
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALPHAFLOW: UNDERSTANDING AND IMPROVING
MEANFLOW MODELS

Anonymous authors

Paper under double-blind review

α-Flow

α-Flow

MeanFlow

MeanFlow

N
F
E
=

1
N
F
E
=

2

(FID: 2.46)

(FID: 3.47)

(FID: 2.95)

(FID: 2.34)

Figure 1: Uncurated samples (seeds 1-8) from the DiT-XL/2 model for MeanFlow Geng et al.
(2025a) and α-Flow (our proposed method) produced with 1 (upper) and 2 (lower) sampling steps
for ImageNet-1K 2562.

ABSTRACT

MeanFlow has recently emerged as a powerful framework for few-step genera-
tive modeling trained from scratch, but its success is not yet fully understood.
In this work, we show that the MeanFlow objective naturally decomposes into
two parts: trajectory flow matching and trajectory consistency. Through gradi-
ent analysis, we find that these terms are strongly negatively correlated, causing
optimization conflict and slow convergence. Motivated by these insights, we in-
troduce α-Flow, a broad family of objectives that unifies trajectory flow match-
ing, Shortcut Model, and MeanFlow under one formulation. By adopting a cur-
riculum strategy that smoothly anneals from trajectory flow matching to Mean-
Flow, α-Flow disentangles the conflicting objectives, and achieves better conver-
gence. When trained from scratch on class-conditional ImageNet-1K 256×256
with vanilla DiT backbones, α-Flow consistently outperforms MeanFlow across
scales and settings. Our largest α-Flow-XL/2+ model achieves new state-of-the-
art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15
(2-NFE).

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015) have emerged as the leading paradigm for generative
modeling of visual data (Dhariwal & Nichol, 2021; Rombach et al., 2022; Brooks et al., 2024).
However, their widespread use is limited by slow inference, as generating high-fidelity samples
typically requires a large number of denoising steps. This computational bottleneck has spurred
extensive research into designing efficient diffusion-based generators that are able to operate in very
few steps while preserving high generation quality (Salimans & Ho, 2022; Sauer et al., 2024; Song

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) MeanFlow (b) α-Flow

Figure 2: Diagrams of training dynamics between MeanFlow and α-Flow. (a) MeanFlow training
exhibits a gradient conflict. (b) α-Flow resolves the conflict by first minimizing a trajectory flow
matching loss, then following an annealing trajectory to approach the MeanFlow optimal solution.

et al., 2023; Song & Dhariwal, 2024; Lu & Song, 2025; Geng et al., 2025b; Frans et al., 2025; Geng
et al., 2025a).

Early attempts reduce the inference time of diffusion models through distilling a pre-trained multi-
step model into a few-step one (Salimans & Ho, 2022; Sauer et al., 2024). The subsequent devel-
opment of consistency models (Song et al., 2023; Song & Dhariwal, 2024; Lu & Song, 2025) en-
abled training from scratch for few-step generative models. However, a significant performance gap
still remains between existing few-step and multi-step diffusion models. The recently introduced
MeanFlow framework (Geng et al., 2025a) enables more stable training and better classifier-free
guidance (Ho & Salimans, 2022) integration, significantly bridging the gap between few-step and
multi-step from-scratch trained diffusion models. Despite its practical success, there still lacks a
clear understanding of why MeanFlow performs better, which hinders further improvements and the
design of stronger few-step models.

In this work, we provide a deeper understanding of why MeanFlow works, revealing that its train-
ing objective can be decomposed into two components: trajectory flow matching and trajectory
consistency. Our gradient analysis shows that these two components are strongly negatively corre-
lated during training, leading to instability and slow convergence in joint optimization. We further
demonstrate that the previous heuristic adoption of border-case flow matching supervision is crucial:
it actually acts as a surrogate loss for trajectory flow matching and mitigates gradient conflict. How-
ever, over 75% of MeanFlow’s computation is spent on this border-case supervision, which is not
its primary focus. This raises an open question: can we design more efficient techniques to optimize
MeanFlow objective, without such computational overhead?

Motivated by these observations, we introduce α-Flow, a new broad family of objectives for few-
step flow models. This framework unifies trajectory flow matching, Shortcut Models Frans et al.
(2025), and MeanFlow under a single unified formulation. As visualized in Figure 2, by employing
a curriculum learning strategy that smoothly transitions from trajectory flow matching to MeanFlow,
α-Flow better disentangles the optimization of trajectory flow matching and trajectory consistency,
reduces reliance on border-case flow matching supervision, and achieves better convergence.

By training vanilla DiT-(Peebles & Xie, 2023) models from scratch with α-Flow on class-conditional
ImageNet-1K 2562, we obtain consistently stronger performance across both small- and large-scale
settings compared with MeanFlow, for both one-step and few-step generation. Our largest DiT-
XL/2+ model establishes new state-of-the-art results among all from-scratch trained models with
the vanilla DiT backbone and training pipeline, achieving FID scores of 2.58 (1-NFE) and 2.15
(2-NFE).

2 PRELIMINARIES

Diffusion models and flow matching. Diffusion model (Ho et al., 2020; Song & Ermon, 2019;
Rombach et al., 2022) define a forward process that progressively adds noise to a data sample x ∼
pdata(x) over a continuous timestep t ∈ [0, 1]. Specifically, given training data, the forward process
perturbs x into a noisy version zt = βtx + σtϵ where ϵ ∼ N (0, I), βt and σt are pre-defined

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

scheduler parameters that depend on t, such that z0 = x and z1 = ϵ. Flow matching (Liu et al.,
2023; Lipman et al., 2023) is a deterministic alternative that defines the forward process as a straight-
line path between the noise distribution and the data distribution, setting βt = 1 − t and σt = t. A
neural network vθ(zt, t) is trained to model the ground-truth vector field dzt/dt along this trajectory
zt by minimizing the objective:

LFM (θ) = Et,x,zt
[||vθ(zt, t)− vt||2] (1)

where vt ≜ v(zt, t|x) = dzt/dt
∣∣
x

= ϵ − x. To generate a new sample, the probability flow
ODE (PF-ODE) dz/dt = vθ(zt, t) is solved from t = 1 to t = 0, starting with an initial value
z1 ∼ N (0, I).

One primary challenge of diffusion models is the slow sampling speed. To address this, several
methods have been proposed to enable high-quality generation with significantly fewer steps.

Consistency model (CM). (Song et al., 2023) enables one-step generation by training a neural
network fθ(zt, t) to directly map the noisy input zt to clean samples x. The core idea is to enforce
a consistency property at any two nearby timesteps t and s, by minimizing the difference between
the model’s output. Depending on the ∆t := t− s, the training objective can be categorized into:

• Discrete-time Consistency Training (CT) (Geng et al., 2025b; Song et al., 2023; Song & Dhariwal,
2024) minimizes the following discrete time CT loss LCTd :

LCTd(θ) = Et,s,zt

[
∥fθ(zt, t)− fθ− (zs, s)∥22

]
, (2)

where 0 ≤ s < t ≤ 1, zs = zt − ∆t · v and fθ− := stopgrad (fθ). While smaller values
of ∆t reduce the discretization error and improve performance, they might also lead to training
instability (Song et al., 2023; Geng et al., 2025b). This necessitates a carefully designed scheduler
for ∆t to ensure good performance and stability during training.

• Continuous-time CT (Lu & Song, 2025; Song et al., 2023) eliminates the discretization error by
the continuous time CT loss LCTc :

LCTc(θ) = 2Et,zt

[
f⊤
θ (zt, t)

dfθ− (zt, t)

dt

]
, (3)

Song et al. (2023) theoretically show that ∇θLCTc(θ) = lim∆t→0 ∇θLCTd(θ)/∆t. However, es-
timating dfθ− (zt,t)

dt relies on the Jacobian-vector product (JVP) operation, which causes potential
issues of scalability and efficiency in modern deep learning frameworks (Wang et al., 2025b; Peng
et al., 2025).

Consistency trajectory model (CTM). (Kim et al., 2024; Zhou et al., 2025; Frans et al., 2025;
Geng et al., 2025a) generalize Consistency Models (CMs) by training a neural network uθ(zt, r, t)
to enforce consistency across a trajectory from t to r with 0 ≤ r ≤ t ≤ 1. This allows jumping from
any t ∈ (0, 1] to any r < t during inference, enabling multi-step generation. To train CTM from
scratch:

• Shortcut model (Frans et al., 2025) enforces consistency by ensuring that a single ”shortcut” step
from t to r is consistent with two consecutive shortcut steps of half the size. The training objective
is:

LSC(θ) = E
t,r,zt

[
∥uθ(zt, r, t)− uθ−(zt, s, t)/2− uθ− (zs, r, s) /2∥22

]
, (4)

where zs = zt − (t− s) · uθ−(zt, s, t) and s = (t+ r)/2.
• MeanFlow (Geng et al., 2025a) trains the model uθ(zt, r, t) to estimate the mean velocity

1
t−r

∫ t

r
v(zτ , τ)dτ , with training objective given by:

LMF(θ) = E
t,r,zt

[∥∥∥∥uθ(zt, r, t)− vt + (t− r)
duθ−(zt, r, t)

dt

∥∥∥∥2
2

]
. (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 100K 200K 300K 400K

−0.8

−0.4

0.0

0.4

0.8
SIM

cos(∇LTFM,∇LTC)
cos(∇LFM′,∇LTC)

(a) Gradient similarity

0 100K 200K 300K 400K
1.0

1.1

A
ve

ra
ge

L
T
F
M

va
lu

e

LFM′ ratio: 0%
LFM′ ratio: 75%

(b) LTFM under different LFM′ ratios.

0 100K 200K 300K 400K
−0.1

0.0

A
ve

ra
ge

L
T

C
va

lu
e

LFM′ ratio: 0%
LFM′ ratio: 75%

(c) LTC under different LFM′ ratios.

Figure 3: MeanFlow training analysis. (a) Shows the cosine similarity between the gradients of
two loss pairs (∇LTC vs. ∇LTFM and ∇LTC vs. ∇LFM′) throughout training. (b) Evaluated LTFM when
MeanFlow trained with 0% and 75% of LFM′ . (c) Evaluated LTC when MeanFlow trained with 0%
and 75% of LFM′ .

In practice, MeanFlow significantly outperforms other one/few-step diffusion and flow models. Yet,
there has been little analysis explaining why it works so effectively. To shed light on this, we analyze
MeanFlow training in the next section.

3 ANALYZING MEANFLOW TRAINING

An intriguing aspect of MeanFlow is the noise distribution used during training: Geng et al. (2025a)
empirically found that the best results are achieved when setting r = t for 75% of the samples. This
might look counter-intuitive, since we are interested in learning the average velocity on a [r, t] inter-
val to perform large trajectory leaps during inference, so why spending the majority of the training
computation on fitting this border case that corresponds to vanilla flow matching supervision? In
this section, we show that the MeanFlow loss on its own can be interpreted as velocity consistency
training with extra flow matching supervision, and analyze the interaction of these two objectives.

3.1 UNDERSTANDING THE OBJECTIVE

Through algebraic manipulations, the original MeanFlow loss LMF in Eq. (5) can be rewritten into
the following equivalent form (see Appendix D.1):

LMF(θ) = E
t,r,zt

[
∥uθ(zt, r, t)− vt∥22

]
︸ ︷︷ ︸

Trajectory flow matching LTFM

+ E
t,r,zt

[
2 (t− r) · u⊤

θ (zt, r, t)
duθ−(zt, r, t)

dt

]
︸ ︷︷ ︸

Trajectory consistency LTC

+C,
(6)

where C is a constant independent of θ. In this decomposition, the first term LTFM corresponds
to a flow matching loss but with an additional modeling input parameter r, so we refer to it as
trajectory flow matching. The second term LTC, denoted as trajectory consistency loss, acts as
a (t − r)-reweighted continuous consistency loss 1, but also without a boundary condition (Song
et al., 2023). This decomposition highlights that the MeanFlow objective can be interpreted as a
consistency (trajectory) model with extra flow matching supervision.

An interesting property of this decomposition is that LTC does not have any boundary condition.
In comparison, Song et al. (2023) enforces such a condition for vanilla consistency models using a
z0-prediction parameterization: without it, the model would quickly converge to a trivial solution
(e.g., a constant output). In the MeanFlow case, this collapse does not occur, which suggests that
LTFM implicitly provides the boundary condition for LTC. We believe that the absence of an explicit
boundary condition makes LTC easier to optimize and gives it a much larger solution space.

Another important observation here is that trajectory flow matching involves random r ⩽ t, which
differs from the r = t case used during training by Geng et al. (2025a). To clarify this distinction,
we directly compare trajectory flow matching (LTFM) with vanilla flow matching, which we denote

1Similarly to the proof in Remark 10 of Song et al. (2023), one can show that this term is equivalent to
minimizing the difference between uθ(zt, r, t) and uθ−(zt−∆t, r, t−∆t) as ∆t → 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

as LFM′ when using the u-prediction parameterization:

LTFM ≜ E
t,r,zt

[
∥uθ(zt, r, t)− vt∥22

]
, LFM′ ≜ E

t,r,zt|r=t

[
∥uθ(zt, r, t)− vt∥22

]
(7)

Here, LTFM arises from the decomposition of the MeanFlow loss, while LFM′ corresponds to the
objective used in Geng et al. (2025a) for joint training. From this formulation, several observations
follow. First, LFM′ is a “part” of LTFM, active only on the p(t, r | r = t) slice of the joint distribution
p(t, r). Second, if the network is independent of r, then marginalizing out r yields LTFM ≡ LFM′ ,
reducing the objective to vanilla flow matching.

3.2 EMPIRICAL ANALYSIS

With the decomposition in Equation (6), how does LFM′ interact with the two decomposed terms?
In this section, we analyze the gradients of these losses and examine how extra LFM′ minimization
affects LTFM and LTC individually. We conduct detailed experiments by training MeanFlow with the
DiT-B/2 (Peebles & Xie, 2023) architecture on ImageNet-1K 2562 (Deng et al., 2009) for 400K
steps. Additional experiment settings are in Appendix F.

We first analyze the training dynamics by measuring the cosine similarity between the gradients
∇LTFM and ∇LTC during training. As shown in Figure 3a, these two gradients are strongly negatively
correlated, with a similarity typically below −0.4. This reveals that optimizing LTFM and LTC jointly
is inherently difficult. We hypothesize this stems from the fact that LTC, without any boundary
condition, has a very large optimal solution manifold, compared to LTFM whose manifold is very
narrow. Thus the optimization process is getting pulled towards the LTC manifold, distracting from
reaching a narrow intersection.

Given this gradient conflict, the question arises: why does joint training with LFM′ help? We iden-
tify two key reasons: First, as a subset of LTFM, LFM′ directly reduces LTFM. This is empirically
confirmed in Figure 3b, where allocating 75% of the training budget to LFM′ significantly lowers
the overall LTFM compared to pure MeanFlow training. Second, LFM′ applies only at r = t, where
LTC = 0. Consequently, the gradient ∇LFM′ interferes less with ∇LTC than the ∇LTFM gradient.
This is demonstrated in Figure 3a, which shows that cos(∇LFM′ ,∇LTC) is consistently higher than
cos(∇LTFM,∇LTC), that is strongly negative for more than 95% of the training. Surprisingly, LTC

component doesn’t seem to be affected and can even be lower when allocating 75% of the training
budget to LFM′ , as shown in Figure 3c. Which again hints at the fact that LTC is relatively easy to
optimize, even near the LTFM optimum.

In conclusion, our analysis reveals three important observations:

▷ LMF can be decomposed into trajectory flow matching LTFM and trajectory consistency LTC

objectives, whose gradients are strongly negatively correlated during training.
▷ LTC does not have a necessary boundary condition on its own, implying that LTFM serves

as an implicit boundary condition for it.
▷ LFM′ acts as a surrogate loss for LTFM, but with significantly less gradient conflict with the

Trajectory consistency loss LTC.

4 α-FLOW MODELS

As we showed in the previous section, the LTFM loss is difficult to optimize jointly with the LTC.
While the introduction of the LFM′ loss serves as an effective surrogate for optimizing LTFM, this
approach dedicates a significant portion of training to an objective that is not of our primary interest.
This raises a key question: Can we more efficiently optimize LTFM when optimizing LMF without this
computational overhead? To answer this, we introduce our α-Flow loss, a new family of training
objectives for flow-based models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Discrete CT (b) Continuous CT (c) Shortcut Model (d) MeanFlow (e) α-Flow

Figure 4: Comparison of training trajectories for various few-step diffusion and flow-based models.

4.1 α-FLOW: UNIFYING ONE, FEW, AND MANY-STEP FLOW-BASED MODELS

Definition 1. The α-Flow loss Lα is defined as:

Lα(θ) ≜ E
t,r,zt

[
α−1 · ∥uθ(zt, r, t)− (α · ṽs,t + (1− α) · uθ−(zs, r, s))∥22

]
, (8)

where t, r ∈ [0, 1] is the start and end timestep, s is the intermediate timestep: s = α · r+ (1−α) ·
t, α ∈ (0, 1] is the consistency step ratio, and zs = zt + (t− s) · ṽs,t is the trajectory value at this
timestep s. Here, ṽs,t is the “shift velocity” used to estimate the intermediate variable zs from zt.

The α-Flow loss is visualized in Figure 4e. Intuitively, it enforces trajectory consistency between
t and r by introducing an additional s, which is an interpolation between t, r with ratio α. More
importantly, this definition generalizes previously introduced training objectives such as trajectory
flow matching, Shortcut Model training, and MeanFlow training:
Theorem 1. The α-Flow loss unifies flow matching, Shortcut Models, and MeanFlow:

▷ LTFM(θ) = Lα=1(θ) with ṽs,t = vt.

▷ LSC(θ) =
1
2Lα=1/2(θ) with ṽs,t = uθ−(zt, s, t).

▷ ∇θLMF(θ) = ∇θLα→0(θ) with ṽs,t = vt.

Proof sketch: The connection between Lα and LTFM and LSC are straight forward. For the non-
trivial relationship showing the convergence from ∇θLα(θ) to ∇θLMF(θ), we leverage a first-order
Taylor expansion on the term uθ−(zs, r, s) around s = t. This yields:

uθ− (zs, r, s) = uθ− (zt, r, t)−
duθ−(zt, r, t)

dt
(t− r)α+O

(
α2
)
,

Substituting this expansion into the Equation (8) and taking the limit as α → 0 causes the higher-
order terms O

(
α2
)

to vanish and recover ∇θLMF(θ). The detailed proof is deferred to Ap-
pendix D.2. Furthermore, under Assumption 2, we prove the upper bound of the asymptotic dis-
tance between ∇θLα(θ) and ∇θLMF(θ) in Appendix E.3. This bound is linearly related to α and
converges to 0 as α → 0, which aligns with the result of Theorem 1.

Moreover, if one considers a z0-parametrized network uθ(zt, 0, t) = (zt − fθ(zt, t)) /t = ẑ0, Lα

incorporates discrete and continuous consistency training as well. Specifically, with ṽs,t = vt and
r ≡ 0:

▷ LCTd(θ) = Lα=δ(θ) for δ ∈ (0, t).
▷ ∇θLCTc(θ) = ∇θLα→0(θ).

This theorem reveals that the ratio α is the key hyperparameter that unifies seemingly different
methods, which controls the relative position of the intermediate timestep s within the (r, t) interval.
By annealing α from 1 to 0, we obtain a family of models in the interpolation between trajectory
flow matching and MeanFlow. Notably, discrete CT is a special case of α-Flow with r ≡ 0. Unlike
discrete CT, α-Flow requires no complex timestep partitioning: once t and r are sampled, s is
immediately determined with a fixed α.

4.2 α-FLOW MODELS

The α-Flow loss enables a curriculum learning strategy that progressively transitions from the tra-
jectory flow matching to MeanFlow objective. As visualize in Figure 2, this approach better dis-
entangles the optimization of the trajectory flow matching and consistency losses, could potentially

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

reduce reliance on the flow matching objective, and leads to better convergence. The detailed cur-
riculum learning can be summarized into three phases:

• Trajectory flow matching pretraining (α = 1). To speed-up convergence toward narrow LTFM

manifold, we prioritize optimizing trajectory flow matching in the early training phase. Addition-
ally, as a low-variance objective, trajectory flow matching quickly establishes a reliable noise-to-
data mapping, providing a good initialization for subsequent few-step refinement. Notably, this
pretraining strategy is aligned with previous diffusion model pretraining strategy applied on con-
sistency model (Geng et al., 2025b), while we start from different motivations and generalize it
into the α-Flow framework.

• α-Flow transition (α ∈ (0, 1)). Once the model establishes a solid foundation through initial
training, we transition from the LTFM to the LMF objective. We accomplish this with a curricu-
lum learning approach, where we progressively decrease the α from 1 to 0. This gradual shift is
inspired by discrete CT (Song et al., 2023) methods and serves two crucial functions: (a) we the-
oretically demonstrate that the optimal solution of α-Flow smoothly transitions from the optimal
solution of LTFM to the optimal solution of LMF as α goes from 1 to 0 (proved in Appendix E.2).
(b) the curriculum learning effectively transitions the training objective from a ”high-bias, low-
variance” state to the necessary ”low-bias, high-variance” state. This is supported by the theoret-
ical proof showing the upper bound on the gradient variance for α-Flow increases as α decreases
(proved in Section Appendix E.4). This strategy yields significantly improved convergence com-
pared to directly optimizing the inherent high-variance MeanFlow objective.

• MeanFlow fine-tuning (α → 0). In the final stage, we focus entirely on the MeanFlow training
objective. Unlike the original paper, our improved early-stage optimization of trajectory flow
matching significantly reduces the need for the flow matching loss (as shown in Table 2 (b)) and
achieves significantly better few-step generation quality.

Algorithm 1 α-Flow: Training.

fn(z, r, t): function to predict u
x: training batch, k: training iterations

t, r = sample t r()
alpha = sample alpha(k)
s = alpha * r + (1 - alpha) * t
e = randn like(x)

zt = (1 - t) * x + t * e
v = e - x

if alpha == 0:
u, dudt = jvp(fn, (zt, r, t), (v, 0, 1))
u_tgt = v - (t - r) * dudt

else :
u = fn(zt, r, t)
zs = zt - (t - s) * v
u_tgt = alpha * v + (1 - alpha) * fn(zs, r, s)

error = u - stopgrad(u_tgt)
loss = metric(error)

Algorithm 2 α-Flow: Curriculum Schedule

k_s, k_e: start/end schedule iterations,
gamma: temperature parameter
k: current iteration, eta: clamping value

scale = 1 / (k_e - k_s)
offset = - (k_s + k_e) / 2 / (k_e - k_s)
alpha = 1 - sigmoid((scale * k + offset) * gamma)
alpha = 1 if alpha > (1- eta) else (0 if alpha < eta else

alpha)

The overall training code of α-Flow
is shown in Algorithm 1, where
we first sample t, r and obtain the
α from the schedule. Based on
whether α = 0 or not, α-Flow will
use either LMF or Lα to train the
model. α-Flow applies the same
training details as MeanFlow when
training LMF (except a lower ratio
of flow matching). Below, we only
show the difference: the schedule
of α as well as the design space of
Lα when α > 0.

Schedule. To schedule the train-
ing, we use a sigmoid function,
α = Sigmoidks⇒ke,γ,η

(k), which
depends on the training iteration k.
The function is defined by its start-
ing and ending iterations, ks, ke,
a temperature parameter γ (set to
be 25) and a clamping value η.
The specific implementation can be
found in Algorithm 2. Figure 6 pro-
vides a visualization of this sched-
uler, while Section 5.2 conducts an
ablation study over its parameters.

Clamping value. Geng et al. (2025b) show that when ∆t = t− s approaches 0, the performance
of few-step CT model will first increase and then decrease. For α-Flow, we observe a similar phe-
nomenon: by training α-Flow with a fixed α, as α approaches 0, the 1-step generation performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Source Params Epochs NFE 1 NFE 2

FID FDD FID FDD FID†

Shortcut-XL/2 Frans et al. (2025) 675M 160 10.60 – – – –
IMM-XL/2 Zhou et al. (2025) 676M 3840 8.05 – 3.88 – –
MeanFlow-XL/2 Geng et al. (2025a) 676M 240 3.43 – 2.93 – –
MeanFlow-XL/2+ Geng et al. (2025a) 676M 1000 – – 2.20 – –
FACM-XL/2 Peng et al. (2025) 675M 800 + 250× 2 – – – – 2.07

FACM-XL/2

Our reproduction

675M 120× 2 9.54 410.4 7.31 362.0 –
FACM-XL/2 675M 240× 2 6.59 327.7 4.73 278.6 –
CT-XL/2 676M 240 7.44 324.9 6.22 271.9 –
MeanFlow-B/2 131M 240 6.04 312.3 5.17 232.1 –
MeanFlow-XL/2 676M 240 3.47 185.8 2.46 108.7 2.26

α-Flow-B/2
Our methods

131M 240 5.40 287.1 5.01 231.8 –
α-Flow-XL/2 676M 240 2.95 164.6 2.34 105.7 2.16
α-Flow-XL/2+ 676M 240+60 2.58 148.4 2.15 96.8 1.95

Table 1: Class-conditional generation on ImageNet-256×256. The table reports the results for
few-step diffusion/flow matching-based methods trained from scratch. ”×2” indicates that FACM
requires roughly twice the computation per epoch compared to other methods. For a direct ”epoch-
to-epoch comparison,” α-Flow-XL/2, MeanFlow-XL/2 and FACM-XL/2 are each trained for 240
epochs. α-Flow-XL/2+ is a fine-tuned version of α-Flow-XL/2, trained for extra 60 epochs with a
batch size of 1024. † FID scores are evaluated with the balanced class sampling (see Appendix J).

will first increase then decrease. Detailed experiments are shown in Table 5 (c). From the exper-
iment, the optimal performance is achieved when α = 5 × 10−3. Thus, we set a clamping value
η = 5×10−3 for the schedule. α will be set to 0 when α < η. We also use the same clamping value
to set α to 1 when α > 1− η, as when α is close to 1, LTFM is similar to Lα but more efficient.

Training objective. In the unifying space of α-Flow loss, all other few-step models set ṽs,t = vt

except the shortcut model which uses ṽs,t = uθ−(zt, s, t). Additionally, we are interested in seeing
whether we need exponential moving average (EMA) for θ−. With ablation study in Table 5 (a), we
set ṽs,t = vt and do not use EMA for θ−.

Adaptive loss weight. MeanFlow (Geng et al., 2025a) demonstrates the effectiveness of adaptive
loss. Basically, let ||∆||22 denote the squared L2 loss. The adaptive loss weight ω = 1/(||∆||22 + c)
where c = 10−3. And the adaptively weighted loss is sg(ω)||∆||22. Theoretically, we derived an
equivalent adaptive loss weight ω = α/(||∆||22+c) for Lα. We defer the derivation in Appendix H.2.
With ablation study in Table 5 (b), we demonstrate the derived adaptive loss weight is better than
other loss weights.

Classifier-free guidance (CFG). We apply a similar CFG training strategy as MeanFlow, by
setting ṽs,t in Equation (8) with ṽs,t = w · v(zt, t|x) + κ · uθ− (zt, t, t|c) + (1− w − κ) ·
uθ− (zt, t, t|∅), where w, κ are the guidance scale, uθ− (·|c), uθ− (·|∅) denotes the class-condition
(with class c) and class-unconditional prediction. Detailed settings of w, κ are deferred to Ap-
pendix G.

Sampling. We employ both consistency sampling (Song et al., 2023) and ODE sampling for two-
step generation. Implementation details are provided in Algorithm 3. Empirically, we observe
that consistency sampling outperforms ODE sampling for larger models with better convergence.
Consequently, we adopt ODE sampling for all DiT-B/2 architectures and consistency sampling for
all DiT-XL/2 architectures, with additional ablation studies on DiT-XL/2 presented in Figure 5.

5 EXPERIMENTS

In this section, we employ α-Flow on real image datasets ImageNet-1K 2562 Deng et al. (2009). We
use exactly the same DiT Peebles & Xie (2023) architecture as MeanFlow Geng et al. (2025a). For
evaluation, we use Fréchet Inception Distance (FID) Heusel et al. (2017), Fréchet DINOv2 Oquab
et al. (2023). We evaluate model performance for both 1 and 2 Number of Function Evaluations

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Schedule NFE 1 NFE 2

FID FDD FID FDD

Constant0.0 44.4 844.1 42.1 836.3

Trajectory flow matching iterations
Sigmoid0K→100K 44.3 860.3 40.8 826.9
Sigmoid50K→150K 44.1 846.8 39.9 811.6
Sigmoid100K→200K 42.4 828.0 38.3 795.4
Sigmoid150K→250K 41.3 818.8 38.1 793.1

Transition iterations
Sigmoid200K→200K 41.4 794.4 38.8 796.7
Sigmoid150K→250K 41.3 818.8 38.1 793.1
Sigmoid0K→400K 40.0 785.4 37.1 782.9

(a) Consistency step ratio schedule.

Model NFE 1 NFE 2

% r = t Schedule FID FDD FID FDD

0% Constant0.0 46.0 879.6 44.3 867.7
Sigmoid0K→400K 40.4 822.5 38.9 811.8

25% Constant0.0 44.4 844.1 42.1 836.3
Sigmoid0K→400K 40.0 785.4 37.1 782.9

50% Constant0.0 43.9 844.1 42.1 836.3
Sigmoid0K→400K 40.2 781.0 37.1 775.0

75% Constant0.0 43.1 819.2 38.5 787.6
Sigmoid0K→400K 42.2 810.5 36.2 754.7

(b) Flow matching ratio.

Table 2: Ablation study on ImageNet-1K 2562 for α-Flow-B/2.

(NFE=1, NFE=2). We implement our models in the latent space of the Stable Diffusion Variational
Autoencoder (SD-VAE) 2. More details on the experiments settings are in Appendix G.

5.1 COMPARISON WITH BASELINE

In Table 1, we compare α-Flow with previous few-step Diffusion and Flow models, demonstrating
its superior performance for 1-NFE and 2-NFE generation. Across models trained for 240 epochs,
α-Flow-XL/2 achieves 2.95 FID (164.6 FDD), representing a relative improvement of 15% (12%)
over MeanFlow-XL/2 and 70% (60%) over FACM-XL/2. Our best model, α-Flow-XL/2+, sets a
new state-of-the-art 1-NFE generation with an impressive FID of 2.58 (148.4 FDD), compared with
all the other few-step Diffusion and Flow models trained over the SD-VAE. Furthermore, for 2-NFE
generation, α-Flow-XL/2+ achieves 2.15 FID (96.8 FDD), outperforms all these baseline methods.
It’s particularly notable that it surpasses FACM-XL/2’s 2.07 FID (achieved with a class-balanced
sampling) by reaching 1.95 FID with only 23% of the training epochs. Uncurated samples, shown
in Figure 1 and Appendix L, visually confirm these results. Specifically in Figure 1, α-Flow-XL/2
generates more images with better quality, as highlighted in green.

5.2 ABLATION STUDY

Consistency step ratio schedule. In Table 2 (a), we evaluate our α-Flow framework trained with
various sigmoid schedules, as visualized in Figure 6. For these experiments, the flow matching
ratio is fixed at 25%. We first analyze the impact of the trajectory flow matching pretraining du-
ration. By fixing ke − ks to 100K iterations, we progressively increase ks from 0K to 150K. As
the pretraining duration increases, α-Flow’s performance consistently improves across all metrics.
The best-performing schedule, Sigmoid150K→250K, significantly outperforms the baseline Mean-
Flow (Constant0.0). This suggests that optimizing trajectory flow matching is more crucial than
optimizing MeanFlow in the early training stages for achieving superior few-step flow modeling.
This finding aligns with our empirical analysis, which shows that because the gradients of the tra-
jectory flow matching and consistency losses conflict, it is more efficient to exclusively optimize the
trajectory flow matching objective for faster initial convergence.

Next, we investigate the effect of the transition duration. With the midpoint (ks + ke)/2 fixed at
200K iterations, we vary the total transition iterations from 0 to 400K. Our results indicate that
a longer, smoother transition leads to better generation quality. This highlights the importance of
gradually reducing the bias of the training objective by smoothly transitioning between trajectory
flow matching and MeanFlow.

Flow matching ratio. In Table 2 (b), we compare our α-Flow framework with the MeanFlow base-
line across various flow matching ratios (%r = t). Our results show that α-Flow consistently out-
performs MeanFlow for all evaluated ratios, confirming the effectiveness of our proposed method.
A key finding is that α-Flow achieves its best 1-NFE performance at a relatively low flow matching
ratio. Specifically, it reaches the best FID of 40.0 at 25 % of r = t and the best FDD of 781.0 at 50

2The EMA version in https://huggingface.co/stabilityai/sd-vae-ft-mse

9

https://huggingface.co/stabilityai/sd-vae-ft-mse

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.000.250.500.751.00
Intermediate Timestep for NFE=2

2.2

2.4

2.6

2.8

3.0

3.2

FID MeanFlow DiT-XL/2
α-Flow DiT-XL/2
α-Flow DiT-XL/2+

MeanFlow DiT-XL/2 (CS)
α-Flow DiT-XL/2 (CS)
α-Flow DiT-XL/2+ (CS)

Figure 5: Comparing ODE vs consistency sam-
pling for MeanFlow and α-Flow models.

0.00

0.25

0.50

0.75

1.00

α
va

lu
e

Constant0.0
Sigmoid0→100K
Sigmoid50K→150K
Sigmoid100K→200K
Sigmoid150K→250K

0 50K 100K 150K 200K 250K 300K 350K 400K
Training Iteration

0.00

0.25

0.50

0.75

1.00

α
va

lu
e

Sigmoid200K→200K
Sigmoid150K→250K
Sigmoid0→400K

Figure 6: Visualization of consistency step ratio
schedule.

% of r = t, while MeanFlow requires a higher ratio of 75% to achieve its best FID of 43.1 and FDD
of 819.2. This aligns with our motivation: by pretraining on trajectory flow matching, α-Flow is
less reliant on the flow matching objective and can focus more on the overall MeanFlow objective,
leading to superior one-step generation quality.

Furthermore, we observe that for α-Flow, the flow matching ratio presents a clear trade-off between
1-NFE and 2-NFE performance. For instance, the 75% ratio yields worse NFE=1 but better NFE=2
generation results compared to the 50%-ratio version. This indicates that a higher proportion of flow
matching improves the model’s ability to generate images in a slightly higher number of steps.

Sampling. As shown in Figure 5, we compare ODE sampling (solid line) and consistency sam-
pling (dotted line) for 2-NFE generation across different intermediate sampling timesteps, using
MeanFlow-XL/2, α-Flow-XL/2, and α-Flow-XL/2+. The results show that consistency sampling
yields better generation performance for both α-Flow-XL/2 and α-Flow-XL/2+, achieving the best
FID scores of 2.09 at timestep 0.4 and 2.28 at timestep 0.45, respectively. In contrast, ODE sampling
performs better for MeanFlow-XL/2, which attains its best FID of 2.39 at timestep 0.35. In Table 1,
we select intermediate sampling timesteps that balance FID and FDD; see Table 3 for details.

6 CONCLUSION

Our work provided a principled analysis of the MeanFlow framework, analyzing its objective and
establishing the necessity of flow matching supervision during training. Motivated by this under-
standing, we proposed the α-Flow objective as a generalization of MeanFlow loss, allowing us to
train consistently stronger few-step image generation models from scratch.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we include all the
necessary implementation details in Appendix G, ensuring that our methodology can be faithfully
reproduced. We will publicly release our source training, inference, and evaluation code, as well as
the pre-trained checkpoints for ImageNet-1K 2562.

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. How to build a consistency model:
Learning flow maps via self-distillation. arXiv preprint arXiv:2505.18825, 2025a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
with stochastic interpolants: A mathematical framework for consistency models. Transactions on
Machine Learning Research, 2025b.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the kinetics-700
human action dataset. arXiv preprint arXiv:1907.06987, 2019.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference
on Machine Learning, pp. 4672–4712. PMLR, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=OlzB6LnXcS.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025a.

Zhengyang Geng, Ashwini Pokle, Weijian Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. In The Thirteenth International Conference on Learning Representations, 2025b.
URL https://openreview.net/forum?id=xQVxo9dSID.

Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization
in diffusion models. arXiv preprint arXiv:2310.02664, 2023.

Yi Guo, Wei Wang, Zhihang Yuan, Rong Cao, Kuan Chen, Zhengyang Chen, Yuanyuan Huo, Yang
Zhang, Yuping Wang, Shouda Liu, et al. Splitmeanflow: Interval splitting consistency in few-step
generative modeling. arXiv preprint arXiv:2507.16884, 2025.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://openreview.net/forum?id=OlzB6LnXcS
https://openreview.net/forum?id=xQVxo9dSID

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
ability flow ODE trajectory of diffusion. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ymjI8feDTD.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of
imagenet classes in fr\’echet inception distance. arXiv preprint arXiv:2203.06026, 2022.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=XVjTT1nw5z.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=LyJi5ugyJx.

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient accu-
mulation is wasteful. arXiv preprint arXiv:2507.07101, 2025.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
consistency models. arXiv preprint arXiv:2507.03738, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

12

https://openreview.net/forum?id=ymjI8feDTD
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=LyJi5ugyJx
https://openreview.net/forum?id=LyJi5ugyJx

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=St1giarCHLP.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=WNzy9bRDvG.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 32211–32252. PMLR, 23–29 Jul 2023.

Peng Sun, Yi Jiang, and Tao Lin. Unified continuous generative models. arXiv preprint
arXiv:2505.07447, 2025.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and
Sylvain Gelly. FVD: A new metric for video generation, 2019. URL https://openreview.
net/forum?id=rylgEULtdN.

Fu-Yun Wang, Zhaoyang Huang, Alexander Bergman, Dazhong Shen, Peng Gao, Michael Lingel-
bach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency models.
Advances in neural information processing systems, 37:83951–84009, 2024.

Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and Lei
Bai. Transition models: Rethinking the generative learning objective. 2025a.

Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and
Lei Bai. Transition models: Rethinking the generative learning objective. arXiv preprint
arXiv:2509.04394, 2025b.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin
Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with
velocity consistency. arXiv preprint arXiv:2407.02398, 2024.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
Bill Freeman. Improved distribution matching distillation for fast image synthesis. Advances in
neural information processing systems, 37:47455–47487, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613–6623, 2024b.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=DJSZGGZYVi.

Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The
emergence of reproducibility and consistency in diffusion models. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
HsliOqZkc0.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=pwNSUo7yUb.

13

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=rylgEULtdN
https://openreview.net/forum?id=rylgEULtdN
https://openreview.net/forum?id=DJSZGGZYVi
https://openreview.net/forum?id=HsliOqZkc0
https://openreview.net/forum?id=HsliOqZkc0
https://openreview.net/forum?id=pwNSUo7yUb
https://openreview.net/forum?id=pwNSUo7yUb

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Diffusion Models. Diffusion models have become a dominant paradigm in generative modeling
for vision domains (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2021a;b; Dhariwal & Nichol, 2021). The classical diffusion framework defines a forward noising
process and a corresponding reverse process that a model learns to approximate. Early works such as
DDPM (Ho et al., 2020) and score-based generative modeling (Song & Ermon, 2019) demonstrated
high-quality image generation, later extended to continuous-time SDEs and ODEs (Song et al.,
2021b). (Dhariwal & Nichol, 2021) further improved sample fidelity with larger architectures and
classifier guidance. More recently, the community has explored flow-based parameterizations that
directly learn continuous velocity fields (Liu et al., 2023; Lipman et al., 2023; Albergo & Vanden-
Eijnden, 2022). These flow matching approaches simplify training, unify score- and likelihood-
based models, and are used in large-scale systems such as Stable Diffusion 3 (Esser et al., 2024).

Few-step Diffusion. Despite their quality, diffusion models are computationally expensive due
to iterative sampling. A large body of work accelerates sampling to a few steps or even one step.
Distillation-based approaches include progressive distillation (Salimans & Ho, 2022; Berthelot et al.,
2023), and often incorporate adversarial objectives (Yin et al., 2024b;a; Zhou et al., 2024; Sauer
et al., 2024). UCGM (Sun et al., 2025) develops a unified training scheme for multi-step and few-
step diffusion-based methods.

A closer research direction (which our method follows as well) includes the methods which are
trained from scratch and support few- and even one-step generation by design. Consistency Mod-
els (CMs) (Song et al., 2023) learn to map noisy inputs directly to clean data by enforcing self-
consistency. Extensions improve stability and scalability (Song & Dhariwal, 2024; Lu & Song,
2025; Geng et al., 2025b). Trajectory-based methods learn the dynamics of the entire denoising pro-
cess, enabling arbitrary jumps along the diffusion path. PCM (Wang et al., 2024) scale consistency
distillation to large scale models and optimize with preselected time intervals. Shortcut diffusion
models (Frans et al., 2025) learn direct mappings with shortcut constraints. MeanFlow (Geng et al.,
2025a) predicts time-averaged velocities with continuous consistency, while Guo et al. (2025) ex-
plore this idea for discrete consistency. While concurrent work Guo et al. (2025) proposed a similar
loss function to our α-Flow loss (Equation (8)), our paper offers theoretical and empirical contri-
butions. Theoretically, we provide a deeper analysis comparing the α-Flow loss and the MeanFlow
loss. Empirically, we introduce novel techniques specifically designed to improve the performance
of the α-Flow loss, and we successfully demonstrate its efficacy and the benefits of curriculum learn-
ing on the large-scale ImageNet dataset. Hybrid approaches combine consistency and flow match-
ing: Consistency-FM (Yang et al., 2024) enforces velocity self-consistency, FACM (Peng et al.,
2025) anchors consistency to flow objectives, and IMM (Zhou et al., 2025) matches the output distri-
butions via moment matching instead of exact outputs. Consistency Trajectory Models (CTM) (Kim
et al., 2024) generalize consistency training to support transitions between any two timesteps, com-
bining one-step generation with progressive refinement. Boffi et al. (2025b) introduces Flow Match-
ing Mapping (FMM), a unified framework that extends CMs, CTM, and progressive distillation.
In particular, it demonstrates that existing methods can be interpreted within a common Euler and
progressive perspective, while also proposing a novel class of Lagrangian methods. Building on this
foundation, (Boffi et al., 2025a) presents a systematic algorithmic framework and demonstrates the
superior performance of the Lagrangian approach. Our work, on the other hand, provides a distinct
and detailed unification focused specifically on the Euler method. Within this framework, we unify
Flow Matching, Shortcut models, and MeanFlow. Transition Models (TiM) (Wang et al., 2025a)
derive an exact continuous-time dynamics equation for arbitrary-step transitions. These methods
achieve one- to few-step sampling with steadily improving fidelity.

B LIMITATIONS

• Our α-Flow loss enables high-quality training of discrete MeanFlow models without requiring
JVP computation. However, in practice, the continuous objective (i.e., setting α → 0) remains
important, likely due to the bias–variance trade-off inherent in the consistency objective (Song
et al., 2023; Song & Dhariwal, 2024).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• We occasionally observed unstable training in large-scale models with guidance integration, both
for the vanilla MeanFlow model and our α-Flow variant. Thus, our framework should not be
viewed as a silver bullet for addressing the well-known instability issues of consistency mod-
els Geng et al. (2025b).

• The α-Flow objective uses pure flow matching supervision up to ks iterations, after which the
consistency objective is applied. Before this point, the model’s few-step performance is weak,
which can make progress harder to monitor.

• Our gradient analysis provides actionable insights but remains empirical; it does not fully explain,
from a theoretical perspective, why flow matching is so critical for consistency.

• Although we motivate larger batch sizes for fine-tuning by the high variance of the consistency
loss, the observed improvements (see Table 4) may instead reflect that small batches are more
sensitive to hyperparameters (Marek et al., 2025), and that beyond a certain size, batch-size scaling
exhibits diminishing returns (McCandlish et al., 2018).

C FAILED EXPERIMENTS

We also wish to share with the community several experiments that did not succeed during the course
of this project. Some of these directions were likely underexplored on our side, while others may
represent genuine dead-ends. Nevertheless, we believe documenting them may serve as a useful
reference for future work.

• We devoted several weeks to exploring decomposed training of the MeanFlow objective with
individually tuned weighting functions for each term, drawing inspiration from EDM Karras et al.
(2022) to map out the design space. Unfortunately, every configuration we attempted produced
worse results than the default adaptive loss heuristic, which was a particularly frustrating outcome.

• Consistency sampling (see Figure 5) did not provide the improvements we had anticipated. In-
terestingly, the optimal midpoint consistently emerged at ≈ 0.5, which coincides with the default
MeanFlow setting. We suspect this effect is related to the training distribution, which has a mode
slightly lower 0.5. Following the original work, we employed a logit-normal distribution with
location parameter −0.4.

• We experimented with LoRA fine-tuning and introduced separate prediction heads for vanilla
velocity and mean velocity. Neither approach yielded promising results.

• We conducted roughly 50 ablations on the train-time noise schedule for vanilla MeanFlow models.
None resulted in noticeably better performance, even when factorizing the joint distribution p(t, r)
into p(t)p(r|t) and exploring alternative supervision distributions for flow matching in parallel.

• We investigated additional representation alignment losses Yu et al. (2025) with the aim of ac-
celerating convergence in MeanFlow models. However, the observed gains were insufficient to
justify the added complexity of the training framework.

• We also experimented with different EMA schedules, but these attempts did not lead to meaningful
improvements.

D PROOFS OF THINGS

D.1 LOSS DECOMPOSITION

Proof. The MeanFlow loss is given by:

LMF(θ) = Et,r,zt

[∥∥∥∥uθ(zt, r, t)− vt + (t− r)
duθ−(zt, r, t)

dt

∥∥∥∥2
2

]
(9)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(unpacking the norm and regrouping terms yields)

= Et,r,zt

[
∥uθ(zt, r, t)− vt∥22

]
︸ ︷︷ ︸

LTFM(θ)

+Et,r,zt

[
2 · (t− r) · u⊤

θ (zt, r, t)
duθ−(zt, r, t)

dt

]
︸ ︷︷ ︸

LTC(θ)

(10)

+ Et,r,zt

[
−2 (t− r) · v⊤(zt, t|x)

duθ−(zt, r, t)

dt
+ (t− r)

2

∥∥∥∥duθ−(zt, r, t)

dt

∥∥∥∥2
2

]
︸ ︷︷ ︸

Does not depend on θ

(11)

D.2 Lα LOSS UNIFICATION

Proof of theorem 1. The proof for flow matching and shortcut models is straightforward. We will

only show the proof for the third bullet point. For brevity, let’s set ∆t = t− s and α =
∆t

t− r
.

Lα(θ) = Et,r,zt

[
t− r

∆t
·
∥∥∥∥uθ(zt, r, t)−

∆t

t− r
· vt−

t−∆t− r

t− r
uθ− (zt−∆t, r, t−∆t)

∥∥∥∥2
2

]
,

(i)
= Et,r,zt

[
t− r

∆t
·
∥∥∥∥uθ(zt, r, t)−

∆t

t− r
· vt −

t−∆t− r

t− r
·(

uθ− (zt, r, t)−
duθ−(zt, r, t)

dt
∆t+O

(
∆2t

))∥∥∥∥2
2

]
,

(ii)
= Et,r,zt

[
t− r

∆t
·
∥∥∥∥uθ(zt, r, t)− uθ−(zt, r, t)−

∆t

t− r
·(

vt − (t− r)
duθ−(zt, r, t)

dt
− uθ−(zt, r, t) +O

(
∆2t

))∥∥∥∥2
2

]
,

(12)

where (i) uses the Taylor expansion over uθ− (zt−∆t, r, t−∆t):

uθ− (zt−∆t, r, t−∆t) = uθ− (zt, r, t)−
duθ−(zt, r, t)

dt
∆t+O

(
∆2t

)
,

and (ii) uses the fact that
duθ−(zt, r, t)

dt
∆2t = O

(
∆2t

)
. Thus,

lim
α→0

∇θLα(θ) = lim
∆t→0

∇θLα(θ)

= lim
∆t→0

Et,r,zt

[
2 · t− r

∆t
· ∇⊤

θ uθ(zt, r, t) ·
(
uθ(zt, r, t)− uθ−(zt, r, t)−

∆t

t− r
·(

vt − (t− r)
duθ−(zt, r, t)

dt
− uθ−(zt, r, t) +O

(
∆2t

)))]
,

= lim
∆t→0

Et,r,zt

[
2 · t− r

∆t
· ∇⊤

θ uθ(zt, r, t) ·
(
− ∆t

t− r

)
·(

vt − (t− r)
duθ−(zt, r, t)

dt
− uθ−(zt, r, t) +O

(
∆2t

))]
,

=Et,r,zt

[
2 ·
(
t− r

∆t
· ∆t

t− r

)
· ∇⊤

θ uθ(zt, r, t) ·
(
uθ−(zt, r, t)− vt + (t− r)

duθ−(zt, r, t)

dt

)]
,

=∇θLMF(θ),
(13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof of equivalence with consistency model. By setting ṽs,t = vt, r = 0 and uθ(zt, 0, t) =

(zt − fθ(zt, t)) /t, ∆t = t− s and α =
∆t

t
, we have:

Lα(θ) = Et,r,zt

[
t

∆t
·
∥∥∥∥uθ(zt, r, t)−

∆t

t− r
· vt−

t−∆t− r

t− r
uθ− (zt−∆t, r, t−∆t)

∥∥∥∥2
2

]
,

(i)⇒ Et,zt

[
t

∆t
·
∥∥∥∥zt − fθ(zt, t)

t
− ∆t

t
· vt−

t−∆t

t

zt−∆t − fθ−(zt−∆t, t−∆t)

t−∆t

∥∥∥∥2
2

]
,

(ii)
= Et,zt

[
1

t∆t
· ∥fθ(zt, t)− fθ−(zt−∆t, t−∆t)∥22

]
(iii)
= LCTd(θ),

(14)

where (i) plug in the reparameterization and r = 0, (ii) uses the fact that zt = zt−∆t+∆t·vt. Thus

Lα(θ) could be reparameterized to LCTd(θ) with a loss weighting function
1

t∆t
. Since the discrete

CT uses timestep partition to determine t and ∆t, the (iii) holds for a special timestep partition
when ∆t = α · t given a fixed α. From Theorem 2 in Lipman et al. (2023), because uθ−(zt, r, t) is
independent of θ, we have:

LMF(θ) = Et,r,zt

[∥∥∥∥uθ(zt, r, t)− vt + (t− r)
duθ−(zt, r, t)

dt

∥∥∥∥2
2

]
,

= Et,r,zt

[∥∥∥∥uθ(zt, r, t)− v(zt, t) + (t− r)
duθ−(zt, r, t)

dt

∥∥∥∥2
2

]
+ C,

(15)

with C a constant independent of θ. Thus,
∇θLMF(θ)

= Et,r,zt

[
2 · ∇⊤

θ uθ(zt, r, t) ·
(
uθ(zt, r, t)− v(zt, t) + (t− r)

duθ−(zt, r, t)

dt

)]
,

(i)⇒ Et,zt

[
2 · ∇⊤

θ

−fθ(zt, t)

t
·
(
zt − fθ(zt, t)

t
− v(zt, t)+(

v(zt, t)−
dfθ− (zt, t)

dt

)
− (zt − fθ−(zt, t))

t

)]
,

= Et,zt

[
2 · 1

t
· ∇⊤

θ fθ(zt, t)
dfθ− (zt, t)

dt

]
= ∇θLCTc(θ),

(16)

where (i) plug in the reparameterization and r = 0, and use the fact that:
duθ−(zt, r = 0, t)

dt
=

1

t2

(
t

(
v(zt, t)−

dfθ− (zt, t)

dt

)
− (zt − fθ−(zt, t))

)
(17)

Thus ∇θLMF(θ) could be reparameterized to LCTc(θ) with a loss weighting function
1

t
.

E MORE PROOFS

E.1 ANALYSIS OF OPTIMAL SOLUTION SPACE BETWEEN TRAJECTORY FLOW MATCHING
LTFM TRAJECTORY CONSISTENCY LTC

Assumption 1. Assume that the uθ(zt, r, t) has infinite model capacity, and can approximate any
continuous function to an arbitrary level of accuracy based on the Universal Approximation Theo-
rem. And z0 = x ∈ Rd draw from a random distribution p(x).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Assumption 1 has been widely used in previous works Karras et al. (2022); Gu et al. (2023); Zhang
et al. (2024) to analysis the optimal solution of diffusion training loss, which simplified specific
network architecture constraint without loss of generality. The trajectory flow matching loss defined
in Equation (6) could be re-written as:

LTFM (uθ) = E
t,r,zt

[
∥uθ(zt, r, t)− vt∥22

]
, (18)

=

∫
t,r

∫
Rd

∫
Rd

N
(
zt; (1− t)x, t2I

)
∥uθ(zt, r, t)−

zt − x

t
∥22 · p(x)dx︸ ︷︷ ︸

LTFM(uθ,t,r,zt)

dzt dt dr.

(19)

Since Assumption 1 implies that uθ(zt, r, t) can approximate any continuous function, we can min-
imize LTFM (uθ) by independently minimizing the inner integral LTFM(uθ, t, r, zt) for each fixed
(zt, r, t).

Given zt, r, t, LTFM(uθ, t, r, zt) is a convex optimization problem with respect to uθ(zt, r, t) and
the optimal solution is uniquely identified by setting the gradient with respect to uθ(zt, r, t) to 0.

∇uθ(zt,r,t)LTFM(uθ, t, r,zt) = 0, (20)

⇒∇uθ(zt,r,t)

∫
Rd

N
(
zt; (1− t)x, t2I

)
∥uθ(zt, r, t)−

zt − x

t
∥22 · p(x)dx = 0, (21)

⇒
∫
Rd

N
(
zt; (1− t)x, t2I

)(
u∗
θ,TFM(zt, r, t)−

zt − x

t

)
· p(x)dx = 0, (22)

⇒u∗
θ,TFM(zt, r, t) =

1

t

(
zt −

Ex∼p(x)

[
N
(
zt; (1− t)x, t2I

)
· x
]

Ex∼p(x) [N (zt; (1− t)x, t2I)]

)
= u∗

θ,TFM(zt, t). (23)

This shows that the loss LTFM has only one optimal solution. However, the situation is different for
the Trajectory consistency LTC defined in Equation (6):

LTC = E
t,r,zt

[
2 (t− r) · u⊤

θ (zt, r, t)
duθ−(zt, r, t)

dt

]
. (24)

0 100 200 300 400 500
Training Iteration

−80

−60

−40

−20

0

L
os

s
L
T
C

Figure 7: Optimization of LTC.

For fixed zt, r, t, the loss LTC (zt, r, t) is a linear func-
tion w.r.t uθ(zt, r, t), so it does not have a lower bound.
Any function uθ(zt, r, t) which satisfies the condition
u⊤
θ (zt, r, t)

duθ− (zt,r,t)

dt → −∞ minimizes the loss. This
confirms that the unconstrained LTC has a large, easily
optimizable solution space.

Crucially, this finding does not contradict the difficulty of
optimizing LCTc noted in prior work Song et al. (2023); Lu
& Song (2025). In those papers, the optimization prob-
lem was made difficult by the explicit boundary condi-
tion fθ(z0, 0) = z0, which constrains the velocity field
as uθ(zt, 0, t) = (zt − fθ(zt, t)) /t = ẑ0.

E.2 ANALYSIS OF OPTIMAL SOLUTION BETWEEN
TRAJECTORY FLOW MATCHING LTFM TRAJECTORY CONSISTENCY LTC

Following the same derivation as above, minimizing LMF(θ) is equivalent to minimizing
LMF(θ, zt, r, t) for every fixed zt, r, t under Assumption 1, where:

LMF(θ, zt, r, t)

=

∫
Rd

N
(
zt; (1− t)x, t2I

)
∥uθ(zt, r, t)− vt + (t− r)

duθ−(zt, r, t)

dt
∥22 · p(x)dx.

(25)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since the term uθ− is independent of uθ, LMF(θ, zt, r, t) remains a convex optimization problem
over uθ. Consequently, for all zt, r, t, the optimum satisfies:

∇uθ(zt,r,t)LMF(θ, zt, r, t) = 0, (26)

⇒
∫
Rd

N
(
zt; (1− t)x, t2I

)(
u∗
θ,MF(zt, r, t)−

zt − x

t
+ (t− r)

du∗
θ,MF(zt, r, t)

dt

)
· p(x)dx = 0,

(27)

⇒u∗
θ,MF(zt, r, t) + (t− r)

du∗
θ,MF(zt, r, t)

dt
= u∗

θ,TFM(zt, t), (28)

⇒u∗
θ,MF(zt, r, t) =

1

t− r

∫ t

r

u∗
θ,TFM(zt, t)dt. (29)

As detailed in Geng et al. (2025a), the constant term in the last equation is zero. Furthermore, to
minimize the Lα(θ) loss with ṽs,t = vt, the same assumption in Assumption 1 makes it equivalent
to minimizing Lα(θ, zt, r, t) for every fixed zt, r, t, where

Lα(θ, zt, r, t) =α−1

∫
Rd

N
(
zt; (1− t)x, t2I

)
||uθ(zt, r, t)−

(α · vt + (1− α) · uθ−(zs, r, s)) ||22 · p(x)dx.

Applying the same zero-gradient condition, the optimal solution of u∗
θ,α(zt, r, t) satisfies:

u∗
θ,α(zt, r, t)− (1− α) · u∗

θ,α(zs, r, s) = α · u∗
θ,TFM(zt, t).

Thus, when α = 1:

u∗
θ,α(zt, r, t) = u∗

θ,TFM(zt, t), (30)

when α < 1:

u∗
θ,α(zt, r, t) = α · u∗

θ,TFM(zt, t) + (1− α) · u∗
θ,α(zs, r, s), (31)

= α · u∗
θ,TFM(zt, t) + (1− α)α · u∗

θ,TFM(zt, s) + (1− α)2 · u∗
θ,α(ztk , r, tk), (32)

= ..., (33)

= α

∞∑
k=0

(1− α)ku∗
θ,TFM(ztk , tk), (34)

where tk = r + (1− α)k(t− r). Let λk := (1− α)k, thus ∆λk = λk − λk+1 = α(1− α)k, so:

u∗
θ,α(zt, r, t) =

∞∑
k=0

(λk − λk+1)u
∗
θ,TFM(zr+λk(t−r), r + λk(t− r)), (35)

=
1

t− r

∞∑
k=0

(τk − τk+1)u
∗
θ,TFM(zτk , τk), (36)

where τk = r + λk(t− r). This is a left Riemann sum, and as α → 0, ∆λk → 0 and:

lim
α→0

u∗
θ,α(zt, r, t) =

1

t− r

∫ t

r

u∗
θ,TFM(zt, t)dt = u∗

θ,MF(zt, r, t). (37)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assumption 2. The optimal velocity function u∗
θ,TFM(zt, t) and the parametric velocity function

uθ(zt, r, t) satisfy the following properties:

• Lipschitz Continuity of Optimal Velocity: There exists a constant L1 > 0 such that for all
t1, t2 ∈ [0, 1] and corresponding zt1 , zt2 ,

||u∗
θ,TFM(zt1 , t1)− u∗

θ,TFM(zt2 , t2)||2 ≤ L1|t1 − t2|. (38)

• Lipschitz Continuity of Time Derivative: There exists a constant L2 > 0 such that for all
t1, t2 ∈ [r, 1] (where r ∈ [0, 1]) and corresponding zt1 , zt2 ,∥∥∥∥duθ(zt1 , r, t1)

dt
− duθ(zt2 , r, t2)

dt

∥∥∥∥
2

≤ L2|t1 − t2|. (39)

• Boundedness of Gradient and Time Derivative: There exist constants C1, C2 > 0 such that
for all r, t ∈ [0, 1] with r ≤ t, and for the corresponding zt,

||∇⊤
θ uθ(zt, r, t)||2 ≤ C1, and

∥∥∥∥duθ(zt, r, t)

dt

∥∥∥∥
2

≤ C2. (40)

The Lipschitz continuity of the score function is a common assumption widely adopted in the the-
oretical analysis of score functions in diffusion models Chen et al. (2022; 2023). Here, we assume
the Lipschitz continuity of the optimal velocity function u∗

θ,TFM(zt, t) and the derivative of uθ over

t, duθ(zt,r,t)
dt . The boundedness of

∥∥∇⊤
θ uθ(zt, r, t)

∥∥
2

holds in reality as we using gradient clip over
each element in ∇⊤

θ uθ(zt, r, t) to stablize training. Thus, under a finite α:

||u∗
θ,α(zt, r, t)− u∗

θ,MF(zt, r, t)||2 =

∥∥∥∥∥ 1

t− r

∞∑
k=0

∫ τk

τk+1

(
u∗
θ,TFM(zτk , τk)− u∗

θ,TFM(zτ , τ)
)

dτ

∥∥∥∥∥
2

,

(41)

≤ 1

t− r

∞∑
k=0

∫ τk

τk+1

∥∥u∗
θ,TFM(zτk , τk)− u∗

θ,TFM(zτ , τ)
∥∥
2

dτ,

(42)

≤ 1

t− r

∞∑
k=0

∫ τk

τk+1

L1 (τk − τ) dτ, (43)

=
1

t− r

∞∑
k=0

L1

2
(τk − τk+1)

2
, (44)

=
L1(t− r)

2
α2

∞∑
k=0

(1− α)
2k

, (45)

=
L1(t− r)

2
· α

2− α
, (46)

||u∗
θ,α(zt, r, t)−u∗

θ,MF(zt, r, t)||2 decreases with α and limα→0 ||u∗
θ,α(zt, r, t)−u∗

θ,MF(zt, r, t)||2 =
0; hence the two optimal solution coincide as α → 0, which align with our previous proof.

E.3 NON-SYMPTOTIC DISTANCE BETWEEN GRADIENT FROM α-FLOW AND MEANFLOW

From Equation (8), when ṽs,t = vt the gradient of α-Flow loss is:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

∇θLα(θ) = E
t,r,zt

[
α−1 · ∇⊤

θ uθ(zt, r, t) · (uθ(zt, r, t)− (α · vt + (1− α) · uθ−(zs, r, s)))
]
,

= E
t,r,zt

[
∇⊤

θ uθ(zt, r, t) · (uθ(zt, r, t)− vt)
]

E
t,r,zt

[
1− α

α
· ∇⊤

θ uθ(zt, r, t) · (uθ(zt, r, t)− uθ−(zs, r, s))

]
,

= ∇θLTFM(θ) + E
t,r,zt

[
(1− α) · ∇⊤

θ uθ(zt, r, t) ·
1

α

∫ t

s

duθ−(zτ , r, τ)

dt
dτ
]
.

(47)

And the gradient of MeanFlow loss could be written as:

∇θLMF(θ) = Et,r,zt

[
∇⊤

θ uθ(zt, r, t) ·
(
uθ(zt, r, t)− vt + (t− r)

duθ−(zt, r, t)

dt

)]
= ∇θLTFM(θ) + E

t,r,zt

[
(t− r) · ∇⊤

θ uθ(zt, r, t) ·
duθ−(zt, r, t)

dt

] (48)

Thus, the ℓ2 distance between ∇θLα(θ) and ∇θLMF(θ) is:

∥∇θLα(θ)−∇θLMF(θ)∥2

=

∥∥∥∥ E
t,r,zt

[
∇⊤

θ uθ(zt, r, t)
1

α

∫ t

s

(
(1− α)

duθ−(zτ , r, τ)

dt
− duθ−(zt, r, t)

dt

)
dτ
]∥∥∥∥

2

≤
∥∥∇⊤

θ uθ(zt, r, t)
∥∥
2
· E
t,r,zt

[
1

α

∫ t

s

∥∥∥∥duθ−(zτ , r, τ)

dt
− duθ−(zt, r, t)

dt

∥∥∥∥
2

dτ +

∫ t

s

∥∥∥∥duθ−(zτ , r, τ)

dt

∥∥∥∥
2

dτ
]

≤C1 · E
t,r,zt

[
1

α

∫ t

s

L2(t− τ)dτ + α(t− r)C2

]
=α · C1Et,r

[
1

2
L2(t− r)2 + C2(t− r)

]
(49)

Because t, r ∈ [0, 1], Et,r

[
1
2L2(t− r)2 + C2(t− r)

]
will be a finite constant no matter the choice

of distribution of r and t, . Thus the upper bound of ∥∇θLα(θ)−∇θLMF(θ)∥2 is linearly depend
on α, and will vanish to 0 when α → 0, align with our Theorem 1 that ∇θLMF(θ) = ∇θLα→0(θ).

E.4 VARIANCE OF α-FLOW GRADIENT

Let X ≜ ∇⊤
θ uθ(zt, r, t) · (uθ(zt, r, t)− vt) and Y ≜ ∇⊤

θ uθ(zt, r, t) · 1
α

∫ t

s

duθ− (zτ ,r,τ)

dt dτ .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

V [∇θLα(θ)]

= V
t,r,zt

[
α−1 · ∇⊤

θ uθ(zt, r, t) · (uθ(zt, r, t)− (α · vt + (1− α) · uθ−(zs, r, s)))
]
,

= V
t,r,zt

[X + (1− α)Y] ,

≤
(√

V
t,r,zt

[X] + (1− α)
√

V
t,r,zt

[Y]

)2

,

≤
(√

V [∇θLTFM(θ)] + (1− α)

√
E

t,r,zt

[
∥Y ∥22

])2

,

≤

√V [∇θLTFM(θ)] + (1− α)

√√√√ E
t,r,zt

[∥∥∇⊤
θ uθ(zt, r, t)

∥∥2
2
·
∥∥∥∥ 1α

∫ t

s

duθ−(zτ , r, τ)

dt
dτ
∥∥∥∥2
2

]2

,

≤
(√

V [∇θLTFM(θ)] + (1− α) · C1 · C2 ·
√

Et,r

[
(t− r)

2
])2

,

Thus, the upper bound of the variance of ∇θLMF(θ) increases as α approaches 0.

F ANALYSIS DETAILS

The detailed implementation of DiT-B/2 is provided in Table 3, where we adopt the DiT-B/2-non-cfg
setting. For loss evaluation, at each checkpoint we use a batch size of 128 and run 1000 iterations to
compute the mean loss along with its 5% and 95% percentiles, which are reported in the figure. To
measure the cosine similarity between different losses, we calculate ∇LTFM, ∇LFM′ , and ∇LTC on
the same batch and then compute their pairwise cosine similarities, which is defined as:

cosine similarity (a, b) =
a · b

∥a∥ ∥b∥ ,

given two vectors a, b. This procedure is also repeated over 1000 iterations to obtain the mean
similarity and its 5% and 95% percentiles, as shown in the figure.

G IMPLEMENTATION DETAILS

Implementation details are shown in Table 3.

H ADDITIONAL EXPERIMENTS

H.1 ABLATION STUDY OVER BATCH SIZE

Training diffusion/flow-based models can be challenging due to the high variance of their gradients.
Past research Zhou et al. (2025); Karras et al. (2022; 2024) often used large batch sizes (1024 or
even 4096) to mitigate this issue. In this section, we fine-tune a MeanFlow-XL/2 model (with
implementation details in Table 3) for an additional 60 epochs using a large batch size.

As shown in Table 4, a batch size of 512 achieved the best 1-NFE FID of 3.05 and FDD of 164.3. A
batch size of 1024, however, yielded the best FDD of 93.4. Overall, a batch size of 1024 performed
well across all metrics, so we designate this configuration as MeanFlow-XL/2+. The same setting is
applied to fine-tune the MeanFlow-XL/2 model, leading to the MeanFlow-XL/2+ results in Table 1.
Our proposed α-Flow-XL/2+ model outperforms MeanFlow-XL/2+ in several key metrics: 1-NFE
FID (2.58 vs. 3.06), 1-NFE FDD (148.4 vs. 165.7) and 2-NFE FID (2.15 vs. 2.16), only worse
in 2-NFE FDD (96.8 vs. 93.4). These results demonstrate the overall effectiveness of our α-Flow

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 3: Configurations on ImageNet 256×256. B/2-non-cfg is our ablation and analysis model in
the main text.

Configs DiT-B/2-non-cfg DiT-B/2 DiT-XL/2 DiT-XL/2+

Network Architectures
Params (M) 131 131 676 676
FLOPs (G) 23.1 23.1 119.0 119.0
Depth 12 12 28 28
Hidden dim 768 768 1152 1152
Heads 12 12 16 16
Patch size 2×2 2× 2 2× 2 2× 2

Training hyperparameters
Training steps 400K 1.2M 1.2M 1.2M
Batch size for training 256 256 256 256
Fine-tuning steps – – – 75K
Batch size for fine-tuning – – – 1024
Dropout 0.0
Optimizer Adam Kingma & Ba (2014)
lr schedule constant
lr 0.0001
Adam (β1, β2) (0.9, 0.95)
Weight decay 0.0
EMA half-life 6931
Gradient clipping norm 16
Autoencoder used sd-vae-ft-ema

α-Flow hyperparameters
Ratio of r = t Table 2 (b) 25% 50% 50%
(r, t) sampler logitnorm(–0.4, 1.0)
ṽs,t Table 5 (a) vt vt vt

Whether to use EMA for uθ− Table 5 (a) No No No
Adaptive weight Table 5 (b) ω = α/

(
||∆||22 + c

)
Schedule of α
γ 25 25 25
ks Table 2 (b) 0 600K 600K
ke 1.2M 1M 1M
η Table 5 (c) 5× 10−3 5× 10−3 5× 10−3

CFG training
w – 1.0 0.2 0.2
κ – 1.0 0.92 0.92
CFG triggered if t is in – [0.0, 1.0] [0.0, 0.75] [0.0, 0.75]
Whether use EMA for CFG – No No No

2-NFE Sampling
Method ODE ODE consistency consistency
Intermediate timestep 0.5 0.5 0.55 0.5

method. Notably, the results in Table 4 are obtained using labels sampled from the ImageNet dataset
distribution, whereas the results in Table 1 use randomly generated labels. In general, sampling
labels from the ImageNet distribution leads to lower FID scores compared to using random labels.

H.2 ABLATION STUDY OVER α-FLOW DESIGN SPACE

This section contains an ablation study on α-Flow, specifically for α ∈ (0, 1). We use a DiT-
B/2-non-cfg model (see Table 3) that is pre-trained on flow matching for 200k iterations and then
fine-tuned on α-Flow for another 200k iterations. Across all experiments, α remains a constant, and
the ratio of r = t is 25 %.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 3 α-Flow: Sampling

1 = t1 > t2 > ... > tN = 0 :sequence of
timesteps

z = randn like(x)
for n in range(N):

m = n + 1
if consistency sampling:

z = z - tn * fn(z, r=0, t=tn)
z = z + tm * randn like(x)

elif ODE sampling:
z = z - (tn - tm) * fn(z, r=tm, t=tn)

Batch Size NFE 1 NFE 2

FID FDD FID FDD

256 3.13 167.2 2.31 97.1
512 3.05 164.3 2.21 95.2
1024 3.06 165.7 2.16 93.4
2048 3.29 169.6 2.10 96.6
4096 3.13 168.9 2.16 95.1

Table 4: Ablation study over the fine-tuning batch
size using the data distribution over class labels.

ṽs,t uθ− FID FDD

uθ− EMA 188.1 1761.6
uθ− Non-EMA 319.0 4009.9
vt EMA 202.8 1832.3
vt Non-EMA 59.2 964.6

(a) Reformulate the training objective.

Loss weight FID FDD

ω = 1 59.2 964.6
ω = 1/

(
||∆||22 + c

)0.5 55.0 918.5
ω = 1/

(
||∆||22 + c

)
52.2 883.6

ω = α/
(
||∆||22 + c

)
49.7 845.2

(b) Adaptive loss.

α FID FDD

10−2 49.7 845.2
5× 10−3 46.2 860.8
2× 10−3 50.3 833.0
1× 10−3 57.2 863.7

(c) Consistency step ratio.

Method FID FDD
Shortcut Model 59.8 1017.3
ṽ = v(zt, t|x) 59.2 964.6
+ Adaptive loss 49.7 845.2
+ α = 0.005 45.6 857.8
MeanFlow 43.3 822.3

(d) Overall ablation study.

Table 5: Ablation study over α-Flow.

Training objective. Here, we set α = 10−2. Table 5(a) shows that the model only converge when
ṽs,t was set to vt and without using EMA for uθ− . This is a key difference from Shortcut Models
Frans et al. (2025), which set ṽs,t = uθ− . We suspect their objective only works when α is larger
(e.g., 0.5).

Adaptive loss. Geng et al. (2025a) uses an adaptive weight: ω = 1/
(
||∆||22 + c

)
= 1/ (LMF + c).

From Equation (12), we could derive limα→0 Lα = αLMF. When α is close 0, we approximate
LMF as Lα/α. This gives us a new adaptive weight, ω = 1/ (Lα/α+ c) ≈ α/ (Lα + c) =
α/
(
||∆||22 + c

)
as both c and α is very small. As shown in Table 5(b), this new weight performs

better empirically, especially compared to the original MeanFlow adaptive weight.

Consistency step ratio. Ablating the α in Table 5 (c) reveals that α = 5× 10−3 to be the optimal
consistency step ratio. This value was then used as the clamping value for our schedule.

Table 5(d) shows that by combining these improvements, our discrete α-Flow approach significantly
reduces the performance gap between Shortcut models and the MeanFlow model.

H.3 OPTIMAL RATIO OF r = t UNDER DIFFERENT NFE

In this subsection, we extend the experiment results in Table 2 (b) to NFE 5. As shown in Table 6,
the optimal ratio of r = t required to achieve the best generation quality for NFE 5 is also 75%.
We hypothesize this is because Flow Matching inherently possesses a degree of few-step generation
capability. Therefore, when mixing the training of standard Flow Matching and α-Flow, varying the
ratio r = t introduces a trade-off between single-step and few-step generation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Model NFE 1 NFE 2 NFE 5

% r = t Schedule FID FDD FID FDD FID FDD

0% Constant0.0 46.0 879.6 44.3 867.7 44.0 843.8
Sigmoid0K→400K 40.4 822.5 38.9 811.8 38.2 779.0

25% Constant0.0 44.4 844.1 42.1 836.3 41.3 817.8
Sigmoid0K→400K 40.0 785.4 37.1 782.9 36.9 770.0

50% Constant0.0 43.9 844.1 42.1 836.3 38.4 783.3
Sigmoid0K→400K 40.2 781.0 37.1 775.0 35.5 743.5

75% Constant0.0 43.1 819.2 38.5 787.6 36.0 752.1
Sigmoid0K→400K 42.2 810.5 36.2 754.7 33.7 716.1

Table 6: Optimal %t = r under different NFE.

Model NFE 1 NFE 2

FID FDD FID FDD

FM0K→200K + MeanFlow200K→400K 42.3 798.1 37.6 772.4
TFM0K→200K + MeanFlow200K→400K 42.3 821.8 37.2 780.2
Sigmoid0K→400K 40.2 781.0 37.1 775.0

REPA0K→400K + MeanFlow400K→600K 32.0 667.4 25.5 594.3
REPA0K→400K + Sigmoid400K→600K 30.7 657.1 25.3 601.5

Table 7: Finetuning from pretrained flow models.

H.4 FINETUNING FROM PRETRAINED FLOW MODELS

In this subsection, we study the performance of α-Flow by finetuning from pretrained flow mod-
els. Specifically, We have conducted experiments comparing α-Flow with standard MeanFlow fine-
tuning when starting from pre-trained Flow Matching (FM), Trajectory Flow Matching (TFM), and
FM + Representation Alignment Yu et al. (2025) (REPA) models. We use DiT-B/2-non-cfg configs
in Table 3 for backbone models. Both FM, TFM and FM + REPA are pretrained by ourselves. Ex-
periment results are shown in Table 7. A specific configuration for α-Flow deserves mention: for the
experiment labeled REPA0K→400K + Sigmoid400K→600K, we adjusted the initial α parameter. Since
the pre-trained model was provided at the 400K iterations, we set the initial value of α to 0.5 instead
of 1.0 at the beginning of the α-Flow fine-tuning phase.

Under a direct epoch-to-epoch comparison, starting from the same pre-trained model, α-Flow con-
sistently outperforms MeanFlow for one-step generation (NFE 1) and achieves comparable perfor-
mance for two-step generation. Specifically, under NFE 1, α-Flow (FID 40.2, FDD 781.0) demon-
strates significant gains: it surpasses the FM + MeanFlow baseline by 2.1 FID and 17.1 FDD, and
it surpasses the TFM + MeanFlow baseline by 2.1 FID and 40.8 FDD. Furthermore, when initial-
ized with the same FM+ REPA model, α-Flow (FID 30.7, FDD 657.1) still outperforms MeanFlow
by 1.3 FID and 10.3 FDD in one-step generation. Since the α-Flow method inherently consists of
three sequential stages: TFM pre-training, α-Flow annealing, and MeanFlow fine-tuning, these re-
sults directly demonstrate the effectiveness of the α-Flow annealing stage. This stage is particularly
beneficial for improving the quality of one-step sampling.

H.5 DISTILLATION

In this subsection, we conduct the distillation experiment. Specifically, we distilled the α-Flow
model (using the DiT-B/2 architecture) with a DiT-B/2-REPA teacher model, which we trained for
400K iterations.

The experimental results, summarized in Table 8, clearly demonstrate that distillation improves the
performance of α-Flow for both NFE 1 and NFE 2 settings. The distilled α-Flow model, using
the Sigmoid0K→100K schedule (the first line in Table above), outperformed the α-Flow trained
from scratch with the Sigmoid0K→400K schedule (the last line of the Table 2 (a)). For NFE 1, the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Schedule NFE 1 NFE 2

FID FDD FID FDD

Sigmoid0K→100K 36.6 756.9 33.2 701.3
Sigmoid50K→150K 37.1 749.2 33.4 702.9
Sigmoid100K→200K 37.8 757.5 33.5 704.7
Sigmoid150K→250K 36.7 743.2 34.1 706.9
Sigmoid0K→400K 36.9 738.9 33.6 704.3

Table 8: Distillation of α-Flow-B/2.

Method NFE 1 NFE 2

FID FDD FVD FID FDD FVD

MeanFlow-B/2 53.2 1031.9 619.5 49.5 995.3 580.8
α-Flow-B/2 50.7 1010.4 598.0 48.1 983.2 567.3

MeanFlow-B/2-cfg 32.3 779.0 298.1 26.6 719.8 249.6
α-Flow-B/2-cfg 29.6 709.8 276.2 24.9 657.4 217.3

Table 9: Kinetics-700 17× 2562 experiments.

distilled model achieved improvements of 3.4 (FID) and 28.5 (FDD). For NFE 2, the distilled model
showed improvements of 3.9 (FID) and 81.6 (FDD).

It is important to note that the optimal distillation schedule shifted to Sigmoid0K→100K. This change
is expected, as the teacher model (DiT-B/2-REPA) was already pretrained. This pretrained knowl-
edge allows the distillation process to reducing the initial α = 1 training stage.

H.6 EXPERIMENTS ON KINETICS-700 17× 2562

In this subsection, we demonstrate the generalization capabilities of α-Flow. We apply the frame-
work to a higher resolution and different modality: video generation. Specifically, we choose the
Kinetics-700 dataset Carreira et al. (2019), where the video dimension is 256×256×17 (resolution
256× 256 with 17 frames). We employed the DiT-B/2 architecture and trained the model for 600K
iterations, both with and without CFG. For CFG training, we set the guidance scale ω = 1.0 and the
classifier weight κ = 0.7. In addition to the standard FID and FDD metrics, we used the Fréchet
Video Distance (FVD) Unterthiner et al. (2019) to evaluate the quality of video generation, where a
lower value indicates better quality.

As shown in the Table 9, α-Flow consistently outperforms MeanFlow across all metrics and set-
tings. When training without CFG, α-Flow achieved improvements of 2.5 (NFE 1 FID), 21.5 (NFE
1 FDD), 21.5 (NFE 1 FVD), 1.4 (NFE 2 FID), 11.9 (NFE 2 FDD), and 13.5 (NFE 2 FVD); When
training with CFG: α-Flow achieved improvements of 2.7 (NFE 1 FID), 69.2 (NFE 1 FDD), 21.9
(NFE 1 FVD), 1.7 (NFE 2 FID), 62.4 (NFE 2 FDD), and 32.3 (NFE 2 FVD). These experimental re-
sults successfully demonstrate the effectiveness and robust generalization of the α-Flow framework
across more diverse datasets and modalities.

H.7 STABILITY ANALYSIS BETWEEN MEANFLOW AND α-FLOW

In this subsection, we analyze the training dynamics of MeanFlow and α-Flow by evaluating the
variance of the MeanFlow loss and the gradient norms throughout the training process. Experiment
results are shown in Figure 8, where the variance for each loss and gradient norm is estimated over
500 iterations.

As shown in Figure 8, the variance of the loss and the gradient norm for α-Flow are lower than those
for MeanFlow during the TFM pretraining and α-Flow annealing stages (to the left of the blue dot
line). This indicates a more stable training process for α-Flow in these early stages. This stability
aligns with the statement that α-Flow annealing effectively transitions the training objective from a
”high-bias, low-variance” state to the necessary ”low-bias, high-variance” state.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 100K 200K 300K 400K
0.00

0.01

0.02

0.03

0.04

0.05

V
ar

ia
nc

e
of

lo
ss

MeanFlow
α-Flow

(a) Variance of loss

0 100K 200K 300K 400K
0.0

0.1

0.2

0.3

0.4

V
ar

ia
nc

e
of

gr
ad

ie
nt

no
rm MeanFlow

α-Flow

(b) Variance of gradient norm

Figure 8: Stability comparison of α-Flow and MeanFlow. The green dotted line indicates the transi-
tion from TFM pretraining to α-Flow annealing, while the blue dotted line represents the subsequent
transition from α-Flow annealing to MeanFlow training.

Guidance method NFE 1 NFE 2

FID FDD FID FDD

u-target guidance 25.1 645.1 9.5 392.7
CFG guidance 10.0 445.8 7.7 365.2

Table 10: Ablation of guidance methods.

Despite these early stability advantages, the α-Flow formulation ultimately trains the full MeanFlow
loss in its final stage (as α → 1). Consequently, α-Flow cannot fully circumvent the inherent
instability introduced by the MeanFlow objective.

H.8 MORE GUIDANCE METHOD

Beyond standard Classifier-Free Guidance (CFG) training, we explored an alternative guidance
method called u-target guidance. This method is based on optimizing the following loss function:

Lutgt(θ) = E
t,r,zt,c

∥∥uθ(zt, r, t|c)−
(
1 + ωutgt

)
· utaget(zt, r, t)− ωutgt · uθ(zt, r, t|∅)

∥∥2
2
, (50)

where ωutgt is the guidance strength. The specific definition of the target vector, utaget(zt, r, t),
depends on the underlying loss formulation being used:

• For MeanFlow loss, utaget(zt, r, t) := vt − (t− r)
duθ− (zt,r,t)

dt

• For α-Flow loss, utaget(zt, r, t) := (α · ṽs,t + (1− α) · uθ−(zs, r, s)).

The fundamental difference between u-target guidance and CFG training lies in the unconditional
prediction component. The u-target guidance uses uθ(zt, r, t|∅) for the unconditional prediction
conditioned, instead of unconditional prediction uθ(zt, t, t|∅) employed in CFG training.

We compared u-target guidance with CFG guidance using MeanFlow-B/2 architecture, training on
ImageNet-1K 2562 for 400K iterations. We set ωutgt = 2.5. Experiment results are shown in
Table 10. The u-target guidance performs significantly worse than CFG guidance when using NFE
1 and is still slightly worse even at NFE 2. Thus in the main paper we use the CFG guidance.

H.9 DISCUSSION OF THE GRADIENT CONFLICT

In this subsection, we discuss the gradient conflict between ∇θLTFM and ∇θLTC in Figure 3a. In
general, for the minimizer x∗ of some arbitrary, regular function f(x) = g(x) + h(x), one can
trivially show the relation ∇xg(x

∗) = −∇xh(x
∗) from the necessary condition ∇xf(x

∗) = 0.

However, our empirical analysis in Figure 3a shows this gradient relationship from the early start
of the optimization process, where the gradients of LTFM and LTC are already strongly negatively

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

correlated (specifically, < −0.9). Crucially, this correlation becomes weaker (around −0.7) as
training progresses.

This behavior is opposite to what would be expected if the negative correlation simply resulted
from convergence to a stationary point. Instead, the decreasing correlation indicates that the two
loss components exert conflicting optimization signals early in training, and gradually become more
aligned as the model parameters adapt.

This suggests that the observed gradient dissimilarity reflects a different underlying mechanism than
the trivial relation implied by ∇xf(x

∗) = 0. This mechanism could be better explained by how
far apart the corresponding minimizers argmin g(x) and argminh(x) are. This evolution likely
reflects the interaction between two loss components whose minima are initially far apart: early in
training, their gradients point toward distinct optima, leading to strong opposition, whereas as the
model parameters evolve and the shared representation (and with the optimizer’s preconditioning
reweighting the directions) begins to satisfy both objectives, the corresponding descent directions
become partially aligned.

I LLM USAGE

As requested by the ICLR 2026 policy3, we disclose the usage of Large Language Models in this
section. LLMs were primarily used in two capacities:

• Coding assistance for experiments. LLMs provided code auto-completion functionality to
ease the process of implementing and analyzing the experiments.

• Writing assistance for paper writing. We used LLMs to assist with grammar and phrasing
validation while working on the submission.

J RANDOM VS BALANCED CLASSES FOR FID COMPUTATION

We treat EDM series (Karras et al., 2022; 2024) as the standard in FID (Heusel et al., 2017) eval-
uations, which use a randomly sampled class label (from 0 to 999) for each sample in constructing
50,000 synthetic examples with the model. We found a curious way to decrease the FID values
by up to 10% by using “balanced” class sampling: instead of using 50,000 independently sampled
random classes, one can generate 50 samples for each of 1000 classes. This greatly improves FID
results, but not FDD (i.e., Fréchet Distance in the DINOv2 (Oquab et al., 2023) feature space) or
FCD (Kynkäänniemi et al., 2022) (i.e., Fréchet Distance in the CLIP-L-based (Radford et al., 2021)
feature space).

Since it is not a standard practice in the community, we only report it separately from the random
class sampling results and with the appropriate notice. But we emphasize that it might be a more
reasonable way to evaluate FID since it reduces the variance (we are less likely to sample an unlucky
set of classes). We provide the results for it in Table 11.

Method Class sampling Params Epochs NFE 1 NFE 2

FID FDD FCD FID FDD FCD

MeanFlow-XL/2∗ Random U [1..1000] 676M 240 3.47 185.8 3.39 2.46 108.7 2.40
α-Flow-XL/2 (ours) Random U [1..1000] 676M 240 2.95 164.6 3.14 2.32 105.7 2.42
α-Flow-XL/2+ (ours) Random U [1..1000] 676M 240+60 2.58 148.4 3.07 2.15 96.8 2.31

MeanFlow-XL/2∗ Balanced 676M 240 3.33 182.8 3.34 2.26 106.1 2.36
α-Flow-XL/2 (ours) Balanced 676M 240 2.81 162.4 3.10 2.16 103.2 2.37
α-Flow-XL/2+ (ours) Balanced 676M 240+60 2.44 147.2 3.04 1.95 94.6 2.30

Table 11: Balanced vs random class sampling for FID, FDD and FCD.

3https://iclr.cc/Conferences/2026/AuthorGuide

29

https://iclr.cc/Conferences/2026/AuthorGuide

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

It is curious to observe that while it greatly improves FID results, FDD and FCD are barely affected.
We believe that this constitutes one more reason for the community to switch from FID to more
robust metrics which correlate better with human perception, like FDD and FCD.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

K ADDITIONAL EXPLORATION OF THE MEANFLOW LOSS

0 100K 200K 300K 400K
Training Iteration

−0.8

−0.4

0.0

0.4

0.8

A
ve

ra
ge

co
s(

∇
L
F
M
′ ,

∇
L

T
C

)
LFM′ ratio = 0%
LFM′ ratio = 75%

(a) cos (∇LFM′ ,∇LTC)

0 100K 200K 300K 400K
Training Iteration

−0.8

−0.4

0.0

0.4

0.8

A
ve

ra
ge

co
s(

∇
L
T
F
M
,∇

L
F
M
′)

LFM′ ratio = 0%
LFM′ ratio = 75%

(b) cos (∇LTFM,∇LFM′)

0 100K 200K 300K 400K
Training Iteration

−0.8

−0.4

0.0

0.4

0.8

A
ve

ra
ge

co
s(

∇
L

to
ta

l,
∇

L
T
F
M
)

LFM′ ratio = 0%
LFM′ ratio = 75%

(c) cos (∇LTFM,∇LMF)

0 100K 200K 300K 400K
Training Iteration

−0.8

−0.4

0.0

0.4

0.8

A
ve

ra
ge

co
s(

∇
L

to
ta

l,
∇

L
F
M
′)

LFM′ ratio = 0%
LFM′ ratio = 75%

(d) cos (∇LFM′ ,∇LMF)

0 100K 200K 300K 400K
Training Iteration

−0.8

−0.4

0.0

0.4

0.8

A
ve

ra
ge

co
s(

∇
L

to
ta

l,
∇

L
T

C
)

LFM′ ratio = 0%
LFM′ ratio = 75%

(e) cos (∇LTC,∇LMF)

0 100K 200K 300K 400K
Training Iteration

−0.8

−0.4

0.0

0.4

0.8

A
ve

ra
ge

co
s(

∇
L
T
F
M
,∇

L
T

C
)

LFM′ ratio = 0%
LFM′ ratio = 75%

(f) cos (∇LTC,∇LTFM)

Figure 9: Average cosine similarities between the gradients of different losses (LTFM,LFM′ ,LCTc ,LMF)
for DiT-B/2 MeanFlow model trained with 0% and 75% of flow matching.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

L ADDITIONAL VISUALIZATIONS

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 10: Uncurated samples (seeds 1-16) for Class 15 (robin) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 11: Uncurated samples (seeds 1-16) for Class 15 (robin) for NFE=2.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 12: Uncurated samples (seeds 1-16) for Class 29 (axolotl) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 13: Uncurated samples (seeds 1-16) for Class 29 (axolotl) for NFE=2.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 14: Uncurated samples (seeds 1-16) for Class 33 (loggerhead) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 15: Uncurated samples (seeds 1-16) for Class 33 (loggerhead) for NFE=2.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 16: Uncurated samples (seeds 1-16) for Class 88 (macaw) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 17: Uncurated samples (seeds 1-16) for Class 88 (macaw) for NFE=2.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 18: Uncurated samples (seeds 1-16) for Class 89 (cockatoo) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 19: Uncurated samples (seeds 1-16) for Class 89 (cockatoo) for NFE=2.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 20: Uncurated samples (seeds 1-16) for Class 127 (white stork) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 21: Uncurated samples (seeds 1-16) for Class 127 (white stork) for NFE=2.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 22: Uncurated samples (seeds 1-16) for Class 279 (arctic fox) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 23: Uncurated samples (seeds 1-16) for Class 279 (arctic fox) for NFE=2.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 24: Uncurated samples (seeds 1-16) for Class 980 (volcano) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 25: Uncurated samples (seeds 1-16) for Class 980 (volcano) for NFE=2.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 26: Uncurated samples (seeds 1-16) for Class 975 (lakeside) for NFE=1.

M
ea

nF
lo

w
-D

iT
-X

L
/2

α
-F

lo
w

-D
iT

-X
L

/2
α

-F
lo

w
-D

iT
-X

L
/2

+

Figure 27: Uncurated samples (seeds 1-16) for Class 975 (lakeside) for NFE=2.

40

	Introduction
	Preliminaries
	Analyzing MeanFlow Training
	Understanding the objective
	Empirical Analysis

	AlphaFlow Models
	AlphaFlow: Unifying one, few, and many-step flow-based models
	AlphaFlow models

	Experiments
	Comparison with baseline
	Ablation Study

	Conclusion
	Reproducibility Statement
	Related Work
	Limitations
	Failed Experiments
	Proofs of things
	Loss decomposition
	alpha-Flow loss unification

	More Proofs
	Analysis of optimal solution space between L_uFM and L_CFc
	Analysis of optimal solution between UFM L_uFM CF L_CFc
	Non-symptotic distance between gradient from alpha-Flow and MeanFlow
	Variance of alpha-Flow gradient

	Analysis details
	Implementation details
	Additional Experiments
	Ablation study over batch size
	Ablation study over alphaFlow design space
	Optimal ratio of r = t under different NFE
	Finetuning from pretrained flow models
	Distillation
	Experiments on Kinetics
	Stability analysis between MeanFlow and AlphaFlow
	More guidance method
	Discussion of the gradient conflict

	LLM usage
	Random vs balanced classes for FID computation
	Additional exploration of the MeanFlow loss
	Additional visualizations

