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ABSTRACT

Dimensionality reduction (DR) and manifold learning (ManL) have been applied
extensively in many machine learning tasks, including signal processing, speech
recognition, and neuroinformatics.However, the understanding of whether DR
and ManL models can generate valid learning results remains unclear. In this
work, we investigate the validity of learning results of some widely used DR and
ManL methods through the chart mapping function of a manifold. We identify a
fundamental problem of these methods: the mapping functions induced by these
methods violate the basic settings of manifolds, and hence they are not learning
manifold in the mathematical sense. To address this problem, we provide a prov-
ably correct algorithm called fixed points Laplacian mapping (FPLM), that has
the geometric guarantee to find a valid manifold representation (up to a home-
omorphism). Combining one additional condition (orientation preserving), we
discuss a sufficient condition for an algorithm to be bijective for any d-simplex
decomposition result on a d-manifold. However, constructing such a mapping
function and its computational method satisfying these conditions is still an open
problem in mathematics.

1 INTRODUCTION

Dimensionality reduction (DR) and manifold learning (ManL) have been widely applied in many ma-
chine learning tasks, such as signal processing (Rui et al., 2016), speech recognition (Van Der Maaten
et al., 2009), neuroinformatics (Mwangi et al., 2014) and bioinformatics (Zou et al., 2016). The
reason is the well-accepted manifold assumption: the observed data distribute in a non-linear low
dimensional manifold embedded in a high dimensional ambient space. The main focus of various
ManL is to learn the manifold structure from the sampled data along with DR methods to obtain the
latent space representation of the manifold. Many methods have been proposed in recent decades. For
example, if the manifold is linear, some classic methods such as Principal Component Analysis (PCA)
(Wold et al., 1987) and Multi-Dimensional Scaling (MDS) (Cox & Cox, 2008) can be efficiently
applied. When the manifold is non-linear, several embedding methods can be used such as Isomap
(Balasubramanian et al., 2002), Local Linear Embedding (LLE) (Roweis & Saul, 2000), Laplacian
Eigenmap (LE) (Belkin & Niyogi, 2003), Local Tangent Space Alignment (LTSA) (Zhang & Zha,
2004) and Hessian Eigenmaps (Donoho & Grimes, 2003) to name a few. Although ManL and
DR methods are important pre-processing in machine learning and widely used, unfortunately, the
understanding of what results they produce is largely missing. It is not clear whether these methods
generate valid latent space representation when examined under the mathematical definition of a
manifold. As subsequent learning process is built on ManL and DR, it is crucial to investigate
the mathematical validity of the outputs generated from these methods so that the entire learning
algorithm can be well understood and interpreted.

Manifold Structure Given a d-dimensional manifoldM embedded in Rl (l > d) covered by a set
of open setsM⊂

⋃
α Uα. For each set Uα, there is a homeoomorphism ψα : Uα → Rd. The pair

(Uα, ψα) forms a chart. The image of the chart map is deemed to present the manifold strucuture
(Guillemin & Pollack, 2010). So by definition of homeomorphism, the chart map has to be bijective,
i.e. one-to-one and onto, mapping a neighbourhood of a manifold to latent space. On top of that, one
can require chart map to preserve other geometric aspects of manifold such as angles (Courant, 2005)
and distance (MacEachren & Davidson, 1987) if it is possible. To obtain manifold local structures,
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one common way used in most of ManL/DR algorithms is applying K nearest neighborhood (KNN)
given the observed data is discretely sampled from the manifold. The estimated local structure is
then used to infer the global coordinates of all data points by minimizing some loss function. A more
advanced method is to approximate manifold by simplex decomposition (Boissonnat et al., 2018),
such as surface triangulation for 2-manifolds (surfaces) and tetrahedralization for 3-manifolds. These
methods generate a piece-wise linear approximation ofM from the sample so that, under appropriate
sampling conditions, the manifold approximation quality can be guaranteed. Many achievements have
been made along with this line (Cazals & Giesen, 2006) (Boissonnat et al., 2018) (Maglo et al., 2012).
For example, Boissonnat et al. (Boissonnat et al., 2018) developed an algorithm named tangential
complex (TC) to decompose manifold with d-simplices. The reconstructed manifold generated from
TC is isotopic to the original manifold if the density of data points is higher enough. In this paper, we
use these methods to generate manifold structures.

Observation and Motivation Any chart map bijectively maps between the manifold to a latent
space locally. Given DR/ManL methods claim to learn the latent representation, therefore, it is vital
to ensure that those learnt representations are bijective or at least one-to-one, i.e. injective globally.
Now the central problem is how to check a map between sets of discrete points is bijective/injective.
For 1D-manifold, there is natural ordering if it is considered as a curve and hence the bijectivity is
easily checked by looking at the order of the representations in R. However, when d > 1, there is no
such ordering. Therefore, the crux is the implementation of such ordering for any d. Our solution
to this is simplex preserving. Given a d-simplex decomposition onM in Rl, a bijective mapping
Rl → Rd must preserve simplex structure, i.e. their integrity, connectivity and neighboring relations.
For example, given a triangulation on a 2-manifold, a bijective map over the entire triangulation
should be one-to-one over each triangle, edge, and point, no degeneracy and overlapping of triangles
and edges. Existence of any degeneracy or overlap violates the required bijectivity/injectivity and
hence indicates deviation from learning manifold properly.

Following the above line of thoughts, we investigate the learning performance of commonly used
DR/ManL algorithms and models. We observe that none of those methods could preserve the simplex
structure even though we directly provide adjacency information from the simplex decomposition
rather than generating it via the KNN graph. For example, the results of these methods on 2-manifolds
usually contain a large number of edge crosses, indicating that the map is not one-to-one. Figure 1
shows a simple example of embedding result with/without line segments intersections.
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Figure 1: Two embedding algorithms on Paraboloid. One failed (c), Another one succeed(d).

We discover that these methods failed the bijectivity test that is essential in manifold definition.
Nonetheless they may work for particular type of manifolds. For example, Isomap provides a
correct embedding only if the manifold itself is isometric to an open set in the latent space, and
LLE only reconstructs topological balls (Chen & Liu, 2011). While the type of manifold is not
known beforehand, it is important to have a geometrically correct algorithm which guarantees
bijectivity. To address this problem, we propose a new method that is proved to be bijective (when
restricted to codomain of the mapping) at least for 2-manifolds. The theory we use is Tutte’s planar
embedding theorem, which states that every planar graph has a convex representation in R2. The
theorem was later generalized in (Floater, 2003) that proves under some additional requirements, a
convex combination map that maps a triangulation from R2 to R2 is one-to-one. Our algorithm is
applicable to any d-manifolds (without genus) with facet-to-facet tessellation. Most importantly, it
has theoretical guarantee (refer to the Appendix) to produce a valid latent space representation for
2-manifolds deferring from the true latent space representation by a homeomorphism.
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Contributions. In summary, the main contributions of this paper is listed below.

1. We propose a method to validate manifold learning algorithms from the viewpoint of the
definition of manifolds. Instead of examining the cluster quality, we focus on the bijectivity
of the induced mapping function, which has to be homeomorphic to be the chart map of the
manifold.

2. By using this method, we identify a fundamental problem in some prominent methods: the
mapping function induced by these methods is not bijective, and in turn, violates the basic
settings of manifolds.

3. We offer a provably correct algorithm called fixed point Laplacian mapping (FPLM) to learn
the manifold. This method has geometric guarantee to find a valid latent space representation
(up to a homeomorphism).

4. By generalizing the previous embedding theorem, we make our algorithm adaptive to any
non-degenerate edge-to-edge tessellation of 2-manifolds and most of 3-manifolds with and
without boundary. We also discuss a sufficient condition to ensure a mapping that is always
bijective to any manifold mesh generated by d-simplex decomposition.

Organization. The remainder of the paper is organized as follows. In Section 2, we introduce
the basic concepts used in this paper. FPLM will be introduced in Section 3 with the analysis and
geometric guarantees discussed in Section 4. Section 5 provides the experimental results to validate
our claims. We discuss the strength and limitation of our methods in Section 6, and conclude this
paper in Section 7 with some possible extensions.

2 DEFINITIONS AND PRELIMINARIES

In this paper,M is an orientable connected manifold with intrinsic dimension d embedded in Rl
and a finite sample X = {x1,x2, ..xN} ⊂ M. The chart map ψ of the manifold is a continuous
bijective function that maps a neighbourhood of the manifoldM to a subset in Rd. Its inverse, ψ−1,
is deemed to generate the structure ofM (Guillemin & Pollack, 2010). We also assume thatM is
embedded in the ambient space with dimension at least d+ 1 without self-intersection. It is known
that the Klein bottle in R3 is not an embedding (Whitney, 1944), merely an immersion, and hence
will not be considered in this paper.

2.1 SIMPLEX DECOMPOSITION OFM

LetM be a d-manifold with boundary embedded in Rl with discrete sample X. For all data points,
we assume that they are sampled without noise. By a d-simplex, we mean a d-dimensional polytope
that is the convex body formed by its d + 1 vertices. For example, a 0,1,2-simplex stands for a
point, line segment, and triangle. Given a d-simplex, we call this simplex degenerate if it is less than
d-dimension. We will further assume that all data points sampled inM are in general position, i.e.
no colinearity among points, or in other words, no extra point inside a simplex. For example, there
will be no point inside a triangle or edge in triangulation.

Definition 1 (Simplex decomposition ofM). Let S be a finite set of non-degenerate d-simplex and
let DS =

⋃
S∈S S we will call S a d-simplex decomposition ofM if:

1. The intersection of any pair of d-simplex can either be empty or a common {d−1, d−2, ..0}
simplex, and X are the vertices.

2. The boundary ofDS , a closed polytope written as ∂DS , is formed by those (d−1)-simplices
in S that are not shared.

3. DS is homeomorphic toM.

This d-simplex decomposition ofM is indeed the best piece-wise linear manifold approximating
M one could possibly have given a discrete sample fromM. Note that this differs from normal
simplical complex on X in Rl, which would be an l-simplex decomposition whose convex hull
circumscribes X. For example, for 2-manifold, 2-simplex decomposition (triangulation) should be
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applied and tetrahedronization for d = 3. We now take triangulation as an example to provide a few
more definitions. Let DT =

⋃
T∈T T be a triangulation T in R2 (T stands for a triangle). Following

(Floater, 2003), based on the second requirement of simplex decomposition, DT will be simply
connected with boundary ∂DT . For the vertices and edges contained in the boundary ∂DT , we call
them boundary vertices and edges, and otherwise the interior vertices and edges. If an edge with
both ends on boundary vertices, we will call it a dividing edge. For example, in Figure 2, the edge
[V,W ] is a dividing edge.

Figure 2: Connectivity between triangles and dividing edges

Definition 2. We say that a triangulation is strongly connected if it contains no dividing edges.

As we mentioned in the previous sections, if a mapping bijectively maps the manifold simplex
decomposition result to the latent space, then the connectivity between simplices must be preserved.
It is easy to see that if there is overlap from simplices, the points inside the overlap will certainly
have more than 1 preimage, and hence not injective/bijective. In terms of simplex decomposition,
for unknown manifold one can apply Tangential Complex algorithm (Boissonnat & Ghosh, 2014)
with required conditions and consistency test. For test purpose, or validity checking for a given
DR/ManL algorithm, one can generate those manifolds such that the simplex mesh in latent space is
preserved, for example, graph of some function, i.e. (x1, . . . , xd, f(x1, . . . , xd)), where xi ∈ R are
latent variables and f is the function, which is a d-manifold, a hypersurface in Rd+1.

3 FIXED POINT LAPLACIAN MAPPING

By using the validity checking method mentioned above, e.g. the example in Section 1 and many
more in experiment section, we realised that those mostly used DR/ManL methods we tested are not
bijective, and hence do not really learn a manifold. The question is then, is it possible to design such
an algorithm which has bijectivity guarantee, at least for some manifolds? The answer is positive.

3.1 SETTINGS

Based on the previous observation, one necessary condition for bijectivity is that the simplex structure
inM, a graph written as GS , is preserved by the mapping. Unfortunately, this is highly nontrivial.
Normal neighborhood preserving and alignment ideas often seen in many DR/ManL methods do
not work as they lack “hard" enforcement to ensure the preserving results, which is also the reason
they fail bijectivity test. We need geometry inspired constraints and/or procedures with bijectivity
embedded naturally.

We start from constructing a (weighted) adjacency matrix A ∈ RN×N derived from a simplex decom-
position ofM, with the associated degree matrix and Laplacian denoted by D and L. The algorithm
that we will show below is a two-round procedure with the same optimization performed twice with
different constraints each time. We call this optimization fixed-point Laplacian mapping (FPLM),
where the fixed points are the constraints. We denote these fixed points as C = [c1, ..., cp]

T ∈ Rp×d.
We write P(C) as the simple polytope formed by joining fixed points in C as vertices.

3.2 FIXED-POINT LAPLACIAN MAPPING (FPLM)

FPLM is formulated as follows:

min
Y∈RN×d

tr(YTLY), subject to yi = ci, i ∈ [1, p] (1)
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where ci ∈ Rd, i ∈ [1, p] are the fixed points. We firstly determine whether GS is strongly connected
or not (i.e., whether there is a dividing edge). If GS is strongly connected, the fixed points in the
first round, collected in C1, are the images of the vertices from a randomly selected d-simplex after
reducing its dimensionality. Therefore, C = C1 in FPLM and p = d + 1. Note that this step is
lossless as d-simplex in Rl is intrinsical d-dimensional and linear. After the first round of FPLM,
the boundary of the simplex decomposition, i.e., ∂DS , will be mapped inside P(C1) in Rd. Recall
that the boundary of a d-simplex decomposition is the d− 1 simplicial complex that is not shared.
It is straightforward to use the boundary of the simplex decomposition as the boundary to conduct
the second round of FPLM. We collect these p vertices in the boundary polytope in C2. When
GS is not strongly connected, we let n be the number of boundary vertices detected from simplex
decomposition in Rl, and construct a p-face (p = n) convex polytope in Rd. One example of such
convex polytope is the regular p-face polytope.

We now summarize two rounds of FPLM below.

Algorithm 1 Two Rounds of FPLM

1: Input: Simplex decomposition graph GS , first round fixed points C1.
2: Construct weighted adjacency matrix A and its Laplacian L from GS .
3: if No dividing edge in GS then
4: Obtain first-step Y1 by (1) using C = C1.
5: if No boundary detected inside P(C1) then
6: return Y1

7: else
8: Use the boundary detected as C2.
9: Obtain second-step Y2 by (1) using C = C2.

10: return Y2

11: end if
12: else
13: Find the number of boundary points of GS as p and construct a p-face convex polytope as C1.
14: Obtain first step Y1 by (1) using C = C1.
15: return Y1

16: end if

4 ANALYSIS OF ALGORITHM AND GEOMETRIC GUARANTEES

We now justify that the about procedure results in a bijective mapping. A summary of the line of
proofs is the following. We first show that the mapping induced from FPLM is a convex combination
mapping over simplex decomposition. Then taking 2-manifolds as an example, we prove that the
convex combination mapping is one-to-one over entire triangulation. Restricting the mapping to
the codomain, the mapping is bijective. We further prove that the procedure is applicable to any
2-manifold which structure is estimated from a non-degenerate edge-to-edge tessellation of polygons.
Due to page limit, we only present the central theorems here; see Appendix for detailed proofs and
derivations.

Algebraic solution of FPLM and Convex Combination Mapping The global minimizer of
FPLM Ỹ∗ is:

y∗i =

n∑
j=1

Aij

Dii
y∗j =

n∑
j=1

λijy
∗
j , ∀i = 1, ..., n− p, (2)

Where Dii is the diagonal of the degree matrix. By the definition of degree matrix we have∑n
j=1 λij = 1, ∀i. This shows that every optimal non-fixed point is a convex combination of

its neighbours. As we mentioned earlier, the connectivity between simplices should remain the same
in both image and pre-image of a bijective function over the entire simplex decomposition. Given
two simplex decomposition S and S ′ of some subsets in Rd, with some abuse of notation, we call a
function f : S → S ′ a piece-wise linear function if it is continuous over entire DS′ and linear over
each simplex. Similarly, we have piece-wise linear mapping φ : GS → S to be a mapping taking
fromM simplex decomposition to its latent space where the simplex structure remains. A typical
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DR/ManL method learns φ such that yi = φ(xi). If φ satisfies (2), we call φ a convex combination
mapping (Floater, 2003). Clearly, FPLM generates a convex combination mapping over d-simplex
decomposition of the manifold.

Geometric Guarantees of FPLM We present our central theorems for the geometric guarantees
of FPLM here for 2-manifolds.

Theorem 1. For any 2-manifold without genus, the graph induced from any valid triangulation on
the manifold is planar.

The idea is to prove that the graph induced from a triangulation does not contain Kuratowski subgraph
K5 and K3,3. We now show the features of φ, which is the convex combination mapping induced
from FPLM.

Proposition 1. FPLM maps all non-fixed points inside the convex hull formed by the fixed points
(P(C)).

We only present a sketch of the proof here. If on contrary, there is a point outside the convex hull
of P(C), then there must be more points outside too due to (2). For those outside points, find the
one on the edge of the convex hull, then it must have more points surrounding it too. Continue this
process until all non-fixed points are exhausted. The out-most one will not have a convex hull formed
by its neighbors according to supporting hyperplane theorem (Boyd et al., 2004) against the fact that
every non-fixed point has to be convex combination of its neighbors. Therefore the assumption is
incorrect. Another way to prove this is by direct observation of the minimization from FPLM.

By applying the conclusion from previous works (Kneser, 1926) (Floater, 2003), we proved that
the first round of FPLM is one-to-one over any strongly connected triangulation (Appendix One).
We then explored the convexity of the boundary polygon of GS after the first round of FPLM and
concluded the following lemma:

Lemma 1. Given a strongly connected triangulation T , ∂DS is mapped as a convex hull after the
first round of FPLM, and hence the results from algorithm 1 is one-to-one.

The conclusion from the above Lemma is proved by virtual of Tutte’s embedding theorm (Tutte,
1963) after we show the convexity of the image of ∂DS . However, when the triangulation is not
strongly connected, the first round of FPLM is no longer injective because the dividing edge will be
mapped as the boundary edge of the manifold inside the selected triangle in the first round of FPLM.
Therefore, we have to directly detect the boundary from GS and generate a p-side convex polygon in
R2 so that all dividing edges remain inside the boundary and none of the boundary vertices are then
collinear. The following theorem justifies this part in algorithm 1.

Theorem 2. Given a triangulation T with dividing edges, FPLM with fixed points C as vertices of a
p-side convex polygon is one-to-one, where p is the number of boundary vertices.

The above conclusions make FPLM applicable to any 2-manifold (orientable and connected) without
genus. However, when d ≥ 3 we need an extra condition, orientation preserving property to ensure
injectivity. We discuss this in the appendix.

5 EXPERIMENTS

In this section, we investigate the learning performance of widely used state-of-the-art DR/ManL
algorithms. The structure of every 2-manifold was generated by applying either Tangential Complex
(TC) algorithm (Boissonnat & Ghosh, 2014) or Delaunary/Surface triangulation. The structure of
3-manifold is generated by using Delaunay tetrahedralization algorithm (Si, 2015) included in Tetgen
and TC. To have a fair comparison between FPLM and other prominent methods, the adjacency
information obtained from the simplex decomposition will be used as the input as manifold structure.
The number of the line segments crosses will be counted as a measure to evaluate the learning
performance for all included models.

Experiment setup. The 2-manifolds included in the experiment are: Monkey saddle, Swiss roll,
Paraboloid, Twin peaks and Sphere. We construct a weighted adjacency matrix from triangulation

6



Under review as a conference paper at ICLR 2022

via rbf kernel function. That is, Aij = exp(−γdm(xi,xj)) if xi is connected to xj , where we use l2

distance dm(x,y) =
√∑d

i=1(xi − yi)2 for x,y ∈ Rd. For all experiments, we fix γ = 0.1.

The settings of other learning algorithms are as follows: for LE and LTSA, we use pre-computed
A as input; for Local Linear Embedding, we use adjacency matrix constructed from the simplex
decomposed graph as input to replace the neighborhood graph; for Isomap, we construct the distance
matrix from the simplex decomposed graph and distance; for MDS and tSNE, we use default settings.
Finally, for Manifold Autoencoder, we construct a neural network with layer 3× 64× 2× 64× 3.
Activation function is Relu; dropout layer is considered with p = 0.2. Batch normalization is applied
to the bottleneck layer. The optimizer is chosen to be ADAM with a learning rate of 0.1. For every
experiment, we run 1000 epochs. All experiments are carried out on a laptop computer running on a
64-bit operating system with Intel Core i5-8350U 1.90GHz CPU and 16G RAM with Python 3.36.

For the manifold with boundary, the second round output of FPLM will be compared with other
learning algorithms. Due to the space limit, we will only present the investigation results of swiss
roll for the manifold with boundary and 2-Sphere for manifold without boundary. For the rest of the
result, please see Appendix. Figures below show the comparison results:

(a) (b) (c) (d) (e) (f)

Figure 3: FPLM on Swiss roll:(a) Manifold scatters,(b) Triangulation on manifold, (c) Boundary
detection (d) First round FPLM, (e) Boundary detection for the first round FPLM, (f) Final result.

(a) AE (b) Isomap (c) LE (d) LLE (e) LTSA (f) MDS (g) t-SNE

Figure 4: Other methods on Swiss roll. (a) 4585 crosses,(b) 1942 crosses, (c) 937 crosses, (d) 3623
cross, (e) 36773 crosses, (f) 3804 crosses, (g) 10088 crosses

As we can see, all results in Figure 4 are with line crosses, indicating that the connectivity between
triangles is not preserved, thus the mapping induced from these methods is not one-to-one. We now
show the result for the manifold without boundary e.g. 2-sphere. Note that we only need one round
of FPLM to finish the entire process. This is because we assumed that the sample X is a subset of the
manifold, hence the triangulation conducted on X is always with a boundary. Thus, it is reasonable
for us to only use one round of FPLM given any single triangle can be served as the boundary.

(a) (b) (c)

Figure 5: FPLM on Sphere
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(a) AE (b) Isomap (c) LE (d) LLE (e) LTSA (f) MDS (g) t-SNE

Figure 6: Other methods on Sphere. (a) 770 crosses,(b) 1786 crosses, (c) 1683 crosses, (d) 1883
cross, (e) 1795 crosses, (f) 1667 crosses, (g) 2329 crosses

5.1 FPLM ON 3-MANIFOLDS

To show the learning performance of FPLM on any given tetrahedron mesh, we use both Delaunay
tetrahedralization algorithm described in Tetgen (Si, 2015) and TC to create tetrahedral meshes
in R3. Given that all the d-manifolds we considered in this paper can at least be embedded into
Rd+1; hence the points that we simulated in the manifold latent space can always be embedded in
at least R4 without self-intersection. Note that the boundary of tetrahedral mesh can be detected
as the 2-simplex that is not shared in tetrahedral mesh. Due to the variety of embedding functions
from R3 to R4, the boundary detect from R3 will be, in general, different from the boundary of the
manifold in R4 or higher. Moreover, for the first round of FPLM, the fixed points will be the vertices
of randomly selected tetrahedral; for the second round of FPLM, the fixed points will be the vertices
of the polytope directly detected from tetrahedralization mesh. The following figure shows FPLM
results on tetrahedral mesh of 3-ball.

(a) (b) (c) (d)

Figure 7: FPLM on 3-ball ground truth latent variables (ψ, φ and θ), where φ and θ are from
[0, π] and ψ is from [0, 2π]. Figure (a) Scatter plot on 3-ball (will be 3-sphere in R4) in R3. (b):
Tetrahedralization (c): Boundary face detection (d): FPLM on 3-ball.

By counting the number of intersections between the planes formed by the faces (triangles) of
tetrahedrons (Figure 7(d)), we found that the result generated from FPLM perfectly preserved the
structure of the manifold, since all planes are only intersect with either a common edge, or point.
For 3-manifold with boundary, we use the famous “Delaunay Example” tetrahedral mesh provided
in python vista (Sullivan & Kaszynski, 2019) to check the performance of FPLM. In addition, to
show a better visualization result, we plot a subset of the tetrahedralization result by visualizing the
tetrahedron below the (x,y) plane. The FPLM process, however, will still conduct using the entire
dataset. By direct observation, we can see FPLM preserves the structure of tetrahedralization result.

(a) (b) (c) (d) (e)

Figure 8: FPLM on tetrahedron mesh example: (a). Point scatter (b). tetrahedralization (c). Boundary
detection (d). First round FPLM (e). Second round FPLM
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6 DISCUSSION

Boundary Advantage of FPLM To get the manifold structure, we apply a simplex decomposition
algorithm (if exist) onM. By our definition of the simplex decomposition, the boundary of the
decomposition result will be a (d− 1)-dimenional closed polytope formed by those (d− 1)-simplices
that are not shared. However, in practice, when d is large, constructing a bijective mapping between
boundaries can be as challenging as the original manifold learning problem. Fortunately, when GS
is strongly connected, we evade this problem by two rounds FPLM in Algorithm 1 because the the
boundary of the decomposition result is automatically determined. This is also the reason for the first
round.

Noised Data The assumption that the data points are sampled without noise can be violated under
practical settings. That is, the point cloud may not lie entirely on the manifold. To study the effect
of noise on the generated mapping, we randomly inject some Gaussian errors on the paraboloid
data. The result (see Appendix) shows that when the noise variance is relatively small, for which
a valid simplex decomposition can be generated, FPLM can still provide a geometrically correct
mapping result. This implies that FPLM can generate the correct mapping even for noisy data as
long as simplex-decomposition of the manifold does not fail. Nevertheless, developing a simplex
decomposition that is robust to the noised data is out of the scope of this paper.

Limitation in Higher Dimensional Manifold Mesh It has been reported that convex combination
may not be one-to-one if d ≥ 3. A counter-example has been reported in (Floater & Pham-Trong,
2006). However, in that particular counter-example, they created one point within a facet of a
tetrahedron conflicting with our assumption on the discrete sample on manifold, i.e. all points are
assumed in general position. Hence, this counter-example does not apply. We further point that
orientation preserving (OP) is necessary for an algorithm with its induced mapping to be bijective
for any d-simplex decomposition (Lipman, 2014). Based on the conclusion from (Floater, 2003),
we easily derive that FPLM is both local/global OP for connected orientable 2-manifolds due to its
proven bijectivity over triangulation. However, when d ≥ 3, the proof of OP in FPLM is still wanted.

Nevertheless, we hypothesize that FPLM will always be bijective in high dimensional manifolds under
some conditions. One can understand the process of FPLM as to draw a d-simplex decomposition
result in Rd at the same time minimizing the sum of distances. The minimization process in FPLM is
equivalent to minimizing the Dirichlet energy of the piece-wise linear mapping φ. It is well-known
that Delaunay simplex decomposition minimizes Dirichlet energy of the piece-wise linear function
(Rippa, 1990), suggesting that FPLM could possibly map to Delaunay simplex decomposition. A
solid mathematical proof will be sought in future work.

7 CONCLUSION

This paper explores the learning performances of the most widely used state-of-the-art dimensionality
reduction algorithms by assessing whether these methods can generate a valid latent space represen-
tation aligning with the basic definition of manifold, which is the bijectivity of its chart map. We
show that the mapping induced by all examined DR/ML are not one-to-one. Hence they are not
learning the manifold in the mathematical sense. We develop a method, two-round FPLM, with the
geometric guarantee of bijectivity in its induced map. From the experimental results, we found that
two-round FPLM can perfectly deal with many 2-manifolds and some 3-manifolds. A future study is
to investigate if this procedure has injectivity/bijectivity for manifold with arbitrary dimension.
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A APPENDIX ONE: ANALYSIS OF FPLM AND GEOMETRIC GUARANTEES

In this Appendix one, we first provide the algebraic solution of FPLM; then prove that the graph
from the triangulation on 2-manifold is planar; thirdly, we show that the constraints that we assign to
each round of FPLM can ensure that FPLM is one-to-one over entire triangulation. We also show
that FPLM can be used for any edge-to-edge tessellation of polygons on 2-manifolds. For arbitrary
dimensional manifold, we discuss sufficient conditions for bijectivity. Unfortunately, computational
methods on discrete data sampled from manifold with orientation preserving is still an open question
in mathematics.

A.1 ALGEBRAIC SOLUTION OF FPLM

We show the optimization process of both two rounds of FPLM here. First, consider the optimization
problem of FPLM in Section 3.2. We set some elements in Y ∈ RN×d to be fixed points C ∈ Rp×d
(p ≥ d+ 1) and optimize the rest. Therefore, we rearrange Y = [Ỹ;C] with Ỹ ∈ R(N−p)×d being
the unknowns and

L =

[
Ly Lyc

LTyc Lc

]
where Lyc ∈ R(N−p)×p. Therefore we can reformulate the problem as

min
Ỹ∈R(N−p)×d

tr(CTLcC + ỸTLycC + CTLTycỸ + ỸTLyỸ)

This quadratic optimization problem is convex as Ly is positive definite. Then by first order condition,
a global minimizer Ỹ∗ exists such that

LyỸ
∗ + LycC = 0, with solution Ỹ∗ = −L−1y LycC, (3)

where L−1y is the inverse of Ly. Since Laplacian matrix acts as a difference operator on features,
a geometric interpretation of (3) is that Ỹ∗ should have its sum of the weighted difference of its
neighbours equal 0, regardless of whether they are connected to the fixed points. This is obvious after
rewriting (3) by components. That is, for any ỹ∗i , i = 1, ..., n− p,

Diiỹ
∗
i −

∑
j∈[1,n−p]

Aijỹ
∗
j −

∑
l∈[n−p+1,n]

Ailcl = 0, (4)

where Aij is the weight between sample i, j and Dii is the degree of xi, including the fixed points.
We may further simplify (4) by considering Y∗ = [Ỹ∗;C]. That is,

y∗i =

n∑
j=1

Aij

Dii
y∗j =

n∑
j=1

λijy
∗
j , ∀i = 1, ..., n− p, (5)

By definition of the degree matrix, we have
∑n
j=1 λij = 1, ∀i. This shows that every optimal

non-fixed point is a convex combination of points in its neighbourhood.

A.2 PLANARITY

Given a triangulation onM, we denote G(V,E) as the graph containing the adjacency information of
vertices and edges from T . For any vertex v in G, we denote NTv as the vertices set that contains v’s
neighboring vertices directly connected to v in T . We also denote ETv as the set contains all the edges
of v as starting/ending point. Based on the second feature of simplex decomposition in definition 1,
we denote the boundary of manifold ∂M (from triangulation) as those edges that are only contained
in one triangle. In this section, we will demonstrate that the graph induced from triangulation onM
is planar that can be reduced into a subset of plane so that edges will only intersect at their endpoints.
We now define planar graph by stating Kuratowski’s theorem(Kuratowski, 1930):

Theorem 3 (Planar Graph,Kuratowski). A finite graph is planar if and only if it does not contain a
sub-graph of the complete graph K5 or the complete bipartite graph K3,3 (utility graph).
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We say a graph is complete if the graph is a simple undirected graph in which a unique edge connects
every pair of distinct vertices. Figure 9(a) shows a complete graph of five vertices K5. We say a
graph is a complete bipartite graph if there are two sets of vertices U and V and every vertex of the
first set is connected to every vertex of the second set. Figure 9(b) shows a complete bipartite graph
(K3,3) in which each vertex set contains 3 vertices.

(a) K5 (b) K3,3

Figure 9: Kuratowski subgraph K5 and K3,3

A.3 PLANARITY OF THE GRAPH INDUCED FROM TRIANGULATION

Proposition 2. For a triangulation on a 2-manifold in Rl, there is no Kuratowski sub-graph K5.

Proof. The proof is by contradiction. Assume there is K5. By the definition of triangulation on
manifold, the intersection of any pair of triangles is either empty, a common vertex, or a common
edge. However, a K5 in R2 has two triangles intersecting with thire edges of them. For example, in
Figure 9 (a) The intersection of triangle T[A,B,D] and triangle T[A,B,C] is line segment [A,B] while
their edges [A,C] and [B,D], intersects, contradicting the condition of triangulation on 2-manifold.

Furthermore, as the triangulation on the manifold is conducted on Rl (for example l = 3), it is
possible to have the situation that one of K5’s vertices is lifted up in another dimension so that the
entire K5 in R3 becomes a pyramid shown in Figure 10 below. However, from the definition of
triangulation, all edges can only be shared by at most once. From the figure below, it is clear to
see that edge [C,D] is shared by triangle T[B,C,D], T[A,C,D],T[E,C,D], and that contradicts to the
definition of triangulation.

Figure 10: Sub-graph of K5 in R3

Proposition 3. For a triangulation on 2-manifold in Rl, there is no Kuratowski sub-graph K3,3.

Proof. The proof is also done by contradiction. Assume there is K3,3. If l = 2, the result is trivial
as shown in Figur 9(b): K3,3 in R2 is always with line-segment cross, and that is contradict to our
definition of triangulation.

If l > 2, we have the situation shown in Figur 11, in which all vertices are in Rl. Observe that there
is no line-cross (edge intersection) contained in this high-dimensional K3,3. However, the plane
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define by the vertices [F,A,B] intersects the plane defined by vertices [A,B,E] at line-segment
[A,B], indicating self-intersection of the manifold due to the fact that the simplex decomposition
is homeomorphic toM. Thus the manifold that contains such feature can only be immersed to Rl
but not embedded. That leads to a contradiction to our basic assumption to 2-manifold being proper
embedding.

Figure 11: Sub-graph of K3,3 in R3

Applying propositions 2 and 3 with theorem 3 leads the claim in Theorem 1.

From Kuratowski theorem, the triangulation T on M with the above features induces a planar
straight line graph. Note that the triangulation we discuss can be the results from any triangulation
outputs such as surface triangulation and tangential complex.
Remark 1 (Manifold without boundary). For some manifolds without boundary, e.g. two sphere
S2, it is well known that we can not map the entire manifold on the plane. One can only discretely
sample from the underlying manifold and hence leave with many “oles” in the manifold. In other
words, what we observed is not the entire sphere but a measure-less subset of it. Thus, it is reasonable
to randomly select a triangle from this triangulation as the boundary of a “new” manifold without
it, which is almost the same as S2 but with the missing triangle. Figure 12below shows a triangle
selected whose boundary serves as the boundary of this new manifold for the sampled points. There
is no information loss as we know what we have taken away.

Figure 12: Boundary triangle for a triangulation of the subset of 2D-sphere

A.4 PIECE-WISE LINEAR MAPPING OF FPLM

As we mentioned earlier, the connectivity between simplices formed on manifold should remain the
same in both image and pre-image of a bijective function over the entire simplex decomposition. We
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let the image set of the chart map as Z = {z1, z2, ..zN} ∈ Rd. The exact position of every point in
Z is unknown; however, from the bijectivity of the chart map, we know that Z perfectly preserves
the connectivity between simplices. This means if we repeat the graph in Z using the adjacency
information from the simplex decomposition (S) onM, the integrity, connectivity, and neighboring
relations between simplices will remain unchanged. We write the simplex decomposition in Rd as S ′
although it is the same as S. Then for the points in both S and S ′, they are linearly related, e.g. the
weights on the edges, which is apparent in equation (5) equal to Aij

Dii
.

We will useNS
′

zi
to denote the set of neighbors of zi in S ′. From equation (5), the solution of FPLM is

obtained by solving a system of linear equations. From equation (5) we know that each interior vertex
y∗i is a convex combination of its neighbors, well aligned with the convex combination function
defined as follows:

Definition 3 (Convex Combination function). For every interior vertex zi of a simplex decomposition
S ′ in Rd and λij ≥ 0, for NS

′

zi
, if a piece-wise linear function f : DS′ → R satisfies:∑

zj∈NS′zi

λij = 1 (6)

and

f(zi) =
∑

zj∈NS′zi

λijf(zj) (7)

Then we call f a convex combination function

Similarly, we will have piece-wise linear mapping φ : DS′ → Rd to be any mapping that φ =
(f1, . . . , fd) in which fi’s are the piece-wise linear function act on each coordinate component of a
given vertex zi. We call φ a convex combination mapping given a set of fixed non-negative weights
λij for the neighbours NS

′

zi
of each interior vertices zi ∈ Z. We have:

y∗i = φ(zi) =
∑

zj∈NT ′zi

λijφ(zj) (8)

The convex combination mapping linearly adjusts the coordinates of each interior vertex in S ′ so
that for each vertex, the mapping result φ(z) lies in the convex hull formed by its neighbors. It is
clear that Y∗, the optimizer of FPLM, satisfies equation (8). For the rest of the paper, we write φ1
for the convex combination mapping for the first round of FPLM, similarly, φ2 for the second round
of FPLM.

Remark 2. Together with the chart map ψ, we now summarize the whole process of Algorithm 1. If
M is a manifold without boundary as required, then the whole process of FPLM (one round) will be:
φ1 ◦ ψ(X); Otherwise, the two rounds of FPLM is: φ2 ◦ φ1 ◦ ψ(X).

A.5 ONE-TO-ONE MAPPING INDUCED FROM FPLM ON TRIANGULATION

Proposition 4. FPLM maps all non-fixed points inside the convex hull formed by the fixed points
(P(C)).

Proof. From previous discussion, it is clear that FPLM is a convex combination mapping, meaning
every non-fixed point must be a convex combination of its neighbors. Assuming on contrary, there is
one point outside the convex hull of P(C), then there must be more points outside too due to (2).
For those outside points, find the one on the edge of the convex hull (this point always exists due to
finiteness), then it must have more points surrounding it too. Continue this process until all non-fixed
points are exhausted. The out-most one will not have a convex hull formed by its neighbors according
to supporting hyperplane theorem (Boyd et al., 2004). This is against the fact that every non-fixed
point has to be convex combination of its neighbors. Therefore the assumption is incorrect.
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We now restrict to 2-manifolds and prove that the mappings induced by both two rounds of FPLM
are one-to-one over triangulation, followed by the work from (Floater, 2003), we firstly state the
Radó-Kneser-Choquet theorem (RKC):

Theorem 4 (Radó-Kneser-Choquet). Suppose T is a strongly connected triangulation and that
φ : DT → R2 is a convex combination mapping which maps ∂DT homeomorphically into the
boundary ∂Ω of some (closed) convex region Ω ⊂ R2. Then φ is one-to-one.

By generalizing the RKC theorem, Floater’s (Floater, 2003) work provided a necessary and sufficient
one-to-one condition of φ for any triangulation:

Theorem 5 (Floater, 2003). Suppose T is any triangulation and let :φ : DT → R2 is a convex
combination mapping which maps ∂DT homeomorphically into the boundary ∂Ω of some (closed)
convex region Ω ⊂ R2. Then φ is one-to-one if and only if no dividing edge [v, w] of T is mapped by
φ into ∂Ω .

Followed by the above claims, we now explore the features of φ1 which is the induced mapping from
the first round of FPLM.

Proposition 5. If T is strongly connected, then P(C2) must be a convex polygon formed by the
boundary vertices of T .

Proof. We first identify that all points in C2 are boundary points of the 2-manifoldM. The boundary
of the manifold forms a closed sub-manifold of dimension 1, which is reflected as the boundary
points of T a closed polygon homeomorphic to S1, i.e. P(C2). Assume that there is at least one
vertex inside P(C2). Applying Theorem 1 with Tutte’s spring embedding theorem (Tutte, 1963), and
combining the fact that a triangle is a convex body of dimension 2, one can draw the planar graph on
R2 without edge cross. The point inside P(C2) must connect to fixed points via edges as manifold
is connected. Therefore there must be edge cross, which is against the no edge cross assertion, and
hence there is no point inside P(C2).

Next we show P(C2) is convex. Assume that P(C2) is concave and vertex p is the intersection of
the inward edges. Due to the fact that C2 are boundary points, and there is no point inside P(C2),
one can place a line (supporting line of convex shape) such that p’s direct neighbors including the
non-boundary points and 2 boundary points that are directly connected to p, are on one side of the
line. This contradicts to (8) and therefore P(C2) must be convex.
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(a) No point inside P(C2)

(b) Convexity of P(C2)

Figure 13: Illustration of the proof

(a) (b)

Figure 14: The convex polygon (Vertices shown as black stars) formed by the boundary points from
strongly connected triangulation.

Proposition 6. If T is strongly connected. The mapping φ1 induced from the first round of FPLM is
one-to-one.

Proof. The result is directly from Theorem 5 as a triangle is a convex hull in R2 and without any
dividing edge across the triangle.

We now explore the property of the second round of FPLM. Recall that the second round of FPLM
takes the simple polygon formed by joining the boundary vertices inside the first round FPLM result.

Lemma 2. Given a strongly connected T ′, the mapping of second round of FPLM bounded by the
convex polygon P(C2) is one-to-one.
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Proof. Given P(C2) is a convex polygon without dividing edge due to Proposition 5, the one-to-one
result is obvious combinging Theorem 5.

Remark 3 (Special case of the first round of FPLM). When the triangulation is not strongly connected,
the first round of FPLM is no longer injective because the dividing edge forms a closed boundary of
a subset of the manifold causing the part of the manifold that does not contain the selected triangle
to collapse into the dividing edge. Therefore, we have to directly detect the boundary from GS and
generate a p-side convex polygon in R2 so that all dividing edges remain inside the boundary and
none of the boundary vertices are colinear. Theorem 5 leads to Theorem 2 directly and justifies our
choice.

From the lemma above, we know that given a strongly connected triangulation T on the manifold, T
can be mapped into a closed convex subset in R2 by using either one or two rounds of FPLM.
Remark 4 (Manifold with genus). For surface manifolds, the genus of them is an integer (g)
representing the maximum number of cuttings along non-intersecting closed simple curves without
rendering the resultant manifold disconnected (Munkres, 2018). It will interfere with the boundary
detection on the manifold compromising boundary identifiability. Hence FPLM is not functional to
the surface manifold with non-zero genus such as torus.
Remark 5 (Bijectivity and Homeomorphism). The sample X = {x1,x2, ..xN} we observed is a
subset of a manifold. Since the FPLM maps the triangulation T on the 2-manifold to a convex closed
area in R2, and every 2, 1, 0-simplex in T is mapped to exactly one specific 2, 1, 0-simplex in R2,
together with the chart map, the mapping induced from FPLM (i.e. φ1 ◦ ψ for one round, φ2 ◦ φ1 ◦ ψ
for two rounds) is at least continuous over T and one-to-one. Hence, the mapping generated by
Algorithm 1 process (φ ◦ ψ) restricted to a closed area in R2 is bijective.

Based on the property of FPLM on 2-manifolds, we now explore the feature of FPLM when the
manifold structure is obtained by edge-to-edge tessellation of polygons (triangle is a three-sided
polygon).
Definition 4 (Edge-to-Edge Tessellation of polygons on 2-manifolds). Given 2-manifold, if the
manifold can be decomposed with a list of polygons with the number of side (n) larger than equal
to 3, and the intersection between each polygon can only either be empty, a common point, or a
common edge, we then say this manifold is tessellated by these polygons, and that is an edge-to-edge
tessellation on the manifold.

Let T L be the tessellation described above. If we further triangulate T L, for example we add
edges which partition each face of T L into triangles, then we can use convex combination mapping
φ′ : DT L → R2 and the φ′ is linear over each triangle in DT L and continuous. Clearly, if T L is
strongly connected, based what we discussed earlier, Algorithm 1 is one-to-one with the requirement
that the selected polygon in the first round is convex. If T L is not strongly connected, again, boundary
detection is necessary to form a p side polygon manually.

We now focus on the property of FPLM in higher dimenional simplex decomposition. Taking
3-simplex decomposition (tetrahedralization) as an example, it has been reported that the convex
combination mapping may not be one-to-one over tetrahedral meshes, and a counter-example has
been reported in (Floater & Pham-Trong, 2006). However, the counter-example mentioned on that
paper has four points positioned in one face of a tetrahedron, this conflicts our assumption that
all points should in general position. Also as FPLM starts from sum of squared distances, which
corresponding to a special type of convex mapping, different from the one in (Floater & Pham-Trong,
2006). Hence, FPLM still works for this counter example.

In regards to d-manifold for d > 2, the situation is more complicated. The bijectivity of piece-wise
linear mapping relates to orientation preserving and some boundary conditions. We restate the key
theorem here, which is in (Lipman, 2014).
Theorem 6 (Sufficient conditions for bijectivity). Given a d dimensional connected orientable
manifoldM and its d-simplex decomposition constructed on a discrete sample, then a piece-wise
linear mapping φ fromM to Rd is bijective if it satisfies the following conditions :

1. The mapping φ is orientation preserving over entire decomposition.

2. The boundary of simplex decomposition is mapped to a polytope in Rd bijectively.
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The first round FPLM with a selected simplex maps the boundary of the manifold in the centre of the
simplex as a convex polytope as shown in 5. This step guarantees the second condition mentioned
above. However, orientation preserving property is not yet clarified, although we conjure that it may
be there. The experiments of 3-manifolds support this conjecture. Therefore rigorous proof is still
wanted.

19



Under review as a conference paper at ICLR 2022

B APPENDIX TWO: MORE EXPERIMENTAL RESULTS

In this section, we add more experimental results and briefly introduce the d-simplex decomposition
methods such as Tangential Complex and Tetgen.

Tangential Complex
Followed by (Boissonnat & Ghosh, 2014), we use the Tangential Complex (TC) algorithm to construct
triangulation on the manifold. One requirement for conducting TC is to require that each point’s
tangent space on the manifold be estimated by using PCA. The tangential complex is obtained
by gluing the local (Delaunay) triangulations around each sample point. The output of TC is a
sub-complex of the l-dimensional Delaunay simplices of the sample points, but it can be computed
using mostly operations in the d-dimensional tangent spaces.(Boissonnat & Ghosh, 2014). It can be
proved that the output of the reconstructed manifold from the TC algorithm can be isotopic to the
original manifold. However, due to the appearance of so-called inconsistencies, TC does not always
generate the triangulation result that we defined in 2.1. Even though this situation has been reported
(Freedman, 2002), there is no universal solution except for the case of curves (d = 1) (Flötotto, 2003).
Hence, one way to deal with this problem is to give each point that contained inconsistent simplex a
small perturbation of their weights so that the position of medial axis of the points can be adjusted
accordingly. Unfortunately, there is no guarantee that this perturbation method can always reduce the
number of inconsistencies to zero. Hence, if the TC result has inconsistency even after perturbation,
we will use Delaunay or surface triangulation.

Tetgen
One of the most widely applied tetrahedral mesh generation methods: Tetgen, is comprehensively
described in (Si, 2015). It is a mixture of a few classic constrain methods described in (George et al.,
1991) and the classic Delaunay refinement algorithm (Ruppert, 1995). Given a set of points from
an underlying manifold in Rl, with an intrinsic dimension equal to three,Tetgen can generate a 3D
piece-wise linear complex, collectively named as cells. The property of such cells includes 1. the
boundary of each cell in the complex is a union of cells in the complex; 2. The intersection (if it
exists) of two cells is the simplicial complex with a lower dimension, at least less than one compared
to the two intersected cells. If all the cells in these underlying 3-manifolds are tetrahedral, we would
call the piece-wise linear complex formed by tetrahedral mesh. More generally, the piece-wise linear
meshes generated from Tetgen offer a facet-to-facet tessellation of manifold in Rl.

B.1 ADDITIONAL RESULTS ON 2-MANIFOLDS

We add some additional experimental results for 2-manifolds here:

(a) (b) (c) (d) (e) (f)

Figure 15: FPLM on Monkey Saddle, (a) Manifold scatters,(b) Triangulation on manifold, (c)
Boundary detection from triangulation result, (d) First round FPLM result, (e) Boundary detection of
the first round FPLM, (f) Final result.

(a) AE (b) Isomap (c) LE (d) LLE (e) LSTA (f) MDS (g) t-SNE

Figure 16: Other methods on monkey saddle. (a) 21 crosses,(b) 46 crosses, (c) 815 crosses, (d) 57
cross, (e) 33 crosses, (f) 41 crosses, (g) 735 crosses
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Manifold: Paraboloid

(a) (b) (c) (d) (e) (f)

Figure 17: FPLM on Paraboloid, (a) Manifold scatters,(b) Triangulation on manifold, (c) Boundary
detection from triangulation result, (d) First round FPLM result, (e) Boundary detection of the first
round FPLM, (f) Final result.

(a) AE (b) Isomap (c) LE (d) LLE (e) LTSA (f) MDS (g) t-SNE

Figure 18: Other methods on Paraboloid: (a) 122 crosses,(b) 39 crosses, (c) 1468 crosses, (d) 309
cross, (e) 30 crosses, (f) 57 crosses, (g) 282 crosses

Manifold: Twin peaks

(a) (b) (c) (d) (e) (f)

Figure 19: FPLM on Twinpeaks

(a) AE (b) Isomap (c) LE (d) LLE (e) LTSA (f) MDS (g) t-SNE

Figure 20: Other methods on Twinpeaks: (a) 3332 crosses,(b) 964 crosses, (c) 764 crosses, (d) 3751
cross, (e) 2976 crosses, (f) 3584 crosses, (g) 18282 crosses

A summary of all manifolds included in the experiment and the number of line crosses generated
from the methods other than FPLM are included in the following table:

Manifolds Methods and Line crosses
Autoencoder Isomap LE LLE LTSA MDS TSNE

Monkey Saddle 54 46 815 57 33 47 735
Swiss Roll 4585 1942 937 3623 36773 3804 10088
Sphere 770 1786 1683 1883 1795 1667 2329
Twin Peaks 100 114 903 2806 696 91 235
Paraboloid 56 39 1468 309 309 38 282
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B.2 ADDITIONAL RESULT ON TETRAHEDRAL MESHES

We additionally provide this result to show that FPLM can deal with large number of tetrahedral
mesh in R3. Note that the boundary of manifold (i.e. in R4 or higher)will generally be different
compared with the boundary detected in R3, since there are many types of embedding functions
to map 3 dimensional tetrahedral mesh into R4. We select the famous SHARK tetrahedral mesh
(Sullivan & Kaszynski, 2019) that contains 17061 tetrahedrons to check the efficiency of FPLM. The
results are as follows:

(a) (b) (c) (d) (e)

Figure 21: FPLM on shark sharp manifold example: 1. Point scatter 2. tetrahedralization on scatters
3. Boundary detection (faces) 4. First round FPLM 5. Second round FPLM. Total running time:38.5s

B.3 EFFECT OF NOISE ON PARABOLOID DATA

To evaluate the robustness to noised samples, we inject some random Gaussian noise to the z-values,
i.e. z = f(x, y) = x2 + y2 + ε, where ε ∼ N (0, σ). We test on three levels of noise variance,
σ = 0.001, 0.005, 0.01 and the mapping results are shown in Figure 22. We observe that when the
noise level is relatively small (σ = 0.001), the simplex decomposition generated by TC is still valid
and hence FPLM can guarantee a valid mapping. When the noise level increases, we see TC fails to
generate a valid decomposition and thus, FPLM fails to preserve the bijectivity. From the theoretical
analysis in this paper, as long as the simplex decomposition is valid, FPLM is guaranteed to succeed
regardless of the noise level.

(a) σ = 0.001 (b) σ = 0.005 (c) σ = 0.01

Figure 22: Result on noise-injected paraboloid samples. The number of crosses are (a) 0, (b) 14, (c)
2108.
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