
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A GREEDY PDE ROUTER FOR BLENDING NEURAL
OPERATORS AND CLASSICAL METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

When solving PDEs, classical numerical solvers are often computationally expen-
sive, while machine learning methods can suffer from spectral bias, failing to cap-
ture high-frequency components. Designing an optimal hybrid iterative solver–
where, at each iteration, a solver is selected from an ensemble of solvers to lever-
age their complementary strengths–poses a challenging combinatorial problem.
While the greedy selection strategy is desirable for its constant-factor approxima-
tion guarantee to the optimal solution, it requires knowledge of the true error at
each step, which is generally unavailable in practice. We address this by proposing
an approximate greedy router that efficiently mimics a greedy approach to solver
selection. Empirical results on the Poisson and Helmholtz equations demonstrate
that our method outperforms single-solver baselines and existing hybrid solver
approaches, such as HINTS, achieving faster and more stable convergence.

1 INTRODUCTION

Natural phenomena and engineered systems are often governed by ordinary and partial differential
equations (PDEs). Solving these equations enables a variety of tasks - predicting the evolution of the
system through simulation (e.g., forecasting weather using the Navier-Stokes equations) (Kalnay,
2003; Bauer et al., 2015; Staniforth & Côté, 1991), addressing control problems (e.g., optimizing
heat shield design for spacecrafts using heat transfer equations) (Anderson, 1989; Tröltzsch, 2010),
and tackling inverse problems based on external measurements (e.g., reconstructing brain activity
from EEG data using electrophysiological models) (Baillet et al., 2001; Grech et al., 2008).

Traditionally, PDEs are solved using finite difference methods (Smith, 1985; LeVeque, 2007), which
discretize the spatial and/or temporal domain and approximate the solution by solving a system of
equations at the discrete grid points. Similarly, finite element methods (Hughes, 2003; Bathe, 2006;
Brenner, 2008) construct a system of equations based on fitted curves for each finite element, and
then rely on numerical linear algebra techniques–such as the Jacobi and Gauss-Seidel method (Saad,
2003)–to compute the solution. Such iterative methods, however, lack generalization across different
initial conditions, boundary conditions, or forcing functions, as even minor changes to any of these
parameters require re-solving the entire system of equations from scratch.

These challenges have motivated the development of neural operators (Kovachki et al., 2023)–a class
of machine learning models that aim to learn the solution operator directly, enabling fast inference
across a range of parameters. Neural operators lift the classical linear layer in neural networks to
a linear operator–typically a kernel integral operator–between infinite-dimensional function spaces.
While the universal approximation theorem of operators (Chen & Chen, 1995) suggests that neural
operators can approximate solution operators with high accuracy, they are prone to spectral bias
(Liu & Cai, 2021; Liu et al., 2024; You et al., 2024; Khodakarami et al., 2025; Xu et al., 2025)–
similar to traditional neural networks (Rahaman et al., 2019; Xu et al., 2019; Luo et al., 2019)–and
favor learning the low-frequency components of the solution function, often struggling to capture
high-frequency features that iterative solvers excel at.

Recognizing this complementarity, Zhang et al. (2024) proposed HINTS, a hybrid solver that inter-
leaves a neural operator pass every τ th iteration (with τ fixed a priori) of a classical solver. While
HINTS reports significant empirical gains in convergence and accuracy over the standalone neural
operator and Jacobi solver, this fixed schedule can be detrimental: a poorly timed neural correction
may increase the error and undo recent progress.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Although dynamic solver schedules are desirable, identifying the optimal sequence of solvers that
minimizes final error is combinatorial since the search space grows exponentially with the number
of iterations. A practical alternative is the greedy rule that, at each iteration, selects the solver with
the largest immediate error reduction. Such a rule can be near-optimal when the final error satisfies
(weak) supermodularity–so that applying a beneficial solver earlier is at least as valuable as applying
it later. To support this approach, we make the following contributions:

• We present a general hybrid PDE solver in which a routing rule chooses, at each iteration,
from a set of classical solvers and neural operators (not just two). With oracle access
to the true error at every step, we show that a greedy routing rule achieves a constant-
factor approximation to the optimal strategy for linear PDEs, provided the updates are
error-reducing (Lipschitz with constant < 1) and zero-preserving–conditions under which
weak supermodularity holds.

• Given that the true error is not observed at test time, a convex surrogate loss is introduced,
which, when minimized, enables the learned model to imitate the greedy solver without
access to true error information. This alignment is guaranteed through Bayes consistency.

• We empirically demonstrate that our approximate greedy solver outperforms HINTS and
individual solvers in terms of faster, more stable convergence on benchmark PDEs, such as
the Poisson and Helmholtz equations.

2 PROBLEM SETTING AND BACKGROUND

Consider the following linear PDE:

La
x (u) = f, x ∈ D; Bx (u) = b, x ∈ ∂D (1)

where La
x is a differential operator with respect to the spatial variable x ∈ D parameterized by

the coefficient function a, f is a forcing function, u is the solution to the PDE, Bx is the boundary
operator, and b is the boundary term. Such PDEs can be solved numerically using various discretiza-
tion strategies, such as finite differences (Smith, 1985; LeVeque, 2007), finite element, and spectral
methods (Boyd, 2001; Canuto et al., 2006). Here, we focus on finite differences, which replace
derivatives with difference quotients (e.x., ∂xu(x) ≈ (u(x+ h)− u(x))/h) on a uniform grid.

Formally, let h be the grid size and Gh(D) be a uniform grid with spacing h over D. Given a
function g : D → R, we represent its restriction to Gh(D) by gh ∈ RN , where N = |Gh(D)|. If
La
h ∈ RN×N is the discretized operator, the discrete counterpart of Equation (1) is expressed as

La
huh = fh, (2)

with the boundary conditions incorporated in La
h. Thus, the PDE reduces to a linear system of

equations. Unlike much of the neural operator literature, which retains function space formulations
for discretization invariance, we follow the conventions of classical numerical analysis and represent
all functions and operators as finite-dimensional vectors and matrices. Discretization invariance is
not essential here, since we focus on fixed-grid problems.

2.1 ITERATIVE PDE SOLVERS

Direct methods like Gauss Elimination and Thomas Algorithm can be computationally expensive
in high-dimensional domains when solving systems like Equation (2). In contrast, iterative meth-
ods like Jacobi and Gauss-Seidel offer computational speedups by iteratively updating the solution,
gradually converging to the true solution for the PDE. The general iterative update is

u(t+1) = u(t) + C
(
fh − La

hu
(t)
)
, (3)

where u(t) is the tth iterate of the solution and C is a preconditioning matrix. Jacobi uses C = D−1,
where D is the diagonal of La

h, and Gauss-Seidel uses C = (D + L)−1, where L denotes the strict
lower triangular part. However, iterative methods tend to damp low frequency components of the
error slowly. Multigrid solvers (Briggs et al., 2000; Trottenberg et al., 2001; Hackbusch, 2013) tackle
this problem by alternating smoothing on coarse and fine grid resolutions to dampen more uniformly
across frequencies. We defer the reader to Appendix A.1 for more background on Multigrid solvers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 NEURAL OPERATORS

Suppose we observe samples {(ai, fi, ui)}Ni=1 such that (ai, fi) ∼ P are i.i.d. samples drawn from
some distribution. Let ui be generated by a deterministic solution operator G∗, i.e., ui = G∗(ai, fi).
A neural operator Gθ seeks to approximate G∗ by minimizing the expected squared L2(D) error
(with respect to the Lebesgue measure): RNO(Gθ) = E(a,f)∼P [lNO(a, f, u,Gθ)], where

lNO(ai, fi, ui,Gθ) =
∫
D

∥ui(x)− Gθ(ai, fi)(x)∥22 dx.

Neural operators often use discretization-invariant layers. Prominent instantiations include Fourier
Neural Operators, which use spectral transforms (Li et al., 2020a), Graph Neural Operators, which
perform graph-based aggregation over sampled points (Li et al., 2020b), and DeepONets, which
employ a trunk–branch decomposition to map input functions to output functions (Lu et al., 2021).

2.3 GREEDY OPTIMIZATION

Consider the problem of maximizing g(S) over S ⊆ Ω with |S| ≤ T where g : 2Ω → R is a set func-
tion defined on subsets of a set Ω. An exhaustive search over all subsets quickly becomes infeasible.
An efficient alternative is the greedy algorithm. It builds the solution subset iteratively by, at each
step, adding the element ω∗ that yields the largest marginal gain, i.e. ω∗ = argmaxω∈Ω\S g(S∪ω),
and updating S ← S ∪ {ω∗}. When g is non-negative, monotone (adding elements never decreases
the value), and submodular (diminishing returns), the greedy algorithm achieves a (1−e−1) approx-
imation to the optimal solution (Nemhauser et al., 1978). Formally, a function g is submodular if
g(A ∪{ω})−g(A) ≥ g(B ∪{ω})−g(B) for all A ⊆ B ⊆ Ω and ω ∈ Ω\B; intuitively, delaying
an addition cannot increase its benefit. For set function minimization problems, supermodularity,
where the inequality flips, plays an analogous role, and the greedy rule achieves constant-factor
approximation guarantees (Liberty & Sviridenko, 2017).

The suboptimality of the greedy algorithm has been extensively studied for both set-function min-
imization (Bounia & Koriche, 2023) and maximization (Das & Kempe, 2018; Feige et al., 2011;
Bian et al., 2017; Harshaw et al., 2019) when standard assumptions–non-negativity, monotonic-
ity, and sub/supermodularity–are weakened. In contrast, results on greedy sequence maximization
(Streeter & Golovin, 2008; Alaei et al., 2021; Zhang et al., 2015; Bernardini et al., 2020; Van Over
et al., 2024; Tschiatschek et al., 2017)–where the ordering of the elements affects the function–have
led to sequential analogues of submodularity and monotonicity. We leverage these tools to analyze
the suboptimality of the greedy solution to minimizing the final error.

3 GENERAL FRAMEWORK FOR HYBRID SOLVERS

To solve Equation (2), consider the following hybrid iterative update:

u
(t+1)
h = u

(t)
h + CSt

(
fh − La

hu
(t)
h

)
(4)

where C = {Cj}Kj=1 denotes a set of K preconditioning functions and St ∈ [K] = {1, . . . ,K}
indexes the function chosen at step t. Here, we use “preconditioning function” broadly to refer to any
update rule, encompassing classical approaches, where Cj(x) = Cjx is a preconditioning matrix,
and learned models, such as neural operators. This update generalizes the form of classical methods,
as seen in Equation (3), by allowing Cj to be non-linear and enabling the preconditioning function
to be adaptively chosen at every step. C can also accommodate parameterized solver families (e.g.,
different Jacobi relaxation weights or multigrid cycle depths), enabling adaptive selection of solver
parameters. As the number of solvers K grows, it raises the likelihood of a substantial immediate
error drop. Furthermore, HINTS (Zhang et al., 2024) is a special case of this hybrid solver with
K = 2, where C1 is a neural operator and C2 is a classical preconditioner. Its routing rule is given
by St = 1t mod τ>0 + 1, which selects C1 every τ steps and C2 otherwise.

Let e(t)h = uh − u
(t)
h denote the error at step t. Then,

e
(t+1)
h = uh − u

(t)
h − CSt

(
La
huh − La

hu
(t)
h

)
= (I − CSt ◦ La

h) (e
(t)
h)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where I is the identity map and I − Cj ◦ La
h is the error propagation function for the jth solver.

Here, “◦” denotes function composition (for linear Cj , this coincides with matrix multiplication).
The objective of the hybrid solver is to select a sequence of solvers that minimize the error norm
after T steps or ∥e(T)

h ∥22. For a sequence S = (S1, . . . , ST) of solver indices, we seek to solve

min
St∈[K],|S|≤T

h(S) :=
∥∥∥(I − CS|S| ◦ L

a
h

)
◦ · · · ◦ (I − CS1

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(5)

with compositions applied from right to left, so that the S1 update acts on the initial error.

4 GREEDY ALGORITHM

Equation (5) defines a combinatorial optimization problem with a search space exponential in T ,
rendering exact optimization intractable for large T or K. As a starting point, we propose and
analyze an “omniscient” greedy algorithm that assumes access to the true initial error e(0)h . This is
unrealistic–if e(0)h were known, one could recover the solution immediately via uh = u

(0)
h + e

(0)
h ,

but it provides a clean benchmark. In Section 5, we relax this assumption using a practical learning
strategy that is Bayes consistent with this omniscient approach, thereby recovering the suboptimality
guarantees shown below.

As discussed in Section 2.3, when supermodularity and monotonicity hold, the greedy rule–such
as the one described in Algorithm 1–enjoys constant-factor approximation guarantees. However,
classical results focused on set functions, with only recent extensions made to sequences. Building
on this line, we introduce a sequence-based notion of weak supermodularity.

Algorithm 1 Greedy Algorithm for a Hybrid PDE solver

Require: {Cj}Kj=1, T,La
h, e

(0)
h

S0 ← ∅
for t < T do

St+1 ← St ⊕ argminj∈[K] ∥(I − Cj ◦ La
h)(e

(t)
h)∥22

e
(t+1)
h ← (I − CSt+1 ◦ La

h)(e
(t)
h)

end for
return ST

Let Ω∗ denote the space of sequences with elements in Ω. For S = (S1, . . . , Sn) ∈ Ω∗, S′ =
(S′

1, . . . , S
′
m) ∈ Ω∗, we denote their concatenation as S ⊕ S′ = (S1, . . . , Sn, S

′
1, . . . , S

′
m). S is a

prefix of S′ or S ⪯ S′ if S′ = S ⊕ L for some L ∈ Ω∗. A sequence function g : Ω∗ → R is
considered prefix monotonically non-increasing if g(S ⊕S′) ≤ g(S) for all S, S′ ∈ Ω∗, and postfix
monotonically non-increasing if g(S′ ⊕ S) ≤ g(S) for all S, S′ ∈ Ω∗. A prefix non-increasing
function g is sequence supermodular if, for all S′, S ∈ Ω∗ : S ⪯ S′, it holds that

g(S)− g(S ⊕ ω) ≥ g(S′)− g(S′ ⊕ ω), ∀ω ∈ Ω (6)

However, h(S) (described in Equation (5)) may not, in general, satisfy this property. Therefore, we
introduce weak sequence supermodularity. A prefix non-increasing function g is weakly supermod-
ular with respect to S′ ∈ Ω∗ if, for any S ∈ Ω|S′|, there exists α(S′) ≥ 1 such that

g(S)− g(S ⊕ S′) ≤ α(S′)
∑

i∈[|S′|]

g(S)− g(S ⊕ S′
i) (7)

The parameter α(S′) or the supermodularity ratio quantifies deviation from exact sequence super-
modularity. Expanding the g(S)− g(S ⊕S′) as a telescoping sum

∑|S′|
i=1 g(S ⊕

(
S′
1, . . . , S

′
i−1

)
)−

g(S ⊕ (S′
1, . . . , S

′
i)) shows that the marginal decrease from appending S′

i after its predecessors is
controlled by the effect of appending S′

i directly to S. Thus, postponing the inclusion of S′
i cannot

yield a significantly larger benefit compared to adding it earlier. The supermodularity ratio α(S)
quantifies the extent to which future gains from delays may exceed immediate gains.

Having introduced these notions, we now characterize the suboptimality of greedy solutions of
weakly supermodular and postfix monotonic sequence functions in Theorem 4.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 4.1. Let g : Ω∗ → R be a weakly supermodular function with respect to the optimal
solution O = argminS∈ΩT h(S) with a supermodularity ratio of α(O) and postfix monotonicity.
Let the greedy solution of length T be ST . If ϕT (α) =

(
1− 1

αT

)T
, then

g(ST) ≤ (1− ϕT (α(O))) g(O) + ϕT (α(O))g(∅)

The proof of Theorem 4.1 appears in Appendix B.2. As T → ∞, the factor 1 − ϕT (α(O)) de-
creases to 1 − e−1/α(O), so the worst-case performance of the greedy rule saturates with horizon
rather than degrading indefinitely. Additionally, larger α(O), which indicates higher reward for
delayed inclusions, loosens the suboptimality bound. Theorem 4.1 requires that the sequence objec-
tive h be weakly supermodular with respect to the optimal solution and postfix monotone–properties
established in Proposition 4.2. We defer the proof to Appendix B.3.
Proposition 4.2. Suppose that for all j ∈ [K], the error propagation function I − Cj ◦ La

h is ρj-
Lipschitz continuous with ρj < 1, and that (I−Cj ◦La

h)(0N) = 0N . Then, the function h is weakly
supermodular with respect to the optimal solution O, with

α(O) = max

{
4

T −
∑T

i=1 ρ
2
Oi

, 1

}
Furthermore, if I − Cj ◦ La

h is invertible for all j ∈ [K], h is also postfix non-increasing.

The conditions of Proposition 4.2 are quite natural. For classical solvers, the Lipschitz constant is
∥IN − CjLa

h∥, which is usually less than 1 for well-posed linear elliptic PDEs (i.e., the update is
damping errors). For neural networks, Lipschitz continuity can be enforced via weight regularization
(Gouk et al., 2021) and a sufficiently trained model should approximate (La

h)
−1 well enough to make

the Lipschitz constant small. The requirement (I−Cj◦La
h)(0N) = 0N is both natural and desirable:

it precludes spurious updates when the residual fh − La
hu

(t)
h is 0. This holds by design for classical

schemes, and it can be enforced for any learned model by excluding bias terms.

The form of α(O) in Proposition 4.2 highlights that the suboptimality factor in Theorem 4.1 is
governed by the collective contraction factors of the solvers chosen by the optimal solution: as∑T

i=1 ρ
2
Oi
→ T , α(O) grows, resulting in a weaker bound. Invertibility of the error propagation

functions is often satisfied with Jacobi and Gauss-Seidel updates. However, widely-used solvers
like two-grid corrections and neural networks with dimension changes or ReLU activations may
yield non-invertible error propagation functions. Nevertheless, our experiments show that greedy
routers remain effective even when invertibility is not met.

Theorem 4.1 thus indicates that the approximation guarantee is strongest when the sequence is nearly
supermodular (α(O) ≈ 1). Generally, if all error propagation maps share an eigenbasis, supermod-
ularity is established. This occurs, for example, for linear, constant-coefficient PDEs with periodic
boundary conditions where the solver ensemble includes Jacobi, Gauss-Seidel, and a single-layer
linear Fourier Neural Operator. The proof of Proposition 4.3 is deferred to Appendix B.5.
Proposition 4.3. Let ∥IN − CjLa

h∥ ≤ 1 for all j ∈ [K] and (I − CjLa
h) = PΛjP

−1. Then, h is
supermodular.

5 APPROXIMATE GREEDY ROUTER

The results in Section 4 indicate that the error reduction from the greedy solution closely matches
that of the optimal sequence, but this is predicated on having an accurate estimate of the initial error,
e
(0)
h . A poor approximation of e(0)h can result in miscalibrated decisions, causing errors to amplify

over subsequent steps. To remedy this, we design a router r that learns to select solvers myopically,
as described in Algorithm 1, without access to the true initial error.

We adopt the following learning setup. Let A,F ,U ⊆ RN denote the spaces of coefficient, forcing,
and solution functions on the grid Gh(D). We assume an application-specific data distribution
PA×F overA×F that reflects test time conditions. During training, (ah, fh) is drawn from PA×F ,
and a high-accuracy reference solution uh is computed, providing the true per-step error. The router
r is learned offline on this data; at test time, it operates without access to true errors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

At each time step t, r selects a solver using the coefficient a ∈ A, forcing f ∈ F , and the current
iterate u(t) ∈ U . If r(ah, fh, u

(t)
h) = j, the next iterate is computed with solver j, resulting in an

error of ∥(I − Cj ◦ La
h)(e

(t)
h)∥22. Learning such a router requires minimizing the following loss:

lroute

(
r, ah, fh, u

(t)
h , uh

)
=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h)=j

(8)

The corresponding lroute-risk is defined as Rroute (r) = Eah,fh∼PA×F [lroute(r, ah, fh, u
(t)
h , uh)]. For

analysis, we fix the iterate generation via a teacher-forcing (Williams & Zipser, 1989; Lamb et al.,
2016): during training, the iterates fed to the router are produced by an oracle greedy rollout, not by
the router’s own past choices. Formally, with u

(0)
h = 0N , for t ≥ 1,

j∗t ∈ argminj∈[K]

∥∥∥(I − Cj ◦ La
h)
(
e
(t−1)
h

)∥∥∥2
2
, u

(t)
h = u

(t−1)
h + Cj∗t

(
fh − La

hu
(t−1)
h

)
Thus, {u(t)

h } is a deterministic function of (ah, fh). At each t, lroute is evaluated on r(ah, fh, u
(t)
h)

which takes in the teacher-forced iterate. Finally, the greedy choice j∗t+1 is used to advance u
(t+1)
h .

Thus the input distribution seen by r depends on (ah, fh), not on the router’s predictions. However,
full teacher forcing induces a distributional mismatch at test time (exposure bias). In experiments,
we mitigate this with scheduled sampling (Bengio et al., 2015); see Appendix D for details.

MinimizingRroute (r) yields the following Bayes-Optimal Router:

r∗(ah, fh, u
(t)
h) ∈ argminj∈[K]

∥∥∥(I − Cj ◦ La
h)
(
e
(t)
h

)∥∥∥2
2

(9)

which aligns with the decision rule in Algorithm 1. Hence, lroute is consistent with learning the
greedy algorithm.

5.1 SURROGATE LOSS

Since Equation (8) is discontinuous and non-convex, direct minimization is intractable in practice.
To overcome this, we introduce a surrogate loss that satisfies three key properties: (1) convexity,
enabling efficient optimization; (2) serving as an upper bound on the original loss; and (3) Bayes
consistency, ensuring the Bayes optimal decision of the original loss is preserved upon minimization.
Formally, a surrogate ϕ is considered to be Bayes consistent with respect to the loss l if

lim
n→∞

Rϕ(fn)−R∗
ϕ =⇒ lim

n→∞
Rl(fn)−R∗

l

where Rl(f) = E [l(f(X), Y)] and R∗
l = inff Rl(f). In other words, in the limit of infinite data,

if the risk of a sequence of learned hypotheses {fn} converges to the optimal risk under ϕ, it also
converges to the optimal risk with respect to the original loss l.

To define a surrogate loss for the routing problem, consider a set of scoring functions g = {gj}Kj=1

with gj : A × F × U → R and we define the router as r(a, f, u(t)) = argmaxj∈[K]gj(a, f, u
(t)).

For example, g can be a neural network with K outputs. Then, minimizing the following surrogate
loss yields the same decision as minimizing Equation (8):

Ψ
(
g, ah, fh, u

(t)
h , uh

)
= −

K∑
j=1

K∑
k=1

c̃k(ah, u
(t)
h , uh)1k ̸=j log

(
exp

(
gj(a, f, u

(t))
)∑K

m=1 exp
(
gm(a, f, u(t))

))
(10)

where c̃j(ah, u
(t)
h , uh) = ∥(I − Cj ◦ La

h)(uh − u
(t)
h)∥22. The Ψ-risk is denoted by RΨ(g) =

Eah,fh∼PA×F [Ψ(g, ah, fh, u
(t)
h , uh)]. The convexity of Ψ with respect to g follows from the con-

vexity of log-softmax function in its inputs. Moreover, Ψ upper bounds lroute up to a constant factor,
and we refer the reader to Appendix C.2 for the proof. Finally, Theorem 5.1 shows that Ψ achieves
Bayes consistency with respect to lroute; the proof can be found in Appendix C.3.

Theorem 5.1. Let c̃j(ah, u
(t)
h , uh) < Ē < ∞ for all j ∈ [K]. If there exists j ∈ [K] such

that c̃j(ah, u
(t)
h , uh) > Emin > 0, then, for any collection of solvers {Cj}Kj=1 and linear discrete

operator La
h, Ψ is Bayes consistent surrogate for lroute.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 5.1 is a cost-sensitive analogue of the classical Bayes-consistency of multiclass cross-
entropy for 0-1 loss: in the infinite-sample limit, minimizing cross-entropy recovers the true con-
ditional class probabilities, so the induced decision is Bayes optimal. Our result extends this to
cross-entropy with instance-dependent weights

∑K
k ̸=j c̃k(ah, u

(t)
h , uh). The uniform upper bound

holds when all preconditioning functions are error-damping. It is also reasonable to assume at least
one solver cannot annihilate the error in one step, yielding the lower bound. Under these condi-
tions, minimizing Ψ recovers the Bayes-optimal router of Equation (9), i.e., the greedy solution of
Equation (5). Following the work of Mao et al. (2024), the proof uses standard conditional-risk
calibration: we relate the excess risks of lroute and Ψ and take the infinite-sample limit.

6 RELATED WORKS

Hybrid PDE Solvers: Early data-driven solvers sought convergence guarantees by predicting
parameters–e.g., preconditioning matrices C, multi-grid smoothers or restriction matrices–within
iterative schemes (Taghibakhshi et al., 2021; Caldana et al., 2024; Kopaničáková & Karniadakis,
2025; Huang et al., 2022; Katrutsa et al., 2020). These works, however, do not leverage the neural
surrogates’ ability to generalize across varying coefficients and/or forcings highlighted in Section 2.2
and thus, offer only modest speedups over classical solvers. HINTS (Zhang et al., 2024) introduced
hybrid solvers that interleave a classical method with a pre-trained DeepONet on a fixed schedule
(e.g., 24 Jacobi steps, then one DeepONet correction). Despite this rigidity, HINTS reports sig-
nificantly faster convergence than the standalone numerical solver. Kahana et al. (2023) adapted
HINTS to geometries distinct from, but related to, those used to train the neural operator. Both Hu
& Jin (2025) and Cui et al. (2022) characterized the dampening of error modes over iterates, with
the former replacing the DeepONet of HINTS with an MIONet (Jin et al., 2022) and the latter a
Fourier Neural Operator (Li et al., 2020a). Critically, these hybrid solvers are limited in two ways:
they, firstly, only complement the trained surrogate with a single numerical solver, and secondly
interleave the numerical and neural solvers with a fixed, heuristic schedule. These were the pri-
mary shortcomings that we addressed in our proposed method, which result in significant empirical
improvements, as we demonstrate in Section 7.

Model Routing: Routing (Shnitzer et al., 2023; Hu et al., 2024; Ding et al., 2024; Huang et al.,
2025) seeks to find, for each input, a model from a fixed set that optimizes a task metric under cost
or latency constraints. Simple heuristics–e.g., thresholding a cheap model’s uncertainty estimates
(Chuang et al., 2024; 2025)–often poorly balance the cost-accuracy tradeoff. Consequently, many
systems learn a router network, which maps a query to the model index expected to perform best
(Hari & Thomson, 2023; Mohammadshahi et al., 2024; Šakota et al., 2024). Abstractly, our method
also learns a router, but over numerical and neural solvers for PDEs at the iteration level. Our work
is the first to demonstrate that routing is applicable to the problem of learning hybrid PDE solvers,
differing from prior hybrid solver works, which simply fixed the “router” to a predetermined sched-
ule. We additionally exploit the algebraic structure of PDE solvers to derive theoretical guarantees
for our routing strategy in Section 4, unlike typical model-routing settings.

Mixture of Experts: Classical mixture-of-experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs,
1994) uses a gating network to assign soft or hard weights to a set of experts and produce a weighted
combination of their outputs, with the gate and experts trained jointly. In modern LLM systems,
MoE instead performs sparse, token-level routing to a small subset of in-layer experts, enabling
large model capacity without proportional compute, typically with load-balancing and capacity con-
straints (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Jiang et al., 2024). Our
method can be regarded as gating network of a different kind where our “experts” or solvers are not
trained jointly with the router and single router is reused across the iteration horizon, in contrast to
MoE which commonly employs layer-specific gates.

7 EXPERIMENTS

In this section, we empirically demonstrate the fast, uniform convergence of the approximate greedy
router on Poisson and Helmholtz equations posed on the unit domain D = [0, 1]d with d ∈ {1, 2} .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Equation 1D Poisson 2D Poisson 1D Helmholtz 2D Helmholtz
Methods ∥e(T)

h ∥ AUC ∥e(T)
h ∥ AUC ∥e(T)

h ∥ AUC ∥e(T)
h ∥ AUC

Jacobi-related Solvers
Jacobi Only 0.19 (0.1) 128.66 (69.98) 0.07 (0.03) 115.5 (42.96) 0.22 (0.11) 146.57 (76.11) 0.066 (0.03) 110.485 (41)

HINTS-Jacobi 0.01 22.71 (11.36) 0.18 65.75 (8.61) 0.048 (0.02) 29.36 (13.21) 0.11 (0.03) 115.84 (41.36)
Greedy-Jacobi 0.001 1.12 (0.44) 0.01 18.48 (4.06) 0.025 (0.03) 8.105 (8.22) 0.066 (0.03) 110.485 (41)

GS-related Solvers
GS Only 0.05 (0.03) 80.55 (43.83) 0.005 61.67 (23.02) 0.054 (0.03) 91.153 (47.35) 0.005 (0.002) 58.801 (21.892)

HINTS-GS 0.003 17.8 (9.21) 0.174 56.63 (7.75) 0.041 (0.01) 26.638 (11.59) 0.056 (0.003) 64.445 (21.986)
Greedy-GS < 10−3 0.674 (0.27) 0.001 9.9 (2.26) 0.015 (0.01) 5.157 (3.96) 0.005 (0.002) 58.801 (21.892)

MG-related Solvers
MG Only 0.05 (0.01) 20.51 (7.46) 0.002 10.97 (3.03) 0.05 (0.01) 22.042 (7.8) 0.011 (0.009) 10.745 (3.094)

HINTS-MG 0.002 7.64 (3.66) 0.079 15.02 (2.03) 0.023 (0.01) 9.872 (4.32) 0.026 (0.008) 11.763 (2.976)
Greedy-MG < 10−3 0.24 (0.1) 0.001 2.58 (0.54) 0.016 (0.01) 1.784 (1.32) 0.011 (0.009) 10.745 (3.094)

Table 1: Final error and AUC of squared L2 error (lower is better). Values are mean (± standard
error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3. If a standard error is
not shown, it is < 10−3 in the reported units (raw < 10−6). Bold indicates the best method within
each solver family.

For Poisson, we use the constant-coefficient model

−∆u(x) = f(x), x ∈ D

and for Helmholtz, we adopt the sign convention

−∆u(x)− a2(x)u(x) = f(x), x ∈ D

where a2(x) ≥ 0. We impose periodic boundary conditions for both equations: for Poisson, the
right-hand side is centered to satisfy the compatibility condition

∫
D
f(x)dx = 0. The domain D is

discretized on uniform grids with 65 points in 1D and a 33× 33 grid in 2D. Data is sampled from a
zero-mean Gaussian Random Field on the periodic domain with covariance operator (−∆+9I)−2.
We run two experiments: (i) compare our greedy method to HINTS and single-solver baselines,
and (ii) assess how performance scales as the solver ensemble grows. For both experiments, the
performance across 64 test samples is reported via the mean final error ∥e(T)

h ∥2 and the mean area
under the curve (AUC), where AUC =

∑T
t=1 ∥e

(t)
h ∥2. While the final errors is of utmost importance,

AUC captures performance over the entire run–smaller values indicate lower error at all intermediate
steps–and naturally penalizes non-monotone spikes that undo progress.

Comparing Greedy with HINTS: For this experiment, we consider Jacobi, Gauss-Seidel (GS),
and multigrid (MG) solvers along with a DeepONet model. As baselines, we use single-solver
schedules (Jacobi only, GS only, and MG only) as well as HINTS variants with each classical
solver (HINTS-Jacobi, HINTS-GS, HINTS-MG), where the DeepONet correction is interleaved
every 24 Jacobi/GS iteration or every 14 MG V-cycles. We then train LSTM-based routers using the
loss in Equation (10) under three different solver-access sets: Jacobi+DeepONet (Greedy-Jacobi),
GS+DeepONet (Greedy-GS), and MG+DeepONet (Greedy-MG). We use an LSTM because solver
routing is sequential and the benefit of a greedy step depends on the trajectory of errors and past
choices. LSTMs have historically performed well on sequence data owing to their recurrent mem-
ory. Training details of the DeepONet and the routers can be found in Appendix D.

We note that comparisons are restricted to methods with the same solver access. For example,
Greedy-Jacobi and HINTS-GS are not comparable because the former lacks access to GS. Accord-
ingly, we partition results by solver family (Jacobi-related, GS-related, and MG-related). Each
method is run for 300 iterations (Jacobi/GS) or 100 V-cycles (MG).

As shown in Table 1, across all solver families, the greedy router achieves the lowest final error
and lowest mean AUC: Greedy-Jacobi, Greedy-GS, and Greedy-MG outperform both their single-
solver and HINTS counterparts. While HINTS improves over single-solver schedules, it exhibits
sawtooth error traces (See Figure 1) as HINTS often invokes the DeepONet when it is suboptimal.
By contrast, the greedy routers only routes to solvers that yield an immediate error drop, which
translates into the reported AUC gains and near-monotone error decay. Notably, the greedy solutions
for 2D Helmholtz largely follow the corresponding classical solver alone. This indicates that the
learned neural correction frequently fails to reduce the error and is therefore skipped by the greedy
rule. HINTS, however, continues to call the neural operator at a fixed interval even when it increases
the error, which explains its substantially worse AUC and final error on 2D Helmholtz.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 1: Convergence histories for representative test instances. Rows: 2D Poisson (top) and 1D
Helmholtz (bottom). Columns: Jacobi, Gauss–Seidel (GS), and multigrid (MG). Greedy yields near-
monotone decay and the lowest errors, whereas HINTS shows sawtooth behaviors. Convergence
histories for 1D Poisson and 2D Helmholtz to Appendix E

Equation 1D Poisson 1D Helmholtz
of Solvers ∥e(T)

h ∥ AUC ∥e(T)
h ∥ AUC

2 0.002 (0.001) 1.717 (0.643) 0.018 (0.013) 6.665 (3.81)
3 0.002 (0.001) 1.434 (0.554) 0.017 (0.014) 6.31 (3.852)
4 0.002 (0.001) 1.337 (0.523) 0.017 (0.014) 6.182 (3.868)
5 0.001 (0.001) 1.293 (0.508) 0.017 (0.014) 6.113 (3.878)
6 0.001 (0.001) 1.121 (0.449) 0.017 (0.014) 6.098 (3.88)

Table 2: Final error and AUC of squared L2 error for varying numbers of solvers. Values are mean
(± standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3.

Size of solver ensembles: We also study how the size of the solver ensemble affects final error
and AUC. Each router is trained with an ensemble that always includes a DeepONet and a subset of
weighted Jacobi solvers with relaxation parameters ω ∈ {0.5, 0.67, 0.75, 0.8, 1}. We grow the solver
set cumulatively, starting from the smallest ω and adding larger ones. In Table 2, the AUC decreases
as the size of the solver set increases for both 1D Poisson and 1D Helmholtz (300 iterations), but
with diminishing returns.

Additional experiments are provided in Appendix E.

8 DISCUSSION

We have introduced an adaptive method for selecting solvers that efficiently minimize the final
error when solving a PDE iteratively. This opens several directions for future work. Our current
DeepONet is trained in isolation, without accounting for its downstream role as a correction term
predictor. Jointly training the ML solver and the router could yield larger gains. Another avenue is
to employ reinforcement learning to learn a cost-aware routing strategy that optimizes the terminal
error under compute budgets. When the deployment conditions are unknown or volatile, our offline
training procedure suffers and a fixed schedule like HINTS can perform better, however, framing
routing as an online learning problem enables continual adaptation. Finally, it would be interesting
to extend this routing scheme to broader optimization settings in which the router selects from a
suite of optimizers at each iteration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The implementation of our hybrid PDE solver with learned greedy routing is provided in the source
code submitted as supplemental materials. It includes scripts to reproduce all tables and figures in
Section 7 and Appendix E, along with a README file that documents dependencies and commands
for training routers and instructions for regenerating results. Data is generated on the fly using fixed
seeds (specified in the code) to ensure exact reproducibility. Formal proofs of all theorems and
propositions appear in Appendices B and C.

REFERENCES

Saeed Alaei, Ali Makhdoumi, and Azarakhsh Malekian. Maximizing sequence-submodular func-
tions and its application to online advertising. Management Science, 67(10):6030–6054, 2021.

John David Anderson. Hypersonic and high temperature gas dynamics. Aiaa, 1989.

Sylvain Baillet, John C Mosher, and Richard M Leahy. Electromagnetic brain mapping. IEEE
Signal processing magazine, 18(6):14–30, 2001.

Klaus-Jürgen Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47–55, 2015.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems,
28, 2015.

Sara Bernardini, Fabio Fagnani, and Chiara Piacentini. Through the lens of sequence submodu-
larity. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 30, pp. 38–47, 2020.

Andrew An Bian, Joachim M Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guaran-
tees for greedy maximization of non-submodular functions with applications. In International
conference on machine learning, pp. 498–507. PMLR, 2017.

Louenas Bounia and Frederic Koriche. Approximating probabilistic explanations via supermodular
minimization. In Uncertainty in Artificial Intelligence, pp. 216–225. PMLR, 2023.

John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

Susanne C Brenner. The mathematical theory of finite element methods. Springer, 2008.

William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. SIAM, 2000.

Matteo Caldana, Paola F Antonietti, et al. A deep learning algorithm to accelerate algebraic multi-
grid methods in finite element solvers of 3d elliptic pdes. Computers & Mathematics with Appli-
cations, 167:217–231, 2024.

Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang. Spectral Methods:
Fundamentals in Single Domains. Springer, 2006. ISBN 9783540307264.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE transactions
on neural networks, 6(4):911–917, 1995.

Yu-Neng Chuang, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio, Sara Bolouki,
Xia Hu, and Helen Zhou. Learning to route llms with confidence tokens. arXiv preprint
arXiv:2410.13284, 2024.

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang Sui,
Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based on-
device llm routing from benchmarking to generalization. arXiv preprint arXiv:2502.04428, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chen Cui, Kai Jiang, Yun Liu, and Shi Shu. Fourier neural solver for large sparse linear algebraic
systems. Mathematics, 10(21):4014, 2022.

Abhimanyu Das and David Kempe. Approximate submodularity and its applications: Subset selec-
tion, sparse approximation and dictionary selection. Journal of Machine Learning Research, 19
(3):1–34, 2018.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153, 2011.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural net-
works by enforcing lipschitz continuity. Machine Learning, 110(2):393–416, 2021.

Roberta Grech, Tracey Cassar, Joseph Muscat, Kenneth P Camilleri, Simon G Fabri, Michalis Zer-
vakis, Petros Xanthopoulos, Vangelis Sakkalis, and Bart Vanrumste. Review on solving the in-
verse problem in eeg source analysis. Journal of neuroengineering and rehabilitation, 5:1–33,
2008.

Wolfgang Hackbusch. Multi-grid methods and applications, volume 4. Springer Science & Business
Media, 2013.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language models. arXiv preprint arXiv:2308.11601, 2023.

Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. Submodular maximization beyond
non-negativity: Guarantees, fast algorithms, and applications. In International Conference on
Machine Learning, pp. 2634–2643. PMLR, 2019.

Jun Hu and Pengzhan Jin. A hybrid iterative method based on mionet for pdes: Theory and numer-
ical examples. Mathematics of Computation, 2025.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Ru Huang, Ruipeng Li, and Yuanzhe Xi. Learning optimal multigrid smoothers via neural networks.
SIAM Journal on Scientific Computing, 45(3):S199–S225, 2022.

Zhongzhan Huang, Guoming Ling, Yupei Lin, Yandong Chen, Shanshan Zhong, Hefeng Wu, and
Liang Lin. Routereval: A comprehensive benchmark for routing llms to explore model-level
scaling up in llms. arXiv preprint arXiv:2503.10657, 2025.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2003.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor prod-
uct. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adar Kahana, Enrui Zhang, Somdatta Goswami, George Karniadakis, Rishikesh Ranade, and Jay
Pathak. On the geometry transferability of the hybrid iterative numerical solver for differential
equations. Computational Mechanics, 72(3):471–484, 2023.

Eugenia Kalnay. Atmospheric modeling, data assimilation and predictability. Cambridge university
press, 2003.

Alexandr Katrutsa, Talgat Daulbaev, and Ivan Oseledets. Black-box learning of multigrid parame-
ters. Journal of Computational and Applied Mathematics, 368:112524, 2020.

Siavash Khodakarami, Vivek Oommen, Aniruddha Bora, and George Em Karniadakis. Mitigating
spectral bias in neural operators via high-frequency scaling for physical systems. arXiv preprint
arXiv:2503.13695, 2025.

Alena Kopaničáková and George Em Karniadakis. Deeponet based preconditioning strategies for
solving parametric linear systems of equations. SIAM Journal on Scientific Computing, 47(1):
C151–C181, 2025.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent net-
works. Advances in neural information processing systems, 29, 2016.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020b.

Edo Liberty and Maxim Sviridenko. Greedy minimization of weakly supermodular set functions.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2017), pp. 19–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

Lizuo Liu and Wei Cai. Multiscale deeponet for nonlinear operators in oscillatory function spaces
for building seismic wave responses. arXiv preprint arXiv:2111.04860, 2021.

Xinliang Liu, Bo Xu, Shuhao Cao, and Lei Zhang. Mitigating spectral bias for the multiscale
operator learning. Journal of Computational Physics, 506:112944, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Tao Luo, Zheng Ma, Zhi-Qin John Xu, and Yaoyu Zhang. Theory of the frequency principle for
general deep neural networks. arXiv preprint arXiv:1906.09235, 2019.

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis
and applications. In International conference on Machine learning, pp. 23803–23828. pmlr, 2023.

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Regression with multi-expert deferral. In Interna-
tional Conference on Machine Learning, pp. 34738–34759. PMLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alireza Mohammadshahi, Arshad Rafiq Shaikh, and Majid Yazdani. Routoo: Learning to route to
large language models effectively. arXiv preprint arXiv:2401.13979, 2024.

Michael C Mozer. A focused backpropagation algorithm for temporal pattern recognition. In Back-
propagation, pp. 137–169. Psychology Press, 2013.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Anthony J Robinson and Frank Fallside. The utility driven dynamic error propagation network,
volume 11. University of Cambridge Department of Engineering Cambridge, 1987.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

Marija Šakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. In Proceedings of the 17th ACM International Conference on
Web Search and Data Mining, pp. 606–615, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Tal Shnitzer, Anthony Ou, Mı́rian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson,
and Mikhail Yurochkin. Large language model routing with benchmark datasets. arXiv preprint
arXiv:2309.15789, 2023.

Gordon D Smith. Numerical solution of partial differential equations: finite difference methods.
Oxford university press, 1985.

Andrew Staniforth and Jean Côté. Semi-lagrangian integration schemes for atmospheric models—a
review. Monthly weather review, 119(9):2206–2223, 1991.

Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions.
Advances in Neural Information Processing Systems, 21, 2008.

Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West. Optimization-based algebraic
multigrid coarsening using reinforcement learning. Advances in neural information processing
systems, 34:12129–12140, 2021.

Fredi Tröltzsch. Optimal control of partial differential equations: theory, methods, and applications,
volume 112. American Mathematical Soc., 2010.

Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid methods. Academic
press, 2001.

Sebastian Tschiatschek, Adish Singla, and Andreas Krause. Selecting sequences of items via sub-
modular maximization. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 31, 2017.

Brandon Van Over, Bowen Li, Edwin KP Chong, and Ali Pezeshki. A performance bound for
the greedy algorithm in a generalized class of string optimization problems. arXiv preprint
arXiv:2409.05020, 2024.

Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural networks, 1(4):339–356, 1988.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhi-Qin John Xu, Lulu Zhang, and Wei Cai. On understanding and overcoming spectral biases of
deep neural network learning methods for solving pdes. arXiv preprint arXiv:2501.09987, 2025.

Zhilin You, Zhenli Xu, and Wei Cai. Mscalefno: Multi-scale fourier neural operator learning for
oscillatory function spaces. arXiv preprint arXiv:2412.20183, 2024.

Enrui Zhang, Adar Kahana, Alena Kopaničáková, Eli Turkel, Rishikesh Ranade, Jay Pathak, and
George Em Karniadakis. Blending neural operators and relaxation methods in pde numerical
solvers. Nature Machine Intelligence, pp. 1–11, 2024.

Zhenliang Zhang, Edwin KP Chong, Ali Pezeshki, and William Moran. String submodular functions
with curvature constraints. IEEE Transactions on Automatic Control, 61(3):601–616, 2015.

A BACKGROUND

A.1 MULTIGRID

Let Ah, A2h represent the coefficient matrix on a fine grid with discretization parameter h and 2h,
uh and fh represent the PDE solution and constant vector on a grid discretized by h, R2h

h denote the
restriction matrix which transfers vectors from a fine grid to a coarse one, and Ih2h is the interpolation
matrix transfers vectors from a coarse grid to a fine one. In a 2-grid method, a few iterations of the
smoother (e.x. Jacobi or Gauss-Seidel) are first applied on the fine grid to approximate the solution
of Ahuh = fh. The residual is then computed as rh = fh − Ahuh and restricted to the coarse grid
via r2h = R2h

h rh. The error equation, A2he2h = r2h, is solved on the coarse grid. The resulting
estimate of the error is interpolated in the fine grid by eh = Ih2he2h, and the fine grid solution is
updated by adding this correction, uh = uh+ eh. Finally, additional smoothing steps are performed
on the fine grid to further reduce any high frequency errors. The preconditioning matrix for two-
grid solver is C2G = Ih2hA

−1
2hR

2h
h . More complex strategies for multigrid like V-cycle and W-cycle

compute error corrections recursively across multiple grids of varying coarseness

B PROOFS FOR SECTION 4

B.1 PROOF OF PROPOSITION B.1

Proposition B.1. Any prefix monotonically non-increasing sequence supermodular function g is
weakly supermodular with respect to all sequences S ∈ Ω∗ with α(S) = 1

Proof. This proof is adapted from Liberty & Sviridenko (2017).

If g is sequence supermodular then,

g(S)− g(S ⊕ S′)

=

|S′|∑
i=1

g(S ⊕
(
S′
1, . . . , S

′
i−1

)
)− g(S ⊕ (S′

1, . . . , S
′
i))

(a)

≤
|S′|∑
i=1

g(S)− g(S ⊕ S′
i)

≤ |S′| max
i∈[|S′|]

g(S)− g(S ⊕ S′
i)

(a) by supermodularity

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 PROOF OF THEOREM 4.1

Theorem 4.1. Let g : Ω∗ → R be a weakly supermodular function with respect to the optimal
solution O = argminS∈ΩT h(S) with a supermodularity ratio of α(O) and postfix monotonicity.
Let the greedy solution of length T be ST . If ϕT (α) =

(
1− 1

αT

)T
, then

g(ST) ≤ (1− ϕT (α(O))) g(O) + ϕT (α(O))g(∅)

Proof. This proof strategy is inspired by Streeter & Golovin (2008) and Liberty & Sviridenko (2017)

g(St)− g(O)
(a)

≤ g(St)− g(St ⊕O)

=

|O|∑
i=1

g(St ⊕ (o1, . . . oi−1))− g(St ⊕ (o1, . . . , oi))

(b)

≤ α(O)

|O|∑
i=1

g(St)− g(St ⊕ oi)

≤ α(O)|O| max
i∈[|O|]

g(St)− g(St ⊕ oi)

≤ α(O)Tg(St)− α(O)T min
ω∈Ω

g(St ⊕ ω)

= α(O)Tg(St)− α(O)Tg(St+1)

(a) by µ- postfix monotonicity, (b) by supermodularity.

After rearranging the inequality, we get:

g(St+1) ≤ 1

α(O)T

(
g(O)− (α(O)T − 1) g(St)

)
=

1

α(O)T
g(O) +

(
1− 1

α(O)T

)
g(St)

When recursively applying this inequality, we get:

g(ST) ≤ 1

α(O)T
g(O)

T−1∑
i=0

(
1− 1

α(O)T

)i

+

(
1− 1

α(O)T

)T

g(∅)

=

(
1−

(
1− 1

α(O)T

)T
)
g(O) +

(
1− 1

α(O)T

)T

g(∅)

B.3 PROOF OF PROPOSITION 4.2

Proposition 4.2. Suppose that for all j ∈ [K], the error propagation function I − Cj ◦ La
h is ρj-

Lipschitz continuous with ρj < 1, and that (I−Cj ◦La
h)(0N) = 0N . Then, the function h is weakly

supermodular with respect to the optimal solution O, with

α(O) = max

{
4

T −
∑T

i=1 ρ
2
Oi

, 1

}
Furthermore, if I − Cj ◦ La

h is invertible for all j ∈ [K], h is also postfix monotonically non-
increasing.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. For brevity, we use the notation (g1 ◦ · · · ◦ gT) (x) = ◦Tt=1gt(x), where composition is ap-
plied from right to left so that gT acts first. In this proof, we use a few properties of Lipschitz
continuous functions:

• Property 1: If g is ρ-Lipschitz continuous and g(0) = 0, then ∥g(x)∥2 = ∥g(x) − 0∥2 =
∥g(x)− g(0)∥2 ≤ ρ∥x− 0∥2 = ρ∥x∥2

• Property 2: If g1 and g2 are Lipschitz continuous functions with Lipschitz constants of ρ1
and ρ2 respectively, the Lipschitz constant of g1 + g2 and g1 − g2 is ρ1 + ρ2.

• Property 3: If g1 and g2 are Lipschitz continuous functions with Lipschitz constants of ρ1
and ρ2 respectively, the Lipschitz constant of g1 ◦ g2 is ρ1ρ2.

In order to prove weakly-α-supermodularity, we must first prove prefix monotonicity.

Prefix monotonicity: Let S ⪯ S′ where S′ = S ⊕N .

h(S′) =
∥∥∥◦1t=|S′|

(
I − CS′

t
◦ La

h

) (
e
(0)
h

)∥∥∥2
2

=
∥∥∥◦|S|+1

t=|S′|
(
I − CS′

t
◦ La

h

)
◦ ◦1t=|S|

(
I − CS′

t
◦ La

h

) (
e
(0)
h

)∥∥∥2
2

(a)

≤

 |S′|∏
t=|S|+1

ρ2S′
t

∥∥∥◦1t=|S| (I − CSt ◦ La
h)
(
e
(0)
h

)∥∥∥2
2

≤ h(S)

(a) by Property 1

Weak supermodularity: We will upper bound α(O) by providing an upper bound for h(S) −
h(S ⊕O) and a lower bound for

∑T
i=1 h(S)− h(S ⊕Oi).

h(S)− h(S ⊕O) =
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2
−
∥∥∥◦1t=|O| (I − COt

◦ La
h) ◦ ◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(a)

≤
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)
− ◦1t=|O| (I − COt

◦ La
h) ◦ ◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

=
∥∥∥(I − ◦1t=|O| (I − COt ◦ La

h)
)
◦ ◦1t=|S| (I − CSt ◦ La

h)
(
e
(0)
h

)∥∥∥2
2

(b)

≤

1 +

|O|∏
t=1

ρOt

2 ∥∥∥◦1t=|S| (I − CSt ◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(c)

≤ 4
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(a) by reverse triangle property and h(S) − h(S ⊕ S′) > 0 by prefix monotonicity, (b) since the
Lipschitz constant of I − ◦1t=|S′|

(
I − CS′

t
◦ La

h

)
is 1 +

∏|S′|
t=1 ρS′

t
by Property 2 and 3, (c) since

ρj < 1

To lower bound
∑|O|

i=1 h(S)− h(S ⊕Oi)

|O|∑
i=1

h(S)− h(S ⊕Oi) =

|O|∑
i=1

∥∥∥◦1t=|S| (I − CSt
◦ La

h)
(
e
(0)
h

)∥∥∥2
2
−
∥∥∥(I − COi

◦ La
h) ◦ ◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

≥
|O|∑
i=1

∥∥∥◦1t=|S| (I − CSt
◦ La

h)
(
e
(0)
h

)∥∥∥2
2
− ρ2Oi

∥∥∥◦1t=|S| (I − CSt
◦ La

h)
(
e
(0)
h

)∥∥∥2
2

=
∥∥∥◦1t=|S| (IN − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(
T −

T∑
i=1

ρ2Oi

)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Finally,

h(S)− h(S ⊕O)

T maxi h(S)− h(S ⊕Oi)
≤ max


4
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2∥∥∥◦1t=|S| (IN − CSt ◦ La

h)
(
e
(0)
h

)∥∥∥2
2

(
T −

∑T
i=1 ρ

2
Oi

) , 1


= max

{
4

T −
∑T

i=1 ρ
2
Oi

, 1

}

Postfix monotonicity: Let S′ = S ⊕N .

h(S′) =
∥∥∥◦1t=|S′|

(
I − CS′

t
◦ Lh

)
e
(0)
h

∥∥∥2
2

=
∥∥∥◦1t=|N | (I − CNt

◦ Lh) ◦ ◦1t=|S| (I − CSt
◦ Lh) e

(0)
h

∥∥∥2
2

(a)
=

∥∥∥∥◦1t=|N | (I − CNt
◦ Lh) ◦ ◦1t=|S| (I − CSt

◦ Lh) ◦
(
◦1t=|N | (I − CNt

◦ Lh)
)−1

◦ ◦1t=|N | (I − CNt
◦ Lh) e

(0)
h

∥∥∥∥2
2

≤
|N |∏
t=1

ρ2Nt

|S|∏
t=1

ρ2St

|N |∏
t=1

ρ−2
Nt

∥∥∥◦1t=|N | (I − CNt
◦ Lh) e

(0)
h

∥∥∥2
2

≤ h(N)

(a) due the invertibility of IN − CjLh

B.4 PROOF OF LEMMA B.2

Lemma B.2. Let (I − CjLa
h) = PΛjP

−1 where P is an orthogonal matrix and Λj =

diag(λj1, . . . , λjN). If P−1e
(0)
h = z, then the following equality holds:

h(S) =

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji (11)

where mj(S) =
∑|S|

t=1 1St=j

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof.

h(S) =

∥∥∥∥∥∥
1∏

t=|S|

(IN − CStLa
h) e

(0)
h

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1∏

t=|S|

(
PΛSt

P−1
)
e
(0)
h

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥P
1∏

t=|S|

ΛSt
P−1e

(0)
h

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1∏

t=|S|

ΛSt
P−1e

(0)
h

∥∥∥∥∥∥
2

=

N∑
i=1

z2i

1∏
t=T

λ2
Sti

=

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji

B.5 PROOF OF PROPOSITION 4.3

Proposition 4.3. Let ∥IN − CjLa
h∥ ≤ 1 for all j ∈ [K] and (I − CjLa

h) = PΛjP
−1. Then, h is

supermodular.

Proof. Let S ⪯ S′ where S′ = S ⊕B. By Lemma B.2,

h(S) =

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji

where mj(S) =
∑|S|

t=1 1St=j be the number of times a sequence S calls the solver j. Recall that h
is considered sequence supermodular if ∀S′, S ∈ Ω∗ such that S ⪯ S′, it holds that

h(S)− h(S ⊕ ω) ≥ h(S′)− h(S′ ⊕ ω)

h(S)− h(S ⊕ ω) =

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji −

N∑
i=1

z2i λ
2
ωi

K∏
k=1

λ
2mj(S)
ji

=

N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2mj(S)
ji

Similarly,

h(S′)− h(S ⊕ ω) =

N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2mj(S

′)
ji

(a)
=

N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2(mj(S)+mj(B))
ji

(b)

≤
N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2mj(S)
ji

= h(S)− h(S ⊕ ω)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Since mj(S
′) =

∑|S′|
t=1 1S′

t=j =
∑|S|

t=1 1S′
t=j +

∑|S′|
t=|S| 1S′

t=j =
∑|S|

t=1 1St=k+
∑|B|

t=1 1Bt=j =

mj(S) +mj(B), (b) since ρ(IN − CjLa
h) < 1 and mj(B) ≥ 0 for all j ∈ [K]

C PROOFS FOR SECTION 5

C.1 PROOF OF LEMMA C.1

Lemma C.1. For any set of preconditioning functions C, any discrete operator La
h, any router r,

any ah, fh, u
(t)
h , uh ∈ A× F × U × U , the following equality holds true:

lroute

(
r, ah, fh, u

(t)
h , uh

)
=

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h)̸=j

− (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

Proof. Note that
∑K

j=1 1r(ah,fh,u
(t)
h)̸=j

= K − 1

lroute

(
r, ah, fh, u

(t)
h , uh

)
=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h)=j

=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h) ̸=j

=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h) ̸=j

+ (K − 1)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
− (K − 1)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h) ̸=j

+

K∑
j=1

1
r(ah,fh,u

(t)
h) ̸=j

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

− (K − 1)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

(
K∑

k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−
∥∥∥(I − Cj ◦ La

h)
(
uh − u

(t)
h

)∥∥∥2
2

)
1
r(ah,fh,u

(t)
h)̸=j

− (K − 2)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h) ̸=j

− (K − 2)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.2 PROOF OF PROPOSITION C.2

Proposition C.2. For any router r defined by r(a, f, u(t)) = argmaxj∈[K]gj(a, f, u
(t)), any ah ∈

A, fh ∈ F , and u
(t)
h , uh ∈ U , the routing loss lroute satisfies:

log(2)lroute

(
r, ah, fh, u

(t)
h , uh

)
≤ Ψ(g, ah, fh, u

(t)
h , uh)

Proof. By Lemma C.1, we know that

log(2)lroute

(
r, ah, fh, u

(t)
h , uh

)
= log(2)

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h) ̸=j

− log(2) (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

≤ log(2)

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h) ̸=j

(a)

≤ −
K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j log

(
exp

(
gj(a, f, u

(t))
)∑K

k=1 exp
(
gk(a, f, u(t))

))
= Ψ(g, ah, fh, u

(t)
h , uh)

(a) if r(ah, fh, u
(t)
h) ̸= j,

exp(gj(a,f,u(t)))∑K
k=1 exp(gk(a,f,u(t)))

< 0.5 which implies that

− log

(
exp(gj(a,f,u(t)))∑K

k=1 exp(gk(a,f,u(t)))

)
≥ log(2)1

r(ah,fh,u
(t)
h)̸=j

C.3 PROOF OF THEOREM 5.1

Theorem 5.1. Let c̃j(ah, u
(t)
h , uh) < Ē < ∞ for all j ∈ [K]. If there exists j ∈ [K] such

that c̃j(ah, u
(t)
h , uh) > Emin > 0, then, for any collection of solvers {Cj}Kj=1 and linear discrete

operator La
h, Ψ is Bayes consistent surrogate for lroute.

Proof. For a given ah, fh, let uh be Gh (ah, fh) where Gh denotes the solution operator acting on
the grid Gh. Furthermore, let’s consider routers of the form

r(a, f, u(t)) = argmaxj∈[K]gj(a, f, u
(t))

For a given ah, fh, u
(t)
h ∈ A × F × U , let the optimal loss under lroute be

l∗route

(
ah, fh, u

(t)
h

)
= inf r̃ lroute

(
r̃, ah, fh, u

(t)
h ,Gh (ah, fh)

)
. Similarly, let the optimal loss un-

der Ψ be Ψ∗
(
ah, fh, u

(t)
h

)
= inf g̃ Ψ

(
g̃, ah, fh, u

(t)
h ,Gh (ah, fh)

)
. Let Bj(ah, fh, u

(t)
h) =∑K

k=1

∥∥∥(I − Ck ◦ La
h)
(
Gh (ah, fh)− u

(t)
h

)∥∥∥2
2
1k ̸=j .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

lroute

(
r, ah, fh, u

(t)
h ,Gh (ah, fh)

)
− l∗route

(
ah, fh, u

(t)
h

)
(a)
=

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h) ̸=j

− (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

− inf
r̃

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r̃(ah,fh,u

(t)
h) ̸=j

+ (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

Bj(ah, fh, u
(t)
h)1

r(ah,fh,u
(t)
h)̸=j

− inf
r̃

K∑
j=1

Bj(ah, fh, u
(t)
h)1

r̃(ah,fh,u
(t)
h)̸=j

=

K∑
k=1

Bk(ah, fh, u
(t)
h)

 K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

1
r(ah,fh,u

(t)
h) ̸=j

− inf
r̃

K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

1
r̃(ah,fh,u

(t)
h)̸=j



(a) by Lemma C.1

Let X = A × F × U and Y = [K]. Let PX denote the degenerate distribution suported at the
point (ah, fh, u

(t)
h). We define the conditional distribtion - P (Y = j | X = (ah, fh, u

(t)
h)) =

Bj(ah,fh,u
(t)
h)∑K

k=1 Bk(ah,fh,u
(t)
h)

for j ∈ [K]. The risk and optimal risk of 0 − 1 loss under this distribution can

be written as:

R0−1(r) =

K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

1
r(ah,fh,u

(t)
h)̸=j

R∗
0−1 = inf

r

K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

1
r(ah,fh,u

(t)
h) ̸=j

If r(ah, fh, u
(t)
h) = argmaxj∈[k] gj(ah, fh, u

(t)
h) for all x ∈ X , then the he risk and optimal risk of

cross entropy loss (lce(g, x, y)− log
(

exp(gy(x))∑K
k=1 exp(gk(x))

)
) under this distribution can be written as:

Rce(g) = −
K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


R∗
ce = inf

g
−

K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


From Theorem 3.1 of (Mao et al., 2023), R0−1(r) − R∗
0−1 ≤ Γ−1 (Rce(g)−R∗

ce) if
r(ah, fh, u

(t)
h) = argmaxj∈[k] gj(ah, fh, u

(t)
h) where Γ(z) = 1+z

2 log(1 + z) + 1−z
2 log(1 − z).

Then,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

lroute

(
r, ah, fh, u

(t)
h ,Gh (ah, fh)

)
− l∗route

(
ah, fh, u

(t)
h

)
=

K∑
k=1

Bk(ah, fh, u
(t)
h)

 K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

1
r(ah,fh,u

(t)
h) ̸=j

− inf
r̃

K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

1
r̃(ah,fh,u

(t)
h)̸=j


≤

K∑
k=1

Bk(ah, fh, u
(t)
h)Γ−1

− K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


− inf
g
−

K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


(a)

≤ ĒK (K − 1) Γ−1

− K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


− inf
g
−

K∑
j=1

Bj(ah, fh, u
(t)
h)∑K

k=1 Bk(ah, fh, u
(t)
h)

log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


(b)

≤ ĒK (K − 1) Γ−1

− K∑
j=1

Bj(ah, fh, u
(t)
h)

(K − 1)Emin
log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


− inf
g
−

K∑
j=1

Bj(ah, fh, u
(t)
h)

(K − 1)Emin
log

 exp
(
gj(ah, fh, u

(t)
h)
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h)
)


= ĒK (K − 1) Γ−1

Ψ
(
g, ah, fh, u

(t)
h ,Gh (ah, fh)

)
−Ψ∗

(
ah, fh, u

(t)
h

)
(K − 1)Emin



(a) since
∥∥∥(I − Cj ◦ La

h)
(
e
(t)
h

)∥∥∥2
2
< Ē for all j ∈ [K], (b) since Γ−1 is non-decreasing and ∃j ∈

[K] such that
∥∥∥(I − Cj ◦ La

h)
(
e
(t)
h

)∥∥∥2
2
> Emin

Finally,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

lim
n→∞

Rroute (rn)−R∗
route

(a)
= lim

n→∞
Eah,fh∼PA×F

[
lroute

(
rn, ah, fh, u

(t)
h ,Gh (ah, fh)

)
− l∗route

(
ah, fh, u

(t)
h

)]
≤ lim

n→∞
Eah,fh∼PA×F

ĒK (K − 1) Γ−1

Ψ
(
g̃, ah, fh, u

(t)
h ,Gh (ah, fh)

)
−Ψ∗

(
ah, fh, u

(t)
h

)
(K − 1)Emin


(b)

≤ lim
n→∞

ĒK (K − 1) Γ−1

Eah,fh∼PA×F

[
Ψ
(
gn, ah, fh, u

(t)
h ,Gh (ah, fh)

)
−Ψ∗

(
ah, fh, u

(t)
h

)]
(K − 1)Emin


= lim

n→∞
ĒK (K − 1) Γ−1

(
RΨ (gn)−R∗

Ψ

(K − 1)Emin

)
(c)
= ĒK (K − 1) Γ−1

(
limn→∞RΨ (gn)−R∗

Ψ

(K − 1)Emin

)
= ĒK (K − 1) Γ−1 (0)

(d)
= 0

(a) R∗
route = Eah,fh∼PA×F

[
l∗route

(
ah, fh, u

(t)
h

)]
since the infimum is taken over all measurable

functions, (b) by Jensen’s inequality since Γ−1 is concave, (c) by continuity of Γ−1 at 0, (d)
Γ−1(0) = 0

D TRAINING DETAILS

Data for both DeepONet and the routers is sampled from a zero-mean Gaussian Random Field on
the periodic domain with covariance operator (−∆+9I)−2 as mentioned in Section 7. We do this by
generating samples in Fourier space: for each non-zero mode k, we draw an independent complex
coefficient from a Gaussian distribution with mean 0 and variance (4π2∥k∥22 + 9)−2, enforce a
Hermitian symmetry to obtain a real-valued field, set the DC mode to 0 to ensure zero mean for
Poisson, and apply inverse Discrete Fourier Transform to obtain the field in physical space. For
each sample, we compute reference solutions with a least squares solver and treat them as ground
truth.

This data is used to trained our DeepONet models and LSTM routers. All the models were imple-
mented using PyTorch and all the models were trained on an Nvidia A40 GPU.

Table 3 contains all hyperparameter details for the DeepONet. DeepONet took 30 minutes to train.
We then use the model with the best validation loss.

The routers are LSTM models trained with scheduled sampling. We use a warm-up of ew epochs
with teacher-forcing probability ptf (e) = ssstart. After the warm-up, the ptf decays geomterically
by a factor of γtf < 1 per epoch and is floored by send:

ptf (e) =

{
ssstart e ≤ ew
max(ssstartγ

e−ew
tf , ssend) e > ew

At each time step, with probability ptf (e), we feed the teacher-forced greedy iterate; otherwise, we
feed the router’s own predicted iterate.

Since LSTMs on long rollouts can suffer from exploding/vanishing gradients, we use truncated
backpropagation through time (TBPTT) (Mozer, 2013; Robinson & Fallside, 1987; Werbos, 1988):
the forward pass unrolls the entire trajectory, but gradients are propagated only through the most
recent wbptt(e) steps at epoch e. Hidden states are passed forward between segments, while earlier
segments are treated as stop-gradient.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Learning rate 1e-3

Branch Dimension 64
Hidden dimension for branch net 128
No. of hidden layers in branch net 2

Hidden dimension for trunk net 128
No. of hidden layers in trunk net 2

Gradient Clipping Norm 1.0
Weight Decay 0.005

Batch size 128
Training samples 15000

Validation samples 3000
Epochs 100

Table 3: Hyperparameter settings for DeepONet

Hyperparameter Value
Learning rate 1e-3

Branch Dimension 64
Hidden dimension 64

No. of hidden layers 3
Gradient Clipping Norm 1.0

Weight Decay 0.005
Batch size 32

Training samples 64
Validation samples 32

Epochs 100
ssstart 1.0
γtf 0.95
ssend 0.0
wstart 0.1Tmax

γbptt 1.25
ew 10
fbptt 4

Table 4: Hyperparameter settings for routers

We employ a curriculum learning approach analogous to scheduled sampling. Let Tmax be the
horizon (300 for Jacobi/GS and 100 for MG). With a warm-up of ew epochs,

wbptt(e) =


wstart e ≤ ew

min

(
Tmax, wstartγ

⌊
e−ew
fbptt

⌋
bptt

)
e > ew

(12)

so the window grows geometrically by a factor of γbptt > 1 every fbptt epochs and is capped at the
full trajectory length.

Table 4 contains all hyperparameter details for the LSTM routers. The routers took a maximum
of 4 hours and 30 minutes to train. We then use the model with the best validation loss for testing.
Data-related details in Table 4 apply to all of our trained routers except the routers for the experiment
with increasing K which were trained with 1024 training samples and 128 validations samples to
encourage the model to learn some of the nuanced differences between the classes.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 CONVERGENCE HISTORIES

See Figure 2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 2: Convergence histories for representative test instances. Rows: 1D Poisson (top) and 2D
Helmholtz (bottom). Columns: Jacobi, Gauss–Seidel (GS), and multigrid (MG). Greedy yields
near-monotone decay and the lowest errors, whereas HINTS shows sawtooth behaviors.

Equation 1D Poisson 2D Poisson 1D Helmholtz 2D Helmholtz
Methods ∥La

he
(T)
h ∥ AUC ∥La

he
(T)
h ∥ AUC ∥La

he
(T)
h ∥ AUC ∥La

he
(T)
h ∥ AUC

Jacobi-related Solvers
Jacobi Only 7.775 (4.237) 5156.608 (2729.501) 2.842 (1.124) 4979.462 (1570.207) 8.89 (4.62) 5977.502 (3061.518) 2.653 (1.049) 4885.359 (1536.61)

HINTS-Jacobi 4.871 (1.526) 2511.313 (1113.55) 94.061 (0.431) 6194.836 (480.136) 23.035 (12.824) 6860.808 (3824.142) 24.066 (0.258) 5486.311 (1491.338)
Greedy-Jacobi 5.684 (4.186) 2505.155 (1638.618) 1.225 (0.643) 2097.546 (468.004) 14.339 (13.896) 5967.264 (5235.896) 2.653 (1.049) 4885.359 (1536.61)

GS-related Solvers
GS Only 2.001 (1.091) 3272.362 (1741.517) 0.202 (0.08) 2686.598 (858.228) 2.209 (1.15) 3767.204 (1933.993) 0.176 (0.07) 2625.785 (836.048)

HINTS-GS 2.749 (0.001) 904.028 (394.014) 115.382 (0.001) 4945.064 (339.648) 5.727 (3.043) 1193.716 (487.82) 23.431 (0.02) 3181.072 (817.491)
Greedy-GS 0.012 (0.007) 170.604 (57.765) 0.027 (0.008) 998.784 (193.159) 0.035 (0.015) 250.746 (89.774) 0.176 (0.07) 2625.785 (836.048)

MG-related Solvers
MG Only 1.961 (0.541) 819.828 (292.076) 0.093 (0.022) 460.981 (111.146) 2.017 (0.529) 899.308 (313.69) 0.081 (0.02) 448.77 (108.006)

HINTS-MG 0.138 354.601 (149.921) 3.246 1414.353 (73.994) 0.49 (0.196) 451.287 (178.914) 0.653 (0.052) 640.516 (101.671)
Greedy-MG 0.019 (0.012) 61.195 (17.887) 0.022 (0.005) 284.36 (51.462) 0.053 (0.022) 99.709 (37.971) 0.081 (0.02) 448.77 (108.006)

Table 5: Final residual and AUC of squared L2 residual (lower is better). Values are mean (±
standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3. If a standard
error is not shown, it is < 10−3 in the reported units (raw < 10−6). Bold indicates the best method
within each solver family.

E.2 RESIDUAL COMPARISON

Table 5 summarizes the performance of single-solver schedules, HINTS, and greedy with respect
to the final residuals r

(T)
h = ∥fh − La

hu
(T)
h ∥ or ∥La

he
(T)
h ∥ and its AUC AUCT =

∑T
t=1 ∥r

(t)
h ∥22 .

Greedy outperforms its HINTS and single-solver counterparts in most equations. We must note that
our greedy router is trained to reduce error, not residual. The same error can induce very different
residuals depending on the spectrum La

h. Table 6 exhibits how residuals are affected by the number
of solvers in the solver ensemble. Similar to error, we observe both the final residual and AUC
decrease as the number of solvers increase.

Equation 1D Poisson 1D Helmholtz
of Solvers ∥La

he
(T)
h ∥ AUC ∥La

he
(T)
h ∥ AUC

2 0.121 (0.055) 473.906 (158.205) 0.321 (0.113) 679.886 (252.811)
3 0.078 (0.042) 360.389 (119.802) 0.21 (0.08) 530.239 (195.882)
4 0.067 (0.038) 328.62 (109.061) 0.181 (0.072) 490.084 (183.068)
5 0.061 (0.035) 319.509 (105.729) 0.166 (0.067) 470.193 (176.504)
6 0.045 (0.027) 288.867 (96.794) 0.165 (0.067) 487.057 (192.411)

Table 6: Final residual and AUC of squared L2 residual for varying numbers of solvers. Values are
mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Equation 1D Poisson 2D Poisson
Methods/ Mode Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC

Jacobi-related Solvers
Jacobi Only 1.124 (0.612) 732.713 (399.296) - 0.076 (0.043) - 0.001 0.03 (0.014) 382.094 (183.783) - 0.012 (0.006) - -

HINTS-Jacobi 0.059 (0.024) 128.076 (64.871) 0.001 (0.001) 0.348 (0.121) - 0.041 (0.021) 0.296 (0.003) 227.594 (78.715) 0.003 0.169 (0.055) 0.001 0.03 (0.009)
Greedy-Jacobi 0.006 (0.004) 4.152 (2.593) - 0.192 (0.094) - 0.025 (0.016) 0.009 (0.004) 114.046 (54.747) - 0.105 (0.057) - 0.014 (0.008)

GS-related Solvers
GS Only 0.285 (0.155) 458.834 (250.064) - 0.223 (0.136) - 0.096 (0.072) - 196.347 (94.367) - 0.014 (0.007) - 0.001

HINTS-GS 0.017 100.582 (52.598) 0.001 0.176 (0.049) - 0.049 (0.028) 0.258 168.877 (59.252) 0.003 0.162 (0.032) 0.001 0.052 (0.006)
Greedy-GS 0.002 (0.001) 2.661 (1.595) - 0.12 (0.058) - 0.026 (0.015) - 62.858 (30.237) - 0.09 (0.044) - 0.014 (0.007)

Multigrid methods
MG Only 0.282 (0.078) 116.885 (42.581) - 0.043 (0.022) - 0.013 (0.007) 0.001 25.497 (11.766) - 0.003 (0.001) - -

HINTS-MG 0.014 43.405 (20.908) - 0.027 (0.006) - 0.009 (0.003) 0.078 31.289 (10.201) - 0.035 (0.004) - 0.01 (0.001)
Greedy-MG 0.003 (0.002) 0.999 (0.622) - 0.029 (0.013) - 0.008 (0.005) - 13.358 (6.045) - 0.031 (0.016) - 0.007 (0.004)

Table 7: Final error and AUC of squared L2 error for Mode 1, 5, and 10 (lower is better) for 1D/2D
Poisson. Values are mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in×10−3. If a standard error is not shown, it is < 10−3 in the reported units (raw < 10−6).
Bold indicates the best method within each solver family.

Equation 1D Helmholtz 2D Helmholtz
Methods/ Mode Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC

Jacobi-related Solvers
Jacobi Only 1.253 (0.651) 835.102 (434.018) - 0.078 (0.044) - 0.001 0.028 (0.013) 372.63 (179.23) - 0.012 (0.006) - -

HINTS-Jacobi 0.099 (0.047) 140.399 (63.534) 0.004 (0.002) 0.576 (0.2) 0.001 (0.001) 0.088 (0.044) 0.493 (0.025) 427.437 (170.326) 0.007 0.19 (0.006) 0.002 0.026
Greedy-Jacobi 0.023 (0.027) 15.089 (13.203) - 0.577 (0.635) - 0.078 (0.057) 0.028 (0.013) 372.63 (179.23) - 0.012 (0.006) - -

GS-related Solvers
GS Only 0.307 (0.159) 519.339 (269.921) - 0.242 (0.146) - 0.105 (0.078) - 191.408 (91.996) - 0.014 (0.007) - 0.001

HINTS-GS 0.07 (0.028) 127.525 (59.386) 0.003 (0.002) 0.296 (0.09) 0.001 (0.001) 0.105 (0.052) 0.309 233.092 (88.614) 0.007 0.191 (0.007) 0.002 0.024
Greedy-GS 0.004 (0.002) 7.034 (3.179) - 0.179 (0.1) - 0.058 (0.036) - 191.408 (91.996) - 0.014 (0.007) - 0.001

Multigrid methods
MG Only 0.283 (0.074) 125.54 (44.397) - 0.043 (0.022) - 0.013 (0.007) 0.001 24.863 (11.508) - 0.002 (0.001) - -

HINTS-MG 0.055 (0.022) 52.357 (23.002) - 0.054 (0.02) - 0.023 (0.009) 0.074 (0.001) 32.657 (11.313) - 0.051 (0.001) - 0.009
Greedy-MG 0.007 (0.003) 2.678 (1.159) - 0.041 (0.019) - 0.016 (0.011) 0.001 24.863 (11.508) - 0.002 (0.001) - -

Table 8: Final error and AUC of squared L2 error for Mode 1, 5, and 10 (lower is better) for 1D/2D
Helmholtz. Values are mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in×10−3. If a standard error is not shown, it is < 10−3 in the reported units (raw < 10−6).
Bold indicates the best method within each solver family.

Equation 1D Poisson 1D Helmholtz
of Solvers/ Mode Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC

2 0.013 (0.008) 5.549 (3.466) - 0.396 (0.194) - 0.057 (0.035) 0.035 (0.015) 15.082 (6.582) - 0.608 (0.352) - 0.115 (0.082)
3 0.01 (0.006) 5.007 (3.126) - 0.293 (0.143) - 0.04 (0.025) 0.027 (0.012) 13.577 (5.925) - 0.449 (0.26) - 0.082 (0.058)
4 0.009 (0.006) 4.779 (2.984) - 0.263 (0.128) - 0.036 (0.023) 0.024 (0.011) 12.943 (5.648) - 0.399 (0.231) - 0.072 (0.051)
5 0.008 (0.005) 4.654 (2.906) 0.0 (0.0) 0.257 (0.125) 0.0 (0.0) 0.036 (0.023) 0.022 (0.01) 12.571 (5.486) - 0.376 (0.217) - 0.068 (0.049)
6 0.006 (0.004) 4.174 (2.606) - 0.212 (0.104) - 0.029 (0.018) 0.022 (0.01) 12.535 (5.47) - 0.355 (0.205) - 0.061 (0.043)

Table 9: Final error and AUC of squared L2 error of Mode 1, 5, and 10 for varying numbers of
solvers. Values are mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in ×10−3.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.3 FOURIER MODE-WISE ERROR COMPARISON

We assess frequency-resolved performance by projecting the error onto the discrete Fourier basis.
Tables 7 and 8 report, for modes 1, 5, and 10, the mode-wise final error and mode-wise AUC,
comparing single-solver baselines, HINTS, and the greedy router. As a result of including a deep
learning model,Greedy consistently achieves the smallest mode-1 error/AUC across equations and
solver families. For modes 5 and 10, single-solver schedules sometimes have an edge, reflecting the
tendency of classical smoothers to damp high-frequency components more aggressively than ML
surrogates (spectral bias). Overall, greedy delivers more uniform convergence across the spectrum:
it routes to whichever solver most decreases the full L2 error, and by Parseval’s identity |e(t)h |22 =∑

m |û
(t)
m − ûm|2, reductions in the objective correspond to reducing energy across all modes rather

than giving preferential treatment to a subset. Additionally, in Table 9, we observe that all mode-
wise errors/AUCs reduce with the inclusion of more solvers.

F LLM USAGE

LLMs, specifically ChatGPT and Gemini, supported the writing process in an iterative manner. We
drafted paragraphs and asked the models for feedback on grammar and clarity. We then incorpo-
rated selected suggestions into the writing and repeated this process until we were satisfied with the
writing.

The code developed for the experiments was written by the authors with the help of occasional code
completions. The central components (e.g., the hybrid solver implementation and the greedy-router
training pipelines) were implemented exclusively by the authors.

All substantive intellectual contributions, which include ideas, theorems, and analyses, are our own.
LLMs were occasionally used to verify the correctness of proofs, but all proof strategies originated
from the authors and relevant literature.

27

	Introduction
	Problem Setting and Background
	Iterative PDE Solvers
	Neural Operators
	Greedy Optimization

	General framework for Hybrid Solvers
	Greedy Algorithm
	Approximate Greedy Router
	Surrogate Loss

	Related Works
	Experiments
	Discussion
	Background
	Multigrid

	Proofs for sec:greedy
	Proof of Proposition B.1
	Proof of th:suboptgreedy
	Proof of Proposition 4.2
	Proof of th:simultaneousallocation
	Proof of th:simultaneoussupermodular

	Proofs for sec:approxgreedy
	Proof of th:routingequivalence
	Proof of th:upperbound
	Proof of th:consistency

	Training Details
	Additional Experimental Results
	Convergence Histories
	Residual Comparison
	Fourier mode-wise error comparison

	LLM Usage

