480 0.463 0.478 0.286 0.379 0.380 0.396 0.378 0.417 0.430 0.441
OV 0.438 0.512 0.476 0.492 0.272 0.356 0.394 0.405 0.377 0.428 0.448 0.462
BC 0.225 0.258 0.229 0.250 0.119 0.215 0.153 0.159 0.189 0.198 0.210 0.210
IV 0.452 0.414 0.470 0.491 0.303 0.393 0.379 0.403 0.426 0.437 0.382 0.443
VC 0.472 0.450 0.466 0.488 0.302 0.339 0.377 0.384 0.395 0.436 0.420 0.475
CM 0.431 0.463 0.475 0.491 0.297 0.393 0.388 0.406 0.391 0.432 0.412 0.452
SO 0.482 0.519 0.557 0.567 0.399 0.531 0.477 0.491 0.487 0.519 0.438 0.492

DP@La0

SV 0.600 0.630 0.662 0.683 0.417 0.544 0.536 0.556 0.552 0.588 0.581 0.627
ARC 0.591 0.562 0.606 0.624 0.408 0.487 0.486 0.503 0.524 0.558 0.550 0.603
LR 0.444 0.545 0.539 0.548 0.388 0.483 0.465 0.456 0.422 0.414 0.458 0.465
FM 0.631 0.548 0.595 0.625 0.417 0.464 0.495 0.476 0.518 0.573 0.524 0.667
FOC 0.469 0.473 0.436 0.428 0.358 0.423 0.358 0.324 0.425 0.420 0.431 0.459
POC 0.585 0.654 0.648 0.669 0.410 0.530 0.531 0.548 0.540 0.570 0.606 0.613
OV 0.597 0.683 0.658 0.679 0.356 0.473 0.518 0.540 0.529 0.578 0.618 0.630
BC 0.426 0.440 0.399 0.434 0.284 0.398 0.304 0.295 0.378 0.349 0.390 0.385
IV 0.628 0.560 0.649 0.686 0.428 0.551 0.503 0.539 0.595 0.590 0.545 0.617
VC 0.616 0.571 0.605 0.631 0.364 0.420 0.452 0.477 0.518 0.551 0.546 0.611
CM 0.599 0.629 0.660 0.681 0.417 0.544 0.534 0.553 0.550 0.588 0.580 0.626
SO 0.604 0.652 0.719 0.734 0.498 0.645 0.594 0.609 0.610 0.648 0.559 0.619

Table VIII: Attribute-based analysis of the three trackers with PVT++ models in UAV123 (Mueller
et al., 2016) dataset.

Tracker SiamRPN++Mob

(21FPS)
SiamRPN++Res

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

SV 0.456 0.518 0.488 0.514 0.338 0.423 0.383 0.427 0.420 0.509 0.480 0.518
ARC 0.413 0.496 0.468 0.491 0.315 0.402 0.365 0.406 0.398 0.498 0.467 0.510
LR 0.291 0.357 0.328 0.350 0.179 0.264 0.214 0.256 0.257 0.364 0.324 0.257
FM 0.373 0.430 0.461 0.482 0.261 0.316 0.307 0.341 0.333 0.425 0.422 0.447
FOC 0.254 0.317 0.270 0.306 0.191 0.251 0.214 0.246 0.242 0.325 0.284 0.303
POC 0.401 0.436 0.402 0.446 0.284 0.373 0.335 0.374 0.363 0.449 0.426 0.459
OV 0.442 0.489 0.488 0.516 0.289 0.394 0.368 0.407 0.403 0.504 0.476 0.492
BC 0.254 0.293 0.247 0.296 0.188 0.258 0.215 0.247 0.248 0.360 0.307 0.309
IV 0.365 0.421 0.423 0.465 0.310 0.379 0.352 0.381 0.378 0.480 0.441 0.466
VC 0.459 0.552 0.506 0.558 0.322 0.409 0.387 0.432 0.407 0.534 0.499 0.548
CM 0.466 0.542 0.514 0.535 0.319 0.421 0.381 0.422 0.420 0.529 0.502 0.522
SO 0.478 0.497 0.444 0.459 0.362 0.462 0.382 0.435 0.434 0.492 0.464 0.514

DP@La0

SV 0.657 0.714 0.679 0.710 0.488 0.599 0.594 0.537 0.614 0.711 0.671 0.720
ARC 0.602 0.689 0.651 0.678 0.453 0.575 0.502 0.561 0.588 0.701 0.656 0.715
LR 0.548 0.595 0.568 0.586 0.392 0.488 0.471 0.438 0.510 0.621 0.554 0.637
FM 0.517 0.591 0.617 0.646 0.323 0.417 0.368 0.429 0.450 0.588 0.564 0.609
FOC 0.497 0.550 0.489 0.533 0.387 0.460 0.406 0.448 0.460 0.569 0.505 0.541
POC 0.614 0.630 0.586 0.640 0.440 0.556 0.497 0.542 0.553 0.653 0.619 0.664
OV 0.632 0.670 0.674 0.715 0.372 0.533 0.467 0.533 0.556 0.701 0.653 0.685
BC 0.474 0.475 0.436 0.489 0.407 0.470 0.411 0.444 0.473 0.587 0.512 0.526
IV 0.546 0.594 0.586 0.644 0.447 0.541 0.521 0.486 0.550 0.674 0.623 0.664
VC 0.654 0.743 0.681 0.746 0.443 0.575 0.512 0.586 0.587 0.735 0.683 0.744
CM 0.668 0.748 0.713 0.735 0.440 0.587 0.514 0.573 0.606 0.737 0.699 0.734
SO 0.714 0.703 0.625 0.647 0.554 0.681 0.568 0.639 0.650 0.691 0.671 0.724

H FULL ATTRIBUTE-BASED ANALYSIS

We present full attribute-based analysis in Table II, Table IV, Table VII, and Table VIII. Following
the original work (Li & Yeung, 2017), we report results on aspect ratio variation (ARV), background

19

Under review as a conference paper at ICLR 2023

（a）

Loss

Iteration

Loss

Iteration

Loss

Iteration

Loss

Iteration

（b） （c）w/ Auxiliary Branch （d）w/o Auxiliary Branch

Figure III: Training loss curves of PVT++ models. Coupled with visual feature, PMV can better
learn to predict than PM, thus the loss is observed to be smaller. Without auxiliary branch, the loss
curve is less smooth, indicating the importance of A.

Table IX: Effect of extra latency brought by PVT++ in UAVDT (Du et al., 2018) dataset. We use ·†
to indicate neglecting the latency. With ∼5ms/frame extra time, the performance is slightly lower.

Model Tracker Tracker+P†
MV Tracker+PMV

Metric mAUC∆% mDP∆% Latency mAUC∆% mDP∆% Latency mAUC∆% mDP∆% Latency
Result 0.494+0.00 0.719+0.00 44.5ms 0.587+18.8 0.825+14.7 44.5ms 0.576+16.6 0.807+12.2 50.0ms

Table X: Performance of PVT++ models trained with different datasets. Full denotes ∼9,000 videos
from VID (Russakovsky et al., 2015), LaSOT (Fan et al., 2019), and GOT-10k (Huang et al., 2019a).
VID indicates using only ∼3,000 videos from VID (Russakovsky et al., 2015). AVG means average
results on the four test datasets. Since PVT++ utilizes the trained tracking models, We observe the
training are not very sensitive to the scale of training set.

Dataset DTB70 UAVDT UAV20L UAV123 AVG

PVT++ Training mAUC mDP mAUC mDP mAUC mDP mAUC mDP mAUC mDP

PV
Full 0.352 0.472 0.564 0.799 0.488 0.675 0.504 0.703 0.477 0.662
VID 0.362 0.483 0.519 0.752 0.497 0.694 0.513 0.731 0.473 0.665

PMV
Full 0.399 0.536 0.576 0.807 0.508 0.697 0.537 0.741 0.505 0.695
VID 0.405 0.554 0.53 0.757 0.511 0.701 0.534 0.745 0.495 0.689

clutter (BC), deformation (DEF), fast camera motion (FCM), in-plane rotation (IPR), motion blur
(MB), occlusion (OCC), out-of-plane rotaTion (OPR), out-of-view (OV), scale variation (SV), and
similar object around (SOA) in Table II. As shown in Table IV, results on background clutter (BC),
camera rotation (CR), object rotation (OR), small object (SO), illumination variation (IV), object
blur (OB), scale variation (SV), and large occlusion (LO), are reported for UAVDT (Du et al., 2018).
For UAV20L and UAV123 (Mueller et al., 2016), we present results on scale variation (SV), aspect
ratio change (ARC), low resolution (LR), fast motion (FM), full occlusion (FOC), partial occlusion
(POC), out-of-view (OV), background clutter (BC), illumination variation (IV), viewpoint change
(VC), camera motion (CM), and similar object (SO) in Table VII and Table VIII, respectively.

We observe that the two modalities has their own advantage in different UAV tracking challenges. In
general, motion predictor is better than visual predictor, and the joint model PMV is the most robust.

I TRAINING VISUALIZATION

The training loss curves of PVT++ models with SiamRPN++Mob (Li et al., 2019) is shown in Fig. III.
Compared with motion predictor PM, the joint predictor PMV can better learn to predict, resulting in
smaller training loss. We also compared the losses from models with (c) or without (d) the auxiliary
branch A. Without A, the loss curve is less smooth, indicating that the model can’t converge well.

J EFFECT OF EXTRA LATENCY

PVT++ will bring a bit extra latency during online perception, which is negative for the performance.
As shown in Table IX, the latency of original tracker (Li et al., 2019) is about 45 ms/frame. Ignoring

20

Under review as a conference paper at ICLR 2023

Test 5 - building
150 300 450 600 750 900 1050 1200

Frame (#)

0

10

20

30

40

C
L

E

UAV

Test 6 - island
50 100 150 200 250 300 350 400 450 500

Frame (#)

0

10

20

30

40

C
L

E

SiamMask

[11.95 FPS]

SiamRPN++

[15.57 FPS]

Test 1 - container
150 300 450 600 750 900 1050 1200

Frame (#)

0

10

20

30

40

C
L

E

UAV
50 100 150 200 250 300 350 400 450 500

Frame (#)

0

10

20

30

40

C
L

E

Test 2 - person

Occlusion

100 200 300 400 500 600 700

Frame (#)

0

10

20

30

40

C
L

E

50 100 150 200 250 300 350

Frame (#)

0

10

20

30

40

C
L

E

Test 7 - car

UAV

Test 8 - group

50 100 150 200 250 300 350 400

Frame (#)

0

10

20

30

40

C
L

E

Test 3 - excavator

UAV

Test 4 - jogging
100 200 300 400 500 600 700 800

Frame (#)

0

10

20

30

40

C
L

E

Initialization latency

Figure IV: Eight real-world tests of PVT++ on non-real-time trackers, SiamMask (Wang et al., 2019)
and SiamRPN++ Mob (Li et al., 2019). We present the tracking scenes, the target objects, and center
location error (CLE) in the figure. Under various challenges like aspect ration change, illumination
variation, low resolution, PVT++ maintains its robustness, with CLE below 20 pixels in most frames.

the predictor’s latency, the online performance can reach 0.587 mAUC and 0.825 mDP. Taking the
extra latency of ∼ 5 ms/frame into account, the result will slightly suffer, decreasing to 0.576 mAUC
and 0.807 mDP. Therefore, though PVT++ introduces extra latency, the online performance can still
be significantly improved by more than 10%.

K TRAINING SET ANALYSIS

Since PVT++ models can make full use of a trained tracker model, we find PV and PMV not very
sensitive to the scale of training set. As shown in Table X, trained with only ∼3,000 videos from
VID (Russakovsky et al., 2015), our PVT++ can still converge well and achieve on par performance
compared with the fully trained models.

L MORE REAL-WORLD TESTS

In addition to the four real-world tests in Sec. 6.4 of the main paper, we present four more tests
(together eight tests) in Fig. IV, where we implemented the models on a real UAV and performed
several flight tests. The real-world tests involve two non-real-time trackers, SiamRPN++ Mob (Li
et al., 2019) (∼ 15.57 FPS in the tests) and SiamMask (Wang et al., 2019) (∼ 11.95 FPS in the
tests), which are largely affected by their high onboard latency. Coupled with our PVT++ (PMV),
the predictive models work well under various tracking scenes, e.g., aspect ratio change in Test 1,
dark environment in Test 2, 5, 7, and 8, view point change in Test 3, and occlusion in Test 2. The
real-world tests also cover various target objects like person, building, car, and island, as shown in
Fig. IV. The robustness of PVT++ in the onboard tests validate its effectiveness in the real-world
UAV tracking challenges.

21

	Introduction
	Related Work
	Visual tracking and its aerial applications
	Latency-aware perception.
	Visual Tracking Benchmarks.

	Preliminary
	Extended Latency-Aware Benchmark
	Predictive Visual Tracking
	General Framework
	Motion-based Predictor
	Visual Appearance-based Predictor
	Multi-modal-based Predictor

	Experiments
	Implementation Details
	Extended Latency-aware Evaluation
	Empirical analysis
	Real-world Tests

	Discussions
	Overview
	Detailed Configuration
	Complete Notation Reference Table
	Visualization
	Prediction Quantitative Comparison
	Prediction Qualitative Comparison
	Fusion Strategy Comparison
	Full Attribute-based Analysis
	Training Visualization
	Effect of Extra Latency
	Training Set Analysis
	More Real-World Tests

