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ABSTRACT

When solving PDEs, classical numerical solvers are often computationally expen-
sive, while machine learning methods can suffer from spectral bias, failing to cap-
ture high-frequency components. Designing an optimal hybrid iterative solver—
where, at each iteration, a solver is selected from an ensemble of solvers to lever-
age their complementary strengths—poses a challenging combinatorial problem.
While the greedy selection strategy is desirable for its constant-factor approxima-
tion guarantee to the optimal solution, it requires knowledge of the true error at
each step, which is generally unavailable in practice. We address this by proposing
an approximate greedy router that efficiently mimics a greedy approach to solver
selection. Empirical results on the Poisson and Helmholtz equations demonstrate
that our method outperforms single-solver baselines and existing hybrid solver
approaches, such as HINTS, achieving faster and more stable convergence.

1 INTRODUCTION

Natural phenomena and engineered systems are often governed by ordinary and partial differential
equations (PDEs). Solving these equations enables a variety of tasks - predicting the evolution of the
system through simulation (e.g., forecasting weather using the Navier-Stokes equations) (Kalnay},
2003} Bauer et al., 2015; |Staniforth & Coté, [1991)), addressing control problems (e.g., optimizing
heat shield design for spacecrafts using heat transfer equations) (Anderson, |1989; Troltzschl 2010),
and tackling inverse problems based on external measurements (e.g., reconstructing brain activity
from EEG data using electrophysiological models) (Baillet et al., 2001} |Grech et al., [2008]).

Traditionally, PDEs are solved using finite difference methods (Smith|1985; |LeVeque, 2007)), which
discretize the spatial and/or temporal domain and approximate the solution by solving a system of
equations at the discrete grid points. Similarly, finite element methods (Hughes| 2003} Bathe}, 2006
Brenner, 2008)) construct a system of equations based on fitted curves for each finite element, and
then rely on numerical linear algebra techniques—such as the Jacobi and Gauss-Seidel method (Saad),
2003)-to compute the solution. Such iterative methods, however, lack generalization across different
initial conditions, boundary conditions, or forcing functions, as even minor changes to any of these
parameters require re-solving the entire system of equations from scratch.

These challenges have motivated the development of neural operators (Kovachki et al.|2023))-a class
of machine learning models that aim to learn the solution operator directly, enabling fast inference
across a range of parameters. Neural operators lift the classical linear layer in neural networks to
a linear operator—typically a kernel integral operator—between infinite-dimensional function spaces.
While the universal approximation theorem of operators (Chen & Chenl [1995) suggests that neural
operators can approximate solution operators with high accuracy, they are prone to spectral bias
(Liu & Cai, 2021} [Liu et al., 2024} |You et al., [2024; [Khodakarami et al., [2025; [Xu et al., 2025)—
similar to traditional neural networks (Rahaman et al.| [2019; [Xu et al.l [2019; [Luo et al.l [2019)—and
favor learning the low-frequency components of the solution function, often struggling to capture
high-frequency features that iterative solvers excel at.

Recognizing this complementarity, |[Zhang et al.| (2024) proposed HINTS, a hybrid solver that inter-
leaves a neural operator pass every 7' iteration (with 7 fixed a priori) of a classical solver. While
HINTS reports significant empirical gains in convergence and accuracy over the standalone neural
operator and Jacobi solver, this fixed schedule can be detrimental: a poorly timed neural correction
may increase the error and undo recent progress.
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Although dynamic solver schedules are desirable, identifying the optimal sequence of solvers that
minimizes final error is combinatorial since the search space grows exponentially with the number
of iterations. A practical alternative is the greedy rule that, at each iteration, selects the solver with
the largest immediate error reduction. Such a rule can be near-optimal when the final error satisfies
(weak) supermodularity—so that applying a beneficial solver earlier is at least as valuable as applying
it later. To support this approach, we make the following contributions:

* We present a general hybrid PDE solver in which a routing rule chooses, at each iteration,
from a set of classical solvers and neural operators (not just two). With oracle access
to the true error at every step, we show that a greedy routing rule achieves a constant-
factor approximation to the optimal strategy for linear PDEs, provided the updates are
error-reducing (Lipschitz with constant < 1) and zero-preserving—conditions under which
weak supermodularity holds.

* Given that the true error is not observed at test time, a convex surrogate loss is introduced,
which, when minimized, enables the learned model to imitate the greedy solver without
access to true error information. This alignment is guaranteed through Bayes consistency.

* We empirically demonstrate that our approximate greedy solver outperforms HINTS and
individual solvers in terms of faster, more stable convergence on benchmark PDEs, such as
the Poisson and Helmholtz equations.

2 PROBLEM SETTING AND BACKGROUND

Consider the following linear PDE:
L (u)=f,xeD; By(u)=bxedD (1)

where L£¢ is a differential operator with respect to the spatial variable x € D parameterized by
the coefficient function a, f is a forcing function, w is the solution to the PDE, B, is the boundary
operator, and b is the boundary term. Such PDEs can be solved numerically using various discretiza-
tion strategies, such as finite differences (Smith, |1985; |LeVequel |2007), finite element, and spectral
methods (Boyd, 2001; (Canuto et al., [2006). Here, we focus on finite differences, which replace
derivatives with difference quotients (e.x., d,u(z) = (u(x + h) — u(z))/h) on a uniform grid.

Formally, let h be the grid size and G (D) be a uniform grid with spacing h over D. Given a
function g : D — R, we represent its restriction to G,(D) by g, € RY, where N = |G (D)|. If
Ly € RN>N s the discretized operator, the discrete counterpart of Equation (1)) is expressed as

Lyun = [, 2

with the boundary conditions incorporated in L£}.. Thus, the PDE reduces to a linear system of
equations. Unlike much of the neural operator literature, which retains function space formulations
for discretization invariance, we follow the conventions of classical numerical analysis and represent
all functions and operators as finite-dimensional vectors and matrices. Discretization invariance is
not essential here, since we focus on fixed-grid problems.

2.1 ITERATIVE PDE SOLVERS

Direct methods like Gauss Elimination and Thomas Algorithm can be computationally expensive
in high-dimensional domains when solving systems like Equation (2). In contrast, iterative meth-
ods like Jacobi and Gauss-Seidel offer computational speedups by iteratively updating the solution,
gradually converging to the true solution for the PDE. The general iterative update is

D = 4 ¢ (f— Lhu) 3)

where u(?) is the t™ iterate of the solution and C' is a preconditioning matrix. Jacobi uses C' = D!,
where D is the diagonal of £¢, and Gauss-Seidel uses C' = (D + L)_l, where L denotes the strict
lower triangular part. However, iterative methods tend to damp low frequency components of the
error slowly. Multigrid solvers (Briggs et al., 2000; Trottenberg et al.,2001;Hackbusch, [2013) tackle
this problem by alternating smoothing on coarse and fine grid resolutions to dampen more uniformly
across frequencies. We defer the reader to Appendix[A.I|for more background on Multigrid solvers.
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2.2 NEURAL OPERATORS

Suppose we observe samples {(a;, fi, u;)}Y, such that (a;, f;) ~ P are i.i.d. samples drawn from
some distribution. Let u; be generated by a deterministic solution operator G*, i.e., u; = G*(a;, f;).
A neural operator Gy seeks to approximate G* by minimizing the expected squared L?(D) error
(with respect to the Lebesgue measure): Rno(Go) = E(q,5)~p [INo(a, f,u, Gg)], where

Inoas, fir s, Go) = /D ls() — Golas, £)(@)|I? da.

Neural operators often use discretization-invariant layers. Prominent instantiations include Fourier
Neural Operators, which use spectral transforms (L1 et al., [2020a), Graph Neural Operators, which
perform graph-based aggregation over sampled points (Li et al., [2020b), and DeepONets, which
employ a trunk—branch decomposition to map input functions to output functions (Lu et al.|[2021).

2.3  GREEDY OPTIMIZATION

Consider the problem of maximizing g(S) over S C Q with | S| < T where g : 2 — R is a set func-
tion defined on subsets of a set {2. An exhaustive search over all subsets quickly becomes infeasible.
An efficient alternative is the greedy algorithm. It builds the solution subset iteratively by, at each
step, adding the element w™ that yields the largest marginal gain, i.e. w* = arg max,co\ g g(SUw),
and updating S < S U {w*}. When g is non-negative, monotone (adding elements never decreases
the value), and submodular (diminishing returns), the greedy algorithm achieves a (1 —e~!) approx-
imation to the optimal solution (Nemhauser et al., [1978). Formally, a function g is submodular if
g(A U{w})—g(A) > g(B U{w}) —g(B) forall A C B C Qandw € )\ B; intuitively, delaying
an addition cannot increase its benefit. For set function minimization problems, supermodularity,
where the inequality flips, plays an analogous role, and the greedy rule achieves constant-factor
approximation guarantees (Liberty & Sviridenko} 2017).

The suboptimality of the greedy algorithm has been extensively studied for both set-function min-
imization (Bounia & Koriche, [2023) and maximization (Das & Kempel 2018 [Feige et al., 2011}
Bian et al.l 2017, Harshaw et al.l |2019) when standard assumptions—non-negativity, monotonic-
ity, and sub/supermodularity—are weakened. In contrast, results on greedy sequence maximization
(Streeter & Golovin, [2008} |Alaei et al.l 2021; Zhang et al., 2015} Bernardini et al., 2020; Van Over
et al.| [2024; |Tschiatschek et al., 2017)—where the ordering of the elements affects the function—have
led to sequential analogues of submodularity and monotonicity. We leverage these tools to analyze
the suboptimality of the greedy solution to minimizing the final error.

3 GENERAL FRAMEWORK FOR HYBRID SOLVERS

To solve Equation (2)), consider the following hybrid iterative update:
uf ) =) 4 O, (fo— L)) @

where C = {C;}/<, denotes a set of K preconditioning functions and S; € [K] = {1,..., K}
indexes the function chosen at step t. Here, we use “preconditioning function” broadly to refer to any
update rule, encompassing classical approaches, where C;(x) = Cj is a preconditioning matrix,
and learned models, such as neural operators. This update generalizes the form of classical methods,
as seen in Equation , by allowing C; to be non-linear and enabling the preconditioning function
to be adaptively chosen at every step. C can also accommodate parameterized solver families (e.g.,
different Jacobi relaxation weights or multigrid cycle depths), enabling adaptive selection of solver
parameters. As the number of solvers K grows, it raises the likelihood of a substantial immediate
error drop. Furthermore, HINTS (Zhang et al., 2024) is a special case of this hybrid solver with
K = 2, where (1 is a neural operator and C' is a classical preconditioner. Its routing rule is given
by St = 1t mod >0 + 1, which selects C; every 7 steps and C5 otherwise.

Let eff) = up — ug) denote the error at step ¢. Then,

eV = —ufl) — Cs, (Lhun — Liufl’) = (1= Cs, 0 £3) (¢})))
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where I is the identity map and I — C; o L¢ is the error propagation function for the j™ solver.
Here, “o” denotes function composition (for linear C, this coincides with matrix multiplication).
The objective of the hybrid solver is to select a sequence of solvers that minimize the error norm

after T steps or He,(lT) ||3. For a sequence S = (Si,. .., St) of solver indices, we seek to solve
2
; — a ay (,(0)
ettt = [ Conomy oo e (@) o

with compositions applied from right to left, so that the S update acts on the initial error.

4 GREEDY ALGORITHM

Equation (3] defines a combinatorial optimization problem with a search space exponential in 7',
rendering exact optimization intractable for large 7" or K. As a starting point, we propose and

analyze an “omniscient” greedy algorithm that assumes access to the true initial error 6;0). This is

unrealistic—if 6510) were known, one could recover the solution immediately via u, = ugo) + 6510)’

but it provides a clean benchmark. In Section[5] we relax this assumption using a practical learning
strategy that is Bayes consistent with this omniscient approach, thereby recovering the suboptimality
guarantees shown below.

As discussed in Section 2.3] when supermodularity and monotonicity hold, the greedy rule-such
as the one described in Algorithm [Tenjoys constant-factor approximation guarantees. However,
classical results focused on set functions, with only recent extensions made to sequences. Building
on this line, we introduce a sequence-based notion of weak supermodularity.

Algorithm 1 Greedy Algorithm for a Hybrid PDE solver
Require: {C;}/,, T, L], el
SO0
fort < T do
S ¢ 8t @ argmineq [| (1~ Cj o £3)(el) 3
egt-‘rl) “— (I o CSH_l ° Ez)(eg))

end for

return ST
Let Q* denote the space of sequences with elements in 2. For S = (S1,...,5,) € Q*, 5 =
(S1,-..,50,) € QF, we denote their concatenation as S @ S' = (S1,...,5,,951,...,5/,). Sisa

prefix of S or S < §"if S’ = S & L for some L € Q*. A sequence function g : Q* — R is
considered prefix monotonically non-increasing if g(S @ 5’) < g(5) forall S, S" € Q*, and postfix
monotonically non-increasing if g(S" @ S) < ¢(S) for all S,S" € Q*. A prefix non-increasing
function g is sequence supermodular if, for all ", S € Q* : § < .5’, it holds that

9(8) —9(S ©w) 2 g(5) —g(Y Bw), Ywe (6)

However, h(S) (described in Equation ) may not, in general, satisfy this property. Therefore, we
introduce weak sequence supermodularity. A prefix non-increasing function g is weakly supermod-

ular with respect to S” € Q* if, for any S € OISl there exists a(S’) > 1 such that

9(8) = g(S @ 8') <a(s) Y 9(S) - g(S @5)) @)

i€[]S’]]
The parameter «(.S”) or the supermodularity ratio quantifies deviation from exact sequence super-
modularity. Expanding the g(S) — g(S @ S’) as a telescoping sum Z‘lil‘ g(S ®(S1,...,5_1)) -
g(S @ (51,-..,5])) shows that the marginal decrease from appending S/ after its predecessors is
controlled by the effect of appending S} directly to S. Thus, postponing the inclusion of .S} cannot

yield a significantly larger benefit compared to adding it earlier. The supermodularity ratio a.(S)
quantifies the extent to which future gains from delays may exceed immediate gains.

Having introduced these notions, we now characterize the suboptimality of greedy solutions of
weakly supermodular and postfix monotonic sequence functions in Theorem 4. 1
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Theorem 4.1. Let g : Q2* — R be a weakly supermodular function with respect to the optimal
solution O = argmingcqr h(S) with a supermodularity ratio of o(O) and postfix monotonicity.

Let the greedy solution of length T be ST. If p7(a) = (1 — ﬁ)T, then

9(87) < (1= ¢7(a(0))) 9(0) + ¢1(a(0))g(9)

The proof of Theorem appears in Appendix As T — oo, the factor 1 — ¢ (a(O)) de-
creases to 1 — e~ 1/2(0) o the worst-case performance of the greedy rule saturates with horizon
rather than degrading indefinitely. Additionally, larger «(O), which indicates higher reward for
delayed inclusions, loosens the suboptimality bound. Theorem[d.T|requires that the sequence objec-

tive i be weakly supermodular with respect to the optimal solution and postfix monotone—properties
established in Proposition[#.2] We defer the proof to Appendix [B.3]

Proposition 4.2. Suppose that for all j € [K|, the error propagation function I — Cj o L§ is pj-
Lipschitz continuous with p; < 1, and that (I — Cj o L$)(0n) = On. Then, the function h is weakly
supermodular with respect to the optimal solution O, with

4
a(0) = max{“, 1}
T—> Po,

Furthermore, if I — C; o L} is invertible for all j € [K], h is also postfix non-increasing.

The conditions of Proposition .2] are quite natural. For classical solvers, the Lipschitz constant is
[lIn — C;L$ |, which is usually less than 1 for well-posed linear elliptic PDEs (i.e., the update is
damping errors). For neural networks, Lipschitz continuity can be enforced via weight regularization
(Gouk et al.,2021) and a sufficiently trained model should approximate (£¢) ! well enough to make
the Lipschitz constant small. The requirement (I —CjoL§)(0n) = Oy is both natural and desirable:

it precludes spurious updates when the residual f;, — Zug) is 0. This holds by design for classical
schemes, and it can be enforced for any learned model by excluding bias terms.

The form of a(O) in Proposition highlights that the suboptimality factor in Theorem is
governed by the collective contraction factors of the solvers chosen by the optimal solution: as

ZiTzl pQOi — T, a(O) grows, resulting in a weaker bound. Invertibility of the error propagation
functions is often satisfied with Jacobi and Gauss-Seidel updates. However, widely-used solvers
like two-grid corrections and neural networks with dimension changes or ReLU activations may
yield non-invertible error propagation functions. Nevertheless, our experiments show that greedy
routers remain effective even when invertibility is not met.

Theorem[4.T|thus indicates that the approximation guarantee is strongest when the sequence is nearly
supermodular («(O) = 1). Generally, if all error propagation maps share an eigenbasis, supermod-
ularity is established. This occurs, for example, for linear, constant-coefficient PDEs with periodic
boundary conditions where the solver ensemble includes Jacobi, Gauss-Seidel, and a single-layer
linear Fourier Neural Operator. The proof of Proposition is deferred to Appendix

Proposition 4.3. Let || Iy — C; L% < 1forall j € [K] and (I — C;L£%) = PA;P~1. Then, h is
supermodular.

5 APPROXIMATE GREEDY ROUTER

The results in Section @] indicate that the error reduction from the greedy solution closely matches
that of the optimal sequence, but this is predicated on having an accurate estimate of the initial error,

e;lo). A poor approximation of eglo) can result in miscalibrated decisions, causing errors to amplify
over subsequent steps. To remedy this, we design a router r that learns to select solvers myopically,
as described in Algorithm[T] without access to the true initial error.

We adopt the following learning setup. Let A, F,U C R denote the spaces of coefficient, forcing,
and solution functions on the grid G, (D). We assume an application-specific data distribution
Paxr over Ax F that reflects test time conditions. During training, (ap, f3,) is drawn from P 4« 7,
and a high-accuracy reference solution uy, is computed, providing the true per-step error. The router
r is learned offline on this data; at test time, it operates without access to true errors.
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At each time step ¢, r selects a solver using the coefficient a € A, forcing f € F, and the current
iterate u® € U. If r(ap, fr, ugf)) = j, the next iterate is computed with solver 7, resulting in an
error of ||(I — C; o LZ)(eg))H%. Learning such a router requires minimizing the following loss:

Lroute (7‘ an, [, ulf 7uh) ZH (I —CjoLy) ( up — ] )H r(an s forul)= (8)

The corresponding loue-risk is defined as Rroue () = Ea,y 1~ a s # [Loute (T, Qhy i, ug), up)]. For
analysis, we fix the iterate generation via a teacher-forcing (Williams & Zipser, |1989; [Lamb et al.,
2016): during training, the iterates fed to the router are produced by an oracle greedy rollout, not by

the router’s own past choices. Formally, with u( ) — =0p,fort>1,

Ji € argmin;g g H(I —Cj0L}) (egf 1))‘

L =l 4 0 (- chult )

Thus, {ug)} is a deterministic function of (ayp, fy). At each t, Loy is evaluated on r(ap, fr, u (¢ ))

which takes in the teacher-forced iterate. Finally, the greedy choice j/, ; is used to advance ugﬂ_l)

Thus the input distribution seen by  depends on (ay, f1), not on the router’s predictions. However,
full teacher forcing induces a distributional mismatch at test time (exposure bias). In experiments,
we mitigate this with scheduled sampling (Bengio et al.| 2015); see Appendix [D|for details.

Minimizing Roue (1) yields the following Bayes-Optimal Router:

r*(ap, fn,u ()) € argmin; K H (I-CjoLf) ( (t))H 9

which aligns with the decision rule in Algorithm I Hence, lioye is consistent with learning the
greedy algorithm.

5.1 SURROGATE LOSS

Since Equation (8) is discontinuous and non-convex, direct minimization is intractable in practice.
To overcome this, we introduce a surrogate loss that satisfies three key properties: (1) convexity,
enabling efficient optimization; (2) serving as an upper bound on the original loss; and (3) Bayes
consistency, ensuring the Bayes optimal decision of the original loss is preserved upon minimization.
Formally, a surrogate ¢ is considered to be Bayes consistent with respect to the loss [ if

30, Relfn) =Ry = i Ralln) =R

where R;(f) = E[I(f(X),Y)] and R} = inf; R;(f). In other words, in the limit of infinite data,
if the risk of a sequence of learned hypotheses { f,,} converges to the optimal risk under ¢, it also
converges to the optimal risk with respect to the original loss [.

To define a surrogate loss for the routing problem, consider a set of scoring functions g = {g; }K
with g; : A x F x U — R and we define the router as r(a, f, u®)) = argmax ;¢ gi(a, f, u( ).

For example, g can be a neural network with K outputs. Then, minimizing the following surrogate
loss yields the same decision as minimizing Equation (8):

exp (g;(a, f,ul")) )

v (g,ah,f}uuh ,uh) = i ( ah,uh ,uh)lk;éj log
Z S exp (gm(a, f,u®))

j=1k=1
(10)
where éj(ah,ugf),uh) = (I = Cjo LY (up — uh )||2 The U-risk is denoted by Ry (g) =

Ea, foePaxr 28 an, fn, ug), up,)]. The convexity of ¥ with respect to g follows from the con-

vexity of log-softmax function in its inputs. Moreover, ¥ upper bounds /. up to a constant factor,
and we refer the reader to Appendix [C.2]for the proof. Finally, Theorem [5.1] shows that ¥ achieves
Bayes consistency with respect to lioye; the proof can be found in Appendix

Theorem 5.1. Let 6j(ah,u§lt),uh) < E < ooforall j € [K]. If there exists j € [K] such

that ¢;(ap, ug), up) > Emin > 0, then, for any collection of solvers {C;}!, and linear discrete
operator L}, V is Bayes consistent surrogate for lyyyze.
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Theorem [5.1] is a cost-sensitive analogue of the classical Bayes-consistency of multiclass cross-
entropy for 0-1 loss: in the infinite-sample limit, minimizing cross-entropy recovers the true con-
ditional class probabilities, so the induced decision is Bayes optimal. Our result extends this to

cross-entropy with instance-dependent weights Zi; ; Cr(an, ug), up). The uniform upper bound
holds when all preconditioning functions are error-damping. It is also reasonable to assume at least
one solver cannot annihilate the error in one step, yielding the lower bound. Under these condi-
tions, minimizing W recovers the Bayes-optimal router of Equation (9), i.e., the greedy solution of
Equation (5). Following the work of Mao et al]| (2024), the proof uses standard conditional-risk
calibration: we relate the excess risks of /.,y and ¥ and take the infinite-sample limit.

6 RELATED WORKS

Hybrid PDE Solvers: Early data-driven solvers sought convergence guarantees by predicting
parameters—e.g., preconditioning matrices C, multi-grid smoothers or restriction matrices—within
iterative schemes (Taghibakhshi et al.| 2021} (Caldana et al., 2024} [Kopanic¢dkova & Karniadakis)}
2025; Huang et al.| 2022} Katrutsa et al.,|2020). These works, however, do not leverage the neural
surrogates’ ability to generalize across varying coefficients and/or forcings highlighted in Section[2.2]
and thus, offer only modest speedups over classical solvers. HINTS (Zhang et al., 2024) introduced
hybrid solvers that interleave a classical method with a pre-trained DeepONet on a fixed schedule
(e.g., 24 Jacobi steps, then one DeepONet correction). Despite this rigidity, HINTS reports sig-
nificantly faster convergence than the standalone numerical solver. |Kahana et al.| (2023) adapted
HINTS to geometries distinct from, but related to, those used to train the neural operator. Both [Hu
& Jin| (2025) and [Cui et al.| (2022) characterized the dampening of error modes over iterates, with
the former replacing the DeepONet of HINTS with an MIONet (Jin et al., 2022)) and the latter a
Fourier Neural Operator (L1 et al.l [2020a)). Critically, these hybrid solvers are limited in two ways:
they, firstly, only complement the trained surrogate with a single numerical solver, and secondly
interleave the numerical and neural solvers with a fixed, heuristic schedule. These were the pri-
mary shortcomings that we addressed in our proposed method, which result in significant empirical
improvements, as we demonstrate in Section [7]

Model Routing: Routing (Shnitzer et al., [2023; |Hu et al., |2024; |Ding et al.| |2024; Huang et al.,
20235)) seeks to find, for each input, a model from a fixed set that optimizes a task metric under cost
or latency constraints. Simple heuristics—e.g., thresholding a cheap model’s uncertainty estimates
(Chuang et al.| |2024; 2025)—often poorly balance the cost-accuracy tradeoff. Consequently, many
systems learn a router network, which maps a query to the model index expected to perform best
(Hari & Thomson, 2023; [Mohammadshahi et al., 2024; Sakota et al.,|2024). Abstractly, our method
also learns a router, but over numerical and neural solvers for PDEs at the iteration level. Our work
is the first to demonstrate that routing is applicable to the problem of learning hybrid PDE solvers,
differing from prior hybrid solver works, which simply fixed the “router” to a predetermined sched-
ule. We additionally exploit the algebraic structure of PDE solvers to derive theoretical guarantees
for our routing strategy in Sectionfd] unlike typical model-routing settings.

Mixture of Experts: Classical mixture-of-experts (MoE) (Jacobs et al., [1991} Jordan & Jacobs,
1994)) uses a gating network to assign soft or hard weights to a set of experts and produce a weighted
combination of their outputs, with the gate and experts trained jointly. In modern LLM systems,
MoE instead performs sparse, token-level routing to a small subset of in-layer experts, enabling
large model capacity without proportional compute, typically with load-balancing and capacity con-
straints (Shazeer et al., 2017} [Lepikhin et al.l [2020; |[Fedus et al., [2022; Jiang et al., 2024). Our
method can be regarded as gating network of a different kind where our “experts” or solvers are not
trained jointly with the router and single router is reused across the iteration horizon, in contrast to
MOoE which commonly employs layer-specific gates.

7 EXPERIMENTS

In this section, we empirically demonstrate the fast, uniform convergence of the approximate greedy
router on Poisson and Helmholtz equations posed on the unit domain D = [0, 1]¢ with d € {1,2} .
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Equation | 1D Poisson [ 2D Poisson [ 1D Helmholtz [ 2D Helmholtz
Methods | |7 | auC L™ T aue el T aue P ] AUC
Jacobi-related Solvers
Jacobi Only 0.19 (0.1) | 128.66 (69.98) | 0.07 (0.03) | 115.5(42.96) | 0.22(0.11) | 146.57 (76.11) | 0.066 (0.03) 110.485 (41)
HINTS-Jacobi 0.01 22.71(11.36) 0.18 65.75 (8.61) | 0.048 (0.02) | 29.36 (13.21) 0.11 (0.03) 115.84 (41.36)
Greedy-Jacobi 0.001 1.12 (0.44) 0.01 18.48 (4.06) | 0.025(0.03) | 8.105(8.22) 0.066 (0.03) 110.485 (41)
GS-related Solvers
GS Only 0.05 (0.03) | 80.55 (43.83) 0.005 61.67 (23.02) | 0.054 (0.03) | 91.153 (47.35) | 0.005 (0.002) | 58.801 (21.892)

HINTS-GS 0.003 17.8 (9.21) 0.174 56.63 (7.75) | 0.041 (0.01) | 26.638 (11.59) | 0.056 (0.003) | 64.445 (21.986)

Greedy-GS <1073 0.674 (0.27) 0.001 9.9 (2.26) 0.015 (0.01) | 5.157 (3.96) | 0.005 (0.002) | 58.801 (21.892)
MG-related Solvers

MG Only 0.05 (0.01) | 20.51 (7.46) 0.002 10.97 (3.03) | 0.05(0.01) 22.042(7.8) | 0.011 (0.009) | 10.745 (3.094)

HINTS-MG 0.002 7.64 (3.66) 0.079 15.02 (2.03) | 0.023(0.01) | 9.872(4.32) | 0.026 (0.008) | 11.763 (2.976)

Greedy-MG <1073 0.24 (0.1) 0.001 2.58(0.54) | 0.016 (0.01) | 1.784 (1.32) | 0.011 (0.009) | 10.745 (3.094)

Table 1: Final error and AUC of squared L? error (lower is better). Values are mean (4 standard
error (s.e.)) over 64 test instances; both mean and s.e. are reported in x 1073, If a standard error is
not shown, it is < 1072 in the reported units (raw < 10~°). Bold indicates the best method within
each solver family.

For Poisson, we use the constant-coefficient model
—Au(z) = f(z), xz€D
and for Helmholtz, we adopt the sign convention
—Au(z) — a*(z)u(x) = f(z), €D

where a?(x) > 0. We impose periodic boundary conditions for both equations: for Poisson, the
right-hand side is centered to satisfy the compatibility condition | p f(x)dz = 0. The domain D is
discretized on uniform grids with 65 points in 1D and a 33 x 33 grid in 2D. Data is sampled from a
zero-mean Gaussian Random Field on the periodic domain with covariance operator (—A + 97)~2.
We run two experiments: (i) compare our greedy method to HINTS and single-solver baselines,
and (ii) assess how performance scales as the solver ensemble grows. For both experiments, the

performance across 64 test samples is reported via the mean final error HeELT) ||l2 and the mean area

under the curve (AUC), where AUC = Y"1 ||e§f) |l2. While the final errors is of utmost importance,
AUC captures performance over the entire run—smaller values indicate lower error at all intermediate
steps—and naturally penalizes non-monotone spikes that undo progress.

Comparing Greedy with HINTS: For this experiment, we consider Jacobi, Gauss-Seidel (GS),
and multigrid (MG) solvers along with a DeepONet model. As baselines, we use single-solver
schedules (Jacobi only, GS only, and MG only) as well as HINTS variants with each classical
solver (HINTS-Jacobi, HINTS-GS, HINTS-MG), where the DeepONet correction is interleaved
every 24 Jacobi/GS iteration or every 14 MG V-cycles. We then train LSTM-based routers using the
loss in Equation under three different solver-access sets: Jacobi+DeepONet (Greedy-Jacobi),
GS+DeepONet (Greedy-GS), and MG+DeepONet (Greedy-MG). We use an LSTM because solver
routing is sequential and the benefit of a greedy step depends on the trajectory of errors and past
choices. LSTMs have historically performed well on sequence data owing to their recurrent mem-
ory. Training details of the DeepONet and the routers can be found in Appendix

We note that comparisons are restricted to methods with the same solver access. For example,
Greedy-Jacobi and HINTS-GS are not comparable because the former lacks access to GS. Accord-
ingly, we partition results by solver family (Jacobi-related, GS-related, and MG-related). Each
method is run for 300 iterations (Jacobi/GS) or 100 V-cycles (MG).

As shown in Table |1} across all solver families, the greedy router achieves the lowest final error
and lowest mean AUC: Greedy-Jacobi, Greedy-GS, and Greedy-MG outperform both their single-
solver and HINTS counterparts. While HINTS improves over single-solver schedules, it exhibits
sawtooth error traces (See Figure|1) as HINTS often invokes the DeepONet when it is suboptimal.
By contrast, the greedy routers only routes to solvers that yield an immediate error drop, which
translates into the reported AUC gains and near-monotone error decay. Notably, the greedy solutions
for 2D Helmbholtz largely follow the corresponding classical solver alone. This indicates that the
learned neural correction frequently fails to reduce the error and is therefore skipped by the greedy
rule. HINTS, however, continues to call the neural operator at a fixed interval even when it increases
the error, which explains its substantially worse AUC and final error on 2D Helmholtz.
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Error Comparison of Different Routing Strategies
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Figure 1: Convergence histories for representative test instances. Rows: 2D Poisson (top) and 1D
Helmholtz (bottom). Columns: Jacobi, Gauss—Seidel (GS), and multigrid (MG). Greedy yields near-
monotone decay and the lowest errors, whereas HINTS shows sawtooth behaviors. Convergence
histories for 1D Poisson and 2D Helmholtz to Appendix [E]

Equation 1D Poisson 1D Helmholtz
# of Solvers 1)) AUC 1) AUC
2 0.002 (0.001) | 1.717 (0.643) | 0.018 (0.013) | 6.665 (3.81)

3 0.002 (0.001) | 1.434 (0.554) | 0.017 (0.014) | 6.31(3.852)
4 0.002 (0.001) | 1.337 (0.523) | 0.017 (0.014) | 6.182 (3.868)
5 0.001 (0.001) | 1.293 (0.508) | 0.017 (0.014) | 6.113 (3.878)
6 0.001 (0.001) | 1.121 (0.449) | 0.017 (0.014) | 6.098 (3.88)

Table 2: Final error and AUC of squared L? error for varying numbers of solvers. Values are mean
(& standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in x1073,

Size of solver ensembles: We also study how the size of the solver ensemble affects final error
and AUC. Each router is trained with an ensemble that always includes a DeepONet and a subset of
weighted Jacobi solvers with relaxation parameters w € {0.5,0.67,0.75,0.8, 1}. We grow the solver
set cumulatively, starting from the smallest w and adding larger ones. In Table[2] the AUC decreases
as the size of the solver set increases for both 1D Poisson and 1D Helmholtz (300 iterations), but
with diminishing returns.

Additional experiments are provided in Appendix [E]

8 DISCUSSION

We have introduced an adaptive method for selecting solvers that efficiently minimize the final
error when solving a PDE iteratively. This opens several directions for future work. Our current
DeepONet is trained in isolation, without accounting for its downstream role as a correction term
predictor. Jointly training the ML solver and the router could yield larger gains. Another avenue is
to employ reinforcement learning to learn a cost-aware routing strategy that optimizes the terminal
error under compute budgets. When the deployment conditions are unknown or volatile, our offline
training procedure suffers and a fixed schedule like HINTS can perform better, however, framing
routing as an online learning problem enables continual adaptation. Finally, it would be interesting
to extend this routing scheme to broader optimization settings in which the router selects from a
suite of optimizers at each iteration.
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REPRODUCIBILITY STATEMENT

The implementation of our hybrid PDE solver with learned greedy routing is provided in the source
code submitted as supplemental materials. It includes scripts to reproduce all tables and figures in
Section[7]and Appendix [E] along with a README file that documents dependencies and commands
for training routers and instructions for regenerating results. Data is generated on the fly using fixed
seeds (specified in the code) to ensure exact reproducibility. Formal proofs of all theorems and
propositions appear in Appendices [B]and [C]

REFERENCES

Saeed Alaei, Ali Makhdoumi, and Azarakhsh Malekian. Maximizing sequence-submodular func-
tions and its application to online advertising. Management Science, 67(10):6030-6054, 2021.

John David Anderson. Hypersonic and high temperature gas dynamics. Aiaa, 1989.

Sylvain Baillet, John C Mosher, and Richard M Leahy. Electromagnetic brain mapping. [EEE
Signal processing magazine, 18(6):14-30, 2001.

Klaus-Jiirgen Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47-55, 2015.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems,
28, 2015.

Sara Bernardini, Fabio Fagnani, and Chiara Piacentini. Through the lens of sequence submodu-
larity. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 30, pp. 38-47, 2020.

Andrew An Bian, Joachim M Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guaran-
tees for greedy maximization of non-submodular functions with applications. In International
conference on machine learning, pp. 498-507. PMLR, 2017.

Louenas Bounia and Frederic Koriche. Approximating probabilistic explanations via supermodular
minimization. In Uncertainty in Artificial Intelligence, pp. 216-225. PMLR, 2023.

John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.
Susanne C Brenner. The mathematical theory of finite element methods. Springer, 2008.
William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. STAM, 2000.

Matteo Caldana, Paola F Antonietti, et al. A deep learning algorithm to accelerate algebraic multi-
grid methods in finite element solvers of 3d elliptic pdes. Computers & Mathematics with Appli-
cations, 167:217-231, 2024.

Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang. Spectral Methods:
Fundamentals in Single Domains. Springer, 2006. ISBN 9783540307264.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE transactions
on neural networks, 6(4):911-917, 1995.

Yu-Neng Chuang, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio, Sara Bolouki,
Xia Hu, and Helen Zhou. Learning to route llms with confidence tokens. arXiv preprint
arXiv:2410.13284, 2024.

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang Sui,
Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based on-
device llm routing from benchmarking to generalization. arXiv preprint arXiv:2502.04428, 2025.

10



Under review as a conference paper at ICLR 2026

Chen Cui, Kai Jiang, Yun Liu, and Shi Shu. Fourier neural solver for large sparse linear algebraic
systems. Mathematics, 10(21):4014, 2022.

Abhimanyu Das and David Kempe. Approximate submodularity and its applications: Subset selec-
tion, sparse approximation and dictionary selection. Journal of Machine Learning Research, 19
(3):1-34, 2018.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133-1153, 2011.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural net-
works by enforcing lipschitz continuity. Machine Learning, 110(2):393-416, 2021.

Roberta Grech, Tracey Cassar, Joseph Muscat, Kenneth P Camilleri, Simon G Fabri, Michalis Zer-
vakis, Petros Xanthopoulos, Vangelis Sakkalis, and Bart Vanrumste. Review on solving the in-
verse problem in eeg source analysis. Journal of neuroengineering and rehabilitation, 5:1-33,
2008.

Wolfgang Hackbusch. Multi-grid methods and applications, volume 4. Springer Science & Business
Media, 2013.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language models. arXiv preprint arXiv:2308.11601, 2023.

Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. Submodular maximization beyond
non-negativity: Guarantees, fast algorithms, and applications. In International Conference on
Machine Learning, pp. 2634-2643. PMLR, 2019.

Jun Hu and Pengzhan Jin. A hybrid iterative method based on mionet for pdes: Theory and numer-
ical examples. Mathematics of Computation, 2025.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Ru Huang, Ruipeng Li, and Yuanzhe Xi. Learning optimal multigrid smoothers via neural networks.
SIAM Journal on Scientific Computing, 45(3):S199-S225, 2022.

Zhongzhan Huang, Guoming Ling, Yupei Lin, Yandong Chen, Shanshan Zhong, Hefeng Wu, and
Liang Lin. Routereval: A comprehensive benchmark for routing llms to explore model-level
scaling up in llms. arXiv preprint arXiv:2503.10657, 2025.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2003.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor prod-
uct. SIAM Journal on Scientific Computing, 44(6):A3490-A3514, 2022.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181-214, 1994.

11



Under review as a conference paper at ICLR 2026

Adar Kahana, Enrui Zhang, Somdatta Goswami, George Karniadakis, Rishikesh Ranade, and Jay
Pathak. On the geometry transferability of the hybrid iterative numerical solver for differential
equations. Computational Mechanics, 72(3):471-484, 2023.

Eugenia Kalnay. Atmospheric modeling, data assimilation and predictability. Cambridge university
press, 2003.

Alexandr Katrutsa, Talgat Daulbaev, and Ivan Oseledets. Black-box learning of multigrid parame-
ters. Journal of Computational and Applied Mathematics, 368:112524, 2020.

Siavash Khodakarami, Vivek Oommen, Aniruddha Bora, and George Em Karniadakis. Mitigating
spectral bias in neural operators via high-frequency scaling for physical systems. arXiv preprint
arXiv:2503.13695, 2025.

Alena Kopani¢dkova and George Em Karniadakis. Deeponet based preconditioning strategies for
solving parametric linear systems of equations. SIAM Journal on Scientific Computing, 47(1):
C151-C181, 2025.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1-97, 2023.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent net-
works. Advances in neural information processing systems, 29, 2016.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755-6766, 2020b.

Edo Liberty and Maxim Sviridenko. Greedy minimization of weakly supermodular set functions.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2017), pp. 19—1. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2017.

Lizuo Liu and Wei Cai. Multiscale deeponet for nonlinear operators in oscillatory function spaces
for building seismic wave responses. arXiv preprint arXiv:2111.04860, 2021.

Xinliang Liu, Bo Xu, Shuhao Cao, and Lei Zhang. Mitigating spectral bias for the multiscale
operator learning. Journal of Computational Physics, 506:112944, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218-229, 2021.

Tao Luo, Zheng Ma, Zhi-Qin John Xu, and Yaoyu Zhang. Theory of the frequency principle for
general deep neural networks. arXiv preprint arXiv:1906.09235, 2019.

Angi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis
and applications. In International conference on Machine learning, pp. 23803-23828. pmlr, 2023.

Angi Mao, Mehryar Mohri, and Yutao Zhong. Regression with multi-expert deferral. In Interna-
tional Conference on Machine Learning, pp. 34738-34759. PMLR, 2024.

12



Under review as a conference paper at ICLR 2026

Alireza Mohammadshahi, Arshad Rafiq Shaikh, and Majid Yazdani. Routoo: Learning to route to
large language models effectively. arXiv preprint arXiv:2401.13979, 2024.

Michael C Mozer. A focused backpropagation algorithm for temporal pattern recognition. In Back-
propagation, pp. 137-169. Psychology Press, 2013.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14(1):265-294, 1978.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301-5310. PMLR, 2019.

Anthony J Robinson and Frank Fallside. The utility driven dynamic error propagation network,
volume 11. University of Cambridge Department of Engineering Cambridge, 1987.

Yousef Saad. Iferative methods for sparse linear systems. SIAM, 2003.

Marija Sakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. In Proceedings of the 17th ACM International Conference on
Web Search and Data Mining, pp. 606—615, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Tal Shnitzer, Anthony Ou, Mirian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson,
and Mikhail Yurochkin. Large language model routing with benchmark datasets. arXiv preprint
arXiv:2309.15789, 2023.

Gordon D Smith. Numerical solution of partial differential equations: finite difference methods.
Oxford university press, 1985.

Andrew Staniforth and Jean C6té. Semi-lagrangian integration schemes for atmospheric models—a
review. Monthly weather review, 119(9):2206-2223, 1991.

Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions.
Advances in Neural Information Processing Systems, 21, 2008.

Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West. Optimization-based algebraic
multigrid coarsening using reinforcement learning. Advances in neural information processing
systems, 34:12129-12140, 2021.

Fredi Troltzsch. Optimal control of partial differential equations: theory, methods, and applications,
volume 112. American Mathematical Soc., 2010.

Ulrich Trottenberg, Cornelius W QOosterlee, and Anton Schuller. Multigrid methods. Academic
press, 2001.

Sebastian Tschiatschek, Adish Singla, and Andreas Krause. Selecting sequences of items via sub-
modular maximization. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 31, 2017.

Brandon Van Over, Bowen Li, Edwin KP Chong, and Ali Pezeshki. A performance bound for
the greedy algorithm in a generalized class of string optimization problems. arXiv preprint
arXiv:2409.05020, 2024.

Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural networks, 1(4):339-356, 1988.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270-280, 1989.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

13



Under review as a conference paper at ICLR 2026

Zhi-Qin John Xu, Lulu Zhang, and Wei Cai. On understanding and overcoming spectral biases of
deep neural network learning methods for solving pdes. arXiv preprint arXiv:2501.09987, 2025.

Zhilin You, Zhenli Xu, and Wei Cai. Mscalefno: Multi-scale fourier neural operator learning for
oscillatory function spaces. arXiv preprint arXiv:2412.20183, 2024.

Enrui Zhang, Adar Kahana, Alena Kopanic¢dkova, Eli Turkel, Rishikesh Ranade, Jay Pathak, and
George Em Karniadakis. Blending neural operators and relaxation methods in pde numerical
solvers. Nature Machine Intelligence, pp. 1-11, 2024.

Zhenliang Zhang, Edwin KP Chong, Ali Pezeshki, and William Moran. String submodular functions
with curvature constraints. IEEE Transactions on Automatic Control, 61(3):601-616, 2015.

A BACKGROUND

A.1 MULTIGRID

Let Ay, Aoy, represent the coefficient matrix on a fine grid with discretization parameter h and 2h,
up, and fj, represent the PDE solution and constant vector on a grid discretized by h, Ri} ' denote the
restriction matrix which transfers vectors from a fine grid to a coarse one, and I. gbh is the interpolation
matrix transfers vectors from a coarse grid to a fine one. In a 2-grid method, a few iterations of the
smoother (e.x. Jacobi or Gauss-Seidel) are first applied on the fine grid to approximate the solution
of Apup, = fp. The residual is then computed as r, = f, — Apuy, and restricted to the coarse grid
via rop, = R,thrh. The error equation, Aspesp, = rap, is solved on the coarse grid. The resulting
estimate of the error is interpolated in the fine grid by e;, = Iébhegh, and the fine grid solution is
updated by adding this correction, uj = up, + ey, Finally, additional smoothing steps are performed
on the fine grid to further reduce any high frequency errors. The preconditioning matrix for two-
grid solver is Cog = IQ,IA; hl Rih. More complex strategies for multigrid like V-cycle and W-cycle
compute error corrections recursively across multiple grids of varying coarseness

B PROOFS FOR SECTION [

B.1 PROOF OF PROPOSITION [B.T]
Proposition B.1. Any prefix monotonically non-increasing sequence supermodular function g is

weakly supermodular with respect to all sequences S € Q* with a(S) =1

Proof. This proof is adapted from |Liberty & Sviridenko|(2017).

If g is sequence supermodular then,

9(8) —g(S @)

5’|
ZQ(S @ (S1,.--,51)) —9(S & (81,-..,5)

—
Q
i

<> 9(S)—g(S @S))
=1
< 18'| max g(S) —g(S @ S})
iel|s'])

(a) by supermodularity
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B.2 PROOF OF THEOREM [4.1]

Theorem @.1} Ler g : Q* — R be a weakly supermodular function with respect to the optimal
solution O = arg mingcqr h(S) with a supermodularity ratio of o(O) and postfix monotonicity.

Let the greedy solution of length T be ST. If ¢p7(a) = (1 — ﬁ)T then
9(8") < (1 = ¢1(a(0))) 9(0) + ¢1(a(0))g(0)

Proof. This proof strategy is inspired by |Streeter & Golovin|(2008)) and [Liberty & Sviridenko, (2017)

9(5" - 9(0) € g(5") — g(S" ®0)
[O]
= Zg(st @ (01,...0i-1)) — g(S* & (01,...,0:))

) (e
< a(0) Zg(st> —g(S* @ o)

< o(0)|0] max g(S") - g(S* & o)
i€[|O]]
<a(0)Tg(S") — oz(O)Tmeigg(St B w)
= a(0)Tg(S") — a(0)Tg(S")
(a) by u- postfix monotonicity, (b) by supermodularity.

After rearranging the inequality, we get:

g(St+1) S

o7 = O X (1 o) + (- o) o

B.3 PROOF OF PROPOSITION [4.7]

Proposition Suppose that for all j € [K), the error propagation function I — C; o L is p;-
Lipschitz continuous with p; < 1, and that (I — C; o L§)(0n) = On. Then, the function h is weakly
supermodular with respect to the optimal solution O, with

4
a(0) = maX{TQ, 1}
T—-> Po,

Furthermore, if I — Cj o L§ is invertible for all j € [K|, h is also postfix monotonically non-
increasing.
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Proof. For brevity, we use the notation (g; o - -- o g7) () = o}, g;(x), where composition is ap-
plied from right to left so that gr acts first. In this proof, we use a few properties of Lipschitz
continuous functions:

* Property 1: If g is p-Lipschitz continuous and g(0) = 0, then ||g(z)|]2 = ||g(x) — 0|2 =
lg(x) = g(0)l2 < pllz = 0l]2 = pllz|2

* Property 2: If g; and g- are Lipschitz continuous functions with Lipschitz constants of p;
and p, respectively, the Lipschitz constant of g; + g2 and g1 — g2 is p1 + p2.

* Property 3: If g; and g» are Lipschitz continuous functions with Lipschitz constants of p;
and p, respectively, the Lipschitz constant of g; o g5 is p1p2.

In order to prove weakly-a-supermodularity, we must first prove prefix monotonicity.

Prefix monotonicity: Let.S < S’ where S’ =5 & N.

h(8') = ||oi_s| (I = Cs; 0 L)) ( )H
B H e (I = Cspo Lf) 0 ofys) (I = Cs; 0 L) (eﬁf’))HZ
¢ lﬁl Ps; | ||ot=is) (I = Cs, © L}) ( (0))H
t=|S|+1
< h(S)

(a) by Property 1

Weak supermodularity: We will upper bound «(O) by providing an upper bound for h(S) —
h(S @ O) and a lower bound for lel h(S) —h(S ® O;).

h(S) = h(S ®0) = |loj_s (I — CStOUL( )H

(@)

o1—jo| (I = Co, o Lf}) 0 05 (I = Cst"ﬁa( )H

< o%:\S\ (I —Cg,oL}) (6510)> o o] (I—Co,0Ly)oo,_ S| (I = Cs, 0 L) ( >H
- H (I —oj_j0| (I = Co, © Ei)) ooi_ig (I = Cs, o Lf) (eg))) H2
(b) o1 : )|
< | 1+]]ro | |[oizis) (I —Cs, o £3) (62 )) Hz
t=1
(%) 4 O%:|s| (I = Cs, o L}) ( (0))H

(a) by reverse triangle propeny and h(S) —h(S @ 5") >0 by prefix monotonicity, (b) since the
Lipschitz constant of I — o;_ g, (I —Cs; 0 L) is 1 + 1e] ps; by Property 2 and 3, (c) since
p; <1

To lower bound legll h(S) —h(S @ 0;)

O] O]

Zh WS @00 =3 ol (I = Cs, 09) ((o))H H —Co, 0Ly) 00l_g (I —Cs, 0 L}) (4}@)”2

[t 1 20 (42)] = s - €0 (o)

ot coomn ()] (-5t
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Finally,

WS)—h(S ®0)  _ 4°¥wﬂf—0&°D‘G$DW
Tmax; h(S) —h(S ®0;) — t " (In — Cs, 0 L3) ( (0))H <T Zl 1pO)

4
= maX{“,l}
T =321 90,

Postfix monotonicity: LetS’ =S & N.

)

h(S') = ’ O%:|S’ (I- Cs; oLy)e )H

2
= [Jotm (1= w0 £a) 0 ofoys (1= s 0 L))

2
oj—in) (I = Cn, 0 Ly) 00i_5 (I = Cs, 0 Ly) 0 (°§=\N| (I-Cy,o ‘Ch)) ooy (I = Cn, o Ly) ey
2

IN| S| IN|
©
<HpNthSthN t \N\(I Cn, o Lp) eh)H
t=1 t=1 t=
< h(N)

(a) due the invertibility of In — C; L

O
B.4 PROOF OF LEMMA([B.2]
Lemma B.2. Let (I —C;L%) = PA;P~' where P is an orthogonal matrix and A; =
diag(A\j1, ..., \jn). If P e, ©) _ z, then the following equality holds:
N K
sy =32 [IAm (11)
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Proof.

1

ns) = I Un - Cs.c3) el

I
—
=

&
~
S

S

B.5 PROOF OF PROPOSITION [4.3]

Proposition[d.3] Let || Iy — C;L%| < 1 forall j € [K]and (I — C;L}) = PA;P~Y. Then, h is
supermodular.

Proof. Let S < 5" where S’ =S & B. By Lemma|B.2}

Z H )\27”1(5)

where m;(S) = ZIS‘ 1g,—; be the number of times a sequence S calls the solver j. Recall that i
is considered sequence supermodular if V.S’, S € Q* such that S < .S, it holds that

h(S) — h(S ®w) > h(S") —h(S" ®w)

K
h(S) — h(S @ w) Zz | R Zzz)\Q HAQmJ(S
i=1  j=1 —

Similarly,

Il
™
—
~
|
>
IS
€
SN—"
N
=
<.
== L
>
no
3
3
)
+
3
E
5
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(@) Since m; (") = 17 15, = 37 15, +Z|{i||s‘ Lsj—j = Y0 Ls,mk+ 10 1, =
m;(S) + m;(B), (b) since p(IN —C;Lf) < 1land m;j(B) > 0forall j € [K]

O

C PROOFS FOR SECTION [3]

C.1 PrROOF OoF LEMMAI[CT]

Lemma C.1. For any set of preconditioning functions C, any discrete operator L}, any router r,
any ayp, fn, uzt), up € A X F x U x U, the following equality holds true:

broute (7" an, foy ui! »“h> ZZH (I = CyoL}) (“h_“h )H Liti Ly )25

Jj=1k=1

_ 2)§: H(I— CjoL}) ( un — “g)> Hz
j=1

Proof. Note that 25{:1 1 =K-1

(an, froul)#j

K
lroute (T, ah7fh7u§b)7uh> = Z (I - Oj OL?L) < Up — ul(%t))

2

1 N
o r(an.fnuy’)=j

<.
Il
-

|

~

Il
_
<.

Il
_

(I'=Cjo L) (“h _“g)) 2 i ’ (I=Cjo L) (“" N “5))”21r<ah,fh,us:>>¢j
)

2 K
(I—C;oL) (uh_ugp) - ) (I—CjoLd)

|

<
Il
—
<
Il
—

_ ., ®
Uh = Up, ) Hg 17’(ah,fh,u(ht))7éj

[V [\v]
|

SR R O Tt of LR RYA R
k=1
K

h
Hu—cjocm@h—uzﬂ)\r 5~ cre ) (o) v

2
=1

|

<
Il
—

<

+
Mx

L an )2 ZH [=CioL}) (“h_“g))H
o ab)]
K K -
-5 (S ha-cueen (o)1~
j=1 \k=1
=)= o) (=)

K
Z H I Cio Ea) (Uh — uh )H 1k7ﬁ31r(ah s u(t))76
1 k=1

_ (K_Q)Z H(I—Ck o L) (Uh —Ugf))Hz
k=1

<.
I

(I —CjoLy) (uh_uh )H ) ran, fnoul)#j

Mx

<.
Il
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C.2 PROOF OF PROPOSITION
Proposition C.2. For any router r defined by r(a, f, u(t)) = argmaxje[K]gj(a, 7 u(t)), any ap, €
A, fn € F, and u( ) , up € U, the routing loss 1y, satisfies:

log(2)lmute (Ta Qp, fh7 Uét)a uh) < \I!(ga Qp, .fha US), uh)

Proof. By Lemma|[C.I] we know that

K K
2
log(2)route (r ap, fh,uh ,u;,) =log(2 ZZ H (I —CroL}) (uh — U;?) H2 lk#lr(a}“fh,ug)#j

J=1 k=1
K
0= ()
K K () 2
a t .
oo 35— e o) 5t
j=1k=
K

K (a, f,ul
235 - o) () o A LD )

= \P(g7 Qp, fhu ug)yuh)

exp(g; (a,fu'))

(a) if r(ah,fmu;lt)) 7 J Si_iexp(gn(a, fru®))

exp(g; (a,f,ut?))
- > O
log (25_1 EXP(gk (a,f7u(t))) = 10g(2>1’r(ah’fhyu§z ))?6.7

< 0.5 which implies that

O
C.3 PROOF OF THEOREM[3.]]
Theoremn Let Ej(ah,ugf),uh) < E < ooforall j € [K|. If there exists j € [K] such

that c; (an, ug),uh) > FEnin > 0, then, for any collection of solvers {C’ }j 1 and linear discrete
operator L¢, VU is Bayes consistent surrogate for lyyyze.

Proof. For a given ap, fr, let uy be Gy, (ap, fr) where G, denotes the solution operator acting on
the grid G,. Furthermore, let’s consider routers of the form

r(a, fa u(t)) = argmaxje[[{]gj(aa fa u(t))

(t)

For a given ap, fn,u,, € A x F x U, let the optimal loss under [y be

1% e (a;“ fmugf)) = inf7 Loute (ﬁah, fh7u§f)7 G (an, fh)>. Similarly, let the optimal loss un-
der ¥ be U* (a/h7fh7u§1t)) = iIlf“I] (g7ah7fh7u§lt)7gh (amfh)). Let Bj(ah7fh7ug)) =

K H(I — o L) (gh (an, fn) — ul ) ] z i,
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lroule (rv ap, fhv uth)v gh (aha fh)) - lroute <aha fha t))

K K K
@y H(I — o L9 (uh — ! )H Vit L oty — (K =203 H(I _ 00 L8) (uh _ ug)) Hz
=1 k=1 Jj=1
’ K K 2
_ ZZ H I Ck oﬁa) (Uh — uh )H 1k7£] r(ah Fis u(t));é] Z H I C O‘Ch (uh — uh )H2
j=1k=1

K

K
(t) - t)
> Bjlan, fuu, ML, an ful®)5 _”%fZBj(ah’fh’“h )L an o)
j=1 j=1

K K’ N
Z (an, fr,ul?) Z Bj(amfmugf)) . mf B. (ah7fh,uh))
) » Yh r(an, ,ut #an, ,u

= Z’fK 1Bk(ah,fh,u§f)) (anfnrin )ES j=1 Zk L Bi(an, fr,u (t)) o fu)#S

= j=1

(a) by Lemma|[C.T]
Let ¥ = Ax F xU and Y = [K]. Let Pyx denote the degenerate distribution suported at the

point (ah,fh7 (t)). We define the conditional distribtion - P(Y = j | X = (ah,fmugf))) =
B (@ fnuy”) for j € [K]. The risk and optimal risk of 0 — 1 loss under this distribution can

Zk:1.Bk(ah Fhs (t))
be written as:

K (t)
B'(a}wfhauh )
Ro_l(’f') = ’ 17‘ a U ()
jzzl 22(21 Bk(ah,fhaugf)) (an,fryuy, ) #]

* = B; (ahmfhau;zt))
Roy = inf r(an, frulD) £
7j=1 Zk 1B/€(ahafh7 )

75)) = argmax;¢p 9j (an, fn, ug)) for all z € X, then the he risk and optimal risk of

If’f’(ah’ fha UEI
cross entropy loss (l..(g, ¥, y) — log (%)) under this distribution can be written as:
1 exp(gr(z

Re(g) = - S Lilm i) (O (95ans i uf?))
i=1 2= Brlan, fnowy”) 31 €Xp <9k(ah, fh,ugf)))
e e Bilan s o (oo fion)
ToE T Bulan fuw) > ey OXP (gk(ah, fh,ugf)))

From Theorem 3.1 of (Mao et all 2023) Ro-1(r) — Ry_; < T71(Ree(g) —RE) if
r(an, fo,uy) = argmax;epy g (an, fa. ) where T(z) = 1= log(1 + 2) + 5% log(1 — 2).
Then,
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lroule T, Qh, fha Ug)v gh (aha fh)) - Z;koute (ah7 fh’ u;?)

K B (t) (t)
B E ] B;
k(ah,fh,uzt)) J(ah)fh7uh ) ) iIl ](a’h7fhauh )

K ¢ o fnus) : K O (an, frous) ) A
S Brlan, frouy)) T I E SO Br(an, fuuy) T I 07

K

K , ® exp (g;(an, fu.ul)

_ Bj(an, fn,u p(gj P Th Th
Bk(ah»fhaugf))r - E K ]( e )(t) log K (t)
j=1 Zk:l Bk(a’hufhvuh ) Zk:l €xXp (gk(ahaf}HUh )>

IN

M= 11

k=1
— inf- i By, 14) log P (gj(ah, fhs us)))
Coe Zle Br(an, fh’uglt)) Zlf:l exp (gk(ah, fhyu;f)))
Er - | - fj Bjlan. Ji uﬁ?)(t) o Kexp (gi(ans f,ui?))
3=t 2ok Bl fn ) > k1 €XP (Qk(ah, Ihs uﬁf)))
- inf*i Bj(a’“fh?“;zt)) o exp (gj(ah,fmu;f)))
S Bulan i)\ S exp (gl fr))
< EK - (- 3 iﬁah’{)h;g)) : ;Xp (gj(ah,fh,ug”)?t)
= " > k=1 €XP (gk(ah, fro ! ))
-~ Bilan, fu, uy) exp (g5(an, fus )

— inf — lo
& ; (K = 1) Emin S exp (gk(ah, fmugf)))
v (gvah,fh,uﬁf),gh (an, fh)) - (athh,ugf))

I _ -1
SRR (K= 1) Bin

2 _
(a) since H(I —CjoLY) (es)) H2 < Eforall j € [K], (b) since I'"! is non-decreasing and 3;j €
2
[K] such that H(I —CjoL}) (eg)) H2 > Ein

Finally,
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.
lim Rioue (7n) — Rroute

n—oo

(:) lingo Eah»thPAxf [lroute (Tm an, fn, u;f), Gn (aha fh)) - lr*oute (ah, In Ugf))}

n—s
v (g,am fh,u%t),gh (ah,fh)> P (ah’f}“ug))

< lim E EK(K-1)T7!

~ n—oo @nsfr~Paxr (K — 1)Emin
E P *) g g )
(b) _ ap,fhn~PaxF gnaah)f/“uh y Yh (a'hvfh) ah?fh)uh
< lim EK (K —1)T1
= lim EK (K —1)T! M
n— 00 ( )Emzn

—
Q
N

EK (K —1)T~! (hmwmm(g) R)

(K )Ernzn
=FK (K —-1)T1(0)
d

—
=

@ Riwe = Eap fanPaxr [lr*oute (ah, fh,uglt))} since the infimum is taken over all measurable

functions, (b) by Jensen’s inequality since I'"! is concave, (c) by continuity of I'~! at 0, (d)
r-to)=o0

O

D TRAINING DETAILS

Data for both DeepONet and the routers is sampled from a zero-mean Gaussian Random Field on
the periodic domain with covariance operator (—A+97)~2 as mentioned in Sectlonl 7l We do this by
generating samples in Fourier space: for each non-zero mode k, we draw an independent complex
coefficient from a Gaussian distribution with mean 0 and variance (47| k||3 + 9)~2, enforce a
Hermitian symmetry to obtain a real-valued field, set the DC mode to 0 to ensure zero mean for
Poisson, and apply inverse Discrete Fourier Transform to obtain the field in physical space. For
each sample, we compute reference solutions with a least squares solver and treat them as ground
truth.

This data is used to trained our DeepONet models and LSTM routers. All the models were imple-
mented using PyTorch and all the models were trained on an Nvidia A40 GPU.

Table |3| contains all hyperparameter details for the DeepONet. DeepONet took 30 minutes to train.
We then use the model with the best validation loss.

The routers are LSTM models trained with scheduled sampling. We use a warm-up of e,, epochs
with teacher-forcing probability p;s(e) = sSsar. After the warm-up, the p,; decays geomterically
by a factor of ;¢ < 1 per epoch and is floored by seng:

pur(e) = SSstart e< ey
tf - e—eqy
max(ssstart Vs s SSend) € > €w

At each time step, with probability p, s (e), we feed the teacher-forced greedy iterate; otherwise, we
feed the router’s own predicted iterate.

Since LSTMs on long rollouts can suffer from exploding/vanishing gradients, we use truncated
backpropagation through time (TBPTT) (Mozer, 2013; Robinson & Fallside, |1987; [Werbos, |1988)):
the forward pass unrolls the entire trajectory, but gradients are propagated only through the most
recent wbpn(e) steps at epoch e. Hidden states are passed forward between segments, while earlier
segments are treated as stop-gradient.
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| Hyperparameter | Value |
Learning rate le-3
Branch Dimension 64
Hidden dimension for branch net 128
No. of hidden layers in branch net 2
Hidden dimension for trunk net 128
No. of hidden layers in trunk net 2
Gradient Clipping Norm 1.0
Weight Decay 0.005
Batch size 128
Training samples 15000
Validation samples 3000
Epochs 100

Table 3: Hyperparameter settings for DeepONet

| Hyperparameter | Value |
Learning rate le-3
Branch Dimension 64
Hidden dimension 64
No. of hidden layers 3
Gradient Clipping Norm 1.0
Weight Decay 0.005
Batch size 32
Training samples 64
Validation samples 32
Epochs 100
SSstart 1.0
Vi g 0.95
SSend 0.0
Wstart 0.1Thax
“optt 1.25
ew 10
f bptt 4

Table 4: Hyperparameter settings for routers

We employ a curriculum learning approach analogous to scheduled sampling. Let T},,x be the
horizon (300 for Jacobi/GS and 100 for MG). With a warm-up of e, epochs,

Wstart e < ey

= o 12
wbptl(e) min (Tma)u wslaﬂ’Yb[pttfbp“ J) e> Cw ( )

so the window grows geometrically by a factor of y,p > 1 every fupe epochs and is capped at the
full trajectory length.

Table [] contains all hyperparameter details for the LSTM routers. The routers took a maximum
of 4 hours and 30 minutes to train. We then use the model with the best validation loss for testing.
Data-related details in Table[dapply to all of our trained routers except the routers for the experiment
with increasing K which were trained with 1024 training samples and 128 validations samples to
encourage the model to learn some of the nuanced differences between the classes.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 CONVERGENCE HISTORIES

See Figure
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Error Comparison of Different Routing Strategies

Jacobi [

1/
/ %

—— Solver Only
0 s0 100 150 200 250 300 0 S0 100 150 200 250 300 o 20 4 60 8 100 HINTS
Kerations terations Veycles
Jacobi G MG —— Greedy

/
/
7
4

0 s 100 150 200 250 300 0 s w00 130 200 250 30 o 20 @ s @ 100
Rerations Rerations.

Figure 2: Convergence histories for representative test instances. Rows: 1D Poisson (top) and 2D
Helmholtz (bottom). Columns: Jacobi, Gauss—Seidel (GS), and multigrid (MG). Greedy yields
near-monotone decay and the lowest errors, whereas HINTS shows sawtooth behaviors.

Equation | 1D Poisson | 2D Poisson | 1D Helmholtz | 2D Helmbholtz
Methods | |£el” ] AUC [z ] AUC TR AUC IR AUC
Jacobi-related Solvers
Jacobi Only | 7.775 (4.237) | 5156.608 (2729.501) | 2.842(1.124) | 4979.462 (1570.207) 8.89 (4.62) 5977.502 (3061.518) | 2.653 (1.049) | 4885.359 (1536.61)
HINTS-Jacobi | 4.871 (1.526) | 2511.313 (1113.55) | 94.061 (0.431) | 6194.836 (480.136) | 23.035 (12.824) | 6860.808 (3824.142) | 24.066 (0.258) | 5486.311 (1491.338)
Greedy-Jacobi | 5.684 (4.186) | 2505.155 (1638.618) 1.225 (0.643) 2097.546 (468.004) | 14.339 (13.896) | 5967.264 (5235.896) | 2.653 (1.049) | 4885.359 (1536.61)
GS-related Solvers

GS Only 2.001 (1.091) | 3272.362 (1741.517) 0.202 (0.08) 2686.598 (858.228) 2.209 (1.15) 3767.204 (1933.993) [ 0.176 (0.07) 2625.785 (836.048)
HINTS-GS | 2.749 (0.001) | 904.028 (394.014) | 115.382(0.001) | 4945.064 (339.648) 5.727 (3.043) 1193.716 (487.82) 23.431(0.02) | 3181.072(817.491)
Greedy-GS | 0.012 (0.007) 170.604 (57.765) 0.027 (0.008) 998.784 (193.159) 0.035 (0.015) 250.746 (89.774) 0.176 (0.07) 2625.785 (836.048)
MGe-related Solvers

MG Only 1.961 (0.541) | 819.828 (292.076) 0.093 (0.022) 460.981 (I11.146) 2.017 (0.529) 899.308 (313.69) 0.081 (0.02) 448.77 (108.006)
HINTS-MG 0.138 354.601 (149.921) 3.246 1414.353 (73.994) 0.49 (0.196) 451.287 (178.914) 0.653 (0.052) 640.516 (101.671)
Greedy-MG | 0.019 (0.012) 61.195 (17.887) 0.022 (0.005) 284.36 (51.462) 0.053 (0.022) 99.709 (37.971) 0.081 (0.02) 448.77 (108.006)

Table 5: Final residual and AUC of squared L? residual (lower is better). Values are mean (&
standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in x 1073, If a standard
error is not shown, it is < 1072 in the reported units (raw < 10~%). Bold indicates the best method
within each solver family.

E.2 RESIDUAL COMPARISON

Table [5] summarizes the performance of single-solver schedules, HINTS, and greedy with respect

to the final residuals r;lT) = |Ifn — ‘,?LugLT)H or ||£Ze§1T)H and its AUC AUCr = Zthl Hr,(f)H% .
Greedy outperforms its HINTS and single-solver counterparts in most equations. We must note that
our greedy router is trained to reduce error, not residual. The same error can induce very different
residuals depending on the spectrum L. Table [6]exhibits how residuals are affected by the number
of solvers in the solver ensemble. Similar to error, we observe both the final residual and AUC

decrease as the number of solvers increase.

Equation 1D Poisson 1D Helmholtz
#of Solvers | [|£2e(”)| AUC el AUC
2 0.121 (0.055) | 473.906 (158.205) | 0.321 (0.113) | 679.886 (252.811)
3 0.078 (0.042) | 360.389 (119.802) | 0.21 (0.08) | 530.239 (195.882)
4 0.067 (0.038) | 328.62(109.061) | 0.181 (0.072) | 490.084 (183.068)
5 0.061 (0.035) | 319.509 (105.729) | 0.166 (0.067) | 470.193 (176.504)
6 0.045 (0.027) | 288.867 (96.794) | 0.165 (0.067) | 487.057 (192.411)

Table 6: Final residual and AUC of squared L? residual for varying numbers of solvers. Values are
mean (& standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in x1073.
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Equation | 1D Poisson T 2D Poisson
Methods/ Mode | Mode 1 Error | Mode I AUC__| Mode 5 Error | Mode 5 AUC | Mode 10 Error | Mode 10 AUC | Mode I Error | _Mode T AUC__| Mode 5 Error | Mode 5 AUC | Mode 10 Eror | Mode 10 AUC
Tacobi-related Solvers
Tacobi Only | T.124 (0.612) | 732713 (399.296) B 0.076 (0.043) 0.001 0.03 (0.014) | 382.094 (183.783) - 0.012 (0.006) - -
HINTS-Jacobi | 0.059 (0.024) | 128.076 (64.871) | 0.001 (0.001) | 0.348 (0.121) 0.041(0.021) | 0296 (0.003) | 227.594 (78.715) ‘ 0.003 0.169 (0.055) 0.001 0.03 (0.009)
Greedy-Jacobi_| 0.006 (0.004) | 4.152 (2.593) 0.192(0.094) 0.025 (0.016) | 0.009 (0.004) | 114.046 (54.747) 0.105 (0.057) 0.014 (0.008)
GS-refated Solvers
GSOnly | 0285 (0.155) | 458.834 (250.064) 0223 (0.136) 0.096 (0.072) - 196,347 (94.367) - 0.014(0.007) 0.001
HINTS-GS 0017 100.582 (52.598) 0.001 0.176 (0.049) 0.049 (0.028) 0258 168.877 (59.252) 0.003 0.162 (0.032) 0.001 0.052 (0.006)
Greedy-GS | 0.002(0.001) |  2.661 (1.595) - 0.12 (0.058) 0.026 (0.015) - 62.858 (30.237) - 009 (0.044) - 0014 (0.007)
Multigrid methods
MG Only | 0.282 (0.078) | 116.885 (42.581) 0.043 (0022) 0.013 (0.007) 0.001 25497 (11.766) 0.003 (0.001) -
HINTS-MG 0014 43.405 (20.908) 0.027 (0.006) 0.009 (0.003) 0078 31.289 (10.201) 0.035 (0.004) 001 (0.001)
Greedy-MG | 0.003(0.002) | 0999 (0.622) 0029 (0.013) 0.008 (0.005) - 13.358 (6.045) 0.031 (0.016) 0.007 (0.004)

Table 7: Final error and AUC of squared L? error for Mode 1, 5, and 10 (lower is better) for 1D/2D
Poisson. Values are mean (&4 standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in x 1073, If a standard error is not shown, it is < 1072 in the reported units (raw < 10~5).
Bold indicates the best method within each solver family.

Equation | TD Helmholtz T 2D Helmholtz
Methods/ Mode | Mode 1 Error | _Mode I AUC | Mode 5 Error | Mode 5 AUC | Mode 10 Error | Mode 10 AUC | Mode I Error | _Mode T AUC__| Mode 5 Eiror | Mode 5 AUC | Mode 10 Error | Mode 10 AUC
Tacobi-related Solvers
Tacobi Only | 1.253 (0.651) | 835.102 (434.018) - 0.078 (0.043) - 0.001 0.028 (0.013) | 372.63 (179.23) - 0.012 (0.006) - -
HINTS-Jacobi | 0.099 (0.047) | 140.399 (63.534) | 0.004 (0.002) | 0.576(0.2) | 0.001 (0.001) | 0.088 (0.044) | 0.493 (0.025) | 427.437 (170.326) 0.007 0.19 (0.006) 0.002 0.026
Greedy-Jacobi_| 0.023 (0.027) | 15.089 (13.203) 0577 (0.635) - 0.078 (0.057) | 0.028 (0.013) | 372.63 (179.23) 0.012 (0.006) -
GS-related Solvers
GSOnly [ 0307 (0.159) | 519.339 (269.921) B 0.242 (0.146) - 0.105 (0.078) B T91.408 (91.996) 0.014 (0.007) 0.001
HINTS-GS ‘ 0.07 (0.028) ‘ 127.525 (59.386) | 0.003 (0.002) | 0.296 (0.09) | 0.001 (0.001) | 0.105 (0.052) 0309 ‘ 233.092 (88.614) ‘ 0.007 0.191 (0.007) 0.002 ‘ 0.024
Greedy-GS | 0.004 (0.002) |  7.034 (3.179) - 0.179 (0.1) - 0.058 (0.036) - 191.408 (91.996) - 0.014 (0.007) - 0.001
Multigrid methods
MG Only ‘ 0.283 (0.074) ‘ 125,54 (@44.397) ‘ 0.043 (0.022) 0.013 (0.007) 0.001 ‘ 24.863 (11.508) ‘ 0,002 (0.001) ‘ -
HINTS-MG | 0.055(0.022) | 52.357 (23.002) 0.054 (0.02) 0.023 (0.009) | 0.074 (0.001) | 32.657 (11.313) 0051 (0.001) 0.009
Greedy-MG | 0.007 (0.003) | 2.678 (1.159) 0.041 (0.019) 0.016 (0.011) 0.001 24.863 (11.508) 0.002 (0.001) -

Table 8: Final error and AUC of squared L? error for Mode 1, 5, and 10 (lower is better) for 1D/2D
Helmholtz. Values are mean (&= standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in x 1073, If a standard error is not shown, it is < 10~ in the reported units (raw < 10~°).
Bold indicates the best method within each solver family.

Equation 1D Poisson 1D Helmholtz
# of Solvers/ Mode | Mode 1 Error | Mode 1 AUC | Mode 5 Error | Mode 5 AUC | Mode 10 Error | Mode 10 AUC | Mode 1 Error [ Mode 1 AUC | Mode 5 Error | Mode 5 AUC | Mode 10 Error | Mode 10 AUC
2 0.013 (0.008) | 5.549 (3.466) - 0.396 (0.194) - 0.057 (0.035) | 0.035(0.015) [ 15.082 (6.582) - 0.608 (0.352) - 0.115 (0.082)
3 0.01 (0.006) | 5.007 (3.126) 0.293 (0.143) - 0.04 (0.025) | 0.027 (0.012) | 13.577 (5.925) 0.449 (0.26) - 0.082 (0.058)
4 0.009 (0.006) | 4.779 (2.984) - 0.263 (0.128) - 0.036 (0.023) | 0.024 (0.011) | 12.943 (5.648) - 0.399 (0.231) - 0.072 (0.051)
5 0.008 (0.005) | 4.654 (2.906) 0.0 (0.0) 0.257 (0.125) 0.0 (0.0 0.036 (0.023) | 0.022(0.01) | 12.571 (5.486) - 376 (0.217) - 0.068 (0.049)
6 0.006 (0.004) | 4.174 (2.606) - 0212 (0.104) - 0.029 (0.018) | 0.022(0.01) 12.535 (5.47) - 0.355 (0.205) - 0.061 (0.043)

Table 9:

Final error and AUC of squared L? error of Mode 1, 5, and 10 for varying numbers of

solvers. Values are mean (& standard error (s.e.)) over 64 test instances; both mean and s.e. are

reported in x10~

3

26




Under review as a conference paper at ICLR 2026

E.3 FOURIER MODE-WISE ERROR COMPARISON

We assess frequency-resolved performance by projecting the error onto the discrete Fourier basis.
Tables [7] and E] report, for modes 1, 5, and 10, the mode-wise final error and mode-wise AUC,
comparing single-solver baselines, HINTS, and the greedy router. As a result of including a deep
learning model,Greedy consistently achieves the smallest mode-1 error/AUC across equations and
solver families. For modes 5 and 10, single-solver schedules sometimes have an edge, reflecting the
tendency of classical smoothers to damp high-frequency components more aggressively than ML
surrogates (spectral bias). Overall, greedy delivers more uniform convergence across the spectrum:

it routes to whichever solver most decreases the full L? error, and by Parseval’s identity |e§:) |2 =

>om |ﬁ57? — 1,y |2, reductions in the objective correspond to reducing energy across all modes rather
than giving preferential treatment to a subset. Additionally, in Table [0] we observe that all mode-
wise errors/AUCSs reduce with the inclusion of more solvers.

F LLM USAGE

LLMs, specifically ChatGPT and Gemini, supported the writing process in an iterative manner. We
drafted paragraphs and asked the models for feedback on grammar and clarity. We then incorpo-
rated selected suggestions into the writing and repeated this process until we were satisfied with the
writing.

The code developed for the experiments was written by the authors with the help of occasional code
completions. The central components (e.g., the hybrid solver implementation and the greedy-router
training pipelines) were implemented exclusively by the authors.

All substantive intellectual contributions, which include ideas, theorems, and analyses, are our own.
LLMs were occasionally used to verify the correctness of proofs, but all proof strategies originated
from the authors and relevant literature.
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