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Abstract

In a contextual pricing problem, a seller aims at maximizing the revenue over a sequence of
sales sessions (described by feature vectors) using binary-censored feedback of “sold” or “not
sold”. Existing methods often overlook two practical challenges (1) the best pricing strategy
could change over time; (2) the prices and pricing policies must conform to hard constraints
due to safety, ethical or legal restrictions. We address both challenges by solving a more
general problem of universal dynamic regret minimization in proper online learning with exp-
concave losses — an open problem posed by Baby & Wang (2021) that we partially resolve
in this paper. Here “dynamic regret” measures the performance relative to a non-stationary
sequence of policies, and “proper” means that the learner must choose feasible strategies
within a pre-defined convex set, which we use to model the safety constraints. In the case
of a known log-concave market noise, our algorithm achieves Õ(d3T 1/3C

2/3
T ∨ d3) dynamic

regret that is optimal w.r.t. T and CT , adapts to unknown non-stationarity CT and remains
feasible throughout. We also report other results under weaker assumptions. To the best of
our knowledge, we are the first to obtain provable guarantees in non-stationary contextual
pricing.

1 Introduction
Feature-based dynamic pricing, or contextual pricing, is a problem where the seller sets prices for different
products based on their features and aims to maximize revenue. In general, a customer will make her decision
based on a comparison between the price and her own valuation of the product. Formally, many existing
works including Cohen et al. (2020); Javanmard & Nazerzadeh (2019); Xu & Wang (2021); Luo et al. (2021)
adopt the following linear feature model:

Contextual pricing. For t = 1, 2, ..., T :
1. A context xt ∈ Rd is revealed that describes a sales session (product, customer and context).
2. The customer valuates the product as yt = x⊤

t θ∗
t + Nt using xt.

3. The seller proposes a price vt > 0 concurrently (according to xt and historical sales records).
4. The transaction is successful if vt ≤ yt, i.e., the seller gets a reward (payment) of rt = vt · 1(vt ≤ yt).

Here T is the unknown time horizon, xt’s are adversarial features (including stochastic and non-stochastic
series), θ∗

t ’s are hidden parameters mapping features to valuations linearly, and Nt’s are i.i.d. noises drawn
from a known distribution D. Denote 1t := 1(vt ≤ yt) as the Boolean-censored feedback that equals 1 if
vt ≤ yt and 0 otherwise, and we only observe 1t instead of the realized yt at each round. Our goal is to
maximize the cumulative expected reward, and the regret is defined as the difference of expected rewards
between vt and the best price at each round.

Time-variant Behavior and Dynamic Regret. Comparing with existing linear contextual pricing
problem settings in Cohen et al. (2020); Javanmard & Nazerzadeh (2019); Xu & Wang (2021) where the linear
valuation parameter θ∗

t is fixed as the same θ∗ over all t, in this work we allow moderate changing of customers’
valuations: i.e θ∗

t ’s can vary over time, and the total variation
∑T −1

t=1 ∥θ∗
t − θ∗

t+1∥1 is upper bounded by some
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CT (which could be unknown to the seller). Here we adopt the L1-norm bound because it is a reasonable
metric for capturing the non-stationarity of the valuation mechanism: For instance, suppose each element of
xt indicates the amount of one component of this product, and therefore each element of θ∗

t indicates the
unit price of this component. In this example, ∥θ∗

t − θ∗
t+1∥1 reflects the general price fluctuations on the

market, i.e., the sum of market-wise price changes over all components. To characterize the performance of a
pricing scheme under this non-stationary setting, we adopt the concept of dynamic regret. In this notion, we
compare the performance of vt we proposed with that of the optimal pricing policy that knows the sequence
of θ∗

t in advance. A rigorous definition of this dynamic regret will be presented in Section 2.3.

Proper Learning. Usually, the actions/strategies we are allowed to adopt are restricted in some specific safe
domains. Taking any action/strategy outside this domain would probably cause risky, illegal or inconsistent
outcomes. Our algorithm works by maintaining an estimate, θt, for the true valuation parameter θ∗

t at each
round t, and we in turn take θt as a parametric strategy for proposing the price vt according to a greedy
policy (see Section 2.3 for more details).In this work, we require that the estimate θt must fall in a specific
convex and close domain Dt at each round t. As will be explained in Section 2.4, this is to address the fact
that the pricing strategies must conform to hard constraints due to safety restrictions.

Universal Dynamic Regret and Proper OCO with co-variates. Next, we take a digression and
describe a general Online Convex Optimization (OCO) setting which will play a pivotal role in solving the
contextual pricing problem.

Proper OCO with co-variates. For t = 1, 2, ..., T :
1. Adversary reveals a co-variate xt ∈ Rd.
2. Learner makes a decision θ̂t in a convex domain Dt ⊂ Rd.
3. Adversary reveals a convex loss function ℓt(θ) = gt(θT xt).

This setting embodies OCO under a wide range of loss functions from the generalized linear model (GLM)
family for appropriate choices of gt. The co-variates xt can be thought of as a feature that encodes valuable
information about the context in round t which can be used by the learner to make its predictions. Examples
of this setting include (but not limited to) linear regression and logistic regression.

The goal of the learner is to control its universal dynamic regret:

R(w1:T ) :=
T∑

t=1
ℓt(θ̂t)− ℓt(wt), (1)

where w1:T is any comparator sequence satisfying wt ∈ Dt for all t ∈ [T ]. This is known to be a good metric
in characterizing the performance of a learner in non-stationary environments Zinkevich (2003). Dynamic
regret bounds are usually expressed in literature as functions of the time horizon T and a path length that
captures the smoothness of the comparator sequence such as CT =

∑T −1
t=1 ∥wt − wt+1∥1.

1.1 Summary of Contributions
Our main contributions are given below.

1. We present an algorithm ProDR (Algorithm 1) that attains an optimal Õ(d3(T 1
3 C

2
3
T ∨ 1)) dynamic regret

(modulo dependencies in d and log T ) for the setting of proper OCO with co-variates under exp-concave
losses (see Section 3.1).

2. We construct an algorithm PDRP (Algorithm 2) with a base learner ProDR, which solves the non-stationary
contextual pricing problem. We show that PDRP also achieves Õ(d3(T 1

3 C
2
3
T ∨ 1)) dynamic regret (see

Section 3.2).

3. We show that any algorithm must incur a dynamic regret of Ω(T 1
3 C

2
3
T ∨ 1) in the contextual pricing

problem, which says that PDRP is minimax optimal up to d and log T factors (see Section 3.3).

4. For the purpose of completeness, we also consider the setting when the noise distribution is fully agnostic.
We extend the existing method of non-stationary bandits from Chen et al. (2019) and discretized pricing

2



Under review as submission to TMLR

policies from Xu & Wang (2022) and achieve an Õ(T 4
5 (C

1
3
T ∨ 1) + d

1
2 T

3
5 + d

1
3 T

11
15 C

1
3
T ) dynamic regret (see

Section 3.4).

Novelty. To the best of our knowledge, we are the first to study the non-stationary contextual pricing
problem, and the above algorithms as well as their regret bounds are new. The matching lower bound on
dynamic regret implies that the proposed PDRP algorithm is indeed optimal (modulo dependencies in d and
log T ) for the non-stationary pricing problem. The key subroutine we developed — ProDR — is the first to
achieve an optimal universal dynamic regret with exp-concave losses in the proper OCO with covariate setting.
ProDR made considerable progress towards addressing the open problem posed by Baby & Wang (2021) on
the more general version of the above problem with general exp-concave losses (rather than GLM with known
covariates) . The only existing attempt to this open problem requires the decision set to be an L∞ ball (Baby
& Wang, 2022), which cannot be used to handle arbitrary convex decision sets as we do.

Summary of techniques. The key technique in deriving ProDR is a novel “transfer theorem” which takes
the algorithm of Baby & Wang (2022) ( L∞ ball decision set) and converts it to an optimal algorithm for the
setting of proper OCO with co-variates under arbitrary convex decision sets. This idea is similar in spirit to
the improper-proper reduction in Cutkosky & Orabona (2018) where they consider general convex losses.
However, a direct application of their reduction scheme cannot give fast rates for exp-concave losses. To
circumvent this issue, we propose new reduction schemes that carefully take the curvature of the losses into
account thereby allowing us to derive fast and optimal dynamic regret rates under exp-concave losses (see
Section 3.1 for a list of technical challenges). Such a “transfer theorem” could be of independent interest and
impactful in the general context of non-stationary online learning. That the non-stationary dynamic pricing
problem can be optimally solved using ProDR is a testament to this fact.

1.2 Related Works
Here we discuss how our work relates to the existing literature on dynamic pricing and dynamic regret.

Dynamic Pricing Dynamic pricing has been extensively studied under the single product (non-contextual)
setting (Kleinberg & Leighton, 2003; Besbes & Zeevi, 2015; Wang et al., 2021), where the goal is to find
and approach the best fixed price that maximizes the expected revenue. The problem is later generalized to
contextual pricing where a feature xt occurs at each time t and the customer’s valuation is dependent on xt.
A widely adopted model is the linear valuation in Cohen et al. (2020); Javanmard & Nazerzadeh (2019); Xu
& Wang (2021), where they assume all customers’ valuations are a fixed feature-to-valuation mapping (i.e., θ∗

t

is fixed, ∀t) adding a distribution-known i.i.d. noises. As a result, the best price varies on different features
occurring over time, and the goal turns to approach the best price in every round. However, the optimal
pricing policy is static and the regret definition is a comparison of performance between our proposed price
and the optimal policy that knows θ∗ and the noise distribution in advance. In this work, we adopt this linear
valuation setting and further generalize to non-stationary cases where the linear mapping θ∗

t is changeable
over time. As a result, the best pricing policy also changes according to θ∗

t , and we have to analyze the
algorithmic performance in the scale of dynamic regret. Leme et al. (2021) also studies non-stationary pricing
problems and adopts the dynamic regret metric. However, their settings are different, as their loss functions
and constraints are both defined by comparing with the realized valuations, while ours are with the expected
valuations/revenues. This indicates we cannot adopt their regret upper or lower bounds.

Under the linear noisy valuation framework as we assumed, Luo et al. (2021) and Xu & Wang (2022) consider
a more agnostic problem settings where the noise distribution is fully agnostic (but is i.i.d. and absolutely
bounded). Therefore, it is hard to establish surrogate loss functions and conduct online convex optimization
methods as we do. Luo et al. (2021) presents a UCB-style algorithm and achieves a Õ(T 2

3 ∨(1−α)) regret that
relies on the existence of a good estimator with O(ℓ−α) L1 error within ℓ rounds (but the existence was not
shown). Meanwhile, Xu & Wang (2022) discretizes the policy spaces to fit in another contextual bandit
algorithm EXP-4 and attains a Õd(T 3

4 ) regret. In this work, we generalize the method and analysis of Xu &
Wang (2022) to time-variant settings we adopt, using a non-stationary contextual bandits algorithm presented
in Chen et al. (2019), and achieve Õd(T 4

5 (C
1
3
T ∨ 1)) dynamic regret. The results are shown in Section 3.4

while we leave the detailed analysis to Appendix C.
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Table 1: Regret Bounds for Contextual Pricing

Noise Assumption Known log-concave CDF Parametric Unknown

Static Regret O(d log T ), optimal
Xu & Wang (2021)

O(d
√

T ), optimal
Javanmard & Nazerzadeh (2019)

Õ(T 3
4 + d

1
2 T

5
8 )

Xu & Wang (2022)

Dynamic Regret Õ(d3(T 1
3 C

2
3
T ∨ 1)), optimal

This work
(open problem) Õ(T 4

5 (C
1
3
T ∨ 1) + d

1
2 T

3
5 + d

1
3 T

11
15 C

1
3
T )

This work

Please refer to Table 1 for a detailed comparison of static and dynamic regrets among different problem
settings.

Dynamic Regret. There is a rich body of literature aimed in minimizing the universal dynamic regret
(Eq.(1)) in OCO setting where the earliest works can be traced back to Zinkevich (2003). When the revealed
losses are convex, Zhang et al. (2018) proposes algorithms to attain an optimal dynamic regret rate of
O(
√

T (1 + PT )) where PT =
∑T −1

t=1 ∥wt − wt+1∥2. When the loss functions are gradient Lipschitz and have
extra curvature properties such as exp-concavity, Baby & Wang (2021) proposes algorithms that attain a
near optimal dynamic regret of Õ∗(T 1/3C

2/3
T ∨ 1) (Õ∗ hides dependencies on dimensions and factors of log T ).

The work of Baby & Wang (2022) shows similar rates for non-smooth and exp-concave losses in a proper
learning setting when the decision set is an L∞ ball. In contrast, our work is able to attain near optimal
rates for arbitrary convex decision sets for a large family of exp-concave losses. Further Baby & Wang (2022)
also show optimal rates for arbitrary decision sets when the losses are strongly convex.

If we take all the comparators wt in Eq.(1) to be same, one recovers the notion of static regret. There are
works that aim in controlling the static regret in any time window which makes them suitable for learning in
non-stationary environments. These algorithms falls into the category of adaptive / strongly adaptive regret
minimization algorithms. Examples of such methods include (Hazan & Seshadhri, 2007; Daniely et al., 2015;
Adamskiy et al., 2016; Jun et al., 2017; Cutkosky, 2020; Zhang et al., 2021). We refer the readers to Baby &
Wang (2021) and references therein for a more inclusive survey on dynamic regret and strongly adaptive
algorithms.

2 Notations and Problem Setup
In this section, we specify necessary mathematical symbols and notations and define functions for algorithm
design and regret analysis. We also present three examples to illustrate the concept of proper learning in
contextual pricing.

2.1 Symbols and Notations.
The pricing process consists of T rounds. xt, θ∗

t ∈ Rd, yt ∈ R, vt ∈ R+ and Nt ∈ R denote the feature
vector, the customer’s valuation, the seller’s price and the noise at time t, sequentially. At each round, we
receive a payoff (reward) rt = vt · 1t, where the binary variable 1t indicates the customer’s decision, i.e.,
1t = 1(vt ≤ yt).

2.2 Technical Assumptions
Denote a norm-bounded domain family DB

p = {θ ∈ Rd, ∥θ∥p ≤ B}. We firstly present assumptions on domain
constraints of xt and θ∗

t : Assume xt ∈ Dx where Dx ⊆ D1
2, and θ∗

t ∈ Dt where every Dt ⊆ DB
2 ⊂ DB

∞ is known
to us before each round t.1 With these assumptions, we know that |x⊤

t θ| ≤ B, ∀θ ∈ DB
2 , t = 1, 2, . . . , T . We

assume the expected valuation x⊤
t θ∗

t ≥ 0, t = 1, 2, . . . , T . For the noise Nt, we make the following assumption:
The noise Nt is independently and identically sampled from a fixed distribution D whose CDF is F . Assume
that F ∈ C2 is strictly increasing and that F and (1−F ) are strictly log-concave. Also assume that f and f ′

are bounded, and denote Bf := supω∈R f(ω), Bf ′ := supω∈R |f ′(ω)| as two constants.

2.3 Functions and Key Quantities
Greedily Pricing. Here we adopt two functions defined in Xu & Wang (2021) and also make use
of their properties. Firstly, we introduce an expected reward function g(v, u) := E[rt|vt = v, x⊤

t θ∗ =

1Here we want the customers’ valuations to be bounded. Equivalently, we may also assume that Dx ⊆ DB1
2 and Dt ⊆ DB/B1

2 .
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u] = v · (1 − F (v − u)) that is unimodal w.r.t. v. Secondly, we introduce a greedily pricing function
J(u) := argmaxv g(v, u). J(u) has two important properties: On the one hand, J(u) is strictly monotonically
increasing, with J ′(u) ∈ (0, 1). Therefore, J(u) and J−1(v) are bijections, ∀u ∈ R, v > 0. Secondly, we have
∥∇θJ(x⊤θ)∥2 = |J ′(x⊤θ)| · ∥x∥2 ≤ 1, which guarantees a low price-changing rate while modifying parameter
θ.

Restrictions on Actions/Parametric Strategies. When we take an action by presenting a price vt,
there always exists an θt ∈ Rd such that x⊤

t θt = J−1(vt). Therefore, at each round t, we may firstly take a
parametric strategy θt (which is also an estimate of θ∗

t ) and then propose a price vt = J(x⊤
t θt) without losing

generality. In the following part, we will restrict the strategy θt to be taken within a close and convex set Dt

at each time t, and we will explain the motivation of the restrictions in Section 2.4.

Negative Log-likelihood. We define

ℓt(θ) = −1t · log
(
1− F (vt − x⊤

t θ)
)
− (1− 1t) log

(
F (vt − x⊤

t θ)
)

(2)

as a negative log-likelihood function at round t. Also, we define an expected log-likelihood function Lt :=
ENt [ℓt(θ)|xt, θ∗

t ]. For the simplicity of notations in the following sections, we denote ht(θ) := ∂ℓt(θ)
∂x⊤

t θ
∈ R, and

we show a property of ht(θ):

Lemma 2.1. For θ ∈ DB
2 , there exist constants 0 < hmin ≤ hmax < +∞ such that

hmax = sup
θ∈DB

2

|ht(θ)|, hmin = inf
θ∈DB

2

|ht(θ)|,∀t = 1, 2, . . . , T.

We prove this by noticing that h(θ) is continuous and DB
2 is close, and the details are in Appendix B.1. With

this lemma, we may know that ℓt(θ) is Lipschitz (see Lemma 3.8).

Dynamic Regret. Finally, we define the cumulative dynamic regret:

RegT =
T∑

t=1
g(J(x⊤

t θ∗
t ), x⊤

t θ∗
t )− g(vt, x⊤

t θ∗
t ). (3)

We usually measure the regret as a function of T, d and the total variation CT :=
∑T −1

t=1 ∥θ∗
t − θ∗

t+1∥1.

2.4 Examples
Here we present three examples where the nature requires the strategies to lie in a “safe domain”, regarding
risk-taking, legal or consistency concerns.

Risk Control Adopting strategies outside a pre-defined and protected decision set can be very risky in
general. Concerning our contextual pricing problem, an extremely low price would lead to significant loss of
profit. Therefore, we have to set a lower pricing bar for each item. At each time t, suppose the lower bar is
ct > 0, and therefore our parametric strategy θt should satisfy ct ≤ J(x⊤

t θt). Since J(u) is monotonically
increasing, we have x⊤

t θt ≥ J−1(ct). By intersecting {θ ∈ Rd|x⊤
t θ ≥ J−1(ct)} with the L2-norm ball DB

2 , we
get a convex and compact set Dt, in which any parametric strategy θ satisfies the norm bound and will lead
to a price not less than ct given the J(x⊤

t θ) greedy pricing policy.

Legal Concern There exist laws or regulations regarding the highest price of some specific products.
For each item with feature xt, suppose that we cannot set a price exceeding ct > 0. Equivalently, the
parametric strategy θt we take must satisfy vt = J(x⊤

t θt) ≤ ct. Since J(u) is monotonically increasing, this
is further equivalent to x⊤

t θt ≤ J−1(ct). Therefore, the restricted strategy space Dt is the intersection of
{θ|x⊤

t θ ≤ J−1(ct)} with the L2-norm ball DB
2 , which is a convex and compact set. Any parametric strategy

falling out of Dt would lead to either vt > ct or ∥θ∥ > B.

Price Consistency It is important for the seller to be consistent on setting prices, or otherwise it might cause
pricing discrimination. Specifically, if two identical items with feature x occur at time t and t + 1, then their
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Algorithm 1 Proper Dynamic Regret minimization (ProDR)
1: Input: Base algorithm A, barrier multiplier G′ > 0, exp-concavity factor β.
2: for t = 1, 2, . . . , T : do
3: Get iterate θ̃t from A.
4: Feature xt and proper domain Dt are revealed
5: Output θ̂t = argminθ∈Dt

|x⊤
t (θ − θ̃t)|.

6: Loss ℓt is revealed.
7: Construct ℓ̂t(θ) as in Eq. (4) and set

ft(θ) = ℓ̂t(θ) + G′ · St(θ),

where St(θ) = minη∈Dt
|∇ℓ̂t(θ̂t)⊤(η − θ)|;

8: Send ft(θ) to A as loss at time t.
9: end for

prices must be close to each other. In other words, we requires |J(x⊤θt)− J(x⊤θt+1)| ≤ C, ∀x ∈ Dx ⊂ D1
2 for

some constant C > 0. For each x ∈ Dx, we may solve it and get

J−1(x⊤θt − C) ≤ x⊤θt+1 ≤ J−1(C + J(x⊤θt)).

Denote this set as St(x), and we have Dt+1 ⊆ ∩x∈Dx
St(x). Since θt ∈ St(x),∀x, the intersection is non-

empty.

3 Main Results
In this section, we present and analyse our algorithms. In Section 3.1, we first study the more general problem
of universal dynamic regret (Eq.(1)) minimization in a proper OCO setting. Results of Section 3.1 will be
applied in Section 3.2 to derive an optimal algorithm for the non-stationary pricing problem. All omitted
proofs in this section are deferred to Appendix B.

3.1 Dynamic Regret of ProDR
In this section, we study the Proper Dynamic Regret minimization (ProDR) algorithm (Algorithm 1). We
consider the protocol of proper OCO with co-variates introduced in Section 1.

The goal of this section is to control the universal dynamic regret as defined in Eq.(1). We start by listing
out the assumptions we made.

A1 A constant B > 0 is known such that maxθ∈Dt ∥θ∥∞ ≤ B for all t ∈ [n].

A2 The losses ℓt obey ∥∇ℓt(θ)∥2 ≤ G for all t ∈ [n] and θ ∈ Dt (recall that Dt ⊆ DB
2 from Section 2.2).

A3 The losses are α exp-concave. i.e ℓt(y) ≥ ℓt(x) +∇ℓt(x)⊤(y − x) + α
2
(
ℓt(x)⊤(y − x)

)2, for α > 0 and for
all x, y ∈ DB

2 .

Assumption A1 puts a relatively mild constraint that a box enclosing all the decision sets is known ahead
of time. Lipschitzness assumptions like A2 are standard in online learning. Assumption A3 states that the
losses ℓt exhibits a strong curvature in the direction of its gradients (see for example Hazan et al. (2007)).
We will exploit this curvature to derive fast regret rates.

Qualitative description of ProDR. The base algorithm A in ProDR is expected to optimally control the
dynamic regret under exp-concave losses and when the decision set is a box: DB

∞ = {x ∈ Rd : ∥x∥∞ ≤ B},
where B is as in Assumption A1. The idea is to perform a black-box reduction that can convert the base
algorithm A to an algorithm that attains good dynamic regret guarantee on the domains Dt. Though similar
ideas have been already explored in Cutkosky & Orabona (2018), our way of constructing such reductions for
the current problem is new and interesting in its own right in the context of exp-concave online learning. Next,
we expand upon this matter highlighting the differences from Cutkosky & Orabona (2018). We construct
losses ft in Line 7 of ProDR where the St(θ) term acts as a regularizer that penalizes A for predicting points
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outside Dt. We would like the losses ft to be exp-concave as the base algorithm A expects. However, a direct
application of the techniques in Cutkosky & Orabona (2018) does not satisfy this property. We address this
issue by carefully constructing ft as in Line 7 of Algorithm 1 such that: 1) gradients of both ℓ̂t(θ) and St(θ)
lie in the span of co-variate xt and 2) ℓ̂t(θ) is exp-concave, meaning that it exhibits strong curvature along
the direction of xt. Now, 1 and 2 together implies that the surrogate losses ft still remains exp-concave as it
exhibits strong curvature along the direction of its gradient (which is spanned by xt). The particular choice
of ℓ̂t(θ) was found to be crucial in preventing the exp-concavity factor of losses ft from collapsing to zero.
We will show that the dynamic regret of ProDR w.r.t. losses ℓ̂t is upper bounded by the dynamic regret of
the base algorithm A wrt losses ft which is well controlled.

We next describe the dynamic regret guarantees of Algorithm 1. We inherit all the notations used in the
algorithm description.

Theorem 3.1. Let β = min{α/2, 1/(8GB
√

d)} and γ = 1
4
(

2GB
√

dβ+1/(2
√

β)
)2 and G′ = 1 + 2GBβ

√
d. Let

A in ProDR algorithm be FLH-ONS (Fig.1 in Appendix A) instantiated with parameters ζ = 2γ/25, G = GG′

and ϕ = B. Then ProDR (Algorithm 1) satisfes
T∑

t=1
ℓt(θ̂t)− ℓt(wt) = Õ

(
d3(T 1/3C

2/3
T ∨ 1)

)
,

where CT :=
∑T

t=2 ∥wt − wt−1∥1 with wt ∈ Dt. a ∨ b := max{a, b} and Õ hides dependence of constants
G, B, α and poly-logarithmic factors of T .

Remark 3.2 (Adaptivity to CT ). ProDR algorithm adapts optimally to the path variational CT of the
comparator sequence which may not be known ahead of time.

Proof. Due to the α exp-concavity of losses ℓt over the domain DB
2 and β ≤ α

2 we have that:

ℓt(θ) ≥ ℓt(θ̂t) +∇ℓt(θ̂t)⊤(θ − θ̂t) + β
(
∇ℓt(θ̂t))⊤(θ − θ̂t)

)2
,

for any θ ∈ DB
2 . Hence following Hazan et al. (2007), we consider the linear-regression-type surrogate losses:

ℓ̂t(θ) :=
(
∇ℓt(θ̂t)⊤(θ − θ̂t)

√
β + 1

2
√

β

)2

. (4)

Hence for any θ ∈ DB
2 we have that

ℓt(θ̂t)− ℓt(θ) ≤ 1
4β
− ℓ̂t(θ) = ℓ̂t(θ̂t)− ℓ̂t(θ). (5)

where we used the fact that ℓ̂t(θ̂t) = 1
4β .

Given that St(θ∗
t ) = St(θ̂t) = 0 since θ∗

t , θ̂t ∈ Dt, we have

ft(θ∗
t ) = ℓ̂t(θ∗

t ), ft(θ̂t) = ℓ̂t(θ̂t). (6)

Let us denote ∇ℓt(θ) = ht(θ)xt where ht(θ) = g′
t(x⊤

t θ). Now, according to the definition of St(θ) and θ̂t, we
have:

ft(θ̃t) =ℓ̂t(θ̃t) + G′ · St(θ̃t)
=ℓ̂t(θ̃t) + G′ · min

η∈Dt

|∇ℓt(θ̂t)⊤(η − θ̃t)|

=ℓ̂t(θ̃t) + G′ · min
η∈Dt

|ht(θ̂t)||x⊤
t (η − θ̃t)|

=ℓ̂t(θ̃t) + G′ · |ht(θ̂t)||x⊤
t (θ̂t − θ̃t)|

=ℓ̂t(θ̃t) + G′ · |∇ℓt(θ̂t)⊤(θ̂t − θ̃t)|.
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Next we proceed to upper bound the regret w.r.t. losses l̂t by the regret w.r.t. losses ft. We need the following
Lemma.

Lemma 3.3. Under the assumptions of Theorem 3.1, we have that

|ℓ̂t(θ)− ℓ̂t(θ̂t)| ≤ G′|∇ℓt(θ̂t)⊤(θ − θ̂t)|,

for any θ ∈ DB
∞ where G′ := (1 + 2GBβ

√
d).

The proof is shown in Appendix B.2. With this lemma, we have

ℓ̂t(θ̂t) ≤ ℓ̂t(θ̃t) + G′ · |∇ℓt(θ̂t)⊤(θ̂t − θ̃t)| = ft(θ̃t).

Combining the above inequality with Eq.(6) we obtain

ℓ̂t(θ̂t)− ℓ̂t(θ∗
t ) ≤ ft(θ̃t)− ft(θ∗

t ).

Now using Eq.(5) along with the previous relation yields that
T∑

t=1
ℓt(θ̂t)− ℓt(θ∗

t ) ≤
T∑

t=1
ft(θ̃t)− ft(θ∗

t ).

The following lemma specifies how to compute the sub-gradient of the regularizer term St(θ) in Line 7 of
Algorithm 1. Further it highlights an important property that a sub-gradient of St(θ) lies in the span of
covariate xt (recall that ∇ℓt(θ) = h(θ)xt). This is also useful for proving the joint exp-concavity of the losses
ft.

Lemma 3.4. The function St(θ) is convex across Rd. Denote ηt(θ) := argminη |x⊤
t (η − θ)|. When

∇ℓt(θ̂t)⊤(ηt(θ)− θ) ̸= 0, we have:

∇St(θ) =
{
∇ℓt(θ̂t), if ∇ℓt(θ̂t)⊤(ηt(θ)− θ) < 0
−∇ℓt(θ̂t), if ∇ℓt(θ̂t)⊤(ηt(θ)− θ) > 0.

When ∇ℓt(θ̂t)⊤(ηt(θ)− θ) = 0, we have 0 ∈ ∂St(θ).

The proof of Lemma 3.4 is in Appendix B.3. In the next lemma, we show that the losses ft remain exp-concave
with appropriate exp-concavity factor bounded away from zero. This is the key lemma that helps to control
the regret of ProDR.

Lemma 3.5. Define γ := 1
4
(

2GB
√

dβ+1/(2
√

β)
)2 . We have that the surrogate losses ft are 2γ/25 exp-concave

and 2GG′ Lipschitz in L2 norm across DB
∞.

As is stated earlier in this section, the intuition of this lemma comes from two facts: (1) both ∇ℓ̂t(θ) and
∇St(θ) are in the span of xt, and (2) ℓ̂t(θ) is exp-concave. As a result, the strong curvature of ℓ̂t(θ) along
the xt direction “absorbs” the plain convexity of St(θ) and therefore guarantees the exp-concavity of ft(θ).
We defer the detailed proof to Appendix B.4. Hence from Baby & Wang (2022) (Theorem 10), FLH-ONS
algorithm (Fig.1 in Appendix A) run with parameters ζ = 2γ/25, G = GG′ and ϕ = B can be used to control

T∑
t=1

ft(θ̃t) − ft(θ∗
t ) =Õ

(
d2(G2(G′)2B2γd + G2(G′)2B2 + 1

γ
)(T 1/3C

2/3
T ∨ 1)

)
=Õ

(
d3(T 1/3C

2/3
T ∨ 1)

)
,

where the last line is got by plugging in the values of γ and G′ and upper bounding further.
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Algorithm 2 Proper Dynamic Regret Pricing (PDRP)
1: Input: ProDR algorithm A instantiated as in Theorem 3.1.
2: for t = 1, 2, . . . , T : do
3: Feature xt and proper domain Dt are revealed and send to A.
4: Get θ̂t ∈ Dt from A.
5: Seller proposes vt = J(x⊤

t θ̂t) and receive 1t.
6: Send loss ℓt(θ) defined in Eq.(2) to A.
7: end for

3.2 Dynamic regret of PDRP
In this section, we present our main algorithm for controlling the dynamic regret on contextual pricing
problem, the Proper Dynamic Regret Pricing (PDRP) (Algorithm 2).

Qualitative description of PDRP. Xu & Wang (2021) observes that the pricing problem can be reduced
to the setting of proper OCO with co-variates and exp-concave losses. This observation when armed with the
ProDR algorithm naturally lends itself to the algorithm PDRP for controlling dynamic regret of the pricing
problem.

We are now ready to present regret guarantees for the non-stationary pricing problem.

Theorem 3.6. Let β = min{Cdown/Cexp, 1/(8GB
√

d)} and γ = 1
4
(

2GB
√

dβ+1/(2
√

β)
)2 and G′ = 1 +

GB
√

dCdown/Cexp. Then PDRP (Algorithm 2) obeys RegT = Õ(d3(T 1
3 C

2
3
T ∨ 1)), where RegT is as de-

fined in Eq.(3), Õ hides poly-logarithmic factors of T and (a ∨ b) = max{a, b}.

Proof. We start with the lemmas that help us leverage the OCO framework of Section 3.1.

Lemma 3.7 (Xu & Wang (2021) Lemma 5 & 6). For θ ∈ DB
2 , we have:

g(J(x⊤
t θ∗

t ), x⊤
t θ∗

t )− g(J(x⊤
t θ), x⊤

t θ∗
t ) ≤ 2C

Cdown
(E[ℓt(θ)− ℓt(θ∗

t )]) ,

where ℓt is defined in Eq.(2), C = 2Bf + (B + J(0))Bf ′ and

Cdown := inf
ω∈[−B,B+J(0)]

min
{

d2 log(1− F (ω))
dω2 ,

d2 log(F (ω))
dω2

}
> 0.

So we have

RegT ≤
2C

Cdown
E[ℓt(θ̂t)− ℓt(θ∗

t )]. (7)

Next, we record the curvature and smoothness properties of losses ℓt.

Lemma 3.8. Let G = hmax defined in Lemma 2.1. For θ ∈ Dt, we have: (1) ℓt(θ) is G-Lipschitz in ∥ · ∥2

norm, and (2) ℓt(θ) Cdown

Cexp
-exp-concave. Here Cexp := supω∈[−B,B+J(0)] max

{
f(ω)2

F (ω)2 , f(ω)2

(1−F (ω))2

}
and Cdown

is defined in Lemma 3.7 .

This lemma is derived from Xu & Wang (2021) Lemma 7, and we defer the proof to Appendix B.5. The
lemma above implies that the losses satisfy Assumption A2 in Section 3.1. Further they satisfy Assumption
A3 with exp-concavity factor of Cdown/Cexp. So we can use the ProDR algorithm (Algorithm 1) to control
the dynamic regret wrt losses ℓt. Hence continuing from Eq.(7), we apply Theorem 3.1 to obtain

RegT ≤ Õ
(

d3(T 1/3C
2/3
T ∨ 1)

)
.

9
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This completes the proof of the Theorem.

Remark 3.9. Although noise distributions are known as we assumed, the coefficient of our regret upper bound
depends highly on the distribution. In specific, the coefficient gets larger as the noise becomes less significant,
which is counter-intuitive. Please refer to Xu & Wang (2021) for a detailed analysis on Gaussian noises.

3.3 Lower Bound on Dynamic Pricing
So far, we have developed a ProDR algorithm that is suitable for domain-constraint optimization of generalized
linear model, and have construct a PDRP algorithm to solve the linear contextual pricing problem where
PDRP achieves a Õ(d3(T 1

3 C
2
3
T ∨1)) dynamic regret. This upper regret bound is optimal for online exp-concave

optimization as is shown in Baby & Wang (2021), but is it still optimal for our feature-based dynamic pricing
setting in specific? The answer is Yes. This dynamic regret is near-optimal up to d and log T factors, and
here we present the following theorem.

Theorem 3.10 (Lower dynamic regret bound). For the contextual pricing problem setting adopted in this
paper, when d = 1, any algorithm has to suffer an Ω(T 1

3 C
2
3
T ∨ 1) expected dynamic regret.

With this theorem, we may claim that our PDRP algorithm is near-optimal. We here show a proof sketch
and defer the full proof to Appendix B.6.

Proof Sketch. The proof is developed in three steps: Firstly, we construct a hypothesis set Θ in which there
are N different {θ∗

t }T
t=1 series whose total variations are upper bounded by CT . For any pair of two different

series {θ∗
t }T

t=1’s in Θ, they are identical for T/3 out of T rounds in total, and are different by some small δ
for the rest 2T/3 rounds. Secondly, we show that their corresponding feedback distributions are also “similar”
to each other by calculating their KL-divergence. Therefore, according to Fano’s Inequality, any algorithm
can hardly distinguish among these distributions. Finally, we show that a failure of correctly distinguish the
underlying distribution (i.e., the real {θ∗

t }T
t=1 series) will result in an Ω(T 1

3 C
2
3
T ∨ 1) regret.

3.4 Extension to Unknown Noise Distribution
In this part, we consider the setting where the noise distribution D are fully agnostic. The only two facts
we know are (1) Nt’s are independently and identically drawn from the same distribution D, and (2) Nt’s
are absolutely bounded by constants2. While in a time-invariant setting, i.e., θ∗

t = θ∗ for all t, there exists
a D2-EXP4 algorithm presented in Xu & Wang (2022) that uses an EXP-4 bandit algorithm as a base
learner and achieves a Õ(T 3

4 + d
1
2 T

5
8 ) static regret. When it comes to our non-stationary setting, we may

generalize D2-EXP4 by substituting the EXP-4 learner with an ADA-ILTCB+ algorithm from Chen et al.
(2019) and form a D2-ADA algorithm (See Appendix C.1). The regret of D2-ADA is claimed as the following
theorem:

Theorem 3.11. When the noise distribution D are fully agnostic but constantly bounded, the D2-ADA
algorithm (Algorithm 3) attains a Õ(T 4

5 (C
1
3
T ∨ 1) + d

1
2 T

3
5 + d

1
3 T

11
15 C

1
3
T ) dynamic regret with high probability.

We defer the detailed proof to Appendix C.1.

Proof Sketch. We adopt the same discretization as Xu & Wang (2022) does: Discretize the price space
and the noise CDF into small intervals of length γ, and the parameter ( θ) space into small grids of size
( γ√

d
)d, where γ is a discretizer to be specified later. Therefore, there are totally |Π| = O((

√
d

γ )d × 2
3
γ )

policies and K = O( 1
γ ) actions to be input to the bandit. Meanwhile, the cumulative discretization error is

Error = O(Tγ). Therefore, we haveRegT = Regbandits(K, |Π|, T )+Error. Now we cite the lemma regarding
the regret of ADA-ILTCB+:

Lemma 3.12 (Chen et al. (2019), Theorem 2). ADA-ILTCB+ guarantees with high probability:

RegT = Õ
(

min{
√

K log |Π|ST ,
√

KT log |Π|+ (K log |Π|) 1
3 ∆

1
3
T T

2
3 }
)

. (8)

2Or otherwise the noise may → +∞ and we cannot avoid a linear regret.
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Here S := 1 +
∑T −1

t=1 1(Dt ̸= Dt+1) is a number of switches and ∆T :=
∑T −1

t=1 ∥Dt − Dt+1∥T V is the
distributional total variation, where Dt(x, r) is the probabilistic distribution of (context, reward) pairs.

Since we do not make any assumption on distributional switching, we may let S = T . Now, let γ = T − 1
5

and plug the values of K and |Π| into Equation (8) and we get the bandit-side dynamic regret to be
Õ(T 7

10 + d
1
2 T

3
5 + (T 4

5 + d
1
3 T

11
15 )∆

1
3
T ). Also, add the discretization error Error = O(Tγ) = O(T 4

5 ), and as
a result the total dynamic regret is O(T 4

5 (C
1
3
T ∨ 1) + d

1
2 T

3
5 + d

1
3 T

11
15 ∆

1
3
T ). Finally, we upper bound the ∆T

according to the following lemma:

Lemma 3.13. For the linear valuation model yt = x⊤
t θ∗

t + Nt and the binary reward rt = vt · 1(vt ≤ yt), we
have ∆t = O(CT ).

According to Lemma 3.13, we may replace ∆T with CT in the regret rate, and this holds our Theorem
3.11.

4 Conclusion
In this work, we studied the non-stationary contextual pricing problem under safety constraints. We first
presented the ProDR algorithm for minimizing universal dynamic regret in the framework of proper OCO
with co-variates and exp-concave losses. This contribution could be of independent interest in the context of
non-stationary online learning. As a concrete application, we constructed our pricing algorithm, PDRP, by
making use of ProDR as the base learner. We showed that PDRP attains a Õ(d3(T 1

3 C
2
3
T ∨ 1)) dynamic regret

in our pricing problem setting, and we proved that this rate is optimal (modulo dependencies on d and log T ).
Finally, we generalized the problem setting to agnostic noise distributions, and presented a bandit-based
D2-ADA algorithm with provable dynamic regret guarantees under high probability.
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A Preliminaries
For the sake of completeness, we recall the description of Follow-the-Leading-History (FLH) algorithm from
Hazan & Seshadhri (2007).

FLH: inputs - Learning rate ζ, G, ϕ > 0 and T ONS base learners E1, . . . , ET

initialized with parameters G = G, D = 2ϕ
√

d, α = ζ and decision set D = {θ ∈
Rd : ∥θ∥∞ ≤ ϕ}. The learner Et starts operating from time t.

1. For each t, vt = (v(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initialize

v
(1)
1 = 1.

2. In round t, set ∀j ≤ t, θj
t ← Ej(t) (the prediction of the jth bas learner

at time t). Play θalg
t =

∑t
j=1 v

(j)
t θ

(j)
t .

3. After receiving ft, set v̂
(t+1)
t+1 = 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 = v

(i)
t e−ζft(θ

(i)
t )∑t

j=1 v
(j)
t e−ζft(θ

(j)
t )

4. Addition step - Set v
(t+1)
t+1 to 1/(t + 1) and for i ̸= t + 1:

v
(i)
t+1 = (1− (t + 1)−1)v̂(i)

t+1

Figure 1: FLH algorithm

Next, we describe Online Newton Step (ONS) algorithm from Hazan et al. (2007).

ONS: inputs - exp-concavity factor α and G, D > 0. Decision set D.
1. At round 1, predict 0.
2. Let β = 1

2 min{ 1
4GD , α}. At iteration t > 1 predict:

wt ∈ argmin
θ∈D

∥wt−1 −
1
β

A−1
t−1∇t−1 − θ∥At−1 ,

where ∇τ = ∇fτ (θτ ), At = Id

β2D2 +
∑t

i=1∇i∇⊤
i .

Figure 2: ONS algorithm

B Detailed Proof
B.1 Proof of Lemma 2.1
Proof. To begin with, we know that

ht(θ) = −1t ·
f(ω)

1− F (ω) + (1− 1t) ·
f(ω)
F (ω) ,

where ω = vt−x⊤
t θ. Since ∃θt ∈ Dt such that vt = J(x⊤

t θt), given that J ′(u) ∈ (0, 1) (Xu & Wang, 2021), we
know that ω ∈ [J(−B)−B, J(B)+B] is bounded in a close interval. Since we have assumed that f(ω) > 0,∀ω ∈
R, we know that fmin = infω∈[J(−B)−B,J(B)+B] f(ω) > 0 and F (ω) ∈ [F (J(−B)−B), F (J(B) + B)] ⊂ (0, 1).
Remember that we denote Bf := supω∈R f(ω) < +∞. As a result, we have

0 < fmin ≤
f(ω)

1− F (ω) ≤
Bf

1− F (J(B) + B) < +∞

0 < fmin ≤
f(ω)
F (ω) ≤

Bf

F (J(−B)−B) < +∞.

13
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Since ht(θ) = f(ω)
1−F (ω) for 1t = 1 or h(t) = f(ω)

F (ω) for 1t = 0, we know that |ht(θ)| ∈
[fmin,

Bf

min{1−F (J(B)+B),F (J(−B)−B)} ]. Let hmax = Bf

min{1−F (J(B)+B),F (J(−B)−B)} and hmin = fmin, and the
lemma is therefore proved.

B.2 Proof of Lemma 3.3
Proof. We have that for any θ ∈ DB

∞,

|ℓ̂t(θ)− ℓ̂t(θ̂t)| =
∣∣∣1/
√

β +
√

β · ∇ℓt(θ̂t)⊤(θ − θ̂t)
∣∣∣ · ∣∣∣√β∇ℓt(θ̂t)⊤(θ − θ̂t)

∣∣∣
≤
(

1 + 2GBβ
√

d
)
|∇ℓt(θ̂t)⊤(θ − θ̂t)|,

where in the last line we applied triangle inequality and the facts that |∇ℓt(θ̂t)⊤(θ − θ̂t)| ≤ G∥θ − θ̂t∥2 with
∥θ − θ̂t∥2 ≤ 2B

√
d.

Putting G′ = 1 + 2GBβ
√

d completes the lemma.

B.3 Proof of Lemma 3.4
Proof. For the simplicity of notation, we denote ∇t := ∇ℓt(θ̂t), and we have: St(θ) = minx |∇⊤

t (x− θ)|. Since
St(θ) is convex in Rd, we have:

St(θ2) ≥ St(θ1)+ < ∇St(θ1), θ2 − θ1 >,∀θ1, θ2 ∈ DB
∞.

Now we conduct an orthogonal decomposition: ∇St(θ1) = µ1∇t +∇⊥
t , where ∇⊤

t ∇⊥
t = 0. Let θ3 = θ2 +µ2∇⊥

t ,
and we have |∇⊤

t (x− θ2)| = |∇⊤
t (x− θ3)|,∀x ∈ Rd. In other words, we have St(θ2) = St(θ3) and therefore

we have:

St(θ2) = St(θ3) ≥ St(θ1)+ < ∇St(θ1), θ3 − θ1 >

= St(θ1)+ < µ1∇t +∇⊥
t , θ2 + µ2∇⊥

t − θ1 >

= St(θ1)+ < ∇St(θ1), θ2 − θ1 > +µ2 < ∇⊥
t ,∇⊥

t >,∀θ2 ∈ Rd, µ2 ∈ R

In other words, µ2∥∇⊥
t ∥2

2 ≤ St(θ2)− St(θ1)− < ∇St(θ1), θ2 − θ1 >. Denote η1 = argminx |∇⊤
t (x− θ1)|, and

η2 = argminx |∇⊤
t (x− θ2)|. Notice that

St(θ2)− St(θ1) =|∇⊤
t (η2 − θ2)| − |∇⊤

t (η1 − θ1)|
≤|∇⊤

t (η1 − θ2)| − |∇⊤
t (η1 − θ1)|

≤|∇⊤
t (θ1 − θ2)|

≤∥∇t∥2 · ∥θ1 − θ2∥2

≤G · ∥θ1 − θ2∥2.

(9)

Here the first inequality comes from the definition of η2, the second inequality is an application of the
triangular inequality, the third inequality is derived from Cauchy’s Inequality, and the last inequality is from
assumption A2 on the Lipschitzness of ℓt(θ). Therefore, St(θ) is G-Lipschitz as well, and we have:

µ2∥∇⊥
t ∥2

2 ≤ St(θ2)− St(θ1)− < ∇St(θ1), θ2 − θ1 >

≤ 2G∥θ2 − θ1∥2.

This holds for any θ1, θ2 ∈ DB
∞. However, we may fix θ1 and θ2 while also let µ2 → +∞ since it holds for any

µ2 ∈ R. If ∥∇⊥
t ∥2 ̸= 0 then it will fall into a contradiction. Therefore, we know that ∇⊥

t = 0 and ∇St(θ) is
always in the same direction of ∇t.
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Without losing generality, denote ∇St(θ1) := λ · ∇t. In the following, we will prove that λ = ±1 or 0. From
Equation (9) line 3, we know that St(θ2)− St(θ1) ≤ |∇⊤

t (θ1 − θ2)|. Combined with the convexity of St(θ),
we have:

|∇⊤
t (θ1 − θ2)| ≥St(θ2)− St(θ1)

≥∇St(θ1)⊤(θ2 − θ1)
=λ · ∇⊤

t (θ2 − θ1).
(10)

Notice that we can choose arbitrary θ2 without changing λ, we may let θ2 = 0 and θ2 = 2θ1 in Equation (10):

±λ · ∇⊤
t θ1 ≤ |∇⊤

t θ1|

If ∇⊤
t θ1 ≠ 0, then we have λ ∈ [−1, 1]. Otherwise, we know from Equation (10) that |∇⊤

t θ2| ≥ λ · ∇⊤
t θ2,∀θ2,

and similarly we have λ ∈ [−1, 1]. Now we denote θ4 := θ1+η1
2 , and we have:

< ∇St(θ1), θ4 − θ1 > +St(θ1) ≤ St(θ4) (11)

from the convexity of St. And we also have:

St(θ4) = min
x
|∇⊤

t (x− θ4)

≤ |∇⊤
t (η1 − θ4)|

= |∇⊤
t

θ1 − η1

2 |

= 1
2St(θ1)

= |∇⊤
t (θ1 − θ4)|

= St(θ1)− |∇⊤(θ1 − θ4)|.

(12)

Combine Equation (11) and (12), we have:

< ∇St(θ1), θ4 − θ1 >≤ St(θ4)− St(θ1) = −|∇⊤
t (θ1 − θ4)| (13)

Plug in ∇St(θ1) = λ∇t to Equation (13), and we have:

λ · ∇⊤
t (θ4 − θ1) ≤ −|∇⊤

t (θ1 − θ4)|. (14)

According to Equation (14), if ∇⊤
t (θ4 − θ1) > 0, then we have λ ≤ −1; if ∇⊤

t (θ4 − θ1) < 0, then we have
λ ≥ 1. Since we already know that λ ∈ [−1, 1], then for the two case we should have λ = −1 or λ = 1.

Finally, what if ∇⊤
t (θ4− θ1) = 0? In this case, it means that ∇⊤

t (η1− θ1)/2 = 0. Since η1 = argminx |∇⊤
t (x−

θ1)|, we know that St(θ1) = 0 at this time. Since St(θ) ≥ 0,∀θ ∈ Rd, we know that St(θ) ≥ St(θ1)+0⊤(θ−θ1)
and as a result 0 ∈ ∂St(θ1). This in fact holds the lemma.

B.4 Proof of Lemma 3.5
Proof. We begin by noticing that ℓ̂t(θ) is exp-concave over DB

∞. To see this, note that by the triangular
inequality and Cauchy Schwatz,

|∇ℓt(θ̂t)⊤(θ − θ̂t)
√

β + 1/(2
√

β)| ≤ |∇ℓt(θ̂t)⊤(θ − θ̂t)|
√

β + 1/(2
√

β) ≤ 2GB
√

dβ + 1/(2
√

β),

where we used the fact that ∥∇ℓt(θ̂t)∥2 ≤ G by Assumption A2 and ∥θ − θ̂t∥2 ≤ 2B
√

d as θ ∈ DB
∞ and

θ̂t ∈ Dt ⊂ DB
∞.
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With γ as defined in the statement of the lemma, we have that the losses ℓ̂t(θ) are 2γ exp-concave over DB
∞.

(see Section 3.3 in Cesa-Bianchi & Lugosi (2006)).

Now we proceed to show that the losses ft(θ) are in-fact exp-concave with appropriate exp-concavity factor.

For the sake of brevity, let’s denote

∇ℓ̂t(u) = 2
√

β

(
∇ℓt(θ̂t)⊤(u− θ̂t)

√
β + 1

2
√

β

)
∇ℓt(θ̂t)

:= p(u)∇ℓt(θ̂t).

We have that for any u, v ∈ DB
∞,

ℓ̂t(v) ≥ ℓ̂t(u) + p(u)∇ℓt(θ̂t)⊤(v − u)

+ γ
(

p(u)∇ℓt(θ̂t)⊤(v − u)
)2

. (15)

Due to convexity, we have

St(v) ≥ St(u) + λ∇ℓt(θ̂t)⊤(v − u), (16)

for some λ ∈ {−1, 0, 1} as per Lemma 3.4.

Adding Eq.(15) and (16), we obtain

ft(v) ≥ ft(u) +∇ft(u)⊤(u− v)

+ γp(u)2
(
∇ℓt(θ̂t)⊤(v − u)

)
= ft(u) +∇ft(u)⊤(u− v)

+ γ

(
p(u)

λ + p(u)

)2 (
∇ft(u)⊤(v − u)

)
. (17)

Next, we proceed to obtain a lower bound on the exp-concavity factor. Note that

p(u) ≥ 2
√

β

(
−2GB

√
dβ + 1

2
√

β

)
≥ 2
√

β · 1
4
√

β
= 1

2

where the first inequality is via Cauchy Schwatz and the second inequality holds due to the fact that
β ≤ 1/(8GB

√
d) due to the setting in Theorem 3.1

Similarly we have that

|p(u) + λ| ≤ 4GBβ
√

d + 2 ≤ 5/2,

where in the last line we used β ≤ 1/(8GB
√

d).

Combining the last two displays, we have that

γ

(
p(u)

λ + p(u)

)2
≥ γ/25.

Applying this lower bound to Eq.(17) now yields the rxp-concavity of ft(θ) claimed in the lemma.

Next, we proceed to calculate the Lipschitz constant of ft. Since ∥∇ℓt(θ̂t)∥2 ≤ G, by Lemma 3.4 we conclude
that G′St(θ) is G′G Lipschitz in L2 norm across Rd. Now using Lemma 3.3 we conclude that the losses ft

are 2G′G are Lipschitz in L2 norm across DB
∞.
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B.5 Proof of Lemma 3.8
For the claim of Cdown

Cexp
-exp-concavity, it is exactly Lemma 7 of Xu & Wang (2021). Here we prove the other

claim on Lipschitzness.

Proof. Notice that ℓt(θ) is a continuous function. Therefore, for any θ1, θ2 ∈ Dt, there exists a θ3 =
ϵθ1 + (1− ϵ)θ2 for some ϵ ∈ [0, 1] such that

ℓt(θ1)− ℓt(θ2) = ∇ℓt(θ3)⊤(θ1 − θ2)
= ht(θ3)x⊤

t (θ1 − θ2)
≤ hmax∥xt∥2∥θ1 − θ2∥2

= hmax∥θ1 − θ2∥2

= G∥θ1 − θ2∥2

(18)

where hmax is defined in Appendix B.1. In Equation (18), the first equality is by Lagrange interpolation, the
second equality is by definition of ht(θ), the third inequality is by Cauchy’s Inequality, the fourth equality is
by the assumption that xt ∈ D1

2, and the last inequality is from the fact that hmax = G. Since Dt is convex,
we know that θ3 ∈ Dt. Therefore, the lemma is proven.

B.6 Lower Bound Proof (Proof of Theorem 3.10)

Here we present and prove the following theorem, which is stronger than we need to show a Ω(T 1
3 C

2
3
T ) lower

bound for CT > 1√
T

.

Theorem B.1. For a feature-based dynamic pricing problem with d = 1, xt = 1, Nt ∼i.i.d. N (0, 1), t =
1, 2, . . . , T and CT > 1√

T
, there exists a specific setting such that any algorithm A must suffer Ω(T 1

3 C
2
3
T )

expected regret even with yt observable.

Proof. To summarize the procedure of proof: Denote [n] := {1, 2, . . . , n} for any positive integer n. Define
θ0 = 1, θ1 = 1 + δ(T, CT ) where δ = 1

40 ( CT

T ) 1
3 is an additional amount. Then we construct a set S ⊂ {0, 1}T

consisting of randomly-sampled β(i) ∈ {0, 1}T , i = 1, 2, . . . , N that we will use to construct θ∗
t (i) series (each

i indicating a specific {θ∗
t } series) later. Afterward, we will show that the {θ∗

t (i)} and the {θ∗
t (j)} series are

hard to distinguish by any algorithm, and we will further show that a large enough regret caused by this
misspecification. In this way, we can prove an expected lower regret bound (where the expectation is also
taken over different {θ∗

t (i)}).

The process to sample each β(i) is as follows: We split [T ] uniformly into m = CT

4δ intervals, with each length
4T δ
CT

. Since δ = 1
40 (CT

T ) 1
3 and CT ≥ 1√

T
, we know that m ≥ 10. Denote these intervals as I1, I2, . . . , Im.

For any β(i) ∈ S, we construct it in a stochastic process: For each index interval Ik, k = 1, 2, . . . , m, we
generate a random variable Z

(i)
k ∼ Ber( 1

2 ) independently, and then let β
(i)
l = Z

(i)
k ,∀l ∈ Ik. Denote the

vector Z(i) = [Z(i)
1 , Z

(i)
2 , . . . , Z

(i)
m ]⊤ ∈ {0, 1}m, and we know that E[∥Z(i) − Z(j)∥1] = m

2 . Accordingly, we
have E[∥β(i) − β(j)∥1] = m

2 ·
4T δ
CT

= T
2 .

Therefore, according to Hoeffding’s inequality, we have:

Pr[|∥Z(i) − Z(j)∥1 −
m

2 | ≤
m

6 ] ≥1− 2 · e−
( m

6 )2

2m

⇔ Pr[|∥β(i) − β(j)∥1 −
T

2 | ≤
T

6 ] ≥1− 2 · e− m
72 ,∀i, j ∈ [N ].

(19)

By applying a union bound over all
(

N
2
)

pairs of i, j ∈ [N ], we have:

Pr[|∥β(i) − β(j)∥1 ≤
T

2 | ≤
T

6 ,∀i, j ∈ [N ]] ≥ 1−N2 · e− m
72 .
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Also, we know that Pr[β(i) ̸= β(j)] = Pr[Z(i) ̸= Z(j)] = 1− 1
2m for i ̸= j. By applying a union bound over all((N

2)
)

pairs of i, j, we have Pr[β(i) ̸= β(j)] ≥ 1− N2

2m+1 . Combining these two probability bounds, we know that
in this way we can find a satisfactory set S with probability at least Pr ≥ 1−N2 · (e− m

72 + 2−(m+1)). Let
N = e

m
200 (and therefore log N = m

200 = CT

800δ ), and then Pr ≥ 1−N2 · (e− m
72 + 2−(m+1)) ≥ 1− (e− m

300 + e− 3
5 m).

Since the total number of possible S (i.e., any set consisting N (repeatable) vectors β ∈ {0, 1}T ) is (2m)N

and we are uniformly sampling from this whole family, the expected total number of satisfactory S is at least
(2m)N · (1− (e− m

300 + e− 3
5 m)). Since m ≥ 10 as we showed above, we have (2m)N · (1− (e− m

300 + e− 3
5 m)) ≥

210×1 · (1− e− 1
30 − e−6) = 31.0325 > 1. As a result, there must exist at least one satisfactory S in the whole

possible set family, such that: (1) T
3 ≤ ∥β

(i) − β(j)∥1 ≤ 2T
3 , and (2) β(i) ≠ β(j),∀i ≠ j ∈ [N ]. We here pick

this satisfactory S and in the following we use it for further proof.

Now, for each β(i) ∈ S, we generate a sequence of parameter {θ∗
t (i)} according to β(i): For t = 1, 2, . . . , T , we

let θ∗
t (i) = 1 + δ · β(i)

t , i.e., if β(i) = 0, then θ∗
t (i) = θ0 = 1; if β(i) = 1, then θ∗

t (i) = 1 + δ. Therefore, we have
the following result:

TV({θ∗
t (i)}) ≤ m · δ = CT

4 < CT .

This is because ∥θ∗
t (i)− θ∗

t+1(i)∥ > 0 only if ∃k ∈ [m] s.t. t ∈ Ik, t + 1 ∈ Ik+1. As a result, the total variation
of this {θ∗

t (i)} satisfies the upper bound CT .

Now, let us consider the realized valuation sequence {yt}. For any i ∈ [N ], denote

y(i) := [x1(1 + β
(i)
1 δ) + N1, x2(1 + β

(i)
2 δ) + N2, . . . , xT (1 + β

(i)
T ) + NT ]⊤

Let us denote the distribution of y(i) as Pi, i = 1, 2, . . . , N . Recall that xt = 1 and Nt ∼ N (0, 1),∀t, and we
have Pi = [N (1 + β

(i)
1 δ, 1),N (1 + β

(i)
2 δ, 1), . . . ,N (1 + β

(i)
T δ)]⊤. Consider the difference between Pi and Pj

while fixing β(i) and β(i), and for any i, j ∈ [N ], i ̸= j we have:

KL[Pi||Pj ] =
T∑

t=1
KL[N (1 + β

(i)
t δ, 1)||N (1 + β(j)δ, 1)]

=
T∑

t=1

(β(i)
t − β

(j)
t )2δ2

2

=δ2

2 · ∥β
(i) − β(j)∥2

2

=δ2

2 · ∥β
(i) − β(j)∥1.

(20)

Again, the KL-divergence is conditioning on β(i) and β(j). Here the first line is from the fact that
yt’s are independent for every t, the second line is by xt = 1, the third line is from the fact that
KL[N (µ1, σ1)||N (µ2, σ2)] = log σ2

σ1
+ σ2

1+(µ1−µ2)2

2σ2
2

− 1
2 , the fourth line is by calculation and the fifth line is

from that |β(i)
t − β

(j)
t | ∈ {0, 1}.

Here we introduce a Fano’s Inequality as the following proposition:

Proposition B.2 (Fano’s Inequality). Let X1, X2, . . . , Xn ∼i.i.d. P where P ∈ {P1,P2, . . . ,PN} is a
distribution family. Let Ψ be any function of X1, X2, . . . , Xn taking values in {1, 2, . . . , N}. Let α =
maxj ̸=k KL(Pj ||Pk).3 Then

1
N

N∑
j=1

Pj(Ψ ̸= j) ≥ 1− nα + log 2
log N

.

According to Fano’s Inequality, for any function Ψ : RT → {1, 2, . . . , N}, we have:
3Usually it is denoted as β, but here we denote it as α for clarity, since we have already defined β(i) as vectors in S.
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inf
Ψ

sup
i

Pi(Ψ ̸= i) ≥ inf
Ψ

1
N

N∑
i=1

Pi(Ψ ̸= i) ≥ 1− nα + log 2
log N

≥ 1
2 −

nα

log N
. (21)

Here n = 1 since only one specific y(i) covers the whole time series and is only sampled once, and
α = maxi,j∈[N ],i̸=j KL[y(i)||y(j)] = maxi,j∈[N ],i̸=j

δ2

2 · ∥β
(i) − β(j)∥1 ≤ δ2T

3 is the upper bound of KL-
divergences on different distributions. Now we specify the function ΨA for any pricing algorithm A: At each
round t = 1, 2, . . . , T , suppose the algorithm A proposes a price vA

t . Define a vector w = [w1, w2, . . . , wT ]⊤

where wt = 1[vA
t ≥

J(θ0)+J(θ1)
2 ] is a Bool value. Then we let ΨA = argmini ∥w− β(i)∥1. Therefore, we have:

2 · ∥w− β(j)∥1 ≥∥β(ΨA) −w∥1 + ∥w− β(j)∥1

≥∥β(ΨA) − β(j)∥1,∀j ∈ [N ], j ̸= ΨA

≥T

6

Here the first inequality is from the optimality of ΨA, the second inequality is from the triangular inequality,
and the third inequality is from the Hoeffding bound in Equation (19). Therefore we know that if ΨA ≠ i
then we have ∥w− β(i)∥1 ≥ T

12 , which further leads to

T∑
t=1

(vA
t − J(xtθ

∗
t (i)))2 ≥

T∑
t=1

(1[wt = 1]1[β(i)
t = 0] + 1[wt = 0]1[β(i)

t = 1])(vA
t − J(xtθ

∗
t (i)))2

=
T∑

t=1
1[vA

t ≥
J(θ0) + J(θ1)

2 ]1[β(i)
t = 0](vA

t − J(θ0))2 + 1[vA
t <

J(θ0) + J(θ1)
2 ]1[β(i)

t = 1](J(θ1 − vA
t ))2

≥
T∑

t=1
1[|wt − β

(i)
t | = 1](J(θ1)− J(θ0)

2 )2

= ∥w− β(i)∥1(J(θ1)− J(θ0)
2 )2

≥ T

12 · (
J(θ0)− J(θ1)

2 )2.

Here the first line is because we omit the case where 1[wt = β
(i)
t ], the second line is from the definition of

wt, the third line is from the facts of θ0 < θ1 and J ′(u) > 0,∀u ∈ R, the fourth line is by the definition of
L1-norm and the last line is from the fact we mentioned prior to this equation. Now we propose a lemma of
properties:

Lemma B.3 (Properties of g(v, u) and J(u)). For g(v, u) and J(u) with Nt ∼ N (0, 1), we have:

1. J(u) > u when u ∈ (0,
√

π
2 ) and J(u) < u when u ∈ (

√
Π
2 , +∞).

2. ∃cJ > 0 s.t. J ′(u) ≥ cJ ,∀u ∈ [−B, B].

3. ∃cg > 0 s.t. g(J(u), u)− g(v, u) ≥ cg(J(u)− v)2,∀v ∈ [0, B + J(B)].
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We will show the proof of Lemma B.3 by the end of this section. With Lemma B.3, when ΨA ̸= i, we have:

RegA =
T∑

t=1
g(J(xtθ

∗
t (i)), xtθ

∗
t (i))− g(vA

t , xtθ
∗
t (i))

≥
T∑

t=1
cg(vA

t − J(xtθ
∗
t (i)))2

≥cg ·
T

12 · (
J(θ0)− J(θ1)

2 )2

≥cg ·
T

12 ·
c2

J

4 · (θ1 − θ0)2

≥cgc2
J · Tδ2

48 .

(22)

Finally, let δ = 1
40 ( CT

T ) 1
3 , and according to Equation (20),(21) and (22), we have:

E[RegA] ≥ sup
i

Pi(ΨA ̸= i) · (
T∑

t=1
g(J(xtθ

∗
t (i)), xtθ

∗
t (i))− g(vA

t , xtθ
∗
t (i)))

≥ sup
i

Pi(ΨA ̸= i) · cgc2
J · Tδ2

48

≥(1
2 −

nα

log N
) · cgc2

J · Tδ2

48

=(1
2 −

δ2T
3

CT

800δ

) · cgc2
J

·Tδ2

48

=cgc2
J(1

2 −
800
3 · δ3T

CT
) · ·Tδ2

48

=cgc2
J

48 (1
2 −

1
240)

T · ( CT

T ) 2
3

144

≥ cgc2
J

307200 · C
2
3
T T

1
3 .

This holds the theorem.

Also, since our upper regret bound w.r.t. T and CT is Õ(1) when CT ≤ 1√
T

, which is trivial up to log T and

d factors, we may conclude that our upper regret bound of Õ(T 1
3 C

2
3
T ∨ 1) is optimal with respect to T and

CT .

Proof of Lemma B.3. We here prove each of them.

1. According to Lemma 14 of Xu & Wang (2021), we know that u − J(u) is monotonically increasing
since J ′(u) ∈ (0, 1). Also, since ∂g(v,u)

∂v |v=J(u) = 1 − F (J(u) − u) − J(u) · f(J(u) − u) = 0, we have
J(
√

π
2 ) =

√
π
2 . Therefore, u− J(u) > 0 when u >

√
π
2 and u− J(u) < 0 when 0 < u <

√
π
2 .

2. From Appendix B.2.1. of Xu & Wang (2021), we know that J ′(u) = 1 + 1
ϕ′(ϕ−1(u)) ∈ (0, 1),∀u ∈ R

where ϕ(ω) = 1−F (ω)
f(ω) − ω is invertible and smooth for standard Gaussian distribution. Therefore, we

know that J ′(u) is continuous. Therefore, ∃cJ > 0 such that infu∈[−B,B] J ′(u) = cJ .
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3. From the optimality of J(u) we know that ∂g(v,u)
∂v |v=J(u) = 1− F (J(u)− u)− J(u) · f(J(u)− u) = 0.

Define q(u) := 1− F (J(u)− u)− J(u) · f(J(u)− u). Since q(u) = 0,∀u ∈ R, we have:

∂q(u)
∂u

= 0

⇔
(
J ′(u)(J(u)2 − u · J(u)− 2)− (J(u)2 − u · J(u)− 1)

)
f(J(u)− u) = 0

⇔J ′(u) = 1 + 1
J(u)2 − u · J(u)− 2 .

The second line is by standard Gaussian noises and some calculations, and the third line is from the
fact that f(x) > 0 for standard Gaussian distribution. Since we already know that J ′(u) ∈ (0, 1), we
may then realized that J(u)2 − u · J(u) − 2 < −1. Notice that ∂2g(v,u)

∂v2 = (v2 − vu − 2)f(v − u) for
standard gaussian noise. Therefore, we have ∂2g(v,u)

∂v2 = (J(u)2−u ·J(u)−2)f(J(u)−u) ≤ (−1) ·fmin<0
where fmin has been defined in Appendix B.1 as the universal lower bound of f . This means that
g(v, u) is fmin-strongly concave at v = J(u), which further leads to the fact that there exists a
neighborhood v ∈ [J(u)−Bu, J(u) + Bu] with constant4 Bu such that ∂2g(v,u)

∂v2 ≤ − fmin
2 . As a result,

for v ∈ [J(u)−Bu, J(u) + Bu] we have

g(J(u), u)− g(v, u) = −∂g(v, u)
∂v

|v=J(u)(J(u)− u)− 1
2 ·

∂2g(v, u)
∂v2 |v=v′∈[J(u),v] or [v,J(u)](J(u)− v)2

≥ −1
2(−fmin

2 )(J(u)− v)2

= fmin

4 (J(u)− v)2.

Now, let us consider the case when v ∈ [0, B + J(B)] but v /∈ [J(u) − Bu, J(u) + Bu]. On the one
hand, (J(u)− v)2 ≤ (B + J(B)− (−B))2 = (2B + J(B))2. On the other hand, g(J(u), u)− g(v, u) ≥
g(J(u), u) − max{g(J(u) − Bu, u), g(J(u) + B(u), u)} > 0. Denote cu := infu∈[−B,B]{g(J(u), u) −
max{g(J(u)−Bu, u), g(J(u) + B(u), u)}}, and we have cu > 0. Therefore, we have:

g(J(u), u)− g(v, u) ≥ cu ≥
cu

(2B + J(B))2 (2B + J(B))2 ≥ cu

(2B + J(B))2 (J(u)− v)2.

Finally, let cg = min{ fmin
4 , cu

(2B+J(B))2 }, and we have proved the lemma.

C Dynamic Regret of More Agnostic Settings
Xu & Wang (2022) defines two pricing problem settings: the Linear Valuation(LV) and Linear Policy(LP).
LV is similar to our setting in this work but assumes an unknown noise distribution. LP is far more different:
customers’ valuations are fully agnostic and the goal is to compete with the best fixed linear pricing policy in
hindsight. Xu & Wang (2022) makes progress on both LV and LP. In this section, we extend both LV and
LP to non-stationary settings. For LV, we establish an algorithm with the help of a non-stationary bandit
algorithm from Chen et al. (2019) and analyze its regret. For LP, we show that it is much more different
from LV in a time-variant setting than in the static setting where it used to be.

C.1 Linear Valuation: Algorithm and Regret
LV adopts the linear noisy valuation model as we did in the main pages, i.e., yt = x⊤

t θ∗
t + Nt where xt’s are

adversarial features and Nt’s are noises drawn i.i.d. from a fixed distribution D, but assumes no pre-knowledge
on the noise distribution D instead of being known to us in advance (which was our assumptions in the
main pages). In Xu & Wang (2022), they assume that θ∗

t is fixed over all t, and they present an algorithm
D2-EXP4 based on an EXP-4 ((Auer et al., 2002)) learner. Note that the regret of EXP-4 algorithm is
O(
√

TK log |Π|) with T rounds, K actions and |Π| policies. In the D2-EXP4 algorithm, the bounded price
4Bu can be defined as the inferior of all Bu over all u ∈ [−B, B] and is still a positive constant.
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domain is discretized into length-γ intervals, and the bounded parameter (θ candidate) space is discretized
into size-( γ√

d
)d grids, where γ is a discretizer to be specified later. Besides, they also introduces a discretized

distribution family F , and each function F in F is a discrete CDF with its grid length γ and its value an
integer multiplier of γ for any F (ω). In this way, they have |F| = O(2

3
γ ) and therefore the new policy set

is a combination of the discrete parameter space defined above and this discretized distribution family F .
Therefore, the current policy set size is |Π| = O((

√
d

γ )d ·2
3
γ ). Notice that the regret coming from discretizations

is still O(T · γ). By choosing γ = T − 1
4 , they have a bandit regret at Õ(T 3

4 + d
1
2 T

5
8 ), which also covers the

cumulative discretization error O(Tγ) = O(T 3
4 ).

Algorithm 3 Discrete-Distribution-ADA-ILTCB+(D2-ADA)
Input: Policy set Πγ , Action set Aγ , parameters ∆, γ.
Initialize an ADA-ILTCB+ agent E with Πγ , Aγ ;
for t = 1 to T do
E observe xt;
E select an action(price) vt;
Receive feedback rt = vt · 1t and feed it into E ;

end for

Now, consider the non-stationary setting as we did in this work. In order to construct algorithms suitable for
time-variant settings, we may substitute the EXP-4 base learner used in L2-EXP4 with a non-stationary
bandit algorithm. Here we choose the ADA-ILTCB+ algorithm introduced in Chen et al. (2019), which
inputs (xt, rt) series and attains a regret rate of Õ(min{

√
K log |Π|ST ,

√
KT log |Π|+ (K log |Π|) 1

3 ∆
1
3
T T

2
3 }).

Here S := 1 +
∑T −1

t=1 1(Dt ̸= Dt+1) is the number of switches and ∆T is the distributional total variation by
their definition:

∆T :=
T −1∑
t=1
∥Dt −Dt+1∥T V =

T −1∑
t=1

∫∫
|Dt(x, r)−Dt(x, r)|dxdr

Where Dt(x, r) is the probability (density) of the occurrence of feature x and reward (function) r at time
t. In consistency with the problem setting, we do not make any specific assumption on distributional
switching, and therefore S = O(T ) in general. As a result, we have Õ(min{

√
K log |Π|ST ,

√
KT log |Π|+

(K log |Π|) 1
3 ∆

1
3
T T

2
3 }) = Õ(min{

√
KT log |Π|+ (K log |Π|) 1

3 ∆
1
3
T T

2
3 }). By plugging in the discretized action

set, parameter space and distribution family (i.e., K = O( 1
γ ) and |Π| = O((

√
d

γ )d · 2
3
γ ) ), we may similarly get

the dynamic regrets: Let γ = T − 1
5 and we get the bandit dynamic regret rate Õ(T 7

10 +d
1
2 T

3
5 +(T 4

5 d
1
3 T

11
15 )C

1
3
T )

along with a discretization error O(T 4
5 ). Therefore, the total dynamic regret is Õ(T 4

5 (C
1
3
T ∨ 1) + d

1
2 T

3
5 +

d
1
3 T

11
15 C

1
3
T ).

The last step is to reduce their distributional total variation ∆T to our parameter-wise total variation CT .
We will make it by proving Lemma 3.13:
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Proof. Denote Pt(x, v) := Pr[1t = 1|xt = x, vt = v] = 1− F (v − x⊤θ∗
t ) we have:

∆T =
T −1∑
t=1
∥Dt −Dt+1∥T V =

T −1∑
t=1

∫∫
|Dt(x, r)−Dt+1(x, r)|dxdr

≤
T −1∑
t=1

max
x∗∈Dx,v∗∈(0,+∞)

∫
r

|Dt(r|x∗, v∗)−Dt+1(r|x∗, v∗)|dr

=
T −1∑
t=1

TV (Dt(·|x∗, v∗)||Dt+1(·|x∗, v∗))

≤
T −1∑
t=1

√
KL(Dt(r|x∗, v∗)||Dt+1(r|x∗, v∗))

≤
T −1∑
t=1

√
(Pt(x∗, v∗)− Pt+1(x∗, v∗))2

Pt+1(x∗, v∗)(1− Pt+1(x∗, v∗))

≤
T −1∑
t=1

√
(Pt(x∗, v∗)− Pt+1(x∗, v∗))2

min{F (J(B) + B)(1− F (J(B) + B)), F (J(−B)−B)(1− F (J(−B)−B))} .

(23)

Here the first row is by the definition in Chen et al. (2019), the second row is by the fact that∫∫
Pr[x, y]dxdy =

∫∫
Pr[y|x] Pr[x]dxdy ≤

∫
(max Pr[y|x])dy

∫
Pr[x]dx =

∫
(max Pr[y|x])dy

, the third row is by the definition of Total Variation of two distributions, the fourth row is because
of TV (P,Q) ≤

√
KL(P||Q), the fifth row is by the Corollary 3.1 in Taneja & Kumar (2004) since here

Dt(r|x∗, v∗) is a Bernoulli random variable with Pr = 1− F (v∗ − (x∗)⊤θ∗
t ) to be v∗ and 0 otherwise, and the

sixth row (the last row) is by the fact that F (ω) ∈ (F (J(−B)−B), F (J(B) + B)) showed in Appendix B.1.
Now, let us denote cF := min{F (J(B) + B)(1−F (J(B) + B)), F (J(−B)−B)(1−F (J(−B)−B))}, and we
have:

∆T ≤
T −1∑
t=1

1
√

cF
· |Pt(x∗, v∗)− Pt+1(x∗, v∗)|

=
T −1∑
t=1

1
√

cF
· |F (v∗ − (x∗)⊤θ∗

t+1)− F (v∗ − (x∗)⊤θ∗
t )|

≤
T −1∑
t=1

1
√

cF
·Bf · |(v∗ − (x∗)⊤θ∗

t+1)− (v∗ − (x∗)⊤θ∗
t )|

=
T −1∑
t=1

Bf√
cF
· |(x∗)⊤(θ∗

t − θ∗
t+1)|

≤
T −1∑
t=1

Bf√
cF
· ∥x∗∥∞∥θ∗

t − θ∗
t+1∥1

≤
T −1∑
t=1

Bf√
cF
· ∥θ∗

t − θ∗
t+1∥1

= Bf√
cF

CT .

Here the first line is from Equation (23), the second line is from the definition of Pt, the third line is from
the definition Bf := maxω f(ω) = max F ′ in Section 2.1 (i.e., the Lipschitz condition), the fourth line is by
equivalent transformation, the fifth line is by Holder’s Inequality, the sixth line is by the assumption that
∥x∥∞ ≤ ∥x∥2 ≤ 1,∀x ∈ Dx, and the last line is by the definition of CT . Therefore, we have proved that
∆T = O(CT ).
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As a result, we may substitute the ∆T involved in regret bound rates by CT without changing anything
substantial. With all the results we showed above, we may claim that the upper dynamic regret bound of LP
and LV problems are Õ(d 3

8 T
5
8 + d

1
4 T

3
4 C

1
3
T ) and Õ(T 7

10 + d
1
2 T

3
5 + (T 4

5 + d
1
3 T

11
15 )C

1
3
T ) sequentially.

Finally, notice that the discretization factor γ is only dependent on T , which requires us to know T in advance.
For those infinite-time-horizon setting, i.e., T is unknown and may go large, then we may adopt a doubling-
epoch strategy: Divide the time horizon into epochs, each of whom has a length τk = 2k, k = 0, 1, 2, . . ..
If the time horizon is T , and then the total number of epochs is log2 T . For our algorithm D2-ADA that
attains a Õ(τ 4

5 ) regret for τ rounds, if we run it in the doubling-epoch setting, then the total regret equals
Õ(
∑log2 T

k=0 (2k) 4
5 ) = Õ( 1

2
4
5 −1

(T ) 4
5 ) that is the same (in the Õ notation) as if we know T in advance. The other

terms in the dynamic regret rate has the same property while applying the doubling-epoch strategy. In this
way, we can also handle the case when T is unknown in advance.

C.2 Linear Policy: Discussion and Potential Approach
LP targets at a more agnostic setting where we have no pre-knowledge on customers’ valuations at all, and
the goal is to find out the best fixed linear pricing policy, i.e., the optimal linear prices v∗

t = x⊤
t β∗ where

β∗ maximizes the cumulative reward in hindsight. Therefore, the (static) regret of LP can be defined as∑T
t=1 maxβ∗ E[rt(v∗

t )|v∗
t = x⊤

t β∗]E[rt|vt = x⊤
t βt]. The Linear-EXP4 algorithm in Xu & Wang (2022) works

for this LP problem and achieve a Õ(d 1
3 T

2
3 ) static regret. Now, if we would like to generalize the LP problem

to a non-stationary setting, can we expect to achieve a meaningful dynamic regret by substituting the EXP-4
learner in Linear-EXP4 with the ADA-ILTCB+?

Unfortunately, the answer is no. The immediate reason is that we do not necessarily have ∆t = O(CT ) in
the fully agnostic setting. In other words, the ADA-ILTCB+ algorithm (and other non-stationary bandit
algorithms) is in general not able to achieve a universal dynamic regret guarantee that we require in this
work, since we are comparing the performance with any action sequence subject to the CT total variation
bound. Remember that ∆T is defined as the cumulative difference between adjacent (feature, reward function)
distributions at time t and t + 1. Consider the setting when Dt is a one-point distribution (i.e., deterministic)
and is different from Dt+1. In this case, we have ∥Dt − Dt+1∥T V = 2 and therefore ∆T = 2(T − 1). In
other words, Õ(T 2

3 ∆
1
3
T ) = Õ(T ). Therefore, the distributional TV does not imply a restriction on the action

sequence, a simple reduction to this non-stationary bandit algorithm is not necessarily valid. Then why the
reduction of LV still works? Intuitively, this is because that the rewards of LV are indeed randomized by
the noise, even when xt and xt+1 can be totally different and deterministic, and the distributional difference
between Dt and Dt+1 is intrinsically parameterized by θ∗

t and θ∗
t+1. Since the global optimal action sequence

is also defined by {θ∗
t }T

t=1, it is possible to build up connection between CT and ∆T , which we have finally
revealed in Lemma 3.13.
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