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ABSTRACT

When solving PDEs, classical numerical solvers are often computationally expen-
sive, while machine learning methods can suffer from spectral bias, failing to cap-
ture high-frequency components. Designing an optimal hybrid iterative solver–
where, at each iteration, a solver is selected from an ensemble of solvers to lever-
age their complementary strengths–poses a challenging combinatorial problem.
While the greedy selection strategy is desirable for its constant-factor approxima-
tion guarantee to the optimal solution, it requires knowledge of the true error at
each step, which is generally unavailable in practice. We address this by proposing
an approximate greedy router that efficiently mimics a greedy approach to solver
selection. Empirical results on the Poisson and Helmholtz equations demonstrate
that our method outperforms single-solver baselines and existing hybrid solver
approaches, such as HINTS, achieving faster and more stable convergence.

1 INTRODUCTION

Natural phenomena and engineered systems are often governed by ordinary and partial differential
equations (PDEs). Solving these equations enables a variety of tasks - predicting the evolution of the
system through simulation (e.g., forecasting weather using the Navier-Stokes equations) (Kalnay,
2003; Bauer et al., 2015; Staniforth & Côté, 1991), addressing control problems (e.g., optimizing
heat shield design for spacecrafts using heat transfer equations) (Anderson, 1989; Tröltzsch, 2010),
and tackling inverse problems based on external measurements (e.g., reconstructing brain activity
from EEG data using electrophysiological models) (Baillet et al., 2001; Grech et al., 2008).

Traditionally, PDEs are solved using finite difference methods (Smith, 1985; LeVeque, 2007), which
discretize the spatial and/or temporal domain and approximate the solution by solving a system of
equations at the discrete grid points. Similarly, finite element methods (Hughes, 2003; Bathe, 2006;
Brenner, 2008) construct a system of equations based on fitted curves for each finite element, and
then rely on numerical linear algebra techniques–such as the Jacobi and Gauss-Seidel method (Saad,
2003)–to compute the solution. Such iterative methods, however, lack generalization across different
initial conditions, boundary conditions, or forcing functions, as even minor changes to any of these
parameters require re-solving the entire system of equations from scratch.

These challenges have motivated the development of neural operators (Kovachki et al., 2023)–a class
of machine learning models that aim to learn the solution operator directly, enabling fast inference
across a range of parameters. Neural operators lift the classical linear layer in neural networks to
a linear operator–typically a kernel integral operator–between infinite-dimensional function spaces.
While the universal approximation theorem of operators (Chen & Chen, 1995) suggests that neural
operators can approximate solution operators with high accuracy, they are prone to spectral bias
(Liu & Cai, 2021; Liu et al., 2024; You et al., 2024; Khodakarami et al., 2025; Xu et al., 2025)–
similar to traditional neural networks (Rahaman et al., 2019; Xu et al., 2019; Luo et al., 2019)–and
favor learning the low-frequency components of the solution function, often struggling to capture
high-frequency features that iterative solvers excel at.

Recognizing this complementarity, Zhang et al. (2024) proposed HINTS, a hybrid solver that inter-
leaves a neural operator pass every τ th iteration (with τ fixed a priori) of a classical solver. While
HINTS reports significant empirical gains in convergence and accuracy over the standalone neural
operator and Jacobi solver, this fixed schedule can be detrimental: a poorly timed neural correction
may increase the error and undo recent progress.
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Although dynamic solver schedules are desirable, identifying the optimal sequence of solvers that
minimizes final error is combinatorial since the search space grows exponentially with the number
of iterations. A practical alternative is the greedy rule that, at each iteration, selects the solver with
the largest immediate error reduction. Such a rule can be near-optimal when the final error satisfies
(weak) supermodularity–so that applying a beneficial solver earlier is at least as valuable as applying
it later. To support this approach, we make the following contributions:

• We present a general hybrid PDE solver in which a routing rule chooses, at each iteration,
from a set of classical solvers and neural operators (not just two). With oracle access
to the true error at every step, we show that a greedy routing rule achieves a constant-
factor approximation to the optimal strategy for linear PDEs, provided the updates are
error-reducing (Lipschitz with constant < 1) and zero-preserving–conditions under which
weak supermodularity holds.

• Given that the true error is not observed at test time, a convex surrogate loss is introduced,
which, when minimized, enables the learned model to imitate the greedy solver without
access to true error information. This alignment is guaranteed through Bayes consistency.

• We empirically demonstrate that our approximate greedy solver outperforms HINTS and
individual solvers in terms of faster, more stable convergence on benchmark PDEs, such as
the Poisson and Helmholtz equations.

2 PROBLEM SETTING AND BACKGROUND

Consider the following linear PDE:

La
x (u) = f, x ∈ D; Bx (u) = b, x ∈ ∂D (1)

where La
x is a differential operator with respect to the spatial variable x ∈ D parameterized by

the coefficient function a, f is a forcing function, u is the solution to the PDE, Bx is the boundary
operator, and b is the boundary term. Such PDEs can be solved numerically using various discretiza-
tion strategies, such as finite differences (Smith, 1985; LeVeque, 2007), finite element, and spectral
methods (Boyd, 2001; Canuto et al., 2006). Here, we focus on finite differences, which replace
derivatives with difference quotients (e.x., ∂xu(x) ≈ (u(x+ h)− u(x))/h) on a uniform grid.

Formally, let h be the grid size and Gh(D) be a uniform grid with spacing h over D. Given a
function g : D → R, we represent its restriction to Gh(D) by gh ∈ RN , where N = |Gh(D)|. If
La
h ∈ RN×N is the discretized operator, the discrete counterpart of Equation (1) is expressed as

La
huh = fh, (2)

with the boundary conditions incorporated in La
h. Thus, the PDE reduces to a linear system of

equations. Unlike much of the neural operator literature, which retains function space formulations
for discretization invariance, we follow the conventions of classical numerical analysis and represent
all functions and operators as finite-dimensional vectors and matrices. Discretization invariance is
not essential here, since we focus on fixed-grid problems.

2.1 ITERATIVE PDE SOLVERS

Direct methods like Gauss Elimination and Thomas Algorithm can be computationally expensive
in high-dimensional domains when solving systems like Equation (2). In contrast, iterative meth-
ods like Jacobi and Gauss-Seidel offer computational speedups by iteratively updating the solution,
gradually converging to the true solution for the PDE. The general iterative update is

u(t+1) = u(t) + C
(
fh − La

hu
(t)
)
, (3)

where u(t) is the tth iterate of the solution and C is a preconditioning matrix. Jacobi uses C = D−1,
where D is the diagonal of La

h, and Gauss-Seidel uses C = (D + L)−1, where L denotes the strict
lower triangular part. However, iterative methods tend to damp low frequency components of the
error slowly. Multigrid solvers (Briggs et al., 2000; Trottenberg et al., 2001; Hackbusch, 2013) tackle
this problem by alternating smoothing on coarse and fine grid resolutions to dampen more uniformly
across frequencies. We defer the reader to Appendix A.1 for more background on Multigrid solvers.
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2.2 NEURAL OPERATORS

Suppose we observe samples {(ai, fi, ui)}Ni=1 such that (ai, fi) ∼ P are i.i.d. samples drawn from
some distribution. Let ui be generated by a deterministic solution operator G∗, i.e., ui = G∗(ai, fi).
A neural operator Gθ seeks to approximate G∗ by minimizing the expected squared L2(D) error
(with respect to the Lebesgue measure): RNO(Gθ) = E(a,f)∼P [lNO(a, f, u,Gθ)], where

lNO(ai, fi, ui,Gθ) =
∫
D

∥ui(x)− Gθ(ai, fi)(x)∥22 dx.

Neural operators often use discretization-invariant layers. Prominent instantiations include Fourier
Neural Operators, which use spectral transforms (Li et al., 2020a), Graph Neural Operators, which
perform graph-based aggregation over sampled points (Li et al., 2020b), and DeepONets, which
employ a trunk–branch decomposition to map input functions to output functions (Lu et al., 2021).

2.3 GREEDY OPTIMIZATION

Consider the problem of maximizing g(S) over S ⊆ Ω with |S| ≤ T where g : 2Ω → R is a set func-
tion defined on subsets of a set Ω. An exhaustive search over all subsets quickly becomes infeasible.
An efficient alternative is the greedy algorithm. It builds the solution subset iteratively by, at each
step, adding the element ω∗ that yields the largest marginal gain, i.e. ω∗ = argmaxω∈Ω\S g(S∪ω),
and updating S ← S ∪ {ω∗}. When g is non-negative, monotone (adding elements never decreases
the value), and submodular (diminishing returns), the greedy algorithm achieves a (1−e−1) approx-
imation to the optimal solution (Nemhauser et al., 1978). Formally, a function g is submodular if
g(A ∪{ω})−g(A) ≥ g(B ∪{ω})−g(B) for all A ⊆ B ⊆ Ω and ω ∈ Ω\B; intuitively, delaying
an addition cannot increase its benefit. For set function minimization problems, supermodularity,
where the inequality flips, plays an analogous role, and the greedy rule achieves constant-factor
approximation guarantees (Liberty & Sviridenko, 2017).

The suboptimality of the greedy algorithm has been extensively studied for both set-function min-
imization (Bounia & Koriche, 2023) and maximization (Das & Kempe, 2018; Feige et al., 2011;
Bian et al., 2017; Harshaw et al., 2019) when standard assumptions–non-negativity, monotonic-
ity, and sub/supermodularity–are weakened. In contrast, results on greedy sequence maximization
(Streeter & Golovin, 2008; Alaei et al., 2021; Zhang et al., 2015; Bernardini et al., 2020; Van Over
et al., 2024; Tschiatschek et al., 2017)–where the ordering of the elements affects the function–have
led to sequential analogues of submodularity and monotonicity. We leverage these tools to analyze
the suboptimality of the greedy solution to minimizing the final error.

3 GENERAL FRAMEWORK FOR HYBRID SOLVERS

To solve Equation (2), consider the following hybrid iterative update:

u
(t+1)
h = u

(t)
h + CSt

(
fh − La

hu
(t)
h

)
(4)

where C = {Cj}Kj=1 denotes a set of K preconditioning functions and St ∈ [K] = {1, . . . ,K}
indexes the function chosen at step t. Here, we use “preconditioning function” broadly to refer to any
update rule, encompassing classical approaches, where Cj(x) = Cjx is a preconditioning matrix,
and learned models, such as neural operators. This update generalizes the form of classical methods,
as seen in Equation (3), by allowing Cj to be non-linear and enabling the preconditioning function
to be adaptively chosen at every step. C can also accommodate parameterized solver families (e.g.,
different Jacobi relaxation weights or multigrid cycle depths), enabling adaptive selection of solver
parameters. As the number of solvers K grows, it raises the likelihood of a substantial immediate
error drop. Furthermore, HINTS (Zhang et al., 2024) is a special case of this hybrid solver with
K = 2, where C1 is a neural operator and C2 is a classical preconditioner. Its routing rule is given
by St = 1t mod τ>0 + 1, which selects C1 every τ steps and C2 otherwise.

Let e(t)h = uh − u
(t)
h denote the error at step t. Then,

e
(t+1)
h = uh − u

(t)
h − CSt

(
La
huh − La

hu
(t)
h

)
= (I − CSt ◦ La

h) (e
(t)
h )

3
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where I is the identity map and I − Cj ◦ La
h is the error propagation function for the jth solver.

Here, “◦” denotes function composition (for linear Cj , this coincides with matrix multiplication).
The objective of the hybrid solver is to select a sequence of solvers that minimize the error norm
after T steps or ∥e(T )

h ∥22. For a sequence S = (S1, . . . , ST ) of solver indices, we seek to solve

min
St∈[K],|S|≤T

h(S) :=
∥∥∥(I − CS|S| ◦ L

a
h

)
◦ · · · ◦ (I − CS1

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(5)

with compositions applied from right to left, so that the S1 update acts on the initial error.

4 GREEDY ALGORITHM

Equation (5) defines a combinatorial optimization problem with a search space exponential in T ,
rendering exact optimization intractable for large T or K. As a starting point, we propose and
analyze an “omniscient” greedy algorithm that assumes access to the true initial error e(0)h . This is
unrealistic–if e(0)h were known, one could recover the solution immediately via uh = u

(0)
h + e

(0)
h ,

but it provides a clean benchmark. In Section 5, we relax this assumption using a practical learning
strategy that is Bayes consistent with this omniscient approach, thereby recovering the suboptimality
guarantees shown below.

As discussed in Section 2.3, when supermodularity and monotonicity hold, the greedy rule–such
as the one described in Algorithm 1–enjoys constant-factor approximation guarantees. However,
classical results focused on set functions, with only recent extensions made to sequences. Building
on this line, we introduce a sequence-based notion of weak supermodularity.

Algorithm 1 Greedy Algorithm for a Hybrid PDE solver

Require: {Cj}Kj=1, T,La
h, e

(0)
h

S0 ← ∅
for t < T do

St+1 ← St ⊕ argminj∈[K] ∥(I − Cj ◦ La
h)(e

(t)
h )∥22

e
(t+1)
h ← (I − CSt+1 ◦ La

h)(e
(t)
h )

end for
return ST

Let Ω∗ denote the space of sequences with elements in Ω. For S = (S1, . . . , Sn) ∈ Ω∗, S′ =
(S′

1, . . . , S
′
m) ∈ Ω∗, we denote their concatenation as S ⊕ S′ = (S1, . . . , Sn, S

′
1, . . . , S

′
m). S is a

prefix of S′ or S ⪯ S′ if S′ = S ⊕ L for some L ∈ Ω∗. A sequence function g : Ω∗ → R is
considered prefix monotonically non-increasing if g(S ⊕S′) ≤ g(S) for all S, S′ ∈ Ω∗, and postfix
monotonically non-increasing if g(S′ ⊕ S) ≤ g(S) for all S, S′ ∈ Ω∗. A prefix non-increasing
function g is sequence supermodular if, for all S′, S ∈ Ω∗ : S ⪯ S′, it holds that

g(S)− g(S ⊕ ω) ≥ g(S′)− g(S′ ⊕ ω), ∀ω ∈ Ω (6)

However, h(S) (described in Equation (5)) may not, in general, satisfy this property. Therefore, we
introduce weak sequence supermodularity. A prefix non-increasing function g is weakly supermod-
ular with respect to S′ ∈ Ω∗ if, for any S ∈ Ω|S′|, there exists α(S′) ≥ 1 such that

g(S)− g(S ⊕ S′) ≤ α(S′)
∑

i∈[|S′|]

g(S)− g(S ⊕ S′
i) (7)

The parameter α(S′) or the supermodularity ratio quantifies deviation from exact sequence super-
modularity. Expanding the g(S)− g(S ⊕S′) as a telescoping sum

∑|S′|
i=1 g(S ⊕

(
S′
1, . . . , S

′
i−1

)
)−

g(S ⊕ (S′
1, . . . , S

′
i)) shows that the marginal decrease from appending S′

i after its predecessors is
controlled by the effect of appending S′

i directly to S. Thus, postponing the inclusion of S′
i cannot

yield a significantly larger benefit compared to adding it earlier. The supermodularity ratio α(S)
quantifies the extent to which future gains from delays may exceed immediate gains.

Having introduced these notions, we now characterize the suboptimality of greedy solutions of
weakly supermodular and postfix monotonic sequence functions in Theorem 4.1.

4
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Theorem 4.1. Let g : Ω∗ → R be a weakly supermodular function with respect to the optimal
solution O = argminS∈ΩT h(S) with a supermodularity ratio of α(O) and postfix monotonicity.
Let the greedy solution of length T be ST . If ϕT (α) =

(
1− 1

αT

)T
, then

g(ST ) ≤ (1− ϕT (α(O))) g(O) + ϕT (α(O))g(∅)

The proof of Theorem 4.1 appears in Appendix B.2. As T → ∞, the factor 1 − ϕT (α(O)) de-
creases to 1 − e−1/α(O), so the worst-case performance of the greedy rule saturates with horizon
rather than degrading indefinitely. Additionally, larger α(O), which indicates higher reward for
delayed inclusions, loosens the suboptimality bound. Theorem 4.1 requires that the sequence objec-
tive h be weakly supermodular with respect to the optimal solution and postfix monotone–properties
established in Proposition 4.2. We defer the proof to Appendix B.3.
Proposition 4.2. Suppose that for all j ∈ [K], the error propagation function I − Cj ◦ La

h is ρj-
Lipschitz continuous with ρj < 1, and that (I−Cj ◦La

h)(0N ) = 0N . Then, the function h is weakly
supermodular with respect to the optimal solution O, with

α(O) = max

{
4

T −
∑T

i=1 ρ
2
Oi

, 1

}
Furthermore, if I − Cj ◦ La

h is invertible for all j ∈ [K], h is also postfix non-increasing.

The conditions of Proposition 4.2 are quite natural. For classical solvers, the Lipschitz constant is
∥IN − CjLa

h∥, which is usually less than 1 for well-posed linear elliptic PDEs (i.e., the update is
damping errors). For neural networks, Lipschitz continuity can be enforced via weight regularization
(Gouk et al., 2021) and a sufficiently trained model should approximate (La

h)
−1 well enough to make

the Lipschitz constant small. The requirement (I−Cj◦La
h)(0N ) = 0N is both natural and desirable:

it precludes spurious updates when the residual fh − La
hu

(t)
h is 0. This holds by design for classical

schemes, and it can be enforced for any learned model by excluding bias terms.

The form of α(O) in Proposition 4.2 highlights that the suboptimality factor in Theorem 4.1 is
governed by the collective contraction factors of the solvers chosen by the optimal solution: as∑T

i=1 ρ
2
Oi
→ T , α(O) grows, resulting in a weaker bound. Invertibility of the error propagation

functions is often satisfied with Jacobi and Gauss-Seidel updates. However, widely-used solvers
like two-grid corrections and neural networks with dimension changes or ReLU activations may
yield non-invertible error propagation functions. Nevertheless, our experiments show that greedy
routers remain effective even when invertibility is not met.

Theorem 4.1 thus indicates that the approximation guarantee is strongest when the sequence is nearly
supermodular (α(O) ≈ 1). Generally, if all error propagation maps share an eigenbasis, supermod-
ularity is established. This occurs, for example, for linear, constant-coefficient PDEs with periodic
boundary conditions where the solver ensemble includes Jacobi, Gauss-Seidel, and a single-layer
linear Fourier Neural Operator. The proof of Proposition 4.3 is deferred to Appendix B.5.
Proposition 4.3. Let ∥IN − CjLa

h∥ ≤ 1 for all j ∈ [K] and (I − CjLa
h) = PΛjP

−1. Then, h is
supermodular.

5 APPROXIMATE GREEDY ROUTER

The results in Section 4 indicate that the error reduction from the greedy solution closely matches
that of the optimal sequence, but this is predicated on having an accurate estimate of the initial error,
e
(0)
h . A poor approximation of e(0)h can result in miscalibrated decisions, causing errors to amplify

over subsequent steps. To remedy this, we design a router r that learns to select solvers myopically,
as described in Algorithm 1, without access to the true initial error.

We adopt the following learning setup. Let A,F ,U ⊆ RN denote the spaces of coefficient, forcing,
and solution functions on the grid Gh(D). We assume an application-specific data distribution
PA×F overA×F that reflects test time conditions. During training, (ah, fh) is drawn from PA×F ,
and a high-accuracy reference solution uh is computed, providing the true per-step error. The router
r is learned offline on this data; at test time, it operates without access to true errors.

5
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At each time step t, r selects a solver using the coefficient a ∈ A, forcing f ∈ F , and the current
iterate u(t) ∈ U . If r(ah, fh, u

(t)
h ) = j, the next iterate is computed with solver j, resulting in an

error of ∥(I − Cj ◦ La
h)(e

(t)
h )∥22. Learning such a router requires minimizing the following loss:

lroute

(
r, ah, fh, u

(t)
h , uh

)
=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h )=j

(8)

The corresponding lroute-risk is defined as Rroute (r) = Eah,fh∼PA×F [lroute(r, ah, fh, u
(t)
h , uh)]. For

analysis, we fix the iterate generation via a teacher-forcing (Williams & Zipser, 1989; Lamb et al.,
2016): during training, the iterates fed to the router are produced by an oracle greedy rollout, not by
the router’s own past choices. Formally, with u

(0)
h = 0N , for t ≥ 1,

j∗t ∈ argminj∈[K]

∥∥∥(I − Cj ◦ La
h)
(
e
(t−1)
h

)∥∥∥2
2
, u

(t)
h = u

(t−1)
h + Cj∗t

(
fh − La

hu
(t−1)
h

)
Thus, {u(t)

h } is a deterministic function of (ah, fh). At each t, lroute is evaluated on r(ah, fh, u
(t)
h )

which takes in the teacher-forced iterate. Finally, the greedy choice j∗t+1 is used to advance u
(t+1)
h .

Thus the input distribution seen by r depends on (ah, fh), not on the router’s predictions. However,
full teacher forcing induces a distributional mismatch at test time (exposure bias). In experiments,
we mitigate this with scheduled sampling (Bengio et al., 2015); see Appendix D for details.

MinimizingRroute (r) yields the following Bayes-Optimal Router:

r∗(ah, fh, u
(t)
h ) ∈ argminj∈[K]

∥∥∥(I − Cj ◦ La
h)
(
e
(t)
h

)∥∥∥2
2

(9)

which aligns with the decision rule in Algorithm 1. Hence, lroute is consistent with learning the
greedy algorithm.

5.1 SURROGATE LOSS

Since Equation (8) is discontinuous and non-convex, direct minimization is intractable in practice.
To overcome this, we introduce a surrogate loss that satisfies three key properties: (1) convexity,
enabling efficient optimization; (2) serving as an upper bound on the original loss; and (3) Bayes
consistency, ensuring the Bayes optimal decision of the original loss is preserved upon minimization.
Formally, a surrogate ϕ is considered to be Bayes consistent with respect to the loss l if

lim
n→∞

Rϕ(fn)−R∗
ϕ =⇒ lim

n→∞
Rl(fn)−R∗

l

where Rl(f) = E [l(f(X), Y )] and R∗
l = inff Rl(f). In other words, in the limit of infinite data,

if the risk of a sequence of learned hypotheses {fn} converges to the optimal risk under ϕ, it also
converges to the optimal risk with respect to the original loss l.

To define a surrogate loss for the routing problem, consider a set of scoring functions g = {gj}Kj=1

with gj : A × F × U → R and we define the router as r(a, f, u(t)) = argmaxj∈[K]gj(a, f, u
(t)).

For example, g can be a neural network with K outputs. Then, minimizing the following surrogate
loss yields the same decision as minimizing Equation (8):

Ψ
(
g, ah, fh, u

(t)
h , uh

)
= −

K∑
j=1

K∑
k=1

c̃k(ah, u
(t)
h , uh)1k ̸=j log

(
exp

(
gj(a, f, u

(t))
)∑K

m=1 exp
(
gm(a, f, u(t))

))
(10)

where c̃j(ah, u
(t)
h , uh) = ∥(I − Cj ◦ La

h)(uh − u
(t)
h )∥22. The Ψ-risk is denoted by RΨ(g) =

Eah,fh∼PA×F [Ψ(g, ah, fh, u
(t)
h , uh)]. The convexity of Ψ with respect to g follows from the con-

vexity of log-softmax function in its inputs. Moreover, Ψ upper bounds lroute up to a constant factor,
and we refer the reader to Appendix C.2 for the proof. Finally, Theorem 5.1 shows that Ψ achieves
Bayes consistency with respect to lroute; the proof can be found in Appendix C.3.

Theorem 5.1. Let c̃j(ah, u
(t)
h , uh) < Ē < ∞ for all j ∈ [K]. If there exists j ∈ [K] such

that c̃j(ah, u
(t)
h , uh) > Emin > 0, then, for any collection of solvers {Cj}Kj=1 and linear discrete

operator La
h, Ψ is Bayes consistent surrogate for lroute.

6
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Theorem 5.1 is a cost-sensitive analogue of the classical Bayes-consistency of multiclass cross-
entropy for 0-1 loss: in the infinite-sample limit, minimizing cross-entropy recovers the true con-
ditional class probabilities, so the induced decision is Bayes optimal. Our result extends this to
cross-entropy with instance-dependent weights

∑K
k ̸=j c̃k(ah, u

(t)
h , uh). The uniform upper bound

holds when all preconditioning functions are error-damping. It is also reasonable to assume at least
one solver cannot annihilate the error in one step, yielding the lower bound. Under these condi-
tions, minimizing Ψ recovers the Bayes-optimal router of Equation (9), i.e., the greedy solution of
Equation (5). Following the work of Mao et al. (2024), the proof uses standard conditional-risk
calibration: we relate the excess risks of lroute and Ψ and take the infinite-sample limit.

6 RELATED WORKS

Hybrid PDE Solvers: Early data-driven solvers sought convergence guarantees by predicting
parameters–e.g., preconditioning matrices C, multi-grid smoothers or restriction matrices–within
iterative schemes (Taghibakhshi et al., 2021; Caldana et al., 2024; Kopaničáková & Karniadakis,
2025; Huang et al., 2022; Katrutsa et al., 2020). These works, however, do not leverage the neural
surrogates’ ability to generalize across varying coefficients and/or forcings highlighted in Section 2.2
and thus, offer only modest speedups over classical solvers. HINTS (Zhang et al., 2024) introduced
hybrid solvers that interleave a classical method with a pre-trained DeepONet on a fixed schedule
(e.g., 24 Jacobi steps, then one DeepONet correction). Despite this rigidity, HINTS reports sig-
nificantly faster convergence than the standalone numerical solver. Kahana et al. (2023) adapted
HINTS to geometries distinct from, but related to, those used to train the neural operator. Both Hu
& Jin (2025) and Cui et al. (2022) characterized the dampening of error modes over iterates, with
the former replacing the DeepONet of HINTS with an MIONet (Jin et al., 2022) and the latter a
Fourier Neural Operator (Li et al., 2020a). Critically, these hybrid solvers are limited in two ways:
they, firstly, only complement the trained surrogate with a single numerical solver, and secondly
interleave the numerical and neural solvers with a fixed, heuristic schedule. These were the pri-
mary shortcomings that we addressed in our proposed method, which result in significant empirical
improvements, as we demonstrate in Section 7.

Model Routing: Routing (Shnitzer et al., 2023; Hu et al., 2024; Ding et al., 2024; Huang et al.,
2025) seeks to find, for each input, a model from a fixed set that optimizes a task metric under cost
or latency constraints. Simple heuristics–e.g., thresholding a cheap model’s uncertainty estimates
(Chuang et al., 2024; 2025)–often poorly balance the cost-accuracy tradeoff. Consequently, many
systems learn a router network, which maps a query to the model index expected to perform best
(Hari & Thomson, 2023; Mohammadshahi et al., 2024; Šakota et al., 2024). Abstractly, our method
also learns a router, but over numerical and neural solvers for PDEs at the iteration level. Our work
is the first to demonstrate that routing is applicable to the problem of learning hybrid PDE solvers,
differing from prior hybrid solver works, which simply fixed the “router” to a predetermined sched-
ule. We additionally exploit the algebraic structure of PDE solvers to derive theoretical guarantees
for our routing strategy in Section 4, unlike typical model-routing settings.

Mixture of Experts: Classical mixture-of-experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs,
1994) uses a gating network to assign soft or hard weights to a set of experts and produce a weighted
combination of their outputs, with the gate and experts trained jointly. In modern LLM systems,
MoE instead performs sparse, token-level routing to a small subset of in-layer experts, enabling
large model capacity without proportional compute, typically with load-balancing and capacity con-
straints (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Jiang et al., 2024). Our
method can be regarded as gating network of a different kind where our “experts” or solvers are not
trained jointly with the router and single router is reused across the iteration horizon, in contrast to
MoE which commonly employs layer-specific gates.

7 EXPERIMENTS

In this section, we empirically demonstrate the fast, uniform convergence of the approximate greedy
router on Poisson and Helmholtz equations posed on the unit domain D = [0, 1]d with d ∈ {1, 2} .
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Equation 1D Poisson 2D Poisson 1D Helmholtz 2D Helmholtz
Methods ∥e(T )

h ∥ AUC ∥e(T )
h ∥ AUC ∥e(T )

h ∥ AUC ∥e(T )
h ∥ AUC

Jacobi-related Solvers
Jacobi Only 0.19 (0.1) 128.66 (69.98) 0.07 (0.03) 115.5 (42.96) 0.22 (0.11) 146.57 (76.11) 0.066 (0.03) 110.485 (41)

HINTS-Jacobi 0.01 22.71 (11.36) 0.18 65.75 (8.61) 0.048 (0.02) 29.36 (13.21) 0.11 (0.03) 115.84 (41.36)
Greedy-Jacobi 0.001 1.12 (0.44) 0.01 18.48 (4.06) 0.025 (0.03) 8.105 (8.22) 0.066 (0.03) 110.485 (41)

GS-related Solvers
GS Only 0.05 (0.03) 80.55 (43.83) 0.005 61.67 (23.02) 0.054 (0.03) 91.153 (47.35) 0.005 (0.002) 58.801 (21.892)

HINTS-GS 0.003 17.8 (9.21) 0.174 56.63 (7.75) 0.041 (0.01) 26.638 (11.59) 0.056 (0.003) 64.445 (21.986)
Greedy-GS < 10−3 0.674 (0.27) 0.001 9.9 (2.26) 0.015 (0.01) 5.157 (3.96) 0.005 (0.002) 58.801 (21.892)

MG-related Solvers
MG Only 0.05 (0.01) 20.51 (7.46) 0.002 10.97 (3.03) 0.05 (0.01) 22.042 (7.8) 0.011 (0.009) 10.745 (3.094)

HINTS-MG 0.002 7.64 (3.66) 0.079 15.02 (2.03) 0.023 (0.01) 9.872 (4.32) 0.026 (0.008) 11.763 (2.976)
Greedy-MG < 10−3 0.24 (0.1) 0.001 2.58 (0.54) 0.016 (0.01) 1.784 (1.32) 0.011 (0.009) 10.745 (3.094)

Table 1: Final error and AUC of squared L2 error (lower is better). Values are mean (± standard
error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3. If a standard error is
not shown, it is < 10−3 in the reported units (raw < 10−6). Bold indicates the best method within
each solver family.

For Poisson, we use the constant-coefficient model

−∆u(x) = f(x), x ∈ D

and for Helmholtz, we adopt the sign convention

−∆u(x)− a2(x)u(x) = f(x), x ∈ D

where a2(x) ≥ 0. We impose periodic boundary conditions for both equations: for Poisson, the
right-hand side is centered to satisfy the compatibility condition

∫
D
f(x)dx = 0. The domain D is

discretized on uniform grids with 65 points in 1D and a 33× 33 grid in 2D. Data is sampled from a
zero-mean Gaussian Random Field on the periodic domain with covariance operator (−∆+9I)−2.
We run two experiments: (i) compare our greedy method to HINTS and single-solver baselines,
and (ii) assess how performance scales as the solver ensemble grows. For both experiments, the
performance across 64 test samples is reported via the mean final error ∥e(T )

h ∥2 and the mean area
under the curve (AUC), where AUC =

∑T
t=1 ∥e

(t)
h ∥2. While the final errors is of utmost importance,

AUC captures performance over the entire run–smaller values indicate lower error at all intermediate
steps–and naturally penalizes non-monotone spikes that undo progress.

Comparing Greedy with HINTS: For this experiment, we consider Jacobi, Gauss-Seidel (GS),
and multigrid (MG) solvers along with a DeepONet model. As baselines, we use single-solver
schedules (Jacobi only, GS only, and MG only) as well as HINTS variants with each classical
solver (HINTS-Jacobi, HINTS-GS, HINTS-MG), where the DeepONet correction is interleaved
every 24 Jacobi/GS iteration or every 14 MG V-cycles. We then train LSTM-based routers using the
loss in Equation (10) under three different solver-access sets: Jacobi+DeepONet (Greedy-Jacobi),
GS+DeepONet (Greedy-GS), and MG+DeepONet (Greedy-MG). We use an LSTM because solver
routing is sequential and the benefit of a greedy step depends on the trajectory of errors and past
choices. LSTMs have historically performed well on sequence data owing to their recurrent mem-
ory. Training details of the DeepONet and the routers can be found in Appendix D.

We note that comparisons are restricted to methods with the same solver access. For example,
Greedy-Jacobi and HINTS-GS are not comparable because the former lacks access to GS. Accord-
ingly, we partition results by solver family (Jacobi-related, GS-related, and MG-related). Each
method is run for 300 iterations (Jacobi/GS) or 100 V-cycles (MG).

As shown in Table 1, across all solver families, the greedy router achieves the lowest final error
and lowest mean AUC: Greedy-Jacobi, Greedy-GS, and Greedy-MG outperform both their single-
solver and HINTS counterparts. While HINTS improves over single-solver schedules, it exhibits
sawtooth error traces (See Figure 1) as HINTS often invokes the DeepONet when it is suboptimal.
By contrast, the greedy routers only routes to solvers that yield an immediate error drop, which
translates into the reported AUC gains and near-monotone error decay. Notably, the greedy solutions
for 2D Helmholtz largely follow the corresponding classical solver alone. This indicates that the
learned neural correction frequently fails to reduce the error and is therefore skipped by the greedy
rule. HINTS, however, continues to call the neural operator at a fixed interval even when it increases
the error, which explains its substantially worse AUC and final error on 2D Helmholtz.
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Figure 1: Convergence histories for representative test instances. Rows: 2D Poisson (top) and 1D
Helmholtz (bottom). Columns: Jacobi, Gauss–Seidel (GS), and multigrid (MG). Greedy yields near-
monotone decay and the lowest errors, whereas HINTS shows sawtooth behaviors. Convergence
histories for 1D Poisson and 2D Helmholtz to Appendix E

Equation 1D Poisson 1D Helmholtz
# of Solvers ∥e(T )

h ∥ AUC ∥e(T )
h ∥ AUC

2 0.002 (0.001) 1.717 (0.643) 0.018 (0.013) 6.665 (3.81)
3 0.002 (0.001) 1.434 (0.554) 0.017 (0.014) 6.31 (3.852)
4 0.002 (0.001) 1.337 (0.523) 0.017 (0.014) 6.182 (3.868)
5 0.001 (0.001) 1.293 (0.508) 0.017 (0.014) 6.113 (3.878)
6 0.001 (0.001) 1.121 (0.449) 0.017 (0.014) 6.098 (3.88)

Table 2: Final error and AUC of squared L2 error for varying numbers of solvers. Values are mean
(± standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3.

Size of solver ensembles: We also study how the size of the solver ensemble affects final error
and AUC. Each router is trained with an ensemble that always includes a DeepONet and a subset of
weighted Jacobi solvers with relaxation parameters ω ∈ {0.5, 0.67, 0.75, 0.8, 1}. We grow the solver
set cumulatively, starting from the smallest ω and adding larger ones. In Table 2, the AUC decreases
as the size of the solver set increases for both 1D Poisson and 1D Helmholtz (300 iterations), but
with diminishing returns.

Additional experiments are provided in Appendix E.

8 DISCUSSION

We have introduced an adaptive method for selecting solvers that efficiently minimize the final
error when solving a PDE iteratively. This opens several directions for future work. Our current
DeepONet is trained in isolation, without accounting for its downstream role as a correction term
predictor. Jointly training the ML solver and the router could yield larger gains. Another avenue is
to employ reinforcement learning to learn a cost-aware routing strategy that optimizes the terminal
error under compute budgets. When the deployment conditions are unknown or volatile, our offline
training procedure suffers and a fixed schedule like HINTS can perform better, however, framing
routing as an online learning problem enables continual adaptation. Finally, it would be interesting
to extend this routing scheme to broader optimization settings in which the router selects from a
suite of optimizers at each iteration.
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REPRODUCIBILITY STATEMENT

The implementation of our hybrid PDE solver with learned greedy routing is provided in the source
code submitted as supplemental materials. It includes scripts to reproduce all tables and figures in
Section 7 and Appendix E, along with a README file that documents dependencies and commands
for training routers and instructions for regenerating results. Data is generated on the fly using fixed
seeds (specified in the code) to ensure exact reproducibility. Formal proofs of all theorems and
propositions appear in Appendices B and C.
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Andrew Staniforth and Jean Côté. Semi-lagrangian integration schemes for atmospheric models—a
review. Monthly weather review, 119(9):2206–2223, 1991.

Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions.
Advances in Neural Information Processing Systems, 21, 2008.

Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West. Optimization-based algebraic
multigrid coarsening using reinforcement learning. Advances in neural information processing
systems, 34:12129–12140, 2021.
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A BACKGROUND

A.1 MULTIGRID

Let Ah, A2h represent the coefficient matrix on a fine grid with discretization parameter h and 2h,
uh and fh represent the PDE solution and constant vector on a grid discretized by h, R2h

h denote the
restriction matrix which transfers vectors from a fine grid to a coarse one, and Ih2h is the interpolation
matrix transfers vectors from a coarse grid to a fine one. In a 2-grid method, a few iterations of the
smoother (e.x. Jacobi or Gauss-Seidel) are first applied on the fine grid to approximate the solution
of Ahuh = fh. The residual is then computed as rh = fh − Ahuh and restricted to the coarse grid
via r2h = R2h

h rh. The error equation, A2he2h = r2h, is solved on the coarse grid. The resulting
estimate of the error is interpolated in the fine grid by eh = Ih2he2h, and the fine grid solution is
updated by adding this correction, uh = uh+ eh. Finally, additional smoothing steps are performed
on the fine grid to further reduce any high frequency errors. The preconditioning matrix for two-
grid solver is C2G = Ih2hA

−1
2hR

2h
h . More complex strategies for multigrid like V-cycle and W-cycle

compute error corrections recursively across multiple grids of varying coarseness

B PROOFS FOR SECTION 4

B.1 PROOF OF PROPOSITION B.1

Proposition B.1. Any prefix monotonically non-increasing sequence supermodular function g is
weakly supermodular with respect to all sequences S ∈ Ω∗ with α(S) = 1

Proof. This proof is adapted from Liberty & Sviridenko (2017).

If g is sequence supermodular then,

g(S)− g(S ⊕ S′)

=

|S′|∑
i=1

g(S ⊕
(
S′
1, . . . , S

′
i−1

)
)− g(S ⊕ (S′

1, . . . , S
′
i))

(a)

≤
|S′|∑
i=1

g(S)− g(S ⊕ S′
i)

≤ |S′| max
i∈[|S′|]

g(S)− g(S ⊕ S′
i)

(a) by supermodularity
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B.2 PROOF OF THEOREM 4.1

Theorem 4.1. Let g : Ω∗ → R be a weakly supermodular function with respect to the optimal
solution O = argminS∈ΩT h(S) with a supermodularity ratio of α(O) and postfix monotonicity.
Let the greedy solution of length T be ST . If ϕT (α) =

(
1− 1

αT

)T
, then

g(ST ) ≤ (1− ϕT (α(O))) g(O) + ϕT (α(O))g(∅)

Proof. This proof strategy is inspired by Streeter & Golovin (2008) and Liberty & Sviridenko (2017)

g(St)− g(O)
(a)

≤ g(St)− g(St ⊕O)

=

|O|∑
i=1

g(St ⊕ (o1, . . . oi−1))− g(St ⊕ (o1, . . . , oi))

(b)

≤ α(O)

|O|∑
i=1

g(St)− g(St ⊕ oi)

≤ α(O)|O| max
i∈[|O|]

g(St)− g(St ⊕ oi)

≤ α(O)Tg(St)− α(O)T min
ω∈Ω

g(St ⊕ ω)

= α(O)Tg(St)− α(O)Tg(St+1)

(a) by µ- postfix monotonicity, (b) by supermodularity.

After rearranging the inequality, we get:

g(St+1) ≤ 1

α(O)T

(
g(O)− (α(O)T − 1) g(St)

)
=

1

α(O)T
g(O) +

(
1− 1

α(O)T

)
g(St)

When recursively applying this inequality, we get:

g(ST ) ≤ 1

α(O)T
g(O)

T−1∑
i=0

(
1− 1

α(O)T

)i

+

(
1− 1

α(O)T

)T

g(∅)

=

(
1−

(
1− 1

α(O)T

)T
)
g(O) +

(
1− 1

α(O)T

)T

g(∅)

B.3 PROOF OF PROPOSITION 4.2

Proposition 4.2. Suppose that for all j ∈ [K], the error propagation function I − Cj ◦ La
h is ρj-

Lipschitz continuous with ρj < 1, and that (I−Cj ◦La
h)(0N ) = 0N . Then, the function h is weakly

supermodular with respect to the optimal solution O, with

α(O) = max

{
4

T −
∑T

i=1 ρ
2
Oi

, 1

}
Furthermore, if I − Cj ◦ La

h is invertible for all j ∈ [K], h is also postfix monotonically non-
increasing.
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Proof. For brevity, we use the notation (g1 ◦ · · · ◦ gT ) (x) = ◦Tt=1gt(x), where composition is ap-
plied from right to left so that gT acts first. In this proof, we use a few properties of Lipschitz
continuous functions:

• Property 1: If g is ρ-Lipschitz continuous and g(0) = 0, then ∥g(x)∥2 = ∥g(x) − 0∥2 =
∥g(x)− g(0)∥2 ≤ ρ∥x− 0∥2 = ρ∥x∥2

• Property 2: If g1 and g2 are Lipschitz continuous functions with Lipschitz constants of ρ1
and ρ2 respectively, the Lipschitz constant of g1 + g2 and g1 − g2 is ρ1 + ρ2.

• Property 3: If g1 and g2 are Lipschitz continuous functions with Lipschitz constants of ρ1
and ρ2 respectively, the Lipschitz constant of g1 ◦ g2 is ρ1ρ2.

In order to prove weakly-α-supermodularity, we must first prove prefix monotonicity.

Prefix monotonicity: Let S ⪯ S′ where S′ = S ⊕N .

h(S′) =
∥∥∥◦1t=|S′|

(
I − CS′

t
◦ La

h

) (
e
(0)
h

)∥∥∥2
2

=
∥∥∥◦|S|+1

t=|S′|
(
I − CS′

t
◦ La

h

)
◦ ◦1t=|S|

(
I − CS′

t
◦ La

h

) (
e
(0)
h

)∥∥∥2
2

(a)

≤

 |S′|∏
t=|S|+1

ρ2S′
t

∥∥∥◦1t=|S| (I − CSt ◦ La
h)
(
e
(0)
h

)∥∥∥2
2

≤ h(S)

(a) by Property 1

Weak supermodularity: We will upper bound α(O) by providing an upper bound for h(S) −
h(S ⊕O) and a lower bound for

∑T
i=1 h(S)− h(S ⊕Oi).

h(S)− h(S ⊕O) =
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2
−
∥∥∥◦1t=|O| (I − COt

◦ La
h) ◦ ◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(a)

≤
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)
− ◦1t=|O| (I − COt

◦ La
h) ◦ ◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

=
∥∥∥(I − ◦1t=|O| (I − COt ◦ La

h)
)
◦ ◦1t=|S| (I − CSt ◦ La

h)
(
e
(0)
h

)∥∥∥2
2

(b)

≤

1 +

|O|∏
t=1

ρOt

2 ∥∥∥◦1t=|S| (I − CSt ◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(c)

≤ 4
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(a) by reverse triangle property and h(S) − h(S ⊕ S′) > 0 by prefix monotonicity, (b) since the
Lipschitz constant of I − ◦1t=|S′|

(
I − CS′

t
◦ La

h

)
is 1 +

∏|S′|
t=1 ρS′

t
by Property 2 and 3, (c) since

ρj < 1

To lower bound
∑|O|

i=1 h(S)− h(S ⊕Oi)

|O|∑
i=1

h(S)− h(S ⊕Oi) =

|O|∑
i=1

∥∥∥◦1t=|S| (I − CSt
◦ La

h)
(
e
(0)
h

)∥∥∥2
2
−
∥∥∥(I − COi

◦ La
h) ◦ ◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

≥
|O|∑
i=1

∥∥∥◦1t=|S| (I − CSt
◦ La

h)
(
e
(0)
h

)∥∥∥2
2
− ρ2Oi

∥∥∥◦1t=|S| (I − CSt
◦ La

h)
(
e
(0)
h

)∥∥∥2
2

=
∥∥∥◦1t=|S| (IN − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2

(
T −

T∑
i=1

ρ2Oi

)
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Finally,

h(S)− h(S ⊕O)

T maxi h(S)− h(S ⊕Oi)
≤ max


4
∥∥∥◦1t=|S| (I − CSt

◦ La
h)
(
e
(0)
h

)∥∥∥2
2∥∥∥◦1t=|S| (IN − CSt ◦ La

h)
(
e
(0)
h

)∥∥∥2
2

(
T −

∑T
i=1 ρ

2
Oi

) , 1


= max

{
4

T −
∑T

i=1 ρ
2
Oi

, 1

}

Postfix monotonicity: Let S′ = S ⊕N .

h(S′) =
∥∥∥◦1t=|S′|

(
I − CS′

t
◦ Lh

)
e
(0)
h

∥∥∥2
2

=
∥∥∥◦1t=|N | (I − CNt

◦ Lh) ◦ ◦1t=|S| (I − CSt
◦ Lh) e

(0)
h

∥∥∥2
2

(a)
=

∥∥∥∥◦1t=|N | (I − CNt
◦ Lh) ◦ ◦1t=|S| (I − CSt

◦ Lh) ◦
(
◦1t=|N | (I − CNt

◦ Lh)
)−1

◦ ◦1t=|N | (I − CNt
◦ Lh) e

(0)
h

∥∥∥∥2
2

≤
|N |∏
t=1

ρ2Nt

|S|∏
t=1

ρ2St

|N |∏
t=1

ρ−2
Nt

∥∥∥◦1t=|N | (I − CNt
◦ Lh) e

(0)
h

∥∥∥2
2

≤ h(N)

(a) due the invertibility of IN − CjLh

B.4 PROOF OF LEMMA B.2

Lemma B.2. Let (I − CjLa
h) = PΛjP

−1 where P is an orthogonal matrix and Λj =

diag(λj1, . . . , λjN ). If P−1e
(0)
h = z, then the following equality holds:

h(S) =

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji (11)

where mj(S) =
∑|S|

t=1 1St=j
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Proof.

h(S) =

∥∥∥∥∥∥
1∏

t=|S|

(IN − CStLa
h) e

(0)
h

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1∏

t=|S|

(
PΛSt

P−1
)
e
(0)
h

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥P
1∏

t=|S|

ΛSt
P−1e

(0)
h

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1∏

t=|S|

ΛSt
P−1e

(0)
h

∥∥∥∥∥∥
2

=

N∑
i=1

z2i

1∏
t=T

λ2
Sti

=

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji

B.5 PROOF OF PROPOSITION 4.3

Proposition 4.3. Let ∥IN − CjLa
h∥ ≤ 1 for all j ∈ [K] and (I − CjLa

h) = PΛjP
−1. Then, h is

supermodular.

Proof. Let S ⪯ S′ where S′ = S ⊕B. By Lemma B.2,

h(S) =

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji

where mj(S) =
∑|S|

t=1 1St=j be the number of times a sequence S calls the solver j. Recall that h
is considered sequence supermodular if ∀S′, S ∈ Ω∗ such that S ⪯ S′, it holds that

h(S)− h(S ⊕ ω) ≥ h(S′)− h(S′ ⊕ ω)

h(S)− h(S ⊕ ω) =

N∑
i=1

z2i

K∏
j=1

λ
2mj(S)
ji −

N∑
i=1

z2i λ
2
ωi

K∏
k=1

λ
2mj(S)
ji

=

N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2mj(S)
ji

Similarly,

h(S′)− h(S ⊕ ω) =

N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2mj(S

′)
ji

(a)
=

N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2(mj(S)+mj(B))
ji

(b)

≤
N∑
i=1

(
1− λ2

ωi

)
z2i

K∏
j=1

λ
2mj(S)
ji

= h(S)− h(S ⊕ ω)
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(a) Since mj(S
′) =

∑|S′|
t=1 1S′

t=j =
∑|S|

t=1 1S′
t=j +

∑|S′|
t=|S| 1S′

t=j =
∑|S|

t=1 1St=k+
∑|B|

t=1 1Bt=j =

mj(S) +mj(B), (b) since ρ(IN − CjLa
h) < 1 and mj(B) ≥ 0 for all j ∈ [K]

C PROOFS FOR SECTION 5

C.1 PROOF OF LEMMA C.1

Lemma C.1. For any set of preconditioning functions C, any discrete operator La
h, any router r,

any ah, fh, u
(t)
h , uh ∈ A× F × U × U , the following equality holds true:

lroute

(
r, ah, fh, u

(t)
h , uh

)
=

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h )̸=j

− (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

Proof. Note that
∑K

j=1 1r(ah,fh,u
(t)
h )̸=j

= K − 1

lroute

(
r, ah, fh, u

(t)
h , uh

)
=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h )=j

=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h ) ̸=j

=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h ) ̸=j

+ (K − 1)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
− (K − 1)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1
r(ah,fh,u

(t)
h ) ̸=j

+

K∑
j=1

1
r(ah,fh,u

(t)
h ) ̸=j

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

− (K − 1)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

(
K∑

k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
−
∥∥∥(I − Cj ◦ La

h)
(
uh − u

(t)
h

)∥∥∥2
2

)
1
r(ah,fh,u

(t)
h )̸=j

− (K − 2)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h ) ̸=j

− (K − 2)

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
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C.2 PROOF OF PROPOSITION C.2

Proposition C.2. For any router r defined by r(a, f, u(t)) = argmaxj∈[K]gj(a, f, u
(t)), any ah ∈

A, fh ∈ F , and u
(t)
h , uh ∈ U , the routing loss lroute satisfies:

log(2)lroute

(
r, ah, fh, u

(t)
h , uh

)
≤ Ψ(g, ah, fh, u

(t)
h , uh)

Proof. By Lemma C.1, we know that

log(2)lroute

(
r, ah, fh, u

(t)
h , uh

)
= log(2)

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h ) ̸=j

− log(2) (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

≤ log(2)

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h ) ̸=j

(a)

≤ −
K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j log

(
exp

(
gj(a, f, u

(t))
)∑K

k=1 exp
(
gk(a, f, u(t))

))
= Ψ(g, ah, fh, u

(t)
h , uh)

(a) if r(ah, fh, u
(t)
h ) ̸= j,

exp(gj(a,f,u(t)))∑K
k=1 exp(gk(a,f,u(t)))

< 0.5 which implies that

− log

(
exp(gj(a,f,u(t)))∑K

k=1 exp(gk(a,f,u(t)))

)
≥ log(2)1

r(ah,fh,u
(t)
h )̸=j

C.3 PROOF OF THEOREM 5.1

Theorem 5.1. Let c̃j(ah, u
(t)
h , uh) < Ē < ∞ for all j ∈ [K]. If there exists j ∈ [K] such

that c̃j(ah, u
(t)
h , uh) > Emin > 0, then, for any collection of solvers {Cj}Kj=1 and linear discrete

operator La
h, Ψ is Bayes consistent surrogate for lroute.

Proof. For a given ah, fh, let uh be Gh (ah, fh) where Gh denotes the solution operator acting on
the grid Gh. Furthermore, let’s consider routers of the form

r(a, f, u(t)) = argmaxj∈[K]gj(a, f, u
(t))

For a given ah, fh, u
(t)
h ∈ A × F × U , let the optimal loss under lroute be

l∗route

(
ah, fh, u

(t)
h

)
= inf r̃ lroute

(
r̃, ah, fh, u

(t)
h ,Gh (ah, fh)

)
. Similarly, let the optimal loss un-

der Ψ be Ψ∗
(
ah, fh, u

(t)
h

)
= inf g̃ Ψ

(
g̃, ah, fh, u

(t)
h ,Gh (ah, fh)

)
. Let Bj(ah, fh, u

(t)
h ) =∑K

k=1

∥∥∥(I − Ck ◦ La
h)
(
Gh (ah, fh)− u

(t)
h

)∥∥∥2
2
1k ̸=j .
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lroute

(
r, ah, fh, u

(t)
h ,Gh (ah, fh)

)
− l∗route

(
ah, fh, u

(t)
h

)
(a)
=

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r(ah,fh,u

(t)
h ) ̸=j

− (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

− inf
r̃

K∑
j=1

K∑
k=1

∥∥∥(I − Ck ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2
1k ̸=j1r̃(ah,fh,u

(t)
h ) ̸=j

+ (K − 2)

K∑
j=1

∥∥∥(I − Cj ◦ La
h)
(
uh − u

(t)
h

)∥∥∥2
2

=

K∑
j=1

Bj(ah, fh, u
(t)
h )1

r(ah,fh,u
(t)
h )̸=j

− inf
r̃

K∑
j=1

Bj(ah, fh, u
(t)
h )1

r̃(ah,fh,u
(t)
h )̸=j

=

K∑
k=1

Bk(ah, fh, u
(t)
h )

 K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

1
r(ah,fh,u

(t)
h ) ̸=j

− inf
r̃

K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

1
r̃(ah,fh,u

(t)
h )̸=j



(a) by Lemma C.1

Let X = A × F × U and Y = [K]. Let PX denote the degenerate distribution suported at the
point (ah, fh, u

(t)
h ). We define the conditional distribtion - P (Y = j | X = (ah, fh, u

(t)
h )) =

Bj(ah,fh,u
(t)
h )∑K

k=1 Bk(ah,fh,u
(t)
h )

for j ∈ [K]. The risk and optimal risk of 0 − 1 loss under this distribution can

be written as:

R0−1(r) =

K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

1
r(ah,fh,u

(t)
h )̸=j

R∗
0−1 = inf

r

K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

1
r(ah,fh,u

(t)
h ) ̸=j

If r(ah, fh, u
(t)
h ) = argmaxj∈[k] gj(ah, fh, u

(t)
h ) for all x ∈ X , then the he risk and optimal risk of

cross entropy loss (lce(g, x, y)− log
(

exp(gy(x))∑K
k=1 exp(gk(x))

)
) under this distribution can be written as:

Rce(g) = −
K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


R∗
ce = inf

g
−

K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


From Theorem 3.1 of (Mao et al., 2023), R0−1(r) − R∗
0−1 ≤ Γ−1 (Rce(g)−R∗

ce) if
r(ah, fh, u

(t)
h ) = argmaxj∈[k] gj(ah, fh, u

(t)
h ) where Γ(z) = 1+z

2 log(1 + z) + 1−z
2 log(1 − z).

Then,
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lroute

(
r, ah, fh, u

(t)
h ,Gh (ah, fh)

)
− l∗route

(
ah, fh, u

(t)
h

)
=

K∑
k=1

Bk(ah, fh, u
(t)
h )

 K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

1
r(ah,fh,u

(t)
h ) ̸=j

− inf
r̃

K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

1
r̃(ah,fh,u

(t)
h )̸=j


≤

K∑
k=1

Bk(ah, fh, u
(t)
h )Γ−1

− K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


− inf
g
−

K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


(a)

≤ ĒK (K − 1) Γ−1

− K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


− inf
g
−

K∑
j=1

Bj(ah, fh, u
(t)
h )∑K

k=1 Bk(ah, fh, u
(t)
h )

log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


(b)

≤ ĒK (K − 1) Γ−1

− K∑
j=1

Bj(ah, fh, u
(t)
h )

(K − 1)Emin
log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


− inf
g
−

K∑
j=1

Bj(ah, fh, u
(t)
h )

(K − 1)Emin
log

 exp
(
gj(ah, fh, u

(t)
h )
)

∑K
k=1 exp

(
gk(ah, fh, u

(t)
h )
)


= ĒK (K − 1) Γ−1

Ψ
(
g, ah, fh, u

(t)
h ,Gh (ah, fh)

)
−Ψ∗

(
ah, fh, u

(t)
h

)
(K − 1)Emin



(a) since
∥∥∥(I − Cj ◦ La

h)
(
e
(t)
h

)∥∥∥2
2
< Ē for all j ∈ [K], (b) since Γ−1 is non-decreasing and ∃j ∈

[K] such that
∥∥∥(I − Cj ◦ La

h)
(
e
(t)
h

)∥∥∥2
2
> Emin

Finally,
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lim
n→∞

Rroute (rn)−R∗
route

(a)
= lim

n→∞
Eah,fh∼PA×F

[
lroute

(
rn, ah, fh, u

(t)
h ,Gh (ah, fh)

)
− l∗route

(
ah, fh, u

(t)
h

)]
≤ lim

n→∞
Eah,fh∼PA×F

ĒK (K − 1) Γ−1

Ψ
(
g̃, ah, fh, u

(t)
h ,Gh (ah, fh)

)
−Ψ∗

(
ah, fh, u

(t)
h

)
(K − 1)Emin


(b)

≤ lim
n→∞

ĒK (K − 1) Γ−1

Eah,fh∼PA×F

[
Ψ
(
gn, ah, fh, u

(t)
h ,Gh (ah, fh)

)
−Ψ∗

(
ah, fh, u

(t)
h

)]
(K − 1)Emin


= lim

n→∞
ĒK (K − 1) Γ−1

(
RΨ (gn)−R∗

Ψ

(K − 1)Emin

)
(c)
= ĒK (K − 1) Γ−1

(
limn→∞RΨ (gn)−R∗

Ψ

(K − 1)Emin

)
= ĒK (K − 1) Γ−1 (0)

(d)
= 0

(a) R∗
route = Eah,fh∼PA×F

[
l∗route

(
ah, fh, u

(t)
h

)]
since the infimum is taken over all measurable

functions, (b) by Jensen’s inequality since Γ−1 is concave, (c) by continuity of Γ−1 at 0, (d)
Γ−1(0) = 0

D TRAINING DETAILS

Data for both DeepONet and the routers is sampled from a zero-mean Gaussian Random Field on
the periodic domain with covariance operator (−∆+9I)−2 as mentioned in Section 7. We do this by
generating samples in Fourier space: for each non-zero mode k, we draw an independent complex
coefficient from a Gaussian distribution with mean 0 and variance (4π2∥k∥22 + 9)−2, enforce a
Hermitian symmetry to obtain a real-valued field, set the DC mode to 0 to ensure zero mean for
Poisson, and apply inverse Discrete Fourier Transform to obtain the field in physical space. For
each sample, we compute reference solutions with a least squares solver and treat them as ground
truth.

This data is used to trained our DeepONet models and LSTM routers. All the models were imple-
mented using PyTorch and all the models were trained on an Nvidia A40 GPU.

Table 3 contains all hyperparameter details for the DeepONet. DeepONet took 30 minutes to train.
We then use the model with the best validation loss.

The routers are LSTM models trained with scheduled sampling. We use a warm-up of ew epochs
with teacher-forcing probability ptf (e) = ssstart. After the warm-up, the ptf decays geomterically
by a factor of γtf < 1 per epoch and is floored by send:

ptf (e) =

{
ssstart e ≤ ew
max(ssstartγ

e−ew
tf , ssend) e > ew

At each time step, with probability ptf (e), we feed the teacher-forced greedy iterate; otherwise, we
feed the router’s own predicted iterate.

Since LSTMs on long rollouts can suffer from exploding/vanishing gradients, we use truncated
backpropagation through time (TBPTT) (Mozer, 2013; Robinson & Fallside, 1987; Werbos, 1988):
the forward pass unrolls the entire trajectory, but gradients are propagated only through the most
recent wbptt(e) steps at epoch e. Hidden states are passed forward between segments, while earlier
segments are treated as stop-gradient.
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Hyperparameter Value
Learning rate 1e-3

Branch Dimension 64
Hidden dimension for branch net 128
No. of hidden layers in branch net 2

Hidden dimension for trunk net 128
No. of hidden layers in trunk net 2

Gradient Clipping Norm 1.0
Weight Decay 0.005

Batch size 128
Training samples 15000

Validation samples 3000
Epochs 100

Table 3: Hyperparameter settings for DeepONet

Hyperparameter Value
Learning rate 1e-3

Branch Dimension 64
Hidden dimension 64

No. of hidden layers 3
Gradient Clipping Norm 1.0

Weight Decay 0.005
Batch size 32

Training samples 64
Validation samples 32

Epochs 100
ssstart 1.0
γtf 0.95
ssend 0.0
wstart 0.1Tmax

γbptt 1.25
ew 10
fbptt 4

Table 4: Hyperparameter settings for routers

We employ a curriculum learning approach analogous to scheduled sampling. Let Tmax be the
horizon (300 for Jacobi/GS and 100 for MG). With a warm-up of ew epochs,

wbptt(e) =


wstart e ≤ ew

min

(
Tmax, wstartγ

⌊
e−ew
fbptt

⌋
bptt

)
e > ew

(12)

so the window grows geometrically by a factor of γbptt > 1 every fbptt epochs and is capped at the
full trajectory length.

Table 4 contains all hyperparameter details for the LSTM routers. The routers took a maximum
of 4 hours and 30 minutes to train. We then use the model with the best validation loss for testing.
Data-related details in Table 4 apply to all of our trained routers except the routers for the experiment
with increasing K which were trained with 1024 training samples and 128 validations samples to
encourage the model to learn some of the nuanced differences between the classes.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 CONVERGENCE HISTORIES

See Figure 2
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Figure 2: Convergence histories for representative test instances. Rows: 1D Poisson (top) and 2D
Helmholtz (bottom). Columns: Jacobi, Gauss–Seidel (GS), and multigrid (MG). Greedy yields
near-monotone decay and the lowest errors, whereas HINTS shows sawtooth behaviors.

Equation 1D Poisson 2D Poisson 1D Helmholtz 2D Helmholtz
Methods ∥La

he
(T )
h ∥ AUC ∥La

he
(T )
h ∥ AUC ∥La

he
(T )
h ∥ AUC ∥La

he
(T )
h ∥ AUC

Jacobi-related Solvers
Jacobi Only 7.775 (4.237) 5156.608 (2729.501) 2.842 (1.124) 4979.462 (1570.207) 8.89 (4.62) 5977.502 (3061.518) 2.653 (1.049) 4885.359 (1536.61)

HINTS-Jacobi 4.871 (1.526) 2511.313 (1113.55) 94.061 (0.431) 6194.836 (480.136) 23.035 (12.824) 6860.808 (3824.142) 24.066 (0.258) 5486.311 (1491.338)
Greedy-Jacobi 5.684 (4.186) 2505.155 (1638.618) 1.225 (0.643) 2097.546 (468.004) 14.339 (13.896) 5967.264 (5235.896) 2.653 (1.049) 4885.359 (1536.61)

GS-related Solvers
GS Only 2.001 (1.091) 3272.362 (1741.517) 0.202 (0.08) 2686.598 (858.228) 2.209 (1.15) 3767.204 (1933.993) 0.176 (0.07) 2625.785 (836.048)

HINTS-GS 2.749 (0.001) 904.028 (394.014) 115.382 (0.001) 4945.064 (339.648) 5.727 (3.043) 1193.716 (487.82) 23.431 (0.02) 3181.072 (817.491)
Greedy-GS 0.012 (0.007) 170.604 (57.765) 0.027 (0.008) 998.784 (193.159) 0.035 (0.015) 250.746 (89.774) 0.176 (0.07) 2625.785 (836.048)

MG-related Solvers
MG Only 1.961 (0.541) 819.828 (292.076) 0.093 (0.022) 460.981 (111.146) 2.017 (0.529) 899.308 (313.69) 0.081 (0.02) 448.77 (108.006)

HINTS-MG 0.138 354.601 (149.921) 3.246 1414.353 (73.994) 0.49 (0.196) 451.287 (178.914) 0.653 (0.052) 640.516 (101.671)
Greedy-MG 0.019 (0.012) 61.195 (17.887) 0.022 (0.005) 284.36 (51.462) 0.053 (0.022) 99.709 (37.971) 0.081 (0.02) 448.77 (108.006)

Table 5: Final residual and AUC of squared L2 residual (lower is better). Values are mean (±
standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3. If a standard
error is not shown, it is < 10−3 in the reported units (raw < 10−6). Bold indicates the best method
within each solver family.

E.2 RESIDUAL COMPARISON

Table 5 summarizes the performance of single-solver schedules, HINTS, and greedy with respect
to the final residuals r

(T )
h = ∥fh − La

hu
(T )
h ∥ or ∥La

he
(T )
h ∥ and its AUC AUCT =

∑T
t=1 ∥r

(t)
h ∥22 .

Greedy outperforms its HINTS and single-solver counterparts in most equations. We must note that
our greedy router is trained to reduce error, not residual. The same error can induce very different
residuals depending on the spectrum La

h. Table 6 exhibits how residuals are affected by the number
of solvers in the solver ensemble. Similar to error, we observe both the final residual and AUC
decrease as the number of solvers increase.

Equation 1D Poisson 1D Helmholtz
# of Solvers ∥La

he
(T )
h ∥ AUC ∥La

he
(T )
h ∥ AUC

2 0.121 (0.055) 473.906 (158.205) 0.321 (0.113) 679.886 (252.811)
3 0.078 (0.042) 360.389 (119.802) 0.21 (0.08) 530.239 (195.882)
4 0.067 (0.038) 328.62 (109.061) 0.181 (0.072) 490.084 (183.068)
5 0.061 (0.035) 319.509 (105.729) 0.166 (0.067) 470.193 (176.504)
6 0.045 (0.027) 288.867 (96.794) 0.165 (0.067) 487.057 (192.411)

Table 6: Final residual and AUC of squared L2 residual for varying numbers of solvers. Values are
mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are reported in ×10−3.
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Equation 1D Poisson 2D Poisson
Methods/ Mode Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC

Jacobi-related Solvers
Jacobi Only 1.124 (0.612) 732.713 (399.296) - 0.076 (0.043) - 0.001 0.03 (0.014) 382.094 (183.783) - 0.012 (0.006) - -

HINTS-Jacobi 0.059 (0.024) 128.076 (64.871) 0.001 (0.001) 0.348 (0.121) - 0.041 (0.021) 0.296 (0.003) 227.594 (78.715) 0.003 0.169 (0.055) 0.001 0.03 (0.009)
Greedy-Jacobi 0.006 (0.004) 4.152 (2.593) - 0.192 (0.094) - 0.025 (0.016) 0.009 (0.004) 114.046 (54.747) - 0.105 (0.057) - 0.014 (0.008)

GS-related Solvers
GS Only 0.285 (0.155) 458.834 (250.064) - 0.223 (0.136) - 0.096 (0.072) - 196.347 (94.367) - 0.014 (0.007) - 0.001

HINTS-GS 0.017 100.582 (52.598) 0.001 0.176 (0.049) - 0.049 (0.028) 0.258 168.877 (59.252) 0.003 0.162 (0.032) 0.001 0.052 (0.006)
Greedy-GS 0.002 (0.001) 2.661 (1.595) - 0.12 (0.058) - 0.026 (0.015) - 62.858 (30.237) - 0.09 (0.044) - 0.014 (0.007)

Multigrid methods
MG Only 0.282 (0.078) 116.885 (42.581) - 0.043 (0.022) - 0.013 (0.007) 0.001 25.497 (11.766) - 0.003 (0.001) - -

HINTS-MG 0.014 43.405 (20.908) - 0.027 (0.006) - 0.009 (0.003) 0.078 31.289 (10.201) - 0.035 (0.004) - 0.01 (0.001)
Greedy-MG 0.003 (0.002) 0.999 (0.622) - 0.029 (0.013) - 0.008 (0.005) - 13.358 (6.045) - 0.031 (0.016) - 0.007 (0.004)

Table 7: Final error and AUC of squared L2 error for Mode 1, 5, and 10 (lower is better) for 1D/2D
Poisson. Values are mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in×10−3. If a standard error is not shown, it is < 10−3 in the reported units (raw < 10−6).
Bold indicates the best method within each solver family.

Equation 1D Helmholtz 2D Helmholtz
Methods/ Mode Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC

Jacobi-related Solvers
Jacobi Only 1.253 (0.651) 835.102 (434.018) - 0.078 (0.044) - 0.001 0.028 (0.013) 372.63 (179.23) - 0.012 (0.006) - -

HINTS-Jacobi 0.099 (0.047) 140.399 (63.534) 0.004 (0.002) 0.576 (0.2) 0.001 (0.001) 0.088 (0.044) 0.493 (0.025) 427.437 (170.326) 0.007 0.19 (0.006) 0.002 0.026
Greedy-Jacobi 0.023 (0.027) 15.089 (13.203) - 0.577 (0.635) - 0.078 (0.057) 0.028 (0.013) 372.63 (179.23) - 0.012 (0.006) - -

GS-related Solvers
GS Only 0.307 (0.159) 519.339 (269.921) - 0.242 (0.146) - 0.105 (0.078) - 191.408 (91.996) - 0.014 (0.007) - 0.001

HINTS-GS 0.07 (0.028) 127.525 (59.386) 0.003 (0.002) 0.296 (0.09) 0.001 (0.001) 0.105 (0.052) 0.309 233.092 (88.614) 0.007 0.191 (0.007) 0.002 0.024
Greedy-GS 0.004 (0.002) 7.034 (3.179) - 0.179 (0.1) - 0.058 (0.036) - 191.408 (91.996) - 0.014 (0.007) - 0.001

Multigrid methods
MG Only 0.283 (0.074) 125.54 (44.397) - 0.043 (0.022) - 0.013 (0.007) 0.001 24.863 (11.508) - 0.002 (0.001) - -

HINTS-MG 0.055 (0.022) 52.357 (23.002) - 0.054 (0.02) - 0.023 (0.009) 0.074 (0.001) 32.657 (11.313) - 0.051 (0.001) - 0.009
Greedy-MG 0.007 (0.003) 2.678 (1.159) - 0.041 (0.019) - 0.016 (0.011) 0.001 24.863 (11.508) - 0.002 (0.001) - -

Table 8: Final error and AUC of squared L2 error for Mode 1, 5, and 10 (lower is better) for 1D/2D
Helmholtz. Values are mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in×10−3. If a standard error is not shown, it is < 10−3 in the reported units (raw < 10−6).
Bold indicates the best method within each solver family.

Equation 1D Poisson 1D Helmholtz
# of Solvers/ Mode Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC Mode 1 Error Mode 1 AUC Mode 5 Error Mode 5 AUC Mode 10 Error Mode 10 AUC

2 0.013 (0.008) 5.549 (3.466) - 0.396 (0.194) - 0.057 (0.035) 0.035 (0.015) 15.082 (6.582) - 0.608 (0.352) - 0.115 (0.082)
3 0.01 (0.006) 5.007 (3.126) - 0.293 (0.143) - 0.04 (0.025) 0.027 (0.012) 13.577 (5.925) - 0.449 (0.26) - 0.082 (0.058)
4 0.009 (0.006) 4.779 (2.984) - 0.263 (0.128) - 0.036 (0.023) 0.024 (0.011) 12.943 (5.648) - 0.399 (0.231) - 0.072 (0.051)
5 0.008 (0.005) 4.654 (2.906) 0.0 (0.0) 0.257 (0.125) 0.0 (0.0) 0.036 (0.023) 0.022 (0.01) 12.571 (5.486) - 0.376 (0.217) - 0.068 (0.049)
6 0.006 (0.004) 4.174 (2.606) - 0.212 (0.104) - 0.029 (0.018) 0.022 (0.01) 12.535 (5.47) - 0.355 (0.205) - 0.061 (0.043)

Table 9: Final error and AUC of squared L2 error of Mode 1, 5, and 10 for varying numbers of
solvers. Values are mean (± standard error (s.e.)) over 64 test instances; both mean and s.e. are
reported in ×10−3.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.3 FOURIER MODE-WISE ERROR COMPARISON

We assess frequency-resolved performance by projecting the error onto the discrete Fourier basis.
Tables 7 and 8 report, for modes 1, 5, and 10, the mode-wise final error and mode-wise AUC,
comparing single-solver baselines, HINTS, and the greedy router. As a result of including a deep
learning model,Greedy consistently achieves the smallest mode-1 error/AUC across equations and
solver families. For modes 5 and 10, single-solver schedules sometimes have an edge, reflecting the
tendency of classical smoothers to damp high-frequency components more aggressively than ML
surrogates (spectral bias). Overall, greedy delivers more uniform convergence across the spectrum:
it routes to whichever solver most decreases the full L2 error, and by Parseval’s identity |e(t)h |22 =∑

m |û
(t)
m − ûm|2, reductions in the objective correspond to reducing energy across all modes rather

than giving preferential treatment to a subset. Additionally, in Table 9, we observe that all mode-
wise errors/AUCs reduce with the inclusion of more solvers.

F LLM USAGE

LLMs, specifically ChatGPT and Gemini, supported the writing process in an iterative manner. We
drafted paragraphs and asked the models for feedback on grammar and clarity. We then incorpo-
rated selected suggestions into the writing and repeated this process until we were satisfied with the
writing.

The code developed for the experiments was written by the authors with the help of occasional code
completions. The central components (e.g., the hybrid solver implementation and the greedy-router
training pipelines) were implemented exclusively by the authors.

All substantive intellectual contributions, which include ideas, theorems, and analyses, are our own.
LLMs were occasionally used to verify the correctness of proofs, but all proof strategies originated
from the authors and relevant literature.
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