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Figure 1: Uncurated samples (seeds 1-8) from the DiT-XL/2 model for MeanFlow
(2025a) and a-Flow (our proposed method) produced with 1 (upper) and 2 (lower) sampling steps
for ImageNet-1K 2562.

ABSTRACT

MeanFlow has recently emerged as a powerful framework for few-step genera-
tive modeling trained from scratch, but its success is not yet fully understood.
In this work, we show that the MeanFlow objective naturally decomposes into
two parts: trajectory flow matching and trajectory consistency. Through gradi-
ent analysis, we find that these terms are strongly negatively correlated, causing
optimization conflict and slow convergence. Motivated by these insights, we in-
troduce a-Flow, a broad family of objectives that unifies trajectory flow match-
ing, Shortcut Model, and MeanFlow under one formulation. By adopting a cur-
riculum strategy that smoothly anneals from trajectory flow matching to Mean-
Flow, a-Flow disentangles the conflicting objectives, and achieves better conver-
gence. When trained from scratch on class-conditional ImageNet-1K 256x256
with vanilla DiT backbones, a-Flow consistently outperforms MeanFlow across
scales and settings. Our largest a-Flow-XL/2+ model achieves new state-of-the-
art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15
(2-NFE).

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al.}[2015) have emerged as the leading paradigm for generative
modeling of visual data (Dhariwal & Nichol, 2021; [Rombach et al.l 2022; Brooks et al., [2024).
However, their widespread use is limited by slow inference, as generating high-fidelity samples
typically requires a large number of denoising steps. This computational bottleneck has spurred
extensive research into designing efficient diffusion-based generators that are able to operate in very
few steps while preserving high generation quality (Salimans & Ho}, 2022} [Sauer et al., 2024} [Song
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Figure 2: Diagrams of training dynamics between MeanFlow and a-Flow. (a) MeanFlow training
exhibits a gradient conflict. (b) a-Flow resolves the conflict by first minimizing a trajectory flow
matching loss, then following an annealing trajectory to approach the MeanFlow optimal solution.

et al.| [2023;|Song & Dhariwall, 2024} [Lu & Song}, 2025} |Geng et al.l |2025b} [Frans et al., 2025}, |(Geng
et al.l [2025a).

Early attempts reduce the inference time of diffusion models through distilling a pre-trained multi-
step model into a few-step one (Salimans & Hol [2022} [Sauer et al., 2024). The subsequent devel-
opment of consistency models (Song et al., 2023 [Song & Dhariwal, [2024; [Lu & Song, 2025) en-
abled training from scratch for few-step generative models. However, a significant performance gap
still remains between existing few-step and multi-step diffusion models. The recently introduced
MeanFlow framework (Geng et al., 2025a) enables more stable training and better classifier-free
guidance (Ho & Salimans| [2022) integration, significantly bridging the gap between few-step and
multi-step from-scratch trained diffusion models. Despite its practical success, there still lacks a
clear understanding of why MeanFlow performs better, which hinders further improvements and the
design of stronger few-step models.

In this work, we provide a deeper understanding of why MeanFlow works, revealing that its train-
ing objective can be decomposed into two components: trajectory flow matching and trajectory
consistency. Our gradient analysis shows that these two components are strongly negatively corre-
lated during training, leading to instability and slow convergence in joint optimization. We further
demonstrate that the previous heuristic adoption of border-case flow matching supervision is crucial:
it actually acts as a surrogate loss for trajectory flow matching and mitigates gradient conflict. How-
ever, over 75% of MeanFlow’s computation is spent on this border-case supervision, which is not
its primary focus. This raises an open question: can we design more efficient techniques to optimize
MeanFlow objective, without such computational overhead?

Motivated by these observations, we introduce a-Flow, a new broad family of objectives for few-
step flow models. This framework unifies trajectory flow matching, Shortcut Models [Frans et al.
(2025), and MeanFlow under a single unified formulation. As visualized in Figure 2] by employing
a curriculum learning strategy that smoothly transitions from trajectory flow matching to MeanFlow,
«-Flow better disentangles the optimization of trajectory flow matching and trajectory consistency,
reduces reliance on border-case flow matching supervision, and achieves better convergence.

By training vanilla DiT-(Peebles & Xie,[2023)) models from scratch with a-Flow on class-conditional
ImageNet-1K 2562, we obtain consistently stronger performance across both small- and large-scale
settings compared with MeanFlow, for both one-step and few-step generation. Our largest DiT-
XL/2+ model establishes new state-of-the-art results among all from-scratch trained models with
the vanilla DiT backbone and training pipeline, achieving FID scores of 2.58 (1-NFE) and 2.15
(2-NFE).

2 PRELIMINARIES

Diffusion models and flow matching. Diffusion model (Ho et al.,[2020; |Song & Ermon), 2019;
Rombach et al.,|2022) define a forward process that progressively adds noise to a data sample « ~
Pdata () Over a continuous timestep ¢ € [0, 1]. Specifically, given training data, the forward process
perturbs x into a noisy version z; = S, + o€ where € ~ N(0,I), 3; and o, are pre-defined
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scheduler parameters that depend on ¢, such that zyp = « and z; = €. Flow matching (Liu et al.}
2023;|Lipman et al.,[2023)) is a deterministic alternative that defines the forward process as a straight-
line path between the noise distribution and the data distribution, setting 5y = 1 —tand oy = t. A
neural network vg(z;, t) is trained to model the ground-truth vector field dz; /d¢ along this trajectory
z; by minimizing the objective:

Lru (0) =Ei z 2, [||ve(2e,t) — 'Ut||2] (D

where vy £ v(z,t|lz) = dz;/dt| = € — . To generate a new sample, the probability flow
ODE (PF-ODE) dz/dt = vg(z,t) is solved from ¢t = 1 to ¢ = 0, starting with an initial value
z] N(O, I)

One primary challenge of diffusion models is the slow sampling speed. To address this, several
methods have been proposed to enable high-quality generation with significantly fewer steps.

Consistency model (CM). (Song et al 2023) enables one-step generation by training a neural
network fg(z;,t) to directly map the noisy input z; to clean samples x. The core idea is to enforce
a consistency property at any two nearby timesteps ¢ and s, by minimizing the difference between
the model’s output. Depending on the At := ¢ — s, the training objective can be categorized into:

* Discrete-time Consistency Training (CT) (Geng et al.|[2025b; |Song et al., 2023} Song & Dhariwal,
2024) minimizes the following discrete time CT loss Lcr,:

Ler(8) = Eusn, [IFo(z0t) = fo- (245)I3] @

where 0 < s <t <1, zy = z — At - v and fo- = stopgrad(fe). While smaller values
of At reduce the discretization error and improve performance, they might also lead to training
instability (Song et al.,|2023};|Geng et al.,|[2025b). This necessitates a carefully designed scheduler
for At to ensure good performance and stability during training.

* Continuous-time CT (Lu & Song, 2025; [Song et al., [2023)) eliminates the discretization error by
the continuous time CT loss Ler,:

dfg- (z¢,t
Ler.(8) = 2Er.z, | fg (2, t)% ) 3)
Song et al.| (2023)) theoretically show that VgLcr, (0) = lima;—o VoLer, (0)/At. However, es-

timating 4o (2.1) relies on the Jacobian-vector product (JVP) operation, which causes potential

issues of scalability and efficiency in modern deep learning frameworks (Wang et al.l[2025b} [Peng
et al., [2025)).

Consistency trajectory model (CTM). (Kim et al.| [2024}; Zhou et al., [2025} [Frans et al., 2025}
Geng et al., 2025a) generalize Consistency Models (CMs) by training a neural network wg(z, 7, t)
to enforce consistency across a trajectory from ¢ to r with 0 < < ¢ < 1. This allows jumping from
any t € (0,1] to any r < ¢ during inference, enabling multi-step generation. To train CTM from
scratch:

» Shortcut model (Frans et al., [2025)) enforces consistency by ensuring that a single “’shortcut” step
from ¢ to 7 is consistent with two consecutive shortcut steps of half the size. The training objective
is:

£5(8) =  E_[lluo(z1,7,t) — wo- (21,5,6)/2 — ug- (24,7,5) /2I13] . )
where z, = z; — (t — s) - ug—(2¢,8,t) and s = (t +71)/2.

* MeanFlow (Geng et al., 2025a) trains the model ug(z;,7,t) to estimate the mean velocity

= f: v(z,,7)dr, with training objective given by:
2
‘ d’u’O* (Zt, T, t) ] (5)
2

Lur(0) = E "

t,r,z¢

ug(z¢,rt) —ve + (t—7)
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Figure 3: MeanFlow training analysis. (a) Shows the cosine similarity between the gradients of
two loss pairs (VLrc vs. VLrpy and V L1¢ vs. V Lgw ) throughout training. (b) Evaluated L1py when
MeanFlow trained with 0% and 75% of Lgw . (¢) Evaluated L when MeanFlow trained with 0%
and 75% of Lew .

In practice, MeanFlow significantly outperforms other one/few-step diffusion and flow models. Yet,
there has been little analysis explaining why it works so effectively. To shed light on this, we analyze
MeanFlow training in the next section.

3 ANALYZING MEANFLOW TRAINING

An intriguing aspect of MeanFlow is the noise distribution used during training: |Geng et al.[(2025a)
empirically found that the best results are achieved when setting = ¢ for 75% of the samples. This
might look counter-intuitive, since we are interested in learning the average velocity on a [r, t] inter-
val to perform large trajectory leaps during inference, so why spending the majority of the training
computation on fitting this border case that corresponds to vanilla flow matching supervision? In
this section, we show that the MeanFlow loss on its own can be interpreted as velocity consistency
training with extra flow matching supervision, and analyze the interaction of these two objectives.

3.1 UNDERSTANDING THE OBJECTIVE

Through algebraic manipulations, the original MeanFlow loss Lyr in Eq. (5) can be rewritten into
the following equivalent form (see Appendix [D.T):

due’ (Zt, T, t) +C7

Ly(0) = E [Hue(zt,r,t)—'utng]—|—t7IquZZt 2(t—r)-ug (2,71 i ©

t,r,z¢

Trajectory flow matching Lrey Trajectory consistency Lrc

where C' is a constant independent of 8. In this decomposition, the first term Lrpy corresponds
to a flow matching loss but with an additional modeling input parameter r, so we refer to it as
trajectory flow matching. The second term Lrc, denoted as trajectory consistency loss, acts as
a (t — r)-reweighted continuous consistency loss |'} but also without a boundary condition (Song
et al., |2023). This decomposition highlights that the MeanFlow objective can be interpreted as a
consistency (trajectory) model with extra flow matching supervision.

An interesting property of this decomposition is that L1c does not have any boundary condition.
In comparison, |[Song et al.| (2023) enforces such a condition for vanilla consistency models using a
zp-prediction parameterization: without it, the model would quickly converge to a trivial solution
(e.g., a constant output). In the MeanFlow case, this collapse does not occur, which suggests that
Lrry implicitly provides the boundary condition for L1c. We believe that the absence of an explicit
boundary condition makes Lz easier to optimize and gives it a much larger solution space.

Another important observation here is that trajectory flow matching involves random r < ¢, which
differs from the r = ¢ case used during training by |Geng et al.| (2025a). To clarify this distinction,
we directly compare trajectory flow matching (Lrpy) with vanilla flow matching, which we denote

'Similarly to the proof in Remark 10 of [Song et al.|[(2023), one can show that this term is equivalent to
minimizing the difference between wg (2,7, t) and ug- (zi—ae, r,t — At) as At — 0.
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as Lrw when using the u-prediction parameterization:

Lrn £ . ;Ez [||u0(zt7T7 t) — th%} ) Lpw £ E [||U0(Zt,7'a t) — ’Ut||§] (N

t,rz|r=t

Here, Lrpy arises from the decomposition of the MeanFlow loss, while Lgy corresponds to the
objective used in|Geng et al.| (2025a) for joint training. From this formulation, several observations
follow. First, Lpw is a “part” of Lrpy, active only on the p(¢,r | r = t) slice of the joint distribution
p(t,r). Second, if the network is independent of r, then marginalizing out r yields L1ey = Lrw,
reducing the objective to vanilla flow matching.

3.2 EMPIRICAL ANALYSIS

With the decomposition in Equation (6), how does Lrw interact with the two decomposed terms?
In this section, we analyze the gradients of these losses and examine how extra Lgy minimization
affects Lrpy and Lr¢ individually. We conduct detailed experiments by training MeanFlow with the
DiT-B/2 (Peebles & Xie, |2023) architecture on ImageNet-1K 2562 (Deng et al., |2009) for 400K
steps. Additional experiment settings are in Appendix[H

We first analyze the training dynamics by measuring the cosine similarity between the gradients
V Ly and V Lr¢ during training. As shown in Figure[3a] these two gradients are strongly negatively
correlated, with a similarity typically below —0.4. This reveals that optimizing L1py and Lr¢ jointly
is inherently difficult. We hypothesize this stems from the fact that Lrc, without any boundary
condition, has a very large optimal solution manifold, compared to Ltpy whose manifold is very
narrow. Thus the optimization process is getting pulled towards the Lrc manifold, distracting from
reaching a narrow intersection.

Given this gradient conflict, the question arises: why does joint training with Lgy help? We iden-
tify two key reasons: First, as a subset of Lrpy, Lpw directly reduces Lrpy. This is empirically
confirmed in Figure [3b] where allocating 75% of the training budget to Lrw significantly lowers
the overall Lpy compared to pure MeanFlow training. Second, Lgy applies only at r = ¢, where
Lrc = 0. Consequently, the gradient V Ly interferes less with V.Lr¢ than the V Lrpy gradient.
This is demonstrated in Figure which shows that cos(V Lew, VL) is consistently higher than
cos(V Lrey, VL), that is strongly negative for more than 95% of the training. Surprisingly, Lrc
component doesn’t seem to be affected and can even be lower when allocating 75% of the training
budget to Lew, as shown in Figure Which again hints at the fact that Lr¢ is relatively easy to
optimize, even near the Lrgy optimum.

In conclusion, our analysis reveals three important observations:

> Ly can be decomposed into trajectory flow matching Lty and trajectory consistency Lr¢
objectives, whose gradients are strongly negatively correlated during training.

> Lrc does not have a necessary boundary condition on its own, implying that Ltpy serves
as an implicit boundary condition for it.

> Lrw acts as a surrogate loss for Ltpy, but with significantly less gradient conflict with the
Trajectory consistency loss Lrc.

4 «o-FLOW MODELS

As we showed in the previous section, the Lrpy loss is difficult to optimize jointly with the L.
While the introduction of the Lry loss serves as an effective surrogate for optimizing Lrgy, this
approach dedicates a significant portion of training to an objective that is not of our primary interest.
This raises a key question: Can we more efficiently optimize Lrgy when optimizing Lyg without this
computational overhead? To answer this, we introduce our a-Flow loss, a new family of training
objectives for flow-based models.
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Figure 4: Comparison of training trajectories for various few-step diffusion and flow-based models.

4.1 «-FLOW: UNIFYING ONE, FEW, AND MANY-STEP FLOW-BASED MODELS

Definition 1. The a-Flow loss L., is defined as:
L.(0) = . lEz a ™t lug(ze, mt) — (- Dgp 4+ (1 — ) - ug (2,7, S))||§] , (8)

where t,r € [0, 1] is the start and end timestep, s is the intermediate timestep: s = -1+ (1 — &) -
t,a € (0, 1] is the consistency step ratio, and zs = z; + (t — s) - Vs ¢ is the trajectory value at this
timestep s. Here, U ; is the “shift velocity” used to estimate the intermediate variable z, from z;.

The a-Flow loss is visualized in Figure Intuitively, it enforces trajectory consistency between
t and r by introducing an additional s, which is an interpolation between ¢, with ratio . More
importantly, this definition generalizes previously introduced training objectives such as trajectory
flow matching, Shortcut Model training, and MeanFlow training:

Theorem 1. The a-Flow loss unifies flow matching, Shortcut Models, and MeanFlow:
> Lreu(0) = Lo=1(0) with s, = v,.

> Lsc(0) = LLa—1/2(0) with O, = ug- (24, 5, 1).

> VoLlur(0) = VoLao—o(0) with 05, = vy.

Proof sketch: The connection between L, and Lrpy and Lg¢ are straight forward. For the non-
trivial relationship showing the convergence from VgL, (0) to Vg Lyr(80), we leverage a first-order
Taylor expansion on the term ug- (24,7, s) around s = t. This yields:

dug- (z¢,1,1) ] 5

" (t—r)a+0(a?),

Substituting this expansion into the Equation (8) and taking the limit as & — 0 causes the higher-
order terms O (aQ) to vanish and recover VgLyr(0). The detailed proof is deferred to Ap-
pendix [D.2} Furthermore, under Assumption 2} we prove the upper bound of the asymptotic dis-
tance between VgL, (0) and Vg Lyr(0) in Appendix This bound is linearly related to v and
converges to 0 as v — 0, which aligns with the result of Theorem[I]}

Ug- (287 T, 8) = Ug- (zta T, f) -

Moreover, if one considers a zg-parametrized network wg(2z¢,0,t) = (z: — fo(2t,t)) /t = 20, Lo
incorporates discrete and continuous consistency training as well. Specifically, with v, ; = v; and
r=0:

> Log,(0) = Laes(0) for 6 € (0,1).
> VQECTC (0) = VQ‘CQ‘)()(G).

This theorem reveals that the ratio « is the key hyperparameter that unifies seemingly different
methods, which controls the relative position of the intermediate timestep s within the (r, ¢) interval.
By annealing « from 1 to 0, we obtain a family of models in the interpolation between trajectory
flow matching and MeanFlow. Notably, discrete CT is a special case of a-Flow with » = 0. Unlike
discrete CT, a-Flow requires no complex timestep partitioning: once ¢ and r are sampled, s is
immediately determined with a fixed a.

4.2 «o-FLOW MODELS

The a-Flow loss enables a curriculum learning strategy that progressively transitions from the tra-
jectory flow matching to MeanFlow objective. As visualize in Figure [2] this approach better dis-
entangles the optimization of the trajectory flow matching and consistency losses, could potentially
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reduce reliance on the flow matching objective, and leads to better convergence. The detailed cur-
riculum learning can be summarized into three phases:

* Trajectory flow matching pretraining (o« = 1). To speed-up convergence toward narrow Lrpy
manifold, we prioritize optimizing trajectory flow matching in the early training phase. Addition-
ally, as a low-variance objective, trajectory flow matching quickly establishes a reliable noise-to-
data mapping, providing a good initialization for subsequent few-step refinement. Notably, this
pretraining strategy is aligned with previous diffusion model pretraining strategy applied on con-
sistency model (Geng et al [2025b)), while we start from different motivations and generalize it
into the a-Flow framework.

* «o-Flow transition (o« € (0,1)). Once the model establishes a solid foundation through initial
training, we transition from the Lrpy to the Lyr objective. We accomplish this with a curricu-
lum learning approach, where we progressively decrease the a from 1 to 0. This gradual shift is
inspired by discrete CT methods and serves two crucial functions: (a) we the-
oretically demonstrate that the optimal solution of a-Flow smoothly transitions from the optimal
solution of Lrgy to the optimal solution of Lyr as v goes from 1 to 0 (proved in Appendix [E.2).
(b) the curriculum learning effectively transitions the training objective from a high-bias, low-
variance” state to the necessary “low-bias, high-variance” state. This is supported by the theoret-
ical proof showing the upper bound on the gradient variance for a-Flow increases as o decreases
(proved in Section Appendix [E-4). This strategy yields significantly improved convergence com-
pared to directly optimizing the inherent high-variance MeanFlow objective.

* MeanFlow fine-tuning (o« — 0). In the final stage, we focus entirely on the MeanFlow training
objective. Unlike the original paper, our improved early-stage optimization of trajectory flow
matching significantly reduces the need for the flow matching loss (as shown in Table 2] (b)) and
achieves significantly better few-step generation quality.

The overall training code of a-Flow
is shown in Algorithm [[] where
we first Sample t,'f’ and obtain the # fn(z, r, t): function to predict u

o from the schedule. Based on # x: training batch, k: training iterations
whether o = 0 or not, a-Flow will
use either Lyr or L, to train the
model. a-Flow applies the same S
training details as MeanFlow when °

Algorithm 1 a-Flow: Training.

t, r = sample_t_r ()

alpha = sample.alpha (k)

alpha » r + (1 - alpha) * t
randn_like (x)

training Lyr (except a lower ratio zt = (1 - t) = x + t x e
of flow matching). Below, weonly 7 = ° ™ *
show the difference: the schedule if aipha == o:
of «a as well as the design space of u, dudt = jvp(fn, (zt, r, t), (v, 0, 1))
E h 0 u_tgt = v - (t - r) x dudt
o« When a > 0. else :
u = fn(zt, r, t)

. zs = zt - (t - s) * Vv

Schedule. To schedule the train- u_tgt = alpha + v + (1 - alpha) * fn(zs, r, s)

ing, we use a sigmoid function,
o = Sigmoid, _; ., (k), which
depends on the training iteration k.
The function is defined by its start-
ing and ending iterations, kg, k.,
a temperature parameter 7y (set to

error = u
loss = me

— stopgrad(u_tgt)
tric(error)

Algorithm 2 a-Flow: Curriculum Schedule

. # k_s, k_e: start/end schedule iterations,
be 25) %nd_a Clamplng. Value 1. # gamma: temperature parameter
The SpeClﬁC 1mplementatlon canbe # k: current iteration, eta: clamping value
found in Algorithm[2] Figur TO-
(.)u d . go.t . gu e|§|p o scale = 1 / (k_e — k_s)
vides a Ylsuallzgtlon of this sched- ffset = - (ks + ko) / 2 / (ke - k_s)
uler, while Section[5.2]conducts an alpha = 1 - sigmnoid((scale » k + offset) » gamma)
ablation Study over itS parameters. alphaal—pia;, alpha > (1- eta) else (0 if alpha < eta else

Clamping value. [Geng et al|(2025b) show that when At = ¢ — s approaches 0, the performance
of few-step CT model will first increase and then decrease. For a-Flow, we observe a similar phe-
nomenon: by training a-Flow with a fixed «, as o approaches 0, the 1-step generation performance
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Method Source Params Epochs NFE1 NFE 2

FID FDD FID FDD FIDf
Shortcut-X1L/2 Frans et al.|(2025) 675M 160 10.60 - - - -
IMM-XL/2 Zhou et al.[(2025) 676M 3840 805 - 388 - -
MeanFlow-XL/2 |Geng et al.|(2025a) 676M 240 343 - 293 - -
MeanFlow-XL/2+ (Geng et al.| (2025a) 676M 1000 - - 220 - -
FACM-XL/2 Peng et al.|(2025) 675M 800 +250 x 2 - - - - 207
FACM-XL/2 675M 120 x 2 9.54 4104 7.31 362.0 -
FACM-XL/2 Our reproduction 675M 240 x 2 6.59 327.7 473 278.6 -
CT-XL/2 P 676M 240 7.44 3249 6.22 2719 -
MeanFlow-B/2 131M 240 6.04 3123 5.17 232.1 -
MeanFlow-XL/2 676M 240 3.47 185.8 2.46 108.7 2.26
a-Flow-B/2 131M 240 540 287.1 5.01 231.8 -
a-Flow-XL/2 Our methods 676M 240 295 164.6 2.34 105.7 2.16
a-Flow-XL/2+ 676M 240+60 2.58 148.4 2.15 96.8 1.95

Table 1: Class-conditional generation on ImageNet-256x256. The table reports the results for
few-step diffusion/flow matching-based methods trained from scratch. ”x2” indicates that FACM
requires roughly twice the computation per epoch compared to other methods. For a direct ’epoch-
to-epoch comparison,” a-Flow-XL/2, MeanFlow-XL/2 and FACM-XL/2 are each trained for 240
epochs. a-Flow-XL/2+ is a fine-tuned version of a-Flow-XL/2, trained for extra 60 epochs with a
batch size of 1024. { FID scores are evaluated with the balanced class sampling (see Appendix m)

will first increase then decrease. Detailed experiments are shown in Table [3] (c). From the exper-
iment, the optimal performance is achieved when o = 5 x 1073, Thus, we set a clamping value
n = 5x 1072 for the schedule. o will be set to 0 when a < 7. We also use the same clamping value
toset ato 1 when @ > 1 — 7, as when « is close to 1, Lypy is similar to £, but more efficient.

Training objective. In the unifying space of a-Flow loss, all other few-step models set v, ; = v;
except the shortcut model which uses ¥, ; = ug- (24, s,t). Additionally, we are interested in seeing
whether we need exponential moving average (EMA) for 8. With ablation study in Table (a), we
set ¥, = v; and do not use EMA for 6.

Adaptive loss weight. MeanFlow (Geng et al., 2025a) demonstrates the effectiveness of adaptive
loss. Basically, let ||A[|2 denote the squared L2 loss. The adaptive loss weight w = 1/(||A[|2 + ¢)
where ¢ = 1073, And the adaptively weighted loss is sg(w)||A||3. Theoretically, we derived an
equivalent adaptive loss weightw = a/(||A||3+c) for L,. We defer the derivation in Appendix
With ablation study in Table [5] (b), we demonstrate the derived adaptive loss weight is better than
other loss weights.

Classifier-free guidance (CFG). We apply a similar CFG training strategy as MeanFlow, by
setting ¥, in Equation with 05, = w - v(z, t|x) + £ - ug- (21, ¢, tlc) + (1 —w—k) -
ug- (24, 1,t|2), where w, k are the guidance scale, ug- (-|¢), ug- (-|&) denotes the class-condition
(with class ¢) and class-unconditional prediction. Detailed settings of w, x are deferred to Ap-
pendix [G]

Sampling. We employ both consistency sampling (Song et al., 2023)) and ODE sampling for two-
step generation. Implementation details are provided in Algorithm Empirically, we observe
that consistency sampling outperforms ODE sampling for larger models with better convergence.
Consequently, we adopt ODE sampling for all DiT-B/2 architectures and consistency sampling for
all DiT-XL/2 architectures, with additional ablation studies on DiT-XL/2 presented in Figure 3]

5 EXPERIMENTS

In this section, we employ a-Flow on real image datasets ImageNet-1K 2562 Deng et al.|(2009). We
use exactly the same DiT Peebles & Xie| (2023)) architecture as MeanFlow |Geng et al.| (2025a). For
evaluation, we use Fréchet Inception Distance (FID) Heusel et al.| (2017), Fréchet DINOv2 |Oquab
et al.| (2023). We evaluate model performance for both 1 and 2 Number of Function Evaluations
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NFE 1 NEFE 2
FID FDD FID FDD

Schedule

Constantg.o 44.4 844.1 42.1 836.3

Model NFE 1

NFE 2

% r = t Schedule FID FDD FID

FDD

09 Comstantoo 46.0 879.6 44.3 867.7
Trajectory flow matching iterations ? Sigmoidyk _, 400k 40.4 822.5 38.9 811.8
Sigmoid, 44.3 860.3 40.8 826.9
Slgm01d§§;_t?g$< 44.1 846.8 39.9 811.6 25% C?nstz?.nto,o 44.4 844.1 42.1 836.3
Sigmoid, ok 00k 424 828.0 38.3 795.4 Sigmoidyk 400k 40-0 785.4 37.1 782.9
Sigmoidisoxsox 413 8188 38.1 793.1 soq Constamtoo 439 8441 421 8363
Transition iterations 7 Sigmoidk_,,00x 40.2 781.0 37.1 775.0
Sigmoid 41.4 794.4 38.8 796.7
Slgm01d?§3§:§ggi 41.3 818.8 38.1 793.1 75% Constantg.g 43.1 819.2 38.5 787.6

Sigmoidyk ,,0ox  40.0 785.4 37.1 782.9 Sigmoidyk 400k 42-2 810.5 36.2 754.7

(a) Consistency step ratio schedule. (b) Flow matching ratio.

Table 2: Ablation study on ImageNet-1K 256 for a-Flow-B/2.

(NFE=1, NFE=2). We implement our models in the latent space of the Stable Diffusion Variational
Autoencoder (SD-VAE) E]pMore details on the experiments settings are in Appendix

5.1 COMPARISON WITH BASELINE

In Table[I] we compare «-Flow with previous few-step Diffusion and Flow models, demonstrating
its superior performance for 1-NFE and 2-NFE generation. Across models trained for 240 epochs,
a-Flow-XL/2 achieves 2.95 FID (164.6 FDD), representing a relative improvement of 15% (12%)
over MeanFlow-XL/2 and 70% (60%) over FACM-XL/2. Our best model, a-Flow-XL/2+, sets a
new state-of-the-art 1-NFE generation with an impressive FID of 2.58 (148.4 FDD), compared with
all the other few-step Diffusion and Flow models trained over the SD-VAE. Furthermore, for 2-NFE
generation, a-Flow-XL/2+ achieves 2.15 FID (96.8 FDD), outperforms all these baseline methods.
It’s particularly notable that it surpasses FACM-XL/2’s 2.07 FID (achieved with a class-balanced
sampling) by reaching 1.95 FID with only 23% of the training epochs. Uncurated samples, shown
in Figure [T and Appendix [[] visually confirm these results. Specifically in Figure [T} o-Flow-XL/2
generates more images with better quality, as highlighted in green.

5.2 ABLATION STUDY

Consistency step ratio schedule. In Table[2[(a), we evaluate our a-Flow framework trained with
various sigmoid schedules, as visualized in Figure [6] For these experiments, the flow matching
ratio is fixed at 25%. We first analyze the impact of the trajectory flow matching pretraining du-
ration. By fixing k. — ks to 100K iterations, we progressively increase k, from OK to 150K. As
the pretraining duration increases, a-Flow’s performance consistently improves across all metrics.
The best-performing schedule, Sigmoid,;;yk_ 950k, Significantly outperforms the baseline Mean-
Flow (Constantg ). This suggests that optimizing trajectory flow matching is more crucial than
optimizing MeanFlow in the early training stages for achieving superior few-step flow modeling.
This finding aligns with our empirical analysis, which shows that because the gradients of the tra-
jectory flow matching and consistency losses conflict, it is more efficient to exclusively optimize the
trajectory flow matching objective for faster initial convergence.

Next, we investigate the effect of the transition duration. With the midpoint (ks + k.)/2 fixed at
200K iterations, we vary the total transition iterations from 0 to 400K. Our results indicate that
a longer, smoother transition leads to better generation quality. This highlights the importance of
gradually reducing the bias of the training objective by smoothly transitioning between trajectory
flow matching and MeanFlow.

Flow matching ratio. In Table[2|(b), we compare our a-Flow framework with the MeanFlow base-
line across various flow matching ratios (%r = t). Our results show that a-Flow consistently out-
performs MeanFlow for all evaluated ratios, confirming the effectiveness of our proposed method.
A key finding is that a-Flow achieves its best 1-NFE performance at a relatively low flow matching
ratio. Specifically, it reaches the best FID of 40.0 at 25 % of r = t and the best FDD of 781.0 at 50

2The EMA version infhttps: //huggingface.co/stabilityai/sd-vae-ft-mse
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FID | -~ MeanFlow DiT-XL/2 -o- MeanFlow DiT-XL/2 (CS) — Constanto
- S id,
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Figure 5: Comparing ODE vs consistency sam-  Figure 6: Visualization of consistency step ratio
pling for MeanFlow and a-Flow models. schedule.

% of r = t, while MeanFlow requires a higher ratio of 75% to achieve its best FID of 43.1 and FDD
of 819.2. This aligns with our motivation: by pretraining on trajectory flow matching, a-Flow is
less reliant on the flow matching objective and can focus more on the overall MeanFlow objective,
leading to superior one-step generation quality.

Furthermore, we observe that for a-Flow, the flow matching ratio presents a clear trade-off between
1-NFE and 2-NFE performance. For instance, the 75% ratio yields worse NFE=1 but better NFE=2
generation results compared to the 50%-ratio version. This indicates that a higher proportion of flow
matching improves the model’s ability to generate images in a slightly higher number of steps.

Sampling. As shown in Figure |5) we compare ODE sampling (solid line) and consistency sam-
pling (dotted line) for 2-NFE generation across different intermediate sampling timesteps, using
MeanFlow-XL/2, a-Flow-XL/2, and a-Flow-XL/2+. The results show that consistency sampling
yields better generation performance for both a-Flow-XL/2 and a-Flow-XL/2+, achieving the best
FID scores of 2.09 at timestep 0.4 and 2.28 at timestep 0.45, respectively. In contrast, ODE sampling
performs better for MeanFlow-XL/2, which attains its best FID of 2.39 at timestep 0.35. In Table[T}
we select intermediate sampling timesteps that balance FID and FDD; see Table 3] for details.

6 CONCLUSION

Our work provided a principled analysis of the MeanFlow framework, analyzing its objective and
establishing the necessity of flow matching supervision during training. Motivated by this under-
standing, we proposed the a-Flow objective as a generalization of MeanFlow loss, allowing us to
train consistently stronger few-step image generation models from scratch.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we include all the
necessary implementation details in Appendix [G| ensuring that our methodology can be faithfully
reproduced. We will publicly release our source training, inference, and evaluation code, as well as
the pre-trained checkpoints for ImageNet-1K 2562
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A RELATED WORK

Diffusion Models. Diffusion models have become a dominant paradigm in generative modeling
for vision domains (Sohl-Dickstein et al. 2015}, [Song & Ermonl|, 2019} [Ho et al., 2020} [Song et al,
20214:b; [Dhariwal & Nichol, [2021). The classical diffusion framework defines a forward noising
process and a corresponding reverse process that a model learns to approximate. Early works such as
DDPM and score-based generative modeling (Song & Ermon| [2019) demonstrated
high-quality image generation, later extended to continuous-time SDEs and ODEs
[2021b). (Dhariwal & Nicholl, 2021) further improved sample fidelity with larger architectures and
classifier guidance. More recently, the community has explored flow-based parameterizations that
directly learn continuous velocity fields (Liu et al, 2023} [Lipman et al., 2023}, [Albergo & Vanden-|
2022). These flow matching approaches simplify training, unify score- and likelihood-
based models, and are used in large-scale systems such as Stable Diffusion 3 2024).

Few-step Diffusion. Despite their quality, diffusion models are computationally expensive due
to iterative sampling. A large body of work accelerates sampling to a few steps or even one step.
Distillation-based approaches include progressive distillation (Salimans & Ho|[2022; Berthelot et al.l
2023)), and often incorporate adversarial objectives (Yin et al., 2024bga; [Zhou et al., [2024; |Sauer]|

et al., [2024). UCGM (Sun et al.| [2025) develops a unified training scheme for multi-step and few-
step diffusion-based methods.

A closer research direction (which our method follows as well) includes the methods which are
trained from scratch and support few- and even one-step generation by design. Consistency Mod-
els (CMs) (Song et all, [2023)) learn to map noisy inputs directly to clean data by enforcing self-
consistency. Extensions improve stability and scalability (Song & Dhariwall, 2024} [Lu & Song]
2025} |Geng et al.L[2025b). Trajectory-based methods learn the dynamics of the entire denoising pro-
cess, enabling arbitrary jumps along the diffusion path. PCM (Wang et al.} [2024)) scale consistency
distillation to large scale models and optimize with preselected time intervals. Shortcut diffusion

models (Frans et al.,2025)) learn direct mappings with shortcut constraints. MeanFlow (Geng et al.,

[2025a)) predicts time-averaged velocities with continuous consistency, while (2025) ex-
plore this idea for discrete consistency. While concurrent work (2025) proposed a similar

loss function to our c-Flow loss (Equation (§)), our paper offers theoretical and empirical contri-
butions. Theoretically, we provide a deeper analysis comparing the a-Flow loss and the MeanFlow
loss. Empirically, we introduce novel techniques specifically designed to improve the performance
of the a-Flow loss, and we successfully demonstrate its efficacy and the benefits of curriculum learn-
ing on the large-scale ImageNet dataset. Hybrid approaches combine consistency and flow match-

ing: Consistency-FM (Yang et al.l [2024) enforces velocity self-consistency, FACM (Peng et al)

2025)) anchors consistency to flow objectives, and IMM 2025)) matches the output distri-
butions via moment matching instead of exact outputs. Consistency Trajectory Models (CTM)

generalize consistency training to support transitions between any two timesteps, com-
bining one-step generation with progressive refinement. [Boffi et al| (2025b) introduces Flow Match-
ing Mapping (FMM), a unified framework that extends CMs, CTM, and progressive distillation.
In particular, it demonstrates that existing methods can be interpreted within a common Euler and
progressive perspective, while also proposing a novel class of Lagrangian methods. Building on this
foundation, (Boffi et al [2025a)) presents a systematic algorithmic framework and demonstrates the
superior performance of the Lagrangian approach. Our work, on the other hand, provides a distinct
and detailed unification focused specifically on the Euler method. Within this framework, we unify
Flow Matching, Shortcut models, and MeanFlow. Transition Models (TiM) (Wang et al, [20254)
derive an exact continuous-time dynamics equation for arbitrary-step transitions. These methods
achieve one- to few-step sampling with steadily improving fidelity.

B LIMITATIONS

* Our a-Flow loss enables high-quality training of discrete MeanFlow models without requiring
JVP computation. However, in practice, the continuous objective (i.e., setting @ — () remains
important, likely due to the bias—variance trade-off inherent in the consistency objective
let al., 2023} [Song & Dhariwall, 2024)).
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* We occasionally observed unstable training in large-scale models with guidance integration, both
for the vanilla MeanFlow model and our a-Flow variant. Thus, our framework should not be
viewed as a silver bullet for addressing the well-known instability issues of consistency mod-
els|Geng et al.| (2025b)).

» The a-Flow objective uses pure flow matching supervision up to k; iterations, after which the
consistency objective is applied. Before this point, the model’s few-step performance is weak,
which can make progress harder to monitor.

* Our gradient analysis provides actionable insights but remains empirical; it does not fully explain,
from a theoretical perspective, why flow matching is so critical for consistency.

* Although we motivate larger batch sizes for fine-tuning by the high variance of the consistency
loss, the observed improvements (see Table ) may instead reflect that small batches are more
sensitive to hyperparameters (Marek et al., 2025), and that beyond a certain size, batch-size scaling
exhibits diminishing returns (McCandlish et al.| 2018)).

C FAILED EXPERIMENTS

‘We also wish to share with the community several experiments that did not succeed during the course
of this project. Some of these directions were likely underexplored on our side, while others may
represent genuine dead-ends. Nevertheless, we believe documenting them may serve as a useful
reference for future work.

* We devoted several weeks to exploring decomposed training of the MeanFlow objective with
individually tuned weighting functions for each term, drawing inspiration from EDM [Karras et al.
(2022) to map out the design space. Unfortunately, every configuration we attempted produced
worse results than the default adaptive loss heuristic, which was a particularly frustrating outcome.

* Consistency sampling (see Figure [5) did not provide the improvements we had anticipated. In-
terestingly, the optimal midpoint consistently emerged at ~ 0.5, which coincides with the default
MeanFlow setting. We suspect this effect is related to the training distribution, which has a mode
slightly lower 0.5. Following the original work, we employed a logit-normal distribution with
location parameter —0.4.

* We experimented with LoRA fine-tuning and introduced separate prediction heads for vanilla
velocity and mean velocity. Neither approach yielded promising results.

* We conducted roughly 50 ablations on the train-time noise schedule for vanilla MeanFlow models.
None resulted in noticeably better performance, even when factorizing the joint distribution p(¢, )
into p(¢)p(r|t) and exploring alternative supervision distributions for flow matching in parallel.

* We investigated additional representation alignment losses [Yu et al.| (2025) with the aim of ac-
celerating convergence in MeanFlow models. However, the observed gains were insufficient to
justify the added complexity of the training framework.

* We also experimented with different EMA schedules, but these attempts did not lead to meaningful
improvements.

D PROOFS OF THINGS
D.1 L0OSS DECOMPOSITION
Proof. The MeanFlow loss is given by:

d’u’H* (zta T, t)

»CMF(O) = ]Et,r,zt [ dt

]ue;(zt,r,t) o (t—r)

2
] ©))
2
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(unpacking the norm and regrouping terms yields)

dug-(z¢,7,t
= Eops, [lto(zert) — 2] +Eops, {2 (=) u] (2, t)e(dtt>] (10)
Len(6) L1c(6)
dug- t dug- s
F B |20t 1) 0T (2, ) e Fe ) || A8 (e t) (11)
" dt dt )
Does not depend on 6
O

D.2 L, LOSS UNIFICATION

Proof of theorem[I] The proof for flow matching and shortcut models is straightforward. We will

At
only show the proof for the third bullet point. For brevity, let’s set At =t — s and o = o
t—r At
Ea(e) = Et,r,zt |:At : ‘ Ug(Zt,T', t) T r cUr—
t— At — ?
7"«“0* (zt—Ata T,t - At) ] )
t—r 9
i t—r At t—At—r
(—)]Etrzt|: At ‘ug(zt,r,t) f Uy — PR .
(12)
dug- t ?
ug- (20,7,t) — dug-(2,m,1) \, o (A2t) ,
dt 9
i t—r At
(2) Et,r,zt |:At : ‘ u@(zta T, t) — Ug- (Zt, T, t) - t—r :
dug- t 2
<’Ut —(t— T)M —ug- (24,1, t) + O (AQt)) ] ’
dt 5
where (7) uses the Taylor expansion over ug— (zi—a¢, 7, t — At):
dug- t
ug- (Zt—at, 1t — At) = ug- (z¢,1,t) — WAt + O (A2t) ,

duef (Zt, T, t)
dt
alh Voral0) = fim, Vola(0)

and (ii) uses the fact that A%t = O (A?t). Thus,

. t—r At
:AligloEt’r’zt _2 AL Vo ug(2s,7,t) - (ue(zt,r, t) — ug- (2,7, t) — P
(’Ut —(t— T)W —ug-(z4,1,t) + O (A%)))} ,
L [ t—r _t At
= dim Bers |20 75 Vouolzr ) (t - ) |
duG* (Zt,’f', t) 2
v (1= P ED 0 (a%))],
B t—r At T dug- (2,7, t)
=E;, 2, {2 : ( NI r) -Voug(z:,m,t)- (’LLg(Zt,’I", t)—v+ (t—r) m ,
:veﬁMF(e)a
13)
O
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Proof of equivalence with consistency model. By setting v,; = v;,r = 0 and ug(2,0,t) =
At
(zt — fo(z4,t)) /t, At =t —sand o = 5 we have:
t At
»C'a(e) - Et,r,zt |:At . Hue(ztarv t) - t_r cUr—
t— At — ?
Trruef (zt—ap, 7, t — Al) K
) t zy — fo(zi,t) At
SEi, | — || ————— — — - v— 14
t,z¢ |:At ¢ n Ut ( )
t— Atz_ar— fo- (zi_ant — At)||?
t t— At ol

i 1 iii
DB [ Woten )~ fo- (st = 801E]  £er @),

where (¢) plug in the reparameterization and r = 0, (¢7) uses the fact that z; = z;_ A+ At-v;. Thus
1
L,(0) could be reparameterized to Ler,(6) with a loss weighting function AL Since the discrete

CT uses timestep partition to determine ¢ and At, the (¢iz) holds for a special timestep partition
when At = « - ¢ given a fixed a. From Theorem 2 in|Lipman et al.[(2023)), because wg- (2, 7, t) is
independent of 8, we have:

2

2] ,

d’LLg— (Zta 7, t)

Lur(0) = Eir 2, U ug(z¢,7,t) — v + (t — 1)

dt
5 , (15)
=Bz, [ wo (2,1, 1) — v(ze, 1) + (t — T)W +0,
2
with C' a constant independent of 6. Thus,
V@CMF(G)
T du@‘ (zta T, t)
=Ei,2 |2 - Voue(z:,1,t) - | wg(2e,7,t) —v(2e,t) + (t — T)T ,
(i) o1 —Jo(z,t) [z — fo(z,t)
= Et7zt |:2 Vg p n 'U(Zt,t)+ (16)
dfe- (z,t) (zt — fo-(24,1))
(’U(Zt’ t) dt n )
1 dfe- (z,t
= ]Et,zt [2 : Z 'nge(ztyt)fed(tt)} = VGECTC(O)y

where (i) plug in the reparameterization and r = 0, and use the fact that:

dug (2,7 =0,¢) 1 (t (v(zt,t) _ df0<ztvt)> (- fe(zt,t))> (17)

dt T2 dt

1
Thus V¢ Lyr(0) could be reparameterized to Ler, () with a loss weighting function n O

E MORE PROOFS

E.1 ANALYSIS OF OPTIMAL SOLUTION SPACE BETWEEN TRAJECTORY FLOW MATCHING
Lrey TRAJECTORY CONSISTENCY L1

Assumption 1. Assume that the wg(z;,r,t) has infinite model capacity, and can approximate any

continuous function to an arbitrary level of accuracy based on the Universal Approximation Theo-
rem. And zo = & € R draw from a random distribution p(x).
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Assumption[T]has been widely used in previous works [Karras et al] (2022)); [Gu et al] (2023)); [Zhang]
(2024) to analysis the optimal solution of diffusion training loss, which simplified specific

network architecture constraint without loss of generality. The trajectory flow matching loss defined
in Equation (@) could be re-written as:

Ly (ug) = [llwg(ze,r,t) — vel|3] (18)

t'rz

/t,r /]Rd /]RdN (2z6; (1 = )2, 1) lug (2,7, t) —

Loru(we,t,r,2¢)

(z)dx dz; dt dr.

19)

Since Assumptionimplies that ug(z¢, 7, t) can approximate any continuous function, we can min-
imize Lpy (ug) by independently minimizing the inner integral Lipy(ueg,t,r, z¢) for each fixed
(z¢,7,1).

Given z;, 7, t, Lreu(ug, t,7, 2;) is a convex optimization problem with respect to ug(z¢, 7, ¢) and
the optimal solution is uniquely identified by setting the gradient with respect to ug(z;,,t) to 0.

vug(zt,r,t)»CTFM(UGv t,r, zt) =0, (20)
zZt — &
:>vu9(zt7"‘7t) /dN (zt; (1- t)w7t2I) [ue (2,7, t) — ! H% -p(z)dz =0, 2D
R
2 * Zt — &
= N (Zt§ (1-t)z,t I) uG,TFM(ztarv t) — -p(z)dx =0, (22)
Rd

anp(e) N (21— e, 1) 2]\
Eapo) IV (20 (L= D, £I)] ) ~ Mozl (23

1 E
éu;,TFM(ztara t) - E (Zt -

This shows that the loss L1py has only one optimal solution. However, the situation is different for
the Trajectory consistency Lrc defined in Equation (6):

(24)

fro= B, [200- ) uf (e

d’U,g— (Zta T, t)
t,r,z¢ ’
For fixed z;,r,t, the loss L¢ (2, 7,t) is a linear func-
tion w.r.t ug(z¢,r,t), so it does not have a lower bound. 01 i

Any function wug(z,r,t) which satisfies the condition 201

dug_ (24,7t S .
ug (24,7, t)% — —oo minimizes the loss. This

confirms that the unconstrained Lrc has a large, easily
optimizable solution space.

Crucially, this finding does not contradict the difficulty of

optlmlzmg Lez, noted in prior work[Song et al | (2023): [Lu] 0 100 200 300 400 500
@]} In those papers, the optimization prob- Training Iteration

lem was made difficult by the explicit boundary condi-
tion fo(z0,0) = 2o, which constrains the velocity field Figure 7: Optimization of Lrc.
as u@(ztaoat) - (zt - f@(ztat)) /t - £0~

E.2 ANALYSIS OF OPTIMAL SOLUTION BETWEEN
TRAJECTORY FLOW MATCHING Ltgy TRAJECTORY CONSISTENCY Lt

Following the same derivation as above, minimizing Lyr(0) is equivalent to minimizing
Ly (0, zt, r, t) for every fixed z;,r, ¢ under Assumption where:

EMF (97 Zt, T, t)

:/ N (25 (1 — t)a, £21) |\u9(zt,r,t)_vt+(t_r)w 2 @5)
]Rd

ZuLU 3 - pla)da,
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Since the term ug- is independent of ug, Ly (0, z¢,7,t) remains a convex optimization problem
over ug. Consequently, for all z;, r, t, the optimum satisfies:

Voo (zert)Lve(0, 24,7, 1) =0, (26)
- duy (2,7,
= [N G (1= 02.27) (e - b (¢ =) R B g o,
(27)
) dudy e (2,7, 1) N
=ug yp(2¢,7,1) + (t — T)Mijit = Ugp rpu (2t 1), (28)
1 ¢
Sugyp(ze,7,1) = —— [ ug e(2s,t)dt. (29)

t—rJ,
As detailed in [Geng et al] (20254)), the constant term in the last equation is zero. Furthermore, to
minimize the £, (0) loss with v, ; = v, the same assumption in Assumptionmakes it equivalent
to minimizing £, (0, z;, 7, t) for every fixed z;, r, t, where

L£o(0. 20,1, 1) :a—l/ N (265 (1 — ), £21) [ (207 1)~
Rd
(v 4+ (1 =) -ug(2s,7,5))||3 - p(x)d.
Applying the same zero-gradient condition, the optimal solution of ug , (2,7, ) satisfies:

up o (2, 7,1) = (1 — @) - ug (25,7, 8) = o up (21, 1)

Thus, when o« = 1:

uz,a(zta T, t) = UZ,TFM(zta t)a (30)
when a < 1:
u;,a(zt7 Ty t) =a- u;,TFM(zt’ t) + (1 - O[) : uz,a(zsv T, S)a (31)
= UZ,TFM(th) +(1—-a)a- UZ,TFM(zta s)+(1— a)2 : uz,a(ztmﬁ tx), (32)
= .. (33)
=a Z (1 — @) *u gen(ze, th): (34)
k=0

where t, =7+ (1 — a)*(t — ). Let A\, := (1 — @)%, thus Adp = A\, — Mps1 = a1 — a)F, so:

Mg

Up o(26,7,8) = Y (A — A1) Ug reu(Zrgng (=), T+ Akt — 7)), (35)
k=0
1 oo
— Z Th — Tht1) U TFM(sz?Tk) (36)
k=0

where 7, = r + A\ (t — 7). This is a left Riemann sum, and as o — 0, A\;, — 0 and:

t
g rpu(2t, 1)dE = wg e (24,7, 1). (37)

(llg}) u;,a(ztvrv t) - .

t—r

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assumption 2. The optimal velocity function uaTFM(zt, t) and the parametric velocity function
ug (2,1, t) satisfy the following properties:

* Lipschitz Continuity of Optimal Velocity: There exists a constant Ly > 0 such that for all
t1,to € [0,1] and corresponding z,, zi,,

||'u’§,TFM(Zt17t1) - uz,TFM(ztwt?)H? < Lilty — tof. (38)

e Lipschitz Continuity of Time Derivative: There exists a constant Lo > 0 such that for all
t1,ta € [r, 1] (where r € [0,1]) and corresponding z:,, zt,,

< Loty — tof. (39)

2

du9(’zt1 T tl) o dug (ztz T t2)
dt dt

* Boundedness of Gradient and Time Derivative: There exist constants C, Co > 0 such that
Sforall r,t € [0, 1] with r < t, and for the corresponding z:,

dug(z, 7, t)

< .
It < Oy (40)

||V;9|—U9(Zt77”7t)||2§01, and H
2

The Lipschitz continuity of the score function is a common assumption widely adopted in the the-

oretical analysis of score functions in diffusion models [Chen et al| (2022} [2023)). Here, we assume

the Lipschitz continuity of the optimal velocity function uZﬁTFM(zt, t) and the derivative of ug over

¢ dug(z¢,m,t)
’ dt

. The boundedness of ||V ug (2, r,1t) ||2 holds in reality as we using gradient clip over
each element in V ug(z¢, 7, t) to stablize training. Thus, under a finite o

* * 1 - " * *
l[wg o (2t 7, t) — ug ye(2e, 7, t)[|2 = i Z/ (ue,TFM(szaTk) - uO,TFM(vaT)) dr|
" =0 e 5
(41)
= t—rz/ HuOTFM Zry s Th) _uz,TFM(z‘f'?T)HQdT
Tk+1
(42)
1 oo [T
< t—rz/ Ly (1 — 7)dr, (43)
k=0" Th+1
T i_s Z (k= Tet1)”, (44)
—7) 5
= —« Z (1—a)™, (45)
k=0
Ly(t—r) «
= : 46
25 2-a’ (46)

|[ug o (e, 7, t) —ug yp (21, 7, )| |2 decreases with v and lima o [[ug (21, 7, 1) =g e (21, 7, E)[]2 =
0; hence the two optimal solution coincide as o — 0, which align with our previous proof.

E.3 NON-SYMPTOTIC DISTANCE BETWEEN GRADIENT FROM «-FLOW AND MEANFLOW

From Equation @), when v, ; = v; the gradient of o-Flow loss is:

21
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1134
1135
1136

3 _
::3; Vola,(0) = LE [a L. Vgue(zt,r,t) (ug(ze, 1y t) — (- v+ (1 — @) - ug- (25,1, 8)))] ,

1139 - [Vgue (zta T, t) ) (Ue (Zt, T, t) - 'Ut)]
1140 Lzt

o [1 —% Vi u(zi,m.) - (wo(z,1.1) — uo- (20,1, s>>] ,

1143 t

1144 = VoLrm(0) + . E [(1 —a)-Vgug(z,mt)- l/ WdT}
1145 nE > Js

1146

1147

1148

1149 And the gradient of MeanFlow loss could be written as:

1150

1151

1152

1153

1154 Volur(0) =E,;, 2, |:V:0ru9(Zt7 rt) - (ug(zt, rt) — v+ (t— T)W)]
1155

dug- t
1156  Volum(0)+ E [(t—r)-vgug(zt,r,t)- ug- (2,7, )]

(47)

(48)

1157 t,r,2 dt
1158
1159
1160
1161
1162
1163
1164
1165 IVoLa(0) — VoLur(0)],

1166 .
1 _
E [Vgue(zt,r,t)a/ ((1 — ) dug— (2,7, 7)  dug- Zt,r t) ) }

e = e dt

1168
1169 . 1 ["||dug-(2zr,7,7) dug- (zt,rt
1170 <[ Vouotz. 1), t}j:zt |:Oé~/s ‘ dt dt
1171 1t

1172 SCl.t}"Ez |:O¢/ Lg(t—T)dT-f—a(t—T)CQ]

1173 o . :

1174 =« - ClEtr|: Lg(t—’r) +02(t—’l”):|

1175

1176
1177
1178
1179
1180
1181
1182
1183
1184

Thus, the (5 distance between VgL, (0) and Vg Lyr(0) is

dug- zﬁr dug-(2r,7,7)

d’T:|
2

(49)

Because t,7 € [0,1], E [$L2(t — r)* 4+ Ca(t — r)] will be a finite constant no matter the choice
of distribution of 7 and ¢, . Thus the upper bound of [|VgL,(0) — Vo Lur(0)||, is linearly depend
on «, and will vanish to 0 when o« — 0, align with our Theoremthat VoLlur(0) =VoLo—0(0).

1185 E 4 VARIANCE OF a-FLOW GRADIENT
1186

1187

Let X £ V) ug(z4,7,t) - (ug(2s,7,t) —v;) and Y & V) ug(z4,7,1) - éfst Wd
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\Y [v9£n(9)]
:t’ya [a™ Vo ug(zy,rt) - (ug(ze,r,t) — (- vy + (1 — @) - ug- (25,7, s,
=V

X+ (-],

<

T+ 0 /7).
V'V [VoLreu(8)] + (1 —a)\/m>21

VVI[VeLrru(0)] + (1 — &>'$ ty-:j:z[,

IN

. t . -
178 oz, 1)|2 l/ dug-(2r,7,7)

«

IN

IN
e Y N

VIVoLrm(0)] + (1 —a)-Cy - Cq- | Ey {(f - 7')2}> )

Thus, the upper bound of the variance of Vg Lyr(0) increases as v approaches 0.

F ANALYSIS DETAILS

The detailed implementation of DiT-B/2 is provided in Table[3] where we adopt the DiT-B/2-non-cfg
setting. For loss evaluation, at each checkpoint we use a batch size of 128 and run 1000 iterations to
compute the mean loss along with its 5% and 95% percentiles, which are reported in the figure. To
measure the cosine similarity between different losses, we calculate V Ltgy, VLrw, and V Lz on
the same batch and then compute their pairwise cosine similarities, which is defined as:

a-b
lall [[B]]’

given two vectors a,b. This procedure is also repeated over 1000 iterations to obtain the mean
similarity and its 5% and 95% percentiles, as shown in the figure.

cosine similarity (a,b) =

G IMPLEMENTATION DETAILS

Implementation details are shown in Table 3]

H ADDITIONAL EXPERIMENTS

H.1 ABLATION STUDY OVER BATCH SIZE

Training diffusion/flow-based models can be challenging due to the high variance of their gradients.
Past research [Zhou et al.| (2025); [Karras et al.[ (2022; |2024) often used large batch sizes (1024 or
even 4096) to mitigate this issue. In this section, we fine-tune a MeanFlow-XL/2 model (with
implementation details in Table[3)) for an additional 60 epochs using a large batch size.

As shown in Table[d] a batch size of 512 achieved the best 1-NFE FID of 3.05 and FDD of 164.3. A
batch size of 1024, however, yielded the best FDD of 93.4. Overall, a batch size of 1024 performed
well across all metrics, so we designate this configuration as MeanFlow-XL/2+. The same setting is
applied to fine-tune the MeanFlow-XL/2 model, leading to the MeanFlow-XL/2+ results in Table|[T]
Our proposed a-Flow-XL/2+ model outperforms MeanFlow-XL/2+ in several key metrics: 1-NFE
FID (2.58 vs. 3.06), 1-NFE FDD (148.4 vs. 165.7) and 2-NFE FID (2.15 vs. 2.16), only worse
in 2-NFE FDD (96.8 vs. 93.4). These results demonstrate the overall effectiveness of our a-Flow
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Table 3: Configurations on ImageNet 256 x256. B/2-non-cfg is our ablation and analysis model in
the main text.

Configs DiT-B/2-non-cfg DiT-B/2  DiT-XL/2 DiT-XL/2+
Network Architectures

Params (M) 131 131 676 676
FLOPs (G) 23.1 23.1 119.0 119.0
Depth 12 12 28 28
Hidden dim 768 768 1152 1152
Heads 12 12 16 16
Patch size 2x2 2x2 2x2 2x2
Training hyperparameters

Training steps 400K 1.2M 1.2M 1.2M
Batch size for training 256 256 256 256
Fine-tuning steps - - - 75K
Batch size for fine-tuning - - - 1024
Dropout 0.0

Optimizer Adam Kingma & Ba (2014)

Ir schedule constant

Ir 0.0001

Adam (61,52) (09,095)

Weight decay 0.0

EMA half-life 6931

Gradient clipping norm 16

Autoencoder used sd-vae-ft-ema

a-Flow hyperparameters

Ratioof r = ¢ Table(b) 25% 50% 50%
(r,t) sampler logitnorm(-0.4, 1.0)

Vst Table|5|(a) vy vy vy
Whether to use EMA for ug- Table[5|(a) No No No
Adaptive weight Table/5|(b) w=a/(||Al3+¢)
Schedule of o

y 25 25 25

ks 0 600K 600K
ke TableZ](b) 1.2M M M
n Table[|c) 5x107° 5x107% 5x107°
CFG training

w - 1.0 0.2 0.2
K - 1.0 0.92 0.92
CFG triggered if ¢ is in - [0.0,1.0] [0.0,0.75] [0.0,0.75]
Whether use EMA for CFG - No No No
2-NFE Sampling

Method ODE ODE consistency consistency
Intermediate timestep 0.5 0.5 0.55 0.5

method. Notably, the results in Table[dare obtained using labels sampled from the ImageNet dataset
distribution, whereas the results in Table [T] use randomly generated labels. In general, sampling
labels from the ImageNet distribution leads to lower FID scores compared to using random labels.

H.2 ABLATION STUDY OVER a-FLOW DESIGN SPACE

This section contains an ablation study on a-Flow, specifically for & € (0,1). We use a DiT-
B/2-non-cfg model (see Table [3)) that is pre-trained on flow matching for 200k iterations and then
fine-tuned on a-Flow for another 200k iterations. Across all experiments, o remains a constant, and
the ratio of r = ¢ is 25 %.
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NFE 1 NFE 2

_ Batch Size
Algorithm 3 a-Flow: Sampling FID FDD FID FDD
$1=tl>t2> ... > tN =0 ssequence of 256 3.13 167.2 2.31 97.1
y e e 512 3.05 164.3 2.21 952
for n in range(N): 1024 3.06 165.7 2.16 93.4
i 2048 3.29 169.6 2.10 96.6
e A 4096 3.13 168.9 2.16 95.1
z = z + tm * randn_like (x)
L« fa(s, rtm, t—cny  Table 4: Ablation study over the fine-tuning batch
size using the data distribution over class labels.
Vst Ug— FID FDD Loss weight FID FDD
Ug- EMA 1881 1761.6 w=1 o 592 9646
ug-  Non-EMA 3190  4009.9 w=1/([|Al5+¢)" 550 9185
v EMA 2028 18323 w=1/(]|A]]3 +¢ 522 8836
vt Non-EMA  59.2  964.6 w=a/ (||l +¢) 497 8452
(a) Reformulate the training objective. (b) Adaptive loss.
o FID FDD Method FID FDD
- Shortcut Model 59.8 1017.3
10 49.7 8452 & = v(z, t|@) 502 964.6
SRS 462 860.8 + Adaptive loss 497 8452
2% 10 . 503 833.0 +a = 0.005 45.6 8578
1x10™ 572 863.7 MeanFlow 433 822.3
(c) Consistency step ratio. (d) Overall ablation study.

Table 5: Ablation study over a-Flow.

Training objective. Here, we set o = 107 2. Table a) shows that the model only converge when
v,,; was set to vy and without using EMA for ug-. This is a key difference from Shortcut Models
Frans et al.| (2025), which set v5 ; = ug-. We suspect their objective only works when « is larger
(e.g., 0.5).

Adaptive loss. |Geng et al.| (2025a) uses an adaptive weight: w = 1/ (||A[]3 + ¢) = 1/ (Lur + ).
From Equation (12)), we could derive lim,_,0 £, = aLyr. When « is close 0, we approximate
Lur as Lo /a. This gives us a new adaptive weight, w = 1/(L,/a+c¢) ~ a/ (Lo +c) =
o/ (||Al|3 + ¢) as both ¢ and « is very small. As shown in Table [5(b), this new weight performs
better empirically, especially compared to the original MeanFlow adaptive weight.

Consistency step ratio. Ablating the av in Table (c) reveals that « = 5 x 1072 to be the optimal
consistency step ratio. This value was then used as the clamping value for our schedule.

Table[5]d) shows that by combining these improvements, our discrete o-Flow approach significantly
reduces the performance gap between Shortcut models and the MeanFlow model.

H.3 OPTIMAL RATIO OF r = t UNDER DIFFERENT NFE

In this subsection, we extend the experiment results in Table ] (b) to NFE 5. As shown in Table[G]
the optimal ratio of r = ¢ required to achieve the best generation quality for NFE 5 is also 75%.
We hypothesize this is because Flow Matching inherently possesses a degree of few-step generation
capability. Therefore, when mixing the training of standard Flow Matching and a-Flow, varying the
ratio r = ¢ introduces a trade-off between single-step and few-step generation.
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Model NFE 1 NFE 2 NFE 5
% r =t Schedule FID FDD FID FDD FID FDD
Constantg.o 46.0 879.6 44.3 867.7 44.0 843.8

0% Sigmoidyy o0k 404 822.5 38.9 811.8 38.2 779.0
5sq, Comstantoo 444 844.1 42.1 8363 41.3 817.8
°  Sigmoidgy 0k 400 785.4 37.1 782.9 36.9 770.0
soq, Comstantoo 439 844.1 42.1 836.3 38.4 7833
Sigmoidyy 400 402 7810 37.1 775.0 35.5 743.5

15q, Comstantoo  43.1 819.2 38.5 787.6 36.0 752.1

Sigmoidyy_, o0 422 810.5 36.2 754.7 33.7 716.1

Table 6: Optimal %t = r under different NFE.

NEFE 1 NFE 2
FID FDD FID FDD

FMok— 200k + MeanFlowagok— 400K 42.3 798.1 37.6 772.4
TFMok—s 200K + MeanFlowogok 400k 42.3 821.8 37.2 780.2
Sigmoidyy, 00k 40.2 7810 37.1 775.0

REPA()K_>40()K +MeanFIOW400K_>600K 32.0 667.4 25.5 594.3
REPAoK 400K + SingidALOOK—wOOK 30.7 657.1 25.3 601.5

Model

Table 7: Finetuning from pretrained flow models.

H.4 FINETUNING FROM PRETRAINED FLOW MODELS

In this subsection, we study the performance of a-Flow by finetuning from pretrained flow mod-
els. Specifically, We have conducted experiments comparing «-Flow with standard MeanFlow fine-
tuning when starting from pre-trained Flow Matching (FM), Trajectory Flow Matching (TFM), and
FM + Representation Alignment [Yu et al| (REPA) models. We use DiT-B/2-non-cfg configs
in Table [3] for backbone models. Both FM, TFM and FM + REPA are pretrained by ourselves. Ex-
periment results are shown in Table[7} A specific configuration for a-Flow deserves mention: for the
experiment labeled REPAok 400k + Sigmoid,yx_ ¢o0x» WE adjusted the initial o parameter. Since
the pre-trained model was provided at the 400K iterations, we set the initial value of « to 0.5 instead
of 1.0 at the beginning of the a-Flow fine-tuning phase.

Under a direct epoch-to-epoch comparison, starting from the same pre-trained model, a-Flow con-
sistently outperforms MeanFlow for one-step generation (NFE 1) and achieves comparable perfor-
mance for two-step generation. Specifically, under NFE 1, a-Flow (FID 40.2, FDD 781.0) demon-
strates significant gains: it surpasses the FM + MeanFlow baseline by 2.1 FID and 17.1 FDD, and
it surpasses the TFM + MeanFlow baseline by 2.1 FID and 40.8 FDD. Furthermore, when initial-
ized with the same FM+ REPA model, a-Flow (FID 30.7, FDD 657.1) still outperforms MeanFlow
by 1.3 FID and 10.3 FDD in one-step generation. Since the a-Flow method inherently consists of
three sequential stages: TFM pre-training, a-Flow annealing, and MeanFlow fine-tuning, these re-
sults directly demonstrate the effectiveness of the a-Flow annealing stage. This stage is particularly
beneficial for improving the quality of one-step sampling.

H.5 DISTILLATION

In this subsection, we conduct the distillation experiment. Specifically, we distilled the a-Flow
model (using the DiT-B/2 architecture) with a DiT-B/2-REPA teacher model, which we trained for
400K iterations.

The experimental results, summarized in Table 8] clearly demonstrate that distillation improves the
performance of «-Flow for both NFE 1 and NFE 2 settings. The distilled a-Flow model, using
the Sigmoidyyk_,gox schedule (the first line in Table above), outperformed the a-Flow trained
from scratch with the Sigmoid,y_, 00k Schedule (the last line of the Tab1e|z| (a)). For NFE 1, the
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NFE 1 NFE 2
FID FDD FID FDD

Sigmoidjk_,100x  36.6 756.9 33.2 701.3
Sigmoid;ok_,y50x 37-1 749.2 33.4 702.9
Sigmoid, gk _,000x 37-8 757.5 33.5 704.7
Sigmoid; ok 050k 360.7 743.2 34.1 706.9
Sigmoidgk _, 400k  360.9 738.9 33.6 704.3

Schedule

Table 8: Distillation of a-Flow-B/2.

NFE 1 NFE 2
FID FDD FVD FID FDD FVD

MeanFlow-B/2 53.2 1031.9 619.5 49.5 995.3 580.8
a-Flow-B/2 50.7 1010.4 598.0 48.1 983.2 567.3

MeanFlow-B/2-cfg 32.3 779.0 298.1 26.6 719.8 249.6
a-Flow-B/2-cfg ~ 29.6 709.8 276.2 24.9 657.4 217.3

Method

Table 9: Kinetics-700 17 x 2562 experiments.

distilled model achieved improvements of 3.4 (FID) and 28.5 (FDD). For NFE 2, the distilled model
showed improvements of 3.9 (FID) and 81.6 (FDD).

It is important to note that the optimal distillation schedule shifted to Sigmoidgy_, ok This change
is expected, as the teacher model (DiT-B/2-REPA) was already pretrained. This pretrained knowl-
edge allows the distillation process to reducing the initial @ = 1 training stage.

H.6 EXPERIMENTS ON KINETICS-700 17 x 2562

In this subsection, we demonstrate the generalization capabilities of a-Flow. We apply the frame-
work to a higher resolution and different modality: video generation. Specifically, we choose the
Kinetics-700 dataset[Carreira et al] (2019), where the video dimension is 256 x 256 x 17 (resolution
256 x 256 with 17 frames). We employed the DiT-B/2 architecture and trained the model for 600K
iterations, both with and without CFG. For CFG training, we set the guidance scale w = 1.0 and the
classifier weight x = 0.7. In addition to the standard FID and FDD metrics, we used the Fréchet
Video Distance (FVD) [Unterthiner et al| (2019) to evaluate the quality of video generation, where a
lower value indicates better quality.

As shown in the Table P «-Flow consistently outperforms MeanFlow across all metrics and set-
tings. When training without CFG, a-Flow achieved improvements of 2.5 (NFE 1 FID), 21.5 (NFE
1 FDD), 21.5 (NFE 1 FVD), 1.4 (NFE 2 FID), 11.9 (NFE 2 FDD), and 13.5 (NFE 2 FVD); When
training with CFG: a-Flow achieved improvements of 2.7 (NFE 1 FID), 69.2 (NFE 1 FDD), 21.9
(NFE 1 FVD), 1.7 (NFE 2 FID), 62.4 (NFE 2 FDD), and 32.3 (NFE 2 FVD). These experimental re-
sults successfully demonstrate the effectiveness and robust generalization of the a-Flow framework
across more diverse datasets and modalities.

H.7 STABILITY ANALYSIS BETWEEN MEANFLOW AND a-FLOW

In this subsection, we analyze the training dynamics of MeanFlow and «-Flow by evaluating the
variance of the MeanFlow loss and the gradient norms throughout the training process. Experiment
results are shown in Figure[8] where the variance for each loss and gradient norm is estimated over
500 iterations.

As shown in Figure[8] the variance of the loss and the gradient norm for a-Flow are lower than those
for MeanFlow during the TFM pretraining and a-Flow annealing stages (to the left of the blue dot
line). This indicates a more stable training process for a-Flow in these early stages. This stability
aligns with the statement that a-Flow annealing effectively transitions the training objective from a
“high-bias, low-variance” state to the necessary “low-bias, high-variance” state.
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Figure 8: Stability comparison of a-Flow and MeanFlow. The green dotted line indicates the transi-
tion from TFM pretraining to a-Flow annealing, while the blue dotted line represents the subsequent
transition from a-Flow annealing to MeanFlow training.

NFE 1 NFE 2
FID FDD FID FDD

u-target guidance 25.1 645.1 9.5 392.7
CFG guidance  10.0 445.8 7.7 365.2

Guidance method

Table 10: Ablation of guidance methods.

Despite these early stability advantages, the a-Flow formulation ultimately trains the full MeanFlow
loss in its final stage (as @« — 1). Consequently, a-Flow cannot fully circumvent the inherent
instability introduced by the MeanFlow objective.

H.8 MORE GUIDANCE METHOD

Beyond standard Classifier-Free Guidance (CFG) training, we explored an alternative guidance
method called u-target guidance. This method is based on optimizing the following loss function:

2 (50)

Lutgt(a) - t’TEhCHUO(ZL: r, t‘C) - (1 + wutgt) : U/taget(zh T, t) - wutgt : ’l,l,g(ZL, T, t|®)|

where wy, gt is the guidance strength. The specific definition of the target vector, utaget(zt, r,t),
depends on the underlying loss formulation being used:

dug— (2¢,m,t)
dt

* For a-Flow 1088, Uyaget (2¢,7,1) == (- U5 + (1 — @) - ug- (25,7, 9)).

* For MeanFlow 10ss, Utaget (24,7, 1) = vy — (t — 1)

The fundamental difference between u-target guidance and CFG training lies in the unconditional
prediction component. The u-target guidance uses ug(z,r,t|&) for the unconditional prediction
conditioned, instead of unconditional prediction ug(z, ¢, t|&) employed in CFG training.

We compared u-target guidance with CFG guidance using MeanFlow-B/2 architecture, training on
ImageNet-1K 2562 for 400K iterations. We set Wy,gt = 2.9. Experiment results are shown in
Table[T0} The u-target guidance performs significantly worse than CFG guidance when using NFE
1 and is still slightly worse even at NFE 2. Thus in the main paper we use the CFG guidance.

H.9 DISCUSSION OF THE GRADIENT CONFLICT

In this subsection, we discuss the gradient conflict between Vg Ly and Vg Lrc in Figure Bal In
general, for the minimizer 2* of some arbitrary, regular function f(z) = g(z) + h(x), one can
trivially show the relation V,g(2*) = —V h(2*) from the necessary condition V, f(z*) = 0.

However, our empirical analysis in Figure [3a] shows this gradient relationship from the early start
of the optimization process, where the gradients of Lrpy and Lr¢ are already strongly negatively
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correlated (specifically, < —0.9). Crucially, this correlation becomes weaker (around —0.7) as
training progresses.

This behavior is opposite to what would be expected if the negative correlation simply resulted
from convergence to a stationary point. Instead, the decreasing correlation indicates that the two
loss components exert conflicting optimization signals early in training, and gradually become more
aligned as the model parameters adapt.

This suggests that the observed gradient dissimilarity reflects a different underlying mechanism than
the trivial relation implied by V., f(2*) = 0. This mechanism could be better explained by how
far apart the corresponding minimizers arg min g(x) and arg min h(z) are. This evolution likely
reflects the interaction between two loss components whose minima are initially far apart: early in
training, their gradients point toward distinct optima, leading to strong opposition, whereas as the
model parameters evolve and the shared representation (and with the optimizer’s preconditioning
reweighting the directions) begins to satisfy both objectives, the corresponding descent directions
become partially aligned.

I LLM USAGE

As requested by the ICLR 2026 policyﬂ we disclose the usage of Large Language Models in this
section. LLMs were primarily used in two capacities:

* Coding assistance for experiments. LLMs provided code auto-completion functionality to
ease the process of implementing and analyzing the experiments.

* Writing assistance for paper writing. We used LLMs to assist with grammar and phrasing
validation while working on the submission.

J  RANDOM VS BALANCED CLASSES FOR FID COMPUTATION

We treat EDM series (Karras et al. [2022; [2024) as the standard in FID (Heusel et al [2017) eval-

uations, which use a randomly sampled class label (from 0 to 999) for each sample in constructing
50,000 synthetic examples with the model. We found a curious way to decrease the FID values
by up to 10% by using “balanced” class sampling: instead of using 50,000 independently sampled
random classes, one can generate 50 samples for each of 1000 classes. This greatly improves FID
results, but not FDD (i.e., Fréchet Distance in the DINOv2 (Oquab et al., [2023) feature space) or
FCD (Kynk#énniemi et al} [2022) (i.e., Fréchet Distance in the CLIP-L-based (Radford et al, 2021))
feature space).

Since it is not a standard practice in the community, we only report it separately from the random
class sampling results and with the appropriate notice. But we emphasize that it might be a more
reasonable way to evaluate FID since it reduces the variance (we are less likely to sample an unlucky
set of classes). We provide the results for it in Table [T}

NFE 1 NFE 2
FID FDD FCD FID FDD FCD

MeanFlow-XL/2* Random U[1..1000] 676M 240 3.47 185.8 3.39 2.46 108.7 2.40
a-Flow-XL/2 (ours) Random U[1..1000] 676M 240 2.95 164.6 3.14 2.32 105.7 2.42
a-Flow-XL/2+ (ours) Random U[1..1000] 676M 240+60 2.58 148.4 3.07 2.15 96.8 2.31

Method Class sampling ~ Params Epochs

MeanFlow-XL/2* Balanced 676M 240 3.33 182.8 3.34 2.26 106.1 2.36
a-Flow-XL/2 (ours) Balanced 676M 240 2.81 162.4 3.10 2.16 103.2 2.37
a-Flow-XL/2+ (ours) Balanced 676M 240+60 2.44 147.2 3.04 1.95 94.6 2.30

Table 11: Balanced vs random class sampling for FID, FDD and FCD.

*https://iclr.cc/Conferences/2026/AuthorGuide
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It is curious to observe that while it greatly improves FID results, FDD and FCD are barely affected.
We believe that this constitutes one more reason for the community to switch from FID to more
robust metrics which correlate better with human perception, like FDD and FCD.
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K ADDITIONAL EXPLORATION OF THE MEANFLOW LOSS
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Figure 9: Average cosine similarities between the gradients of different losses (Lreu, Lew, Let, s Lur)
for DiT-B/2 MeanFlow model trained with 0% and 75% of flow matching.

31




Under review as a conference paper at ICLR 2026

ajFlow-DiT-XL/Z MeanFlow—DiT XL/2
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-DiT-XL/2

ajFlow-DiT-XL/Z MeanFlow

a-Flow-DiT—XL/Z +

Figure 11: Uncurated samples (seeds 1-16) for Class 15 (robin) for NFE=2.
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Figure 12: Uncurated samples (seeds 1-16) for Class 29 (axolotl) for NFE=1.

/2
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Figure 13: Uncurated samples (seeds 1-16) for Class 29 (axolotl) for NFE=2.
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T b

Figure 15: Uncurated samples (seeds 1-16) for Class 33 (loggerhead) for NFE=2.
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Figure 18: Uncurated samples (seeds 1-16) for Class 89 (cockatoo) for NFE
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=2.

Figure 19: Uncurated samples (seeds 1-16) for Class 89 (cockatoo) for NFE
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a-Flow-DiT-XL/2 MeanFlow-DiT-X1L/2

a-Flow-DiT-XL/2 +

Figure 20: Uncurated samples (seeds 1-16) for Class 127 (white stork) for NFE=1.

a-Flow-DiT-XL/2 MeanFlow-DiT-XL/2

a-Flow-DiT-XL/2 +

Figure 21: Uncurated samples (seeds 1-16) for Class 127 (white stork) for NFE=2.
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Figure 23: Uncurated samples (seeds 1-16) for Class 279 (arctic fox) for NFE=2.
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Figure 27: Uncurated samples (seeds 1-16) for Class 975 (lakeside) for NFE=2.
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