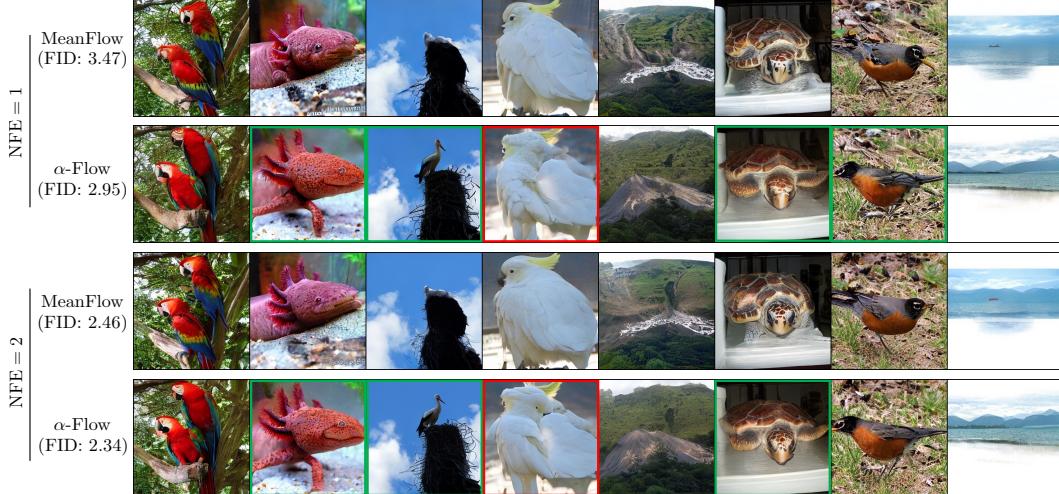


000 001 ALPHAFLOW: UNDERSTANDING AND IMPROVING 002 MEANFLOW MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review
007
008



025 Figure 1: *Uncurated* samples (seeds 1-8) from the DiT-XL/2 model for MeanFlow Geng et al.
026 (2025a) and α -Flow (our proposed method) produced with 1 (upper) and 2 (lower) sampling steps
027 for ImageNet-1K 256².

028 ABSTRACT

031 MeanFlow has recently emerged as a powerful framework for few-step generative
032 modeling trained from scratch, but its success is not yet fully understood.
033 In this work, we show that the MeanFlow objective naturally decomposes into
034 two parts: trajectory flow matching and trajectory consistency. Through gradi-
035 ent analysis, we find that these terms are strongly negatively correlated, causing
036 optimization conflict and slow convergence. Motivated by these insights, we in-
037 troduce α -Flow, a broad family of objectives that unifies trajectory flow match-
038 ing, Shortcut Model, and MeanFlow under one formulation. By adopting a cur-
039 riculum strategy that smoothly anneals from trajectory flow matching to Mean-
040 Flow, α -Flow disentangles the conflicting objectives, and achieves better conver-
041 gence. When trained from scratch on class-conditional ImageNet-1K 256×256
042 with vanilla DiT backbones, α -Flow consistently outperforms MeanFlow across
043 scales and settings. Our largest α -Flow-XL/2+ model achieves new state-of-the-
044 art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15
045 (2-NFE).

046 1 INTRODUCTION

049 Diffusion models (Sohl-Dickstein et al., 2015) have emerged as the leading paradigm for generative
050 modeling of visual data (Dhariwal & Nichol, 2021; Rombach et al., 2022; Brooks et al., 2024).
051 However, their widespread use is limited by slow inference, as generating high-fidelity samples
052 typically requires a large number of denoising steps. This computational bottleneck has spurred
053 extensive research into designing efficient diffusion-based generators that are able to operate in very
few steps while preserving high generation quality (Salimans & Ho, 2022; Sauer et al., 2024; Song

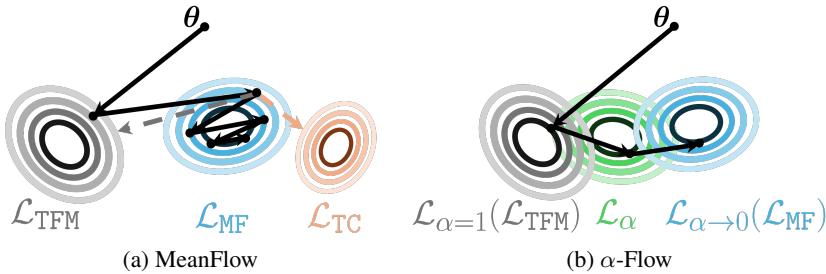


Figure 2: Diagrams of training dynamics between MeanFlow and α -Flow. (a) MeanFlow training exhibits a gradient conflict. (b) α -Flow resolves the conflict by first minimizing a trajectory flow matching loss, then following an annealing trajectory to approach the MeanFlow optimal solution.

et al., 2023; Song & Dhariwal, 2024; Lu & Song, 2025; Geng et al., 2025b; Frans et al., 2025; Geng et al., 2025a).

Early attempts reduce the inference time of diffusion models through distilling a pre-trained multi-step model into a few-step one (Salimans & Ho, 2022; Sauer et al., 2024). The subsequent development of consistency models (Song et al., 2023; Song & Dhariwal, 2024; Lu & Song, 2025) enabled training from scratch for few-step generative models. However, a significant performance gap still remains between existing few-step and multi-step diffusion models. The recently introduced MeanFlow framework (Geng et al., 2025a) enables more stable training and better classifier-free guidance (Ho & Salimans, 2022) integration, significantly bridging the gap between few-step and multi-step from-scratch trained diffusion models. Despite its practical success, there still lacks a clear understanding of why MeanFlow performs better, which hinders further improvements and the design of stronger few-step models.

In this work, we provide a deeper understanding of why MeanFlow works, revealing that its training objective can be decomposed into two components: trajectory flow matching and trajectory consistency. Our gradient analysis shows that these two components are strongly negatively correlated during training, leading to instability and slow convergence in joint optimization. We further demonstrate that the previous heuristic adoption of border-case flow matching supervision is crucial: it actually acts as a surrogate loss for trajectory flow matching and mitigates gradient conflict. However, over 75% of MeanFlow’s computation is spent on this border-case supervision, which is not its primary focus. This raises an open question: *can we design more efficient techniques to optimize MeanFlow objective, without such computational overhead?*

Motivated by these observations, we introduce α -Flow, a new broad family of objectives for few-step flow models. This framework unifies trajectory flow matching, Shortcut Models Frans et al. (2025), and MeanFlow under a single unified formulation. As visualized in Figure 2, by employing a curriculum learning strategy that smoothly transitions from trajectory flow matching to MeanFlow, α -Flow better disentangles the optimization of trajectory flow matching and trajectory consistency, reduces reliance on border-case flow matching supervision, and achieves better convergence.

By training vanilla DiT-(Peebles & Xie, 2023) models from scratch with α -Flow on class-conditional ImageNet-1K 256², we obtain consistently stronger performance across both small- and large-scale settings compared with MeanFlow, for both one-step and few-step generation. Our largest DiT-XL/2+ model establishes new state-of-the-art results among all from-scratch trained models with the vanilla DiT backbone and training pipeline, achieving FID scores of 2.58 (1-NFE) and 2.15 (2-NFE).

2 PRELIMINARIES

Diffusion models and flow matching. Diffusion model (Ho et al., 2020; Song & Ermon, 2019; Rombach et al., 2022) define a forward process that progressively adds noise to a data sample $\mathbf{x} \sim p_{\text{data}}(\mathbf{x})$ over a continuous timestep $t \in [0, 1]$. Specifically, given training data, the forward process perturbs \mathbf{x} into a noisy version $\mathbf{z}_t = \beta_t \mathbf{x} + \sigma_t \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, β_t and σ_t are pre-defined

108 scheduler parameters that depend on t , such that $\mathbf{z}_0 = \mathbf{x}$ and $\mathbf{z}_1 = \epsilon$. Flow matching (Liu et al.,
 109 2023; Lipman et al., 2023) is a deterministic alternative that defines the forward process as a straight-
 110 line path between the noise distribution and the data distribution, setting $\beta_t = 1 - t$ and $\sigma_t = t$. A
 111 neural network $\mathbf{v}_\theta(\mathbf{z}_t, t)$ is trained to model the ground-truth vector field $d\mathbf{z}_t/dt$ along this trajectory
 112 \mathbf{z}_t by minimizing the objective:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t, \mathbf{x}, \mathbf{z}_t} [\|\mathbf{v}_\theta(\mathbf{z}_t, t) - \mathbf{v}_t\|^2] \quad (1)$$

113 where $\mathbf{v}_t \triangleq \mathbf{v}(\mathbf{z}_t, t | \mathbf{x}) = d\mathbf{z}_t/dt|_{\mathbf{x}} = \epsilon - \mathbf{x}$. To generate a new sample, the probability flow
 114 ODE (PF-ODE) $d\mathbf{z}/dt = \mathbf{v}_\theta(\mathbf{z}_t, t)$ is solved from $t = 1$ to $t = 0$, starting with an initial value
 115 $\mathbf{z}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

116 One primary challenge of diffusion models is the slow sampling speed. To address this, several
 117 methods have been proposed to enable high-quality generation with significantly fewer steps.
 118

119 **Consistency model (CM).** (Song et al., 2023) enables one-step generation by training a neural
 120 network $\mathbf{f}_\theta(\mathbf{z}_t, t)$ to directly map the noisy input \mathbf{z}_t to clean samples \mathbf{x} . The core idea is to enforce
 121 a consistency property at any two nearby timesteps t and s , by minimizing the difference between
 122 the model's output. Depending on the $\Delta t := t - s$, the training objective can be categorized into:
 123

- 124 • *Discrete-time Consistency Training (CT)* (Geng et al., 2025b; Song et al., 2023; Song & Dhariwal,
 125 2024) minimizes the following discrete time CT loss $\mathcal{L}_{\text{CT}_d}$:

$$\mathcal{L}_{\text{CT}_d}(\theta) = \mathbb{E}_{t, s, \mathbf{z}_t} \left[\|\mathbf{f}_\theta(\mathbf{z}_t, t) - \mathbf{f}_{\theta^-}(\mathbf{z}_s, s)\|_2^2 \right], \quad (2)$$

126 where $0 \leq s < t \leq 1$, $\mathbf{z}_s = \mathbf{z}_t - \Delta t \cdot \mathbf{v}$ and $\mathbf{f}_{\theta^-} := \text{stopgrad}(\mathbf{f}_\theta)$. While smaller values
 127 of Δt reduce the discretization error and improve performance, they might also lead to training
 128 instability (Song et al., 2023; Geng et al., 2025b). This necessitates a carefully designed scheduler
 129 for Δt to ensure good performance and stability during training.

- 130 • *Continuous-time CT* (Lu & Song, 2025; Song et al., 2023) eliminates the discretization error by
 131 the continuous time CT loss $\mathcal{L}_{\text{CT}_c}$:

$$\mathcal{L}_{\text{CT}_c}(\theta) = 2\mathbb{E}_{t, \mathbf{z}_t} \left[\mathbf{f}_\theta^\top(\mathbf{z}_t, t) \frac{d\mathbf{f}_{\theta^-}(\mathbf{z}_t, t)}{dt} \right], \quad (3)$$

132 Song et al. (2023) theoretically show that $\nabla_\theta \mathcal{L}_{\text{CT}_c}(\theta) = \lim_{\Delta t \rightarrow 0} \nabla_\theta \mathcal{L}_{\text{CT}_d}(\theta) / \Delta t$. However, es-
 133 timating $\frac{d\mathbf{f}_{\theta^-}(\mathbf{z}_t, t)}{dt}$ relies on the Jacobian-vector product (JVP) operation, which causes potential
 134 issues of scalability and efficiency in modern deep learning frameworks (Wang et al., 2025b; Peng
 135 et al., 2025).

136 **Consistency trajectory model (CTM).** (Kim et al., 2024; Zhou et al., 2025; Frans et al., 2025;
 137 Geng et al., 2025a) generalize Consistency Models (CMs) by training a neural network $\mathbf{u}_\theta(\mathbf{z}_t, r, t)$
 138 to enforce consistency across a trajectory from t to r with $0 \leq r \leq t \leq 1$. This allows jumping from
 139 any $t \in (0, 1]$ to any $r < t$ during inference, enabling multi-step generation. To train CTM from
 140 scratch:

- 141 • *Shortcut model* (Frans et al., 2025) enforces consistency by ensuring that a single "shortcut" step
 142 from t to r is consistent with two consecutive shortcut steps of half the size. The training objective
 143 is:

$$\mathcal{L}_{\text{sc}}(\theta) = \mathbb{E}_{t, r, \mathbf{z}_t} \left[\|\mathbf{u}_\theta(\mathbf{z}_t, r, t) - \mathbf{u}_{\theta^-}(\mathbf{z}_t, s, t)/2 - \mathbf{u}_{\theta^-}(\mathbf{z}_s, r, s)/2\|_2^2 \right], \quad (4)$$

144 where $\mathbf{z}_s = \mathbf{z}_t - (t - s) \cdot \mathbf{u}_{\theta^-}(\mathbf{z}_t, s, t)$ and $s = (t + r)/2$.

- 145 • *MeanFlow* (Geng et al., 2025a) trains the model $\mathbf{u}_\theta(\mathbf{z}_t, r, t)$ to estimate the mean velocity
 146 $\frac{1}{t-r} \int_r^t \mathbf{v}(\mathbf{z}_\tau, \tau) d\tau$, with training objective given by:

$$\mathcal{L}_{\text{MF}}(\theta) = \mathbb{E}_{t, r, \mathbf{z}_t} \left[\left\| \mathbf{u}_\theta(\mathbf{z}_t, r, t) - \mathbf{v}_t + (t - r) \frac{d\mathbf{u}_{\theta^-}(\mathbf{z}_t, r, t)}{dt} \right\|_2^2 \right]. \quad (5)$$

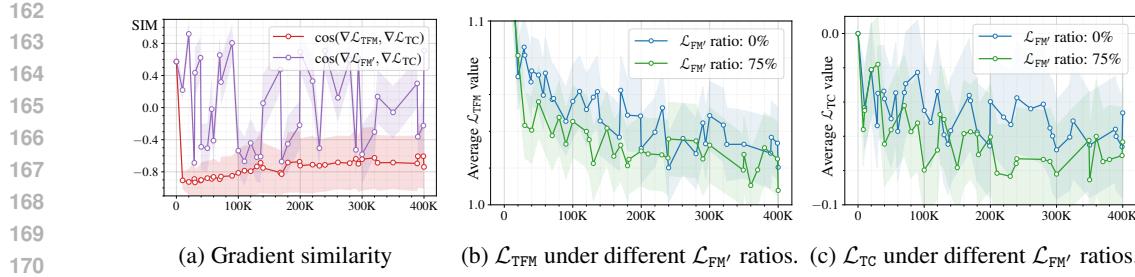


Figure 3: **MeanFlow training analysis.** (a) Shows the cosine similarity between the gradients of two loss pairs ($\nabla \mathcal{L}_{\text{TC}}$ vs. $\nabla \mathcal{L}_{\text{TFM}}$ and $\nabla \mathcal{L}_{\text{TC}}$ vs. $\nabla \mathcal{L}_{\text{FM}'}$) throughout training. (b) Evaluated \mathcal{L}_{TFM} when MeanFlow trained with 0% and 75% of $\mathcal{L}_{\text{FM}'}$. (c) Evaluated \mathcal{L}_{TC} when MeanFlow trained with 0% and 75% of $\mathcal{L}_{\text{FM}'}$.

In practice, MeanFlow significantly outperforms other one/few-step diffusion and flow models. Yet, there has been little analysis explaining why it works so effectively. To shed light on this, we analyze MeanFlow training in the next section.

3 ANALYZING MEANFLOW TRAINING

An intriguing aspect of MeanFlow is the noise distribution used during training: Geng et al. (2025a) empirically found that the best results are achieved when setting $r = t$ for 75% of the samples. This might look counter-intuitive, since we are interested in learning the average velocity on a $[r, t]$ interval to perform large trajectory leaps during inference, so why spending the majority of the training computation on fitting this border case that corresponds to vanilla flow matching supervision? In this section, we show that the MeanFlow loss on its own can be interpreted as velocity consistency training with extra flow matching supervision, and analyze the interaction of these two objectives.

3.1 UNDERSTANDING THE OBJECTIVE

Through algebraic manipulations, the original MeanFlow loss \mathcal{L}_{MF} in Eq. (5) can be rewritten into the following equivalent form (see Appendix D.1):

$$\mathcal{L}_{\text{MF}}(\theta) = \underbrace{\mathbb{E}_{t,r,z_t} [\|\mathbf{u}_\theta(z_t, r, t) - \mathbf{v}_t\|_2^2]}_{\text{Trajectory flow matching } \mathcal{L}_{\text{TFM}}} + \underbrace{\mathbb{E}_{t,r,z_t} \left[2(t-r) \cdot \mathbf{u}_\theta^\top(z_t, r, t) \frac{d\mathbf{u}_{\theta-}(z_t, r, t)}{dt} \right]}_{\text{Trajectory consistency } \mathcal{L}_{\text{TC}}} + C, \quad (6)$$

where C is a constant independent of θ . In this decomposition, the first term \mathcal{L}_{TFM} corresponds to a flow matching loss but with an additional modeling input parameter r , so we refer to it as *trajectory flow matching*. The second term \mathcal{L}_{TC} , denoted as *trajectory consistency* loss, acts as a $(t-r)$ -reweighted continuous consistency loss¹, but also without a boundary condition (Song et al., 2023). This decomposition highlights that the MeanFlow objective can be interpreted as a consistency (trajectory) model with extra flow matching supervision.

An interesting property of this decomposition is that \mathcal{L}_{TC} does not have any boundary condition. In comparison, Song et al. (2023) enforces such a condition for vanilla consistency models using a z_0 -prediction parameterization: without it, the model would quickly converge to a trivial solution (e.g., a constant output). In the MeanFlow case, this collapse does not occur, which suggests that \mathcal{L}_{TFM} implicitly provides the boundary condition for \mathcal{L}_{TC} . We believe that the absence of an explicit boundary condition makes \mathcal{L}_{TC} easier to optimize and gives it a much larger solution space.

Another important observation here is that trajectory flow matching involves random $r \leq t$, which differs from the $r = t$ case used during training by Geng et al. (2025a). To clarify this distinction, we directly compare trajectory flow matching (\mathcal{L}_{TFM}) with vanilla flow matching, which we denote

¹Similarly to the proof in Remark 10 of Song et al. (2023), one can show that this term is equivalent to minimizing the difference between $\mathbf{u}_\theta(z_t, r, t)$ and $\mathbf{u}_{\theta-}(z_{t-\Delta t}, r, t - \Delta t)$ as $\Delta t \rightarrow 0$.

216 as $\mathcal{L}_{\text{FM}'}$ when using the u -prediction parameterization:
 217

$$\mathcal{L}_{\text{TFM}} \triangleq \mathbb{E}_{t,r,\mathbf{z}_t} [\|\mathbf{u}_\theta(\mathbf{z}_t, r, t) - \mathbf{v}_t\|_2^2], \quad \mathcal{L}_{\text{FM}'} \triangleq \mathbb{E}_{t,r,\mathbf{z}_t|r=t} [\|\mathbf{u}_\theta(\mathbf{z}_t, r, t) - \mathbf{v}_t\|_2^2] \quad (7)$$

221 Here, \mathcal{L}_{TFM} arises from the decomposition of the MeanFlow loss, while $\mathcal{L}_{\text{FM}'}$ corresponds to the
 222 objective used in Geng et al. (2025a) for joint training. From this formulation, several observations
 223 follow. First, $\mathcal{L}_{\text{FM}'}$ is a “part” of \mathcal{L}_{TFM} , active only on the $p(t, r | r = t)$ slice of the joint distribution
 224 $p(t, r)$. Second, if the network is independent of r , then marginalizing out r yields $\mathcal{L}_{\text{TFM}} \equiv \mathcal{L}_{\text{FM}'}$,
 225 reducing the objective to vanilla flow matching.

227 3.2 EMPIRICAL ANALYSIS

230 With the decomposition in Equation (6), how does $\mathcal{L}_{\text{FM}'}$ interact with the two decomposed terms?
 231 In this section, we analyze the gradients of these losses and examine how extra $\mathcal{L}_{\text{FM}'}$ minimization
 232 affects \mathcal{L}_{TFM} and \mathcal{L}_{TC} individually. We conduct detailed experiments by training MeanFlow with the
 233 DiT-B/2 (Peebles & Xie, 2023) architecture on ImageNet-1K 256² (Deng et al., 2009) for 400K
 234 steps. Additional experiment settings are in Appendix F.

235 We first analyze the training dynamics by measuring the cosine similarity between the gradients
 236 $\nabla \mathcal{L}_{\text{TFM}}$ and $\nabla \mathcal{L}_{\text{TC}}$ during training. As shown in Figure 3a, these two gradients are strongly negatively
 237 correlated, with a similarity typically below -0.4 . This reveals that optimizing \mathcal{L}_{TFM} and \mathcal{L}_{TC} jointly
 238 is inherently difficult. We hypothesize this stems from the fact that \mathcal{L}_{TC} , without any boundary
 239 condition, has a very large optimal solution manifold, compared to \mathcal{L}_{TFM} whose manifold is very
 240 narrow. Thus the optimization process is getting pulled towards the \mathcal{L}_{TC} manifold, distracting from
 241 reaching a narrow intersection.

242 Given this gradient conflict, the question arises: why does joint training with $\mathcal{L}_{\text{FM}'}$ help? We identify
 243 two key reasons: First, as a subset of \mathcal{L}_{TFM} , $\mathcal{L}_{\text{FM}'}$ directly reduces \mathcal{L}_{TFM} . This is empirically
 244 confirmed in Figure 3b, where allocating 75% of the training budget to $\mathcal{L}_{\text{FM}'}$ significantly lowers
 245 the overall \mathcal{L}_{TFM} compared to pure MeanFlow training. Second, $\mathcal{L}_{\text{FM}'}$ applies only at $r = t$, where
 246 $\mathcal{L}_{\text{TC}} = 0$. Consequently, the gradient $\nabla \mathcal{L}_{\text{FM}'}$ interferes less with $\nabla \mathcal{L}_{\text{TC}}$ than the $\nabla \mathcal{L}_{\text{TFM}}$ gradient.
 247 This is demonstrated in Figure 3a, which shows that $\cos(\nabla \mathcal{L}_{\text{FM}'}, \nabla \mathcal{L}_{\text{TC}})$ is consistently higher than
 248 $\cos(\nabla \mathcal{L}_{\text{TFM}}, \nabla \mathcal{L}_{\text{TC}})$, that is strongly negative for more than 95% of the training. Surprisingly, \mathcal{L}_{TC}
 249 component doesn’t seem to be affected and can even be lower when allocating 75% of the training
 250 budget to $\mathcal{L}_{\text{FM}'}$, as shown in Figure 3c. Which again hints at the fact that \mathcal{L}_{TC} is relatively easy to
 251 optimize, even near the \mathcal{L}_{TFM} optimum.

252 In conclusion, our analysis reveals three important observations:

- 254 ▷ \mathcal{L}_{MF} can be decomposed into trajectory flow matching \mathcal{L}_{TFM} and trajectory consistency \mathcal{L}_{TC}
 255 objectives, whose gradients are strongly negatively correlated during training.
- 256 ▷ \mathcal{L}_{TC} does not have a necessary boundary condition on its own, implying that \mathcal{L}_{TFM} serves
 257 as an implicit boundary condition for it.
- 258 ▷ $\mathcal{L}_{\text{FM}'}$ acts as a surrogate loss for \mathcal{L}_{TFM} , but with significantly less gradient conflict with the
 259 Trajectory consistency loss \mathcal{L}_{TC} .

262 4 α -FLOW MODELS

265 As we showed in the previous section, the \mathcal{L}_{TFM} loss is difficult to optimize jointly with the \mathcal{L}_{TC} .
 266 While the introduction of the $\mathcal{L}_{\text{FM}'}$ loss serves as an effective surrogate for optimizing \mathcal{L}_{TFM} , this
 267 approach dedicates a significant portion of training to an objective that is not of our primary interest.
 268 This raises a key question: *Can we more efficiently optimize \mathcal{L}_{TFM} when optimizing \mathcal{L}_{MF} without this
 269 computational overhead?* To answer this, we introduce our α -Flow loss, a new family of training
 objectives for flow-based models.

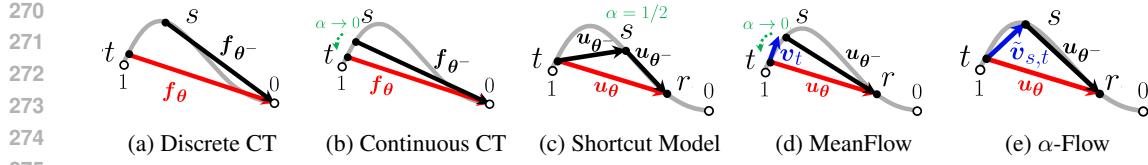


Figure 4: Comparison of training trajectories for various few-step diffusion and flow-based models.

4.1 α -FLOW: UNIFYING ONE, FEW, AND MANY-STEP FLOW-BASED MODELS**Definition 1.** The α -Flow loss \mathcal{L}_α is defined as:

$$\mathcal{L}_\alpha(\theta) \triangleq \mathbb{E}_{t,r,z_t} \left[\alpha^{-1} \cdot \|u_\theta(z_t, r, t) - (\alpha \cdot \tilde{v}_{s,t} + (1 - \alpha) \cdot u_{\theta^-}(z_s, r, s))\|_2^2 \right], \quad (8)$$

where $t, r \in [0, 1]$ is the start and end timestep, s is the intermediate timestep: $s = \alpha \cdot r + (1 - \alpha) \cdot t$, $\alpha \in (0, 1]$ is the consistency step ratio, and $z_s = z_t + (t - s) \cdot \tilde{v}_{s,t}$ is the trajectory value at this timestep s . Here, $\tilde{v}_{s,t}$ is the “shift velocity” used to estimate the intermediate variable z_s from z_t .

The α -Flow loss is visualized in Figure 4e. Intuitively, it enforces trajectory consistency between t and r by introducing an additional s , which is an interpolation between t, r with ratio α . More importantly, this definition generalizes previously introduced training objectives such as trajectory flow matching, Shortcut Model training, and MeanFlow training:

Theorem 1. The α -Flow loss unifies flow matching, Shortcut Models, and MeanFlow:

- ▷ $\mathcal{L}_{\text{TFM}}(\theta) = \mathcal{L}_{\alpha=1}(\theta)$ with $\tilde{v}_{s,t} = v_t$.
- ▷ $\mathcal{L}_{\text{SC}}(\theta) = \frac{1}{2}\mathcal{L}_{\alpha=1/2}(\theta)$ with $\tilde{v}_{s,t} = u_{\theta^-}(z_t, s, t)$.
- ▷ $\nabla_\theta \mathcal{L}_{\text{MF}}(\theta) = \nabla_\theta \mathcal{L}_{\alpha \rightarrow 0}(\theta)$ with $\tilde{v}_{s,t} = v_t$.

Proof sketch: The connection between \mathcal{L}_α and \mathcal{L}_{TFM} and \mathcal{L}_{SC} are straight forward. For the non-trivial relationship showing the convergence from $\nabla_\theta \mathcal{L}_\alpha(\theta)$ to $\nabla_\theta \mathcal{L}_{\text{MF}}(\theta)$, we leverage a first-order Taylor expansion on the term $u_{\theta^-}(z_s, r, s)$ around $s = t$. This yields:

$$u_{\theta^-}(z_s, r, s) = u_{\theta^-}(z_t, r, t) - \frac{du_{\theta^-}(z_t, r, t)}{dt}(t - r)\alpha + \mathcal{O}(\alpha^2),$$

Substituting this expansion into the Equation (8) and taking the limit as $\alpha \rightarrow 0$ causes the higher-order terms $\mathcal{O}(\alpha^2)$ to vanish and recover $\nabla_\theta \mathcal{L}_{\text{MF}}(\theta)$. The detailed proof is deferred to Appendix D.2. Furthermore, under Assumption 2, we prove the upper bound of the asymptotic distance between $\nabla_\theta \mathcal{L}_\alpha(\theta)$ and $\nabla_\theta \mathcal{L}_{\text{MF}}(\theta)$ in Appendix E.3. This bound is linearly related to α and converges to 0 as $\alpha \rightarrow 0$, which aligns with the result of Theorem 1.

Moreover, if one considers a z_0 -parametrized network $u_\theta(z_t, 0, t) = (z_t - f_\theta(z_t, t)) / t = \hat{z}_0$, \mathcal{L}_α incorporates discrete and continuous consistency training as well. Specifically, with $\tilde{v}_{s,t} = v_t$ and $r \equiv 0$:

- ▷ $\mathcal{L}_{\text{CT}_a}(\theta) = \mathcal{L}_{\alpha=\delta}(\theta)$ for $\delta \in (0, t)$.
- ▷ $\nabla_\theta \mathcal{L}_{\text{CT}_c}(\theta) = \nabla_\theta \mathcal{L}_{\alpha \rightarrow 0}(\theta)$.

This theorem reveals that the ratio α is the key hyperparameter that unifies seemingly different methods, which controls the relative position of the intermediate timestep s within the (r, t) interval. By annealing α from 1 to 0, we obtain a family of models in the interpolation between trajectory flow matching and MeanFlow. Notably, discrete CT is a special case of α -Flow with $r \equiv 0$. Unlike discrete CT, α -Flow requires no complex timestep partitioning: once t and r are sampled, s is immediately determined with a fixed α .

4.2 α -FLOW MODELS

The α -Flow loss enables a curriculum learning strategy that progressively transitions from the trajectory flow matching to MeanFlow objective. As visualize in Figure 2, this approach better disentangles the optimization of the trajectory flow matching and consistency losses, could potentially

324 reduce reliance on the flow matching objective, and leads to better convergence. The detailed curriculum learning can be summarized into three phases:

- 327 • **Trajectory flow matching pretraining** ($\alpha = 1$). To speed-up convergence toward narrow \mathcal{L}_{TFM}
 328 manifold, we prioritize optimizing trajectory flow matching in the early training phase. Additionally,
 329 as a low-variance objective, trajectory flow matching quickly establishes a reliable noise-to-
 330 data mapping, providing a good initialization for subsequent few-step refinement. Notably, this
 331 pretraining strategy is aligned with previous diffusion model pretraining strategy applied on
 332 consistency model (Geng et al., 2025b), while we start from different motivations and generalize it
 333 into the α -Flow framework.
- 334 • **α -Flow transition** ($\alpha \in (0, 1)$). Once the model establishes a solid foundation through initial
 335 training, we transition from the \mathcal{L}_{TFM} to the \mathcal{L}_{MF} objective. We accomplish this with a curricu-
 336 lum learning approach, where we progressively decrease the α from 1 to 0. This gradual shift is
 337 inspired by discrete CT (Song et al., 2023) methods and serves two crucial functions: (a) we the-
 338oretically demonstrate that the optimal solution of α -Flow smoothly transitions from the optimal
 339 solution of \mathcal{L}_{TFM} to the optimal solution of \mathcal{L}_{MF} as α goes from 1 to 0 (proved in Appendix E.2).
 340 (b) the curriculum learning effectively transitions the training objective from a "high-bias, low-
 341 variance" state to the necessary "low-bias, high-variance" state. This is supported by the theore-
 342 tical proof showing the upper bound on the gradient variance for α -Flow increases as α decreases
 343 (proved in Section Appendix E.4). This strategy yields significantly improved convergence com-
 344 pared to directly optimizing the inherent high-variance MeanFlow objective.
- 345 • **MeanFlow fine-tuning** ($\alpha \rightarrow 0$). In the final stage, we focus entirely on the MeanFlow training
 346 objective. Unlike the original paper, our improved early-stage optimization of trajectory flow
 347 matching significantly reduces the need for the flow matching loss (as shown in Table 2 (b)) and
 348 achieves significantly better few-step generation quality.

349 The overall training code of α -Flow
 350 is shown in Algorithm 1, where
 351 we first sample t, r and obtain the
 352 α from the schedule. Based on
 353 whether $\alpha = 0$ or not, α -Flow will
 354 use either \mathcal{L}_{MF} or \mathcal{L}_{α} to train the
 355 model. α -Flow applies the same
 356 training details as MeanFlow when
 357 training \mathcal{L}_{MF} (except a lower ratio
 358 of flow matching). Below, we only
 359 show the difference: the schedule
 360 of α as well as the design space of
 361 \mathcal{L}_{α} when $\alpha > 0$.

362 **Schedule.** To schedule the train-
 363 ing, we use a sigmoid function,
 364 $\alpha = \text{Sigmoid}_{k_s \Rightarrow k_e, \gamma, \eta}(k)$, which
 365 depends on the training iteration k .
 366 The function is defined by its start-
 367 ing and ending iterations, k_s, k_e ,
 368 a temperature parameter γ (set to
 369 be 25) and a clamping value η .
 370 The specific implementation can be
 371 found in Algorithm 2. Figure 6 pro-
 372 vides a visualization of this sched-
 373 ule, while Section 5.2 conducts an
 374 ablation study over its parameters.

Algorithm 1 α -Flow: Training.

```
# fn(z, r, t): function to predict u
# x: training batch, k: training iterations

t, r = sample_tr()
alpha = sample_alpha(k)
s = alpha * r + (1 - alpha) * t
e = randn_like(x)

zt = (1 - t) * x + t * e
v = e - x

if alpha == 0:
    u, du_dt = jvp(fn, (zt, r, t), (v, 0, 1))
    u_tgt = v - (t - r) * du_dt
else:
    u = fn(zt, r, t)
    zs = zt - (t - s) * v
    u_tgt = alpha * v + (1 - alpha) * fn(zs, r, s)

error = u - stopgrad(u_tgt)
loss = metric(error)
```

Algorithm 2 α -Flow: Curriculum Schedule

```
# k_s, k_e: start/end schedule iterations,
# gamma: temperature parameter
# k: current iteration, eta: clamping value

scale = 1 / (k_e - k_s)
offset = -(k_s + k_e) / 2 / (k_e - k_s)
alpha = 1 - sigmoid((scale * k + offset) * gamma)
alpha = 1 if alpha > (1 - eta) else (0 if alpha < eta else
alpha)
```

375 **Clamping value.** Geng et al. (2025b) show that when $\Delta t = t - s$ approaches 0, the performance
 376 of few-step CT model will first increase and then decrease. For α -Flow, we observe a similar phe-
 377 nomenon: by training α -Flow with a fixed α , as α approaches 0, the 1-step generation performance

378	379	380	Method	Source	Params	Epochs	NFE 1		NFE 2														
							FID	FDD	FID	FDD	FID [†]												
381	382	383	384	385	386	387	388	389	390	391	392	Shortcut-XL/2	Frans et al. (2025)	675M	160	10.60	—	—	—	—	—	—	—
												IMM-XL/2	Zhou et al. (2025)	676M	3840	8.05	—	3.88	—	—	—	—	—
												MeanFlow-XL/2	Geng et al. (2025a)	676M	240	3.43	—	2.93	—	—	—	—	—
												MeanFlow-XL/2+	Geng et al. (2025a)	676M	1000	—	—	2.20	—	—	—	—	—
												FACM-XL/2	Peng et al. (2025)	675M	800 + 250 × 2	—	—	—	—	—	2.07	—	—
												FACM-XL/2		675M	120 × 2	9.54	410.4	7.31	362.0	—	—	—	—
												FACM-XL/2	Our reproduction	675M	240 × 2	6.59	327.7	4.73	278.6	—	—	—	—
												CT-XL/2		676M	240	7.44	324.9	6.22	271.9	—	—	—	—
												MeanFlow-B/2		131M	240	6.04	312.3	5.17	232.1	—	—	—	—
												MeanFlow-XL/2		676M	240	3.47	185.8	2.46	108.7	2.26	—	—	—
												α-Flow-B/2		131M	240	5.40	287.1	5.01	231.8	—	—	—	—
												α-Flow-XL/2	Our methods	676M	240	2.95	164.6	2.34	105.7	2.16	—	—	—
												α-Flow-XL/2+		676M	240+60	2.58	148.4	2.15	96.8	1.95	—	—	—

Table 1: **Class-conditional generation on ImageNet-256×256.** The table reports the results for few-step diffusion/flow matching-based methods trained from scratch. ”×2” indicates that FACM requires roughly twice the computation per epoch compared to other methods. For a direct ”epoch-to-epoch comparison,” α-Flow-XL/2, MeanFlow-XL/2 and FACM-XL/2 are each trained for 240 epochs. α-Flow-XL/2+ is a fine-tuned version of α-Flow-XL/2, trained for extra 60 epochs with a batch size of 1024. † FID scores are evaluated with the balanced class sampling (see Appendix J).

will first increase then decrease. Detailed experiments are shown in Table 5 (c). From the experiment, the optimal performance is achieved when $\alpha = 5 \times 10^{-3}$. Thus, we set a clamping value $\eta = 5 \times 10^{-3}$ for the schedule. α will be set to 0 when $\alpha < \eta$. We also use the same clamping value to set α to 1 when $\alpha > 1 - \eta$, as when α is close to 1, \mathcal{L}_{TFM} is similar to \mathcal{L}_α but more efficient.

Training objective. In the unifying space of α-Flow loss, all other few-step models set $\tilde{\mathbf{v}}_{s,t} = \mathbf{v}_t$ except the shortcut model which uses $\tilde{\mathbf{v}}_{s,t} = \mathbf{u}_{\theta^-}(\mathbf{z}_t, s, t)$. Additionally, we are interested in seeing whether we need exponential moving average (EMA) for θ^- . With ablation study in Table 5 (a), we set $\tilde{\mathbf{v}}_{s,t} = \mathbf{v}_t$ and do not use EMA for θ^- .

Adaptive loss weight. MeanFlow (Geng et al., 2025a) demonstrates the effectiveness of adaptive loss. Basically, let $\|\Delta\|_2^2$ denote the squared L2 loss. The adaptive loss weight $\omega = 1/(\|\Delta\|_2^2 + c)$ where $c = 10^{-3}$. And the adaptively weighted loss is $\text{sg}(\omega)\|\Delta\|_2^2$. Theoretically, we derived an equivalent adaptive loss weight $\omega = \alpha/(\|\Delta\|_2^2 + c)$ for \mathcal{L}_α . We defer the derivation in Appendix H.2. With ablation study in Table 5 (b), we demonstrate the derived adaptive loss weight is better than other loss weights.

Classifier-free guidance (CFG). We apply a similar CFG training strategy as MeanFlow, by setting $\tilde{\mathbf{v}}_{s,t}$ in Equation (8) with $\tilde{\mathbf{v}}_{s,t} = w \cdot \mathbf{v}(\mathbf{z}_t, t | \mathbf{x}) + \kappa \cdot \mathbf{u}_{\theta^-}(\mathbf{z}_t, t, t | c) + (1 - w - \kappa) \cdot \mathbf{u}_{\theta^-}(\mathbf{z}_t, t, t | \emptyset)$, where w, κ are the guidance scale, $\mathbf{u}_{\theta^-}(\cdot | c)$, $\mathbf{u}_{\theta^-}(\cdot | \emptyset)$ denotes the class-condition (with class c) and class-unconditional prediction. Detailed settings of w, κ are deferred to Appendix G.

Sampling. We employ both consistency sampling (Song et al., 2023) and ODE sampling for two-step generation. Implementation details are provided in Algorithm 3. Empirically, we observe that consistency sampling outperforms ODE sampling for larger models with better convergence. Consequently, we adopt ODE sampling for all DiT-B/2 architectures and consistency sampling for all DiT-XL/2 architectures, with additional ablation studies on DiT-XL/2 presented in Figure 5.

5 EXPERIMENTS

In this section, we employ α-Flow on real image datasets ImageNet-1K 256² Deng et al. (2009). We use exactly the same DiT Peebles & Xie (2023) architecture as MeanFlow Geng et al. (2025a). For evaluation, we use Fréchet Inception Distance (FID) Heusel et al. (2017), Fréchet DINOv2 Oquab et al. (2023). We evaluate model performance for both 1 and 2 Number of Function Evaluations

Schedule	NFE 1		NFE 2	
	FID	FDD	FID	FDD
Constant_{0.0}	44.4	844.1	42.1	836.3
<i>Trajectory flow matching iterations</i>				
Sigmoid_{0K→100K}	44.3	860.3	40.8	826.9
Sigmoid_{50K→150K}	44.1	846.8	39.9	811.6
Sigmoid_{100K→200K}	42.4	828.0	38.3	795.4
Sigmoid_{150K→250K}	41.3	818.8	38.1	793.1
<i>Transition iterations</i>				
Sigmoid_{200K→200K}	41.4	794.4	38.8	796.7
Sigmoid_{150K→250K}	41.3	818.8	38.1	793.1
Sigmoid_{0K→400K}	40.0	785.4	37.1	782.9

444 (a) **Consistency step ratio schedule.**

445

446 Table 2: Ablation study on ImageNet-1K 256² for α -Flow-B/2.

447 (NFE=1, NFE=2). We implement our models in the latent space of the Stable Diffusion Variational
 448 Autoencoder (SD-VAE)². More details on the experiments settings are in Appendix G.

449
 5.1 COMPARISON WITH BASELINE

450

451 In Table 1, we compare α -Flow with previous few-step Diffusion and Flow models, demonstrating
 452 its superior performance for 1-NFE and 2-NFE generation. Across models trained for 240 epochs,
 453 α -Flow-XL/2 achieves **2.95** FID (**164.6** FDD), representing a relative improvement of 15% (12%)
 454 over MeanFlow-XL/2 and 70% (60%) over FACM-XL/2. Our best model, α -Flow-XL/2+, sets a
 455 new state-of-the-art 1-NFE generation with an impressive FID of **2.58** (**148.4** FDD), compared with
 456 all the other few-step Diffusion and Flow models trained over the SD-VAE. Furthermore, for 2-NFE
 457 generation, α -Flow-XL/2+ achieves **2.15** FID (**96.8** FDD), outperforms all these baseline methods.
 458 It's particularly notable that it surpasses FACM-XL/2's 2.07 FID (achieved with a class-balanced
 459 sampling) by reaching 1.95 FID with only 23% of the training epochs. Uncurated samples, shown
 460 in Figure 1 and Appendix L, visually confirm these results. Specifically in Figure 1, α -Flow-XL/2
 461 generates more images with better quality, as highlighted in green.

462

463 5.2 ABLATION STUDY

464

465 **Consistency step ratio schedule.** In Table 2 (a), we evaluate our α -Flow framework trained with
 466 various sigmoid schedules, as visualized in Figure 6. For these experiments, the flow matching
 467 ratio is fixed at 25%. We first analyze the impact of the trajectory flow matching pretraining
 468 duration. By fixing $k_e - k_s$ to 100K iterations, we progressively increase k_s from 0K to 150K. As
 469 the pretraining duration increases, α -Flow's performance consistently improves across all metrics.
 470 The best-performing schedule, **Sigmoid_{150K→250K}**, significantly outperforms the baseline Mean-
 471 Flow (**Constant_{0.0}**). This suggests that *optimizing trajectory flow matching is more crucial than
 472 optimizing MeanFlow in the early training stages for achieving superior few-step flow modeling*.
 473 This finding aligns with our empirical analysis, which shows that because the gradients of the
 474 trajectory flow matching and consistency losses conflict, it is more efficient to exclusively optimize the
 475 trajectory flow matching objective for faster initial convergence.

476

477 Next, we investigate the effect of the transition duration. With the midpoint $(k_s + k_e)/2$ fixed at
 478 200K iterations, we vary the total transition iterations from 0 to 400K. Our results indicate that
 479 a longer, smoother transition leads to better generation quality. This highlights the importance of
 480 gradually reducing the bias of the training objective by smoothly transitioning between trajectory
 481 flow matching and MeanFlow.

482

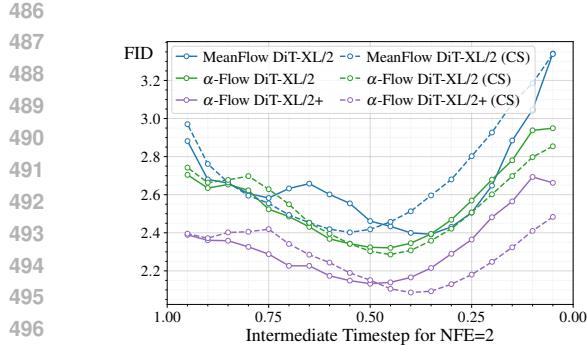
483 **Flow matching ratio.** In Table 2 (b), we compare our α -Flow framework with the MeanFlow base-
 484 line across various flow matching ratios (% $r = t$). Our results show that α -Flow consistently out-
 485 performs MeanFlow for all evaluated ratios, confirming the effectiveness of our proposed method.
 486 A key finding is that α -Flow achieves its best 1-NFE performance at a relatively low flow matching
 487 ratio. Specifically, it reaches the best FID of 40.0 at 25 % of $r = t$ and the best FDD of 781.0 at 50

% $r = t$	Model	NFE 1		NFE 2	
		FID	FDD	FID	FDD
0%	Constant_{0.0}	46.0	879.6	44.3	867.7
	Sigmoid_{0K→400K}	40.4	822.5	38.9	811.8
25%	Constant_{0.0}	44.4	844.1	42.1	836.3
	Sigmoid_{0K→400K}	40.0	785.4	37.1	782.9
50%	Constant_{0.0}	43.9	844.1	42.1	836.3
	Sigmoid_{0K→400K}	40.2	781.0	37.1	775.0
75%	Constant_{0.0}	43.1	819.2	38.5	787.6
	Sigmoid_{0K→400K}	42.2	810.5	36.2	754.7

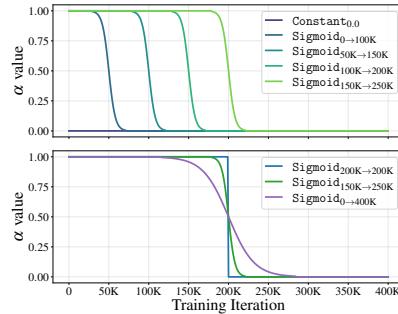
444 (b) **Flow matching ratio.**

445

446 ²The EMA version in <https://huggingface.co/stabilityai/sd-vae-ft-mse>



498 Figure 5: Comparing ODE vs consistency sam-
499 pling for MeanFlow and α -Flow models.



500 Figure 6: Visualization of consistency step ratio
501 schedule.

501 % of $r = t$, while MeanFlow requires a higher ratio of 75% to achieve its best FID of 43.1 and FDD
502 of 819.2. This aligns with our motivation: by pretraining on trajectory flow matching, α -Flow is
503 less reliant on the flow matching objective and can focus more on the overall MeanFlow objective,
504 leading to superior one-step generation quality.

505 Furthermore, we observe that for α -Flow, the flow matching ratio presents a clear trade-off between
506 1-NFE and 2-NFE performance. For instance, the 75% ratio yields worse NFE=1 but better NFE=2
507 generation results compared to the 50%-ratio version. This indicates that a higher proportion of flow
508 matching improves the model’s ability to generate images in a slightly higher number of steps.

509 **Sampling.** As shown in Figure 5, we compare ODE sampling (solid line) and consistency sam-
510 pling (dotted line) for 2-NFE generation across different intermediate sampling timesteps, using
511 MeanFlow-XL/2, α -Flow-XL/2, and α -Flow-XL/2+. The results show that consistency sampling
512 yields better generation performance for both α -Flow-XL/2 and α -Flow-XL/2+, achieving the best
513 FID scores of 2.09 at timestep 0.4 and 2.28 at timestep 0.45, respectively. In contrast, ODE sampling
514 performs better for MeanFlow-XL/2, which attains its best FID of 2.39 at timestep 0.35. In Table 1,
515 we select intermediate sampling timesteps that balance FID and FDD; see Table 3 for details.

516 6 CONCLUSION

517 Our work provided a principled analysis of the MeanFlow framework, analyzing its objective and
518 establishing the necessity of flow matching supervision during training. Motivated by this under-
519 standing, we proposed the α -Flow objective as a generalization of MeanFlow loss, allowing us to
520 train consistently stronger few-step image generation models from scratch.

524 7 REPRODUCIBILITY STATEMENT

525 We are committed to ensuring the reproducibility of our results. To this end, we include all the
526 necessary implementation details in Appendix G, ensuring that our methodology can be faithfully
527 reproduced. We will publicly release our source training, inference, and evaluation code, as well as
528 the pre-trained checkpoints for ImageNet-1K 256².

531 REFERENCES

- 533 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
534 polants. *arXiv preprint arXiv:2209.15571*, 2022.
- 535 David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
536 Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
537 time-distillation. *arXiv preprint arXiv:2303.04248*, 2023.
- 539 Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. How to build a consistency model:
540 Learning flow maps via self-distillation. *arXiv preprint arXiv:2505.18825*, 2025a.

- 540 Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
 541 with stochastic interpolants: A mathematical framework for consistency models. *Transactions on*
 542 *Machine Learning Research*, 2025b.
- 543
- 544 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
 545 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
 546 generation models as world simulators. 2024. URL <https://openai.com/research/video-generation-models-as-world-simulators>.
- 547
- 548 Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the kinetics-700
 549 human action dataset. *arXiv preprint arXiv:1907.06987*, 2019.
- 550
- 551 Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
 552 distribution recovery of diffusion models on low-dimensional data. In *International Conference*
 553 *on Machine Learning*, pp. 4672–4712. PMLR, 2023.
- 554
- 555 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
 556 as learning the score: theory for diffusion models with minimal data assumptions. *arXiv preprint*
 557 *arXiv:2209.11215*, 2022.
- 558
- 559 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 560 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 561 pp. 248–255. Ieee, 2009.
- 562
- 563 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
 564 *in neural information processing systems*, 34:8780–8794, 2021.
- 565
- 566 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 567 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 568 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 569 2024.
- 570
- 571 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 572 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 573 <https://openreview.net/forum?id=O1zB6LnXcS>.
- 574
- 575 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 576 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025a.
- 577
- 578 Zhengyang Geng, Ashwini Pokle, Weijian Luo, Justin Lin, and J Zico Kolter. Consistency models
 579 made easy. In *The Thirteenth International Conference on Learning Representations*, 2025b.
 580 URL <https://openreview.net/forum?id=xQVxo9dSID>.
- 581
- 582 Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization
 583 in diffusion models. *arXiv preprint arXiv:2310.02664*, 2023.
- 584
- 585 Yi Guo, Wei Wang, Zhihang Yuan, Rong Cao, Kuan Chen, Zhengyang Chen, Yuanyuan Huo, Yang
 586 Zhang, Yuping Wang, Shouda Liu, et al. Splitmeanflow: Interval splitting consistency in few-step
 587 generative modeling. *arXiv preprint arXiv:2507.16884*, 2025.
- 588
- 589 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 590 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 591 *neural information processing systems*, 30, 2017.
- 592
- 593 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 594 *arXiv:2207.12598*, 2022.
- 595
- 596 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 597 *neural information processing systems*, 33:6840–6851, 2020.
- 598
- 599 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 600 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 601 2022.

- 594 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
 595 and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF*
 596 *Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.
- 597
- 598 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
 599 Yutong He, Yuki Mitsuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
 600 ability flow ODE trajectory of diffusion. In *The Twelfth International Conference on Learning*
 601 *Representations*, 2024. URL <https://openreview.net/forum?id=ymjI8feDTD>.
- 602 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 603 *arXiv:1412.6980*, 2014.
- 604
- 605 Tuomas Kynkänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of
 606 imangenet classes in fr\echet inception distance. *arXiv preprint arXiv:2203.06026*, 2022.
- 607 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 608 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-*
 609 *sentations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.
- 610
- 611 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
 612 transfer data with rectified flow. In *The Eleventh International Conference on Learning Repre-*
 613 *sentations*, 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.
- 614 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 615 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=LyJi5ugyJx>.
- 616
- 617 Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
 618 Small batch size training for language models: When vanilla sgd works, and why gradient accu-
 619 mulation is wasteful. *arXiv preprint arXiv:2507.07101*, 2025.
- 620
- 621 Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
 622 large-batch training. *arXiv preprint arXiv:1812.06162*, 2018.
- 623
- 624 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 625 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 626 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
- 627
- 628 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 629 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
- 630
- 631 Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
 632 consistency models. *arXiv preprint arXiv:2507.03738*, 2025.
- 633
- 634 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 635 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 636 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.
- 637
- 638 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 639 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 640 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- 641
- 642 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
 643 *preprint arXiv:2202.00512*, 2022.
- 644
- 645 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
 646 tillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024.
- 647
- Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 648 learning using nonequilibrium thermodynamics. In *International conference on machine learn-*
 649 *ing*, pp. 2256–2265. pmlr, 2015.

- 648 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021a. URL <https://openreview.net/forum?id=St1giarCHLP>.
- 649
- 650
- 651 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=WNzy9bRDvG>.
- 652
- 653
- 654
- 655 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, 32, 2019.
- 656
- 657 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021b. URL <https://openreview.net/forum?id=PxTIG12RRHS>.
- 658
- 659
- 660
- 661
- 662 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 32211–32252. PMLR, 23–29 Jul 2023.
- 663
- 664
- 665
- 666 Peng Sun, Yi Jiang, and Tao Lin. Unified continuous generative models. *arXiv preprint arXiv:2505.07447*, 2025.
- 667
- 668 Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and Sylvain Gelly. FVD: A new metric for video generation, 2019. URL <https://openreview.net/forum?id=ryl1gEULtdN>.
- 669
- 670
- 671
- 672 Fu-Yun Wang, Zhaoyang Huang, Alexander Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency models. *Advances in neural information processing systems*, 37:83951–84009, 2024.
- 673
- 674
- 675 Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and Lei Bai. Transition models: Rethinking the generative learning objective. 2025a.
- 676
- 677
- 678 Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and Lei Bai. Transition models: Rethinking the generative learning objective. *arXiv preprint arXiv:2509.04394*, 2025b.
- 679
- 680
- 681 Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with velocity consistency. *arXiv preprint arXiv:2407.02398*, 2024.
- 682
- 683
- 684 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill Freeman. Improved distribution matching distillation for fast image synthesis. *Advances in neural information processing systems*, 37:47455–47487, 2024a.
- 685
- 686
- 687
- 688 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024b.
- 689
- 690
- 691 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining Xie. Representation alignment for generation: Training diffusion transformers is easier than you think. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=DJSZGGZYi>.
- 692
- 693
- 694
- 695 Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The emergence of reproducibility and consistency in diffusion models. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=Hsli0qZkc0>.
- 696
- 697
- 698
- 699 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=pwNSUo7yUb>.

702 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
703 distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
704 In *Forty-first International Conference on Machine Learning*, 2024.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A RELATED WORK
757
758

759 **Diffusion Models.** Diffusion models have become a dominant paradigm in generative modeling
760 for vision domains (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
761 2021a;b; Dhariwal & Nichol, 2021). The classical diffusion framework defines a forward noising
762 process and a corresponding reverse process that a model learns to approximate. Early works such as
763 DDPM (Ho et al., 2020) and score-based generative modeling (Song & Ermon, 2019) demonstrated
764 high-quality image generation, later extended to continuous-time SDEs and ODEs (Song et al.,
765 2021b). (Dhariwal & Nichol, 2021) further improved sample fidelity with larger architectures and
766 classifier guidance. More recently, the community has explored *flow-based* parameterizations that
767 directly learn continuous velocity fields (Liu et al., 2023; Lipman et al., 2023; Albergo & Vandenberg-
768 Eijnden, 2022). These flow matching approaches simplify training, unify score- and likelihood-
769 based models, and are used in large-scale systems such as Stable Diffusion 3 (Esser et al., 2024).
770

771 **Few-step Diffusion.** Despite their quality, diffusion models are computationally expensive due
772 to iterative sampling. A large body of work accelerates sampling to a few steps or even one step.
773 Distillation-based approaches include progressive distillation (Salimans & Ho, 2022; Berthelot et al.,
774 2023), and often incorporate adversarial objectives (Yin et al., 2024b;a; Zhou et al., 2024; Sauer
775 et al., 2024). UCGM (Sun et al., 2025) develops a unified training scheme for multi-step and few-
776 step diffusion-based methods.

777 A closer research direction (which our method follows as well) includes the methods which are
778 trained from scratch and support few- and even one-step generation by design. Consistency Models
779 (CMs) (Song et al., 2023) learn to map noisy inputs directly to clean data by enforcing self-
780 consistency. Extensions improve stability and scalability (Song & Dhariwal, 2024; Lu & Song,
781 2025; Geng et al., 2025b). *Trajectory-based* methods learn the dynamics of the entire denoising
782 process, enabling arbitrary jumps along the diffusion path. PCM (Wang et al., 2024) scale consistency
783 distillation to large scale models and optimize with preselected time intervals. Shortcut diffusion
784 models (Frans et al., 2025) learn direct mappings with shortcut constraints. MeanFlow (Geng et al.,
785 2025a) predicts time-averaged velocities with continuous consistency, while Guo et al. (2025) ex-
786 plore this idea for discrete consistency. [While concurrent work Guo et al. \(2025\) proposed a similar](#)
787 [loss function to our \$\alpha\$ -Flow loss \(Equation \(8\)\), our paper offers theoretical and empirical contri-](#)
788 [butions. Theoretically, we provide a deeper analysis comparing the \$\alpha\$ -Flow loss and the MeanFlow](#)
789 [loss. Empirically, we introduce novel techniques specifically designed to improve the performance](#)
790 [of the \$\alpha\$ -Flow loss, and we successfully demonstrate its efficacy and the benefits of curriculum learning](#)
791 [on the large-scale ImageNet dataset.](#) Hybrid approaches combine consistency and flow matching:
792 Consistency-FM (Yang et al., 2024) enforces velocity self-consistency, FACM (Peng et al.,
793 2025) anchors consistency to flow objectives, and IMM (Zhou et al., 2025) matches the output distri-
794 [butions via moment matching instead of exact outputs. Consistency Trajectory Models \(CTM\) \(Kim](#)
795 [et al., 2024\) generalize consistency training to support transitions between any two timesteps, com-](#)
796 [bining one-step generation with progressive refinement. Boffi et al. \(2025b\) introduces Flow Match-](#)
797 [ing Mapping \(FMM\), a unified framework that extends CMs, CTM, and progressive distillation.](#)
798 In particular, it demonstrates that existing methods can be interpreted within a common Euler and
799 progressive perspective, while also proposing a novel class of Lagrangian methods. Building on this
800 foundation, (Boffi et al., 2025a) presents a systematic algorithmic framework and demonstrates the
801 superior performance of the Lagrangian approach. Our work, on the other hand, provides a distinct
802 and detailed unification focused specifically on the Euler method. Within this framework, we unify
803 Flow Matching, Shortcut models, and MeanFlow. Transition Models (TiM) (Wang et al., 2025a)
804 derive an exact continuous-time dynamics equation for arbitrary-step transitions. These methods
805 achieve one- to few-step sampling with steadily improving fidelity.

806 B LIMITATIONS
807

- 808 • Our α -Flow loss enables high-quality training of discrete MeanFlow models without requiring
809 JVP computation. However, in practice, the continuous objective (i.e., setting $\alpha \rightarrow 0$) remains
810 important, likely due to the bias-variance trade-off inherent in the consistency objective (Song
811 et al., 2023; Song & Dhariwal, 2024).

- 810 • We occasionally observed unstable training in large-scale models with guidance integration, both
811 for the vanilla MeanFlow model and our α -Flow variant. Thus, our framework should not be
812 viewed as a silver bullet for addressing the well-known instability issues of consistency mod-
813 els Geng et al. (2025b).
- 814 • The α -Flow objective uses pure flow matching supervision up to k_s iterations, after which the
815 consistency objective is applied. Before this point, the model’s few-step performance is weak,
816 which can make progress harder to monitor.
- 817 • Our gradient analysis provides actionable insights but remains empirical; it does not fully explain,
818 from a theoretical perspective, why flow matching is so critical for consistency.
- 819 • Although we motivate larger batch sizes for fine-tuning by the high variance of the consistency
820 loss, the observed improvements (see Table 4) may instead reflect that small batches are more
821 sensitive to hyperparameters (Marek et al., 2025), and that beyond a certain size, batch-size scaling
822 exhibits diminishing returns (McCandlish et al., 2018).

826 C FAILED EXPERIMENTS

827 We also wish to share with the community several experiments that did not succeed during the course
828 of this project. Some of these directions were likely underexplored on our side, while others may
829 represent genuine dead-ends. Nevertheless, we believe documenting them may serve as a useful
830 reference for future work.

- 831 • We devoted several weeks to exploring decomposed training of the MeanFlow objective with
832 individually tuned weighting functions for each term, drawing inspiration from EDM Karras et al.
833 (2022) to map out the design space. Unfortunately, every configuration we attempted produced
834 worse results than the default adaptive loss heuristic, which was a particularly frustrating outcome.
- 835 • Consistency sampling (see Figure 5) did not provide the improvements we had anticipated. In-
836 terestingly, the optimal midpoint consistently emerged at ≈ 0.5 , which coincides with the default
837 MeanFlow setting. We suspect this effect is related to the training distribution, which has a mode
838 slightly lower than 0.5. Following the original work, we employed a logit-normal distribution with
839 location parameter -0.4 .
- 840 • We experimented with LoRA fine-tuning and introduced separate prediction heads for vanilla
841 velocity and mean velocity. Neither approach yielded promising results.
- 842 • We conducted roughly 50 ablations on the train-time noise schedule for vanilla MeanFlow models.
843 None resulted in noticeably better performance, even when factorizing the joint distribution $p(t, r)$
844 into $p(t)p(r|t)$ and exploring alternative supervision distributions for flow matching in parallel.
- 845 • We investigated additional representation alignment losses Yu et al. (2025) with the aim of ac-
846 celerating convergence in MeanFlow models. However, the observed gains were insufficient to
847 justify the added complexity of the training framework.
- 848 • We also experimented with different EMA schedules, but these attempts did not lead to meaningful
849 improvements.

855 D PROOFS OF THINGS

858 D.1 LOSS DECOMPOSITION

860 *Proof.* The MeanFlow loss is given by:

$$862 \mathcal{L}_{\text{MF}}(\boldsymbol{\theta}) = \mathbb{E}_{t, r, \mathbf{z}_t} \left[\left\| \mathbf{u}_{\boldsymbol{\theta}}(\mathbf{z}_t, r, t) - \mathbf{v}_t + (t - r) \frac{d\mathbf{u}_{\boldsymbol{\theta}}(\mathbf{z}_t, r, t)}{dt} \right\|_2^2 \right] \quad (9)$$

(unpacking the norm and regrouping terms yields)

$$= \underbrace{\mathbb{E}_{t,r,z_t} \left[\|\mathbf{u}_\theta(z_t, r, t) - \mathbf{v}_t\|_2^2 \right]}_{\mathcal{L}_{\text{TFM}}(\theta)} + \underbrace{\mathbb{E}_{t,r,z_t} \left[2 \cdot (t-r) \cdot \mathbf{u}_\theta^\top(z_t, r, t) \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} \right]}_{\mathcal{L}_{\text{TC}}(\theta)} \quad (10)$$

$$+ \underbrace{\mathbb{E}_{t,r,z_t} \left[-2(t-r) \cdot \mathbf{v}^\top(z_t, r, t) \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} + (t-r)^2 \left\| \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} \right\|_2^2 \right]}_{\text{Does not depend on } \theta} \quad (11)$$

□

D.2 \mathcal{L}_α LOSS UNIFICATION

Proof of theorem 1. The proof for flow matching and shortcut models is straightforward. We will only show the proof for the third bullet point. For brevity, let's set $\Delta t = t - s$ and $\alpha = \frac{\Delta t}{t - r}$.

$$\begin{aligned} \mathcal{L}_\alpha(\theta) &= \mathbb{E}_{t,r,z_t} \left[\frac{t-r}{\Delta t} \cdot \left\| \mathbf{u}_\theta(z_t, r, t) - \frac{\Delta t}{t-r} \cdot \mathbf{v}_t - \frac{t-\Delta t-r}{t-r} \mathbf{u}_{\theta^-}(z_{t-\Delta t}, r, t-\Delta t) \right\|_2^2 \right], \\ &\stackrel{(i)}{=} \mathbb{E}_{t,r,z_t} \left[\frac{t-r}{\Delta t} \cdot \left\| \mathbf{u}_\theta(z_t, r, t) - \frac{\Delta t}{t-r} \cdot \mathbf{v}_t - \frac{t-\Delta t-r}{t-r} \cdot \left(\mathbf{u}_{\theta^-}(z_t, r, t) - \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} \Delta t + \mathcal{O}(\Delta^2 t) \right) \right\|_2^2 \right], \\ &\stackrel{(ii)}{=} \mathbb{E}_{t,r,z_t} \left[\frac{t-r}{\Delta t} \cdot \left\| \mathbf{u}_\theta(z_t, r, t) - \mathbf{u}_{\theta^-}(z_t, r, t) - \frac{\Delta t}{t-r} \cdot \left(\mathbf{v}_t - (t-r) \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} - \mathbf{u}_{\theta^-}(z_t, r, t) + \mathcal{O}(\Delta^2 t) \right) \right\|_2^2 \right], \end{aligned} \quad (12)$$

where (i) uses the Taylor expansion over $\mathbf{u}_{\theta^-}(z_{t-\Delta t}, r, t-\Delta t)$:

$$\mathbf{u}_{\theta^-}(z_{t-\Delta t}, r, t-\Delta t) = \mathbf{u}_{\theta^-}(z_t, r, t) - \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} \Delta t + \mathcal{O}(\Delta^2 t),$$

and (ii) uses the fact that $\frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} \Delta^2 t = \mathcal{O}(\Delta^2 t)$. Thus,

$$\begin{aligned} \lim_{\alpha \rightarrow 0} \nabla_\theta \mathcal{L}_\alpha(\theta) &= \lim_{\Delta t \rightarrow 0} \nabla_\theta \mathcal{L}_\alpha(\theta) \\ &= \lim_{\Delta t \rightarrow 0} \mathbb{E}_{t,r,z_t} \left[2 \cdot \frac{t-r}{\Delta t} \cdot \nabla_\theta^\top \mathbf{u}_\theta(z_t, r, t) \cdot \left(\mathbf{u}_\theta(z_t, r, t) - \mathbf{u}_{\theta^-}(z_t, r, t) - \frac{\Delta t}{t-r} \cdot \left(\mathbf{v}_t - (t-r) \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} - \mathbf{u}_{\theta^-}(z_t, r, t) + \mathcal{O}(\Delta^2 t) \right) \right) \right], \\ &= \lim_{\Delta t \rightarrow 0} \mathbb{E}_{t,r,z_t} \left[2 \cdot \frac{t-r}{\Delta t} \cdot \nabla_\theta^\top \mathbf{u}_\theta(z_t, r, t) \cdot \left(-\frac{\Delta t}{t-r} \cdot \left(\mathbf{v}_t - (t-r) \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} - \mathbf{u}_{\theta^-}(z_t, r, t) + \mathcal{O}(\Delta^2 t) \right) \right) \right], \\ &= \mathbb{E}_{t,r,z_t} \left[2 \cdot \left(\frac{t-r}{\Delta t} \cdot \frac{\Delta t}{t-r} \right) \cdot \nabla_\theta^\top \mathbf{u}_\theta(z_t, r, t) \cdot \left(\mathbf{u}_{\theta^-}(z_t, r, t) - \mathbf{v}_t + (t-r) \frac{d\mathbf{u}_{\theta^-}(z_t, r, t)}{dt} \right) \right], \\ &= \nabla_\theta \mathcal{L}_{\text{MF}}(\theta), \end{aligned} \quad (13)$$

□

918 *Proof of equivalence with consistency model.* By setting $\tilde{\mathbf{v}}_{s,t} = \mathbf{v}_t, r = 0$ and $\mathbf{u}_\theta(\mathbf{z}_t, 0, t) =$
 919 $(\mathbf{z}_t - \mathbf{f}_\theta(\mathbf{z}_t, t)) / t$, $\Delta t = t - s$ and $\alpha = \frac{\Delta t}{t}$, we have:

$$\begin{aligned}
 920 \quad \mathcal{L}_\alpha(\theta) &= \mathbb{E}_{t,r,\mathbf{z}_t} \left[\frac{t}{\Delta t} \cdot \left\| \mathbf{u}_\theta(\mathbf{z}_t, r, t) - \frac{\Delta t}{t-r} \cdot \mathbf{v}_t - \right. \right. \\
 921 \quad &\quad \left. \left. \frac{t - \Delta t - r}{t-r} \mathbf{u}_{\theta^-}(\mathbf{z}_{t-\Delta t}, r, t - \Delta t) \right\|_2^2 \right], \\
 922 \quad &\stackrel{(i)}{\Rightarrow} \mathbb{E}_{t,\mathbf{z}_t} \left[\frac{t}{\Delta t} \cdot \left\| \frac{\mathbf{z}_t - \mathbf{f}_\theta(\mathbf{z}_t, t)}{t} - \frac{\Delta t}{t} \cdot \mathbf{v}_t - \right. \right. \\
 923 \quad &\quad \left. \left. \frac{t - \Delta t}{t} \frac{\mathbf{z}_{t-\Delta t} - \mathbf{f}_{\theta^-}(\mathbf{z}_{t-\Delta t}, t - \Delta t)}{t - \Delta t} \right\|_2^2 \right], \\
 924 \quad &\stackrel{(ii)}{=} \mathbb{E}_{t,\mathbf{z}_t} \left[\frac{1}{t\Delta t} \cdot \left\| \mathbf{f}_\theta(\mathbf{z}_t, t) - \mathbf{f}_{\theta^-}(\mathbf{z}_{t-\Delta t}, t - \Delta t) \right\|_2^2 \right] \stackrel{(iii)}{=} \mathcal{L}_{\text{CT}_d}(\theta),
 \end{aligned} \tag{14}$$

925 where (i) plug in the reparameterization and $r = 0$, (ii) uses the fact that $\mathbf{z}_t = \mathbf{z}_{t-\Delta t} + \Delta t \cdot \mathbf{v}_t$. Thus
 926 $\mathcal{L}_\alpha(\theta)$ could be reparameterized to $\mathcal{L}_{\text{CT}_d}(\theta)$ with a loss weighting function $\frac{1}{t\Delta t}$. Since the discrete
 927 CT uses timestep partition to determine t and Δt , the (iii) holds for a special timestep partition
 928 when $\Delta t = \alpha \cdot t$ given a fixed α . From Theorem 2 in Lipman et al. (2023), because $\mathbf{u}_{\theta^-}(\mathbf{z}_t, r, t)$ is
 929 independent of θ , we have:

$$\begin{aligned}
 930 \quad \mathcal{L}_{\text{MF}}(\theta) &= \mathbb{E}_{t,r,\mathbf{z}_t} \left[\left\| \mathbf{u}_\theta(\mathbf{z}_t, r, t) - \mathbf{v}_t + (t-r) \frac{d\mathbf{u}_{\theta^-}(\mathbf{z}_t, r, t)}{dt} \right\|_2^2 \right], \\
 931 \quad &= \mathbb{E}_{t,r,\mathbf{z}_t} \left[\left\| \mathbf{u}_\theta(\mathbf{z}_t, r, t) - \mathbf{v}(\mathbf{z}_t, t) + (t-r) \frac{d\mathbf{u}_{\theta^-}(\mathbf{z}_t, r, t)}{dt} \right\|_2^2 \right] + C,
 \end{aligned} \tag{15}$$

932 with C a constant independent of θ . Thus,

$$\begin{aligned}
 933 \quad \nabla_\theta \mathcal{L}_{\text{MF}}(\theta) &= \mathbb{E}_{t,r,\mathbf{z}_t} \left[2 \cdot \nabla_\theta^\top \mathbf{u}_\theta(\mathbf{z}_t, r, t) \cdot \left(\mathbf{u}_\theta(\mathbf{z}_t, r, t) - \mathbf{v}(\mathbf{z}_t, t) + (t-r) \frac{d\mathbf{u}_{\theta^-}(\mathbf{z}_t, r, t)}{dt} \right) \right], \\
 934 \quad &\stackrel{(i)}{\Rightarrow} \mathbb{E}_{t,\mathbf{z}_t} \left[2 \cdot \nabla_\theta^\top \frac{-\mathbf{f}_\theta(\mathbf{z}_t, t)}{t} \cdot \left(\frac{\mathbf{z}_t - \mathbf{f}_\theta(\mathbf{z}_t, t)}{t} - \mathbf{v}(\mathbf{z}_t, t) + \right. \right. \\
 935 \quad &\quad \left. \left. \left(\mathbf{v}(\mathbf{z}_t, t) - \frac{d\mathbf{f}_{\theta^-}(\mathbf{z}_t, t)}{dt} \right) - \frac{(\mathbf{z}_t - \mathbf{f}_{\theta^-}(\mathbf{z}_t, t))}{t} \right) \right], \\
 936 \quad &= \mathbb{E}_{t,\mathbf{z}_t} \left[2 \cdot \frac{1}{t} \cdot \nabla_\theta^\top \mathbf{f}_\theta(\mathbf{z}_t, t) \frac{d\mathbf{f}_{\theta^-}(\mathbf{z}_t, t)}{dt} \right] = \nabla_\theta \mathcal{L}_{\text{CT}_c}(\theta),
 \end{aligned} \tag{16}$$

937 where (i) plug in the reparameterization and $r = 0$, and use the fact that:

$$\frac{d\mathbf{u}_{\theta^-}(\mathbf{z}_t, r=0, t)}{dt} = \frac{1}{t^2} \left(t \left(\mathbf{v}(\mathbf{z}_t, t) - \frac{d\mathbf{f}_{\theta^-}(\mathbf{z}_t, t)}{dt} \right) - (\mathbf{z}_t - \mathbf{f}_{\theta^-}(\mathbf{z}_t, t)) \right) \tag{17}$$

938 Thus $\nabla_\theta \mathcal{L}_{\text{MF}}(\theta)$ could be reparameterized to $\mathcal{L}_{\text{CT}_c}(\theta)$ with a loss weighting function $\frac{1}{t}$. \square

E MORE PROOFS

E.1 ANALYSIS OF OPTIMAL SOLUTION SPACE BETWEEN TRAJECTORY FLOW MATCHING \mathcal{L}_{TFM} TRAJECTORY CONSISTENCY \mathcal{L}_{TC}

939 **Assumption 1.** Assume that the $\mathbf{u}_\theta(\mathbf{z}_t, r, t)$ has infinite model capacity, and can approximate any
 940 continuous function to an arbitrary level of accuracy based on the Universal Approximation Theo-
 941 rem. And $\mathbf{z}_0 = \mathbf{x} \in \mathbb{R}^d$ draw from a random distribution $p(\mathbf{x})$.

972 Assumption 1 has been widely used in previous works Karras et al. (2022); Gu et al. (2023); Zhang
 973 et al. (2024) to analysis the optimal solution of diffusion training loss, which simplified specific
 974 network architecture constraint without loss of generality. The trajectory flow matching loss defined
 975 in Equation (6) could be re-written as:

$$977 \mathcal{L}_{\text{TFM}}(\mathbf{u}_{\theta}) = \mathbb{E}_{t,r,\mathbf{z}_t} [\|\mathbf{u}_{\theta}(\mathbf{z}_t, r, t) - \mathbf{v}_t\|_2^2], \quad (18)$$

$$979 = \int_{t,r} \int_{\mathbb{R}^d} \underbrace{\int_{\mathbb{R}^d} \mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I}) \|\mathbf{u}_{\theta}(\mathbf{z}_t, r, t) - \frac{\mathbf{z}_t - \mathbf{x}}{t}\|_2^2 \cdot p(\mathbf{x}) d\mathbf{x} d\mathbf{z}_t dt dr}_{\mathcal{L}_{\text{TFM}}(\mathbf{u}_{\theta}, t, r, \mathbf{z}_t)} \quad (19)$$

984 Since Assumption 1 implies that $\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)$ can approximate any continuous function, we can min-
 985 imize $\mathcal{L}_{\text{TFM}}(\mathbf{u}_{\theta})$ by independently minimizing the inner integral $\mathcal{L}_{\text{TFM}}(\mathbf{u}_{\theta}, t, r, \mathbf{z}_t)$ for each fixed
 986 (\mathbf{z}_t, r, t) .

987 Given \mathbf{z}_t, r, t , $\mathcal{L}_{\text{TFM}}(\mathbf{u}_{\theta}, t, r, \mathbf{z}_t)$ is a convex optimization problem with respect to $\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)$ and
 988 the optimal solution is uniquely identified by setting the gradient with respect to $\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)$ to 0.

$$991 \nabla_{\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)} \mathcal{L}_{\text{TFM}}(\mathbf{u}_{\theta}, t, r, \mathbf{z}_t) = 0, \quad (20)$$

$$993 \Rightarrow \nabla_{\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)} \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I}) \|\mathbf{u}_{\theta}(\mathbf{z}_t, r, t) - \frac{\mathbf{z}_t - \mathbf{x}}{t}\|_2^2 \cdot p(\mathbf{x}) d\mathbf{x} = 0, \quad (21)$$

$$995 \Rightarrow \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I}) \left(\mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, r, t) - \frac{\mathbf{z}_t - \mathbf{x}}{t} \right) \cdot p(\mathbf{x}) d\mathbf{x} = 0, \quad (22)$$

$$997 \Rightarrow \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, r, t) = \frac{1}{t} \left(\mathbf{z}_t - \frac{\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [\mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I}) \cdot \mathbf{x}]}{\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [\mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I})]} \right) = \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t). \quad (23)$$

1000 This shows that the loss \mathcal{L}_{TFM} has only one optimal solution. However, the situation is different for
 1001 the Trajectory consistency \mathcal{L}_{TC} defined in Equation (6):

$$1003 \mathcal{L}_{\text{TC}} = \mathbb{E}_{t,r,\mathbf{z}_t} \left[2(t-r) \cdot \mathbf{u}_{\theta}^{\top}(\mathbf{z}_t, r, t) \frac{d\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)}{dt} \right]. \quad (24)$$

1006 For fixed \mathbf{z}_t, r, t , the loss $\mathcal{L}_{\text{TC}}(\mathbf{z}_t, r, t)$ is a linear function
 1007 w.r.t $\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)$, so it does not have a lower bound.
 1008 Any function $\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)$ which satisfies the condition
 1009 $\mathbf{u}_{\theta}^{\top}(\mathbf{z}_t, r, t) \frac{d\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)}{dt} \rightarrow -\infty$ minimizes the loss. This
 1010 confirms that the unconstrained \mathcal{L}_{TC} has a large, easily
 1011 optimizable solution space.

1012 Crucially, this finding does not contradict the difficulty of
 1013 optimizing $\mathcal{L}_{\text{CT}_c}$ noted in prior work Song et al. (2023); Lu
 1014 & Song (2025). In those papers, the optimization prob-
 1015 lem was made difficult by the explicit boundary condi-
 1016 tion $\mathbf{f}_{\theta}(\mathbf{z}_0, 0) = \mathbf{z}_0$, which constrains the velocity field
 1017 as $\mathbf{u}_{\theta}(\mathbf{z}_t, 0, t) = (\mathbf{z}_t - \mathbf{f}_{\theta}(\mathbf{z}_t, t)) / t = \hat{\mathbf{z}}_0$.

1019 E.2 ANALYSIS OF OPTIMAL SOLUTION BETWEEN 1020 TRAJECTORY FLOW MATCHING \mathcal{L}_{TFM} TRAJECTORY CONSISTENCY \mathcal{L}_{TC}

1021 Following the same derivation as above, minimizing $\mathcal{L}_{\text{MF}}(\theta)$ is equivalent to minimizing
 1022 $\mathcal{L}_{\text{MF}}(\theta, \mathbf{z}_t, r, t)$ for every fixed \mathbf{z}_t, r, t under Assumption 1, where:

$$1024 \mathcal{L}_{\text{MF}}(\theta, \mathbf{z}_t, r, t)$$

$$1025 = \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I}) \|\mathbf{u}_{\theta}(\mathbf{z}_t, r, t) - \mathbf{v}_t + (t-r) \frac{d\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)}{dt}\|_2^2 \cdot p(\mathbf{x}) d\mathbf{x}. \quad (25)$$

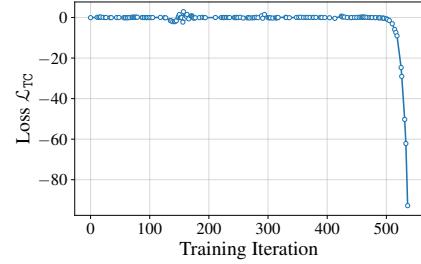


Figure 7: Optimization of \mathcal{L}_{TC} .

1026 Since the term $\mathbf{u}_{\theta-}$ is independent of \mathbf{u}_{θ} , $\mathcal{L}_{\text{MF}}(\theta, \mathbf{z}_t, r, t)$ remains a convex optimization problem
 1027 over \mathbf{u}_{θ} . Consequently, for all \mathbf{z}_t, r, t , the optimum satisfies:
 1028

$$1029 \nabla_{\mathbf{u}_{\theta}(\mathbf{z}_t, r, t)} \mathcal{L}_{\text{MF}}(\theta, \mathbf{z}_t, r, t) = 0, \quad (26)$$

$$1030 \Rightarrow \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I}) \left(\mathbf{u}_{\theta, \text{MF}}^*(\mathbf{z}_t, r, t) - \frac{\mathbf{z}_t - \mathbf{x}}{t} + (t-r) \frac{d\mathbf{u}_{\theta, \text{MF}}^*(\mathbf{z}_t, r, t)}{dt} \right) \cdot p(\mathbf{x}) d\mathbf{x} = 0, \\ 1031 \quad (27)$$

$$1032 \Rightarrow \mathbf{u}_{\theta, \text{MF}}^*(\mathbf{z}_t, r, t) + (t-r) \frac{d\mathbf{u}_{\theta, \text{MF}}^*(\mathbf{z}_t, r, t)}{dt} = \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t), \quad (28)$$

$$1033 \Rightarrow \mathbf{u}_{\theta, \text{MF}}^*(\mathbf{z}_t, r, t) = \frac{1}{t-r} \int_r^t \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t) dt. \quad (29)$$

1039 As detailed in Geng et al. (2025a), the constant term in the last equation is zero. Furthermore, to
 1040 minimize the $\mathcal{L}_{\alpha}(\theta)$ loss with $\tilde{\mathbf{v}}_{s,t} = \mathbf{v}_t$, the same assumption in Assumption 1 makes it equivalent
 1041 to minimizing $\mathcal{L}_{\alpha}(\theta, \mathbf{z}_t, r, t)$ for every fixed \mathbf{z}_t, r, t , where
 1042

$$1043 \mathcal{L}_{\alpha}(\theta, \mathbf{z}_t, r, t) = \alpha^{-1} \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{z}_t; (1-t)\mathbf{x}, t^2 \mathbf{I}) \|\mathbf{u}_{\theta}(\mathbf{z}_t, r, t) - \\ 1044 \quad (\alpha \cdot \mathbf{v}_t + (1-\alpha) \cdot \mathbf{u}_{\theta-}(\mathbf{z}_s, r, s))\|_2^2 \cdot p(\mathbf{x}) d\mathbf{x}.$$

1045 Applying the same zero-gradient condition, the optimal solution of $\mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_t, r, t)$ satisfies:
 1046

$$1047 \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_t, r, t) - (1-\alpha) \cdot \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_s, r, s) = \alpha \cdot \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t).$$

1048 Thus, when $\alpha = 1$:

$$1049 \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_t, r, t) = \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t), \quad (30)$$

1050 when $\alpha < 1$:

$$1051 \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_t, r, t) = \alpha \cdot \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t) + (1-\alpha) \cdot \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_s, r, s), \quad (31)$$

$$1052 \quad = \alpha \cdot \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t) + (1-\alpha)\alpha \cdot \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, s) + (1-\alpha)^2 \cdot \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_{t_k}, r, t_k), \quad (32)$$

$$1053 \quad = \dots, \quad (33)$$

$$1054 \quad = \alpha \sum_{k=0}^{\infty} (1-\alpha)^k \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_{t_k}, t_k), \quad (34)$$

1055 where $t_k = r + (1-\alpha)^k(t-r)$. Let $\lambda_k := (1-\alpha)^k$, thus $\Delta\lambda_k = \lambda_k - \lambda_{k+1} = \alpha(1-\alpha)^k$, so:
 1056

$$1057 \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_t, r, t) = \sum_{k=0}^{\infty} (\lambda_k - \lambda_{k+1}) \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_{r+\lambda_k(t-r)}, r + \lambda_k(t-r)), \quad (35)$$

$$1058 \quad = \frac{1}{t-r} \sum_{k=0}^{\infty} (\tau_k - \tau_{k+1}) \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_{\tau_k}, \tau_k), \quad (36)$$

1059 where $\tau_k = r + \lambda_k(t-r)$. This is a left Riemann sum, and as $\alpha \rightarrow 0$, $\Delta\lambda_k \rightarrow 0$ and:
 1060

$$1061 \lim_{\alpha \rightarrow 0} \mathbf{u}_{\theta, \alpha}^*(\mathbf{z}_t, r, t) = \frac{1}{t-r} \int_r^t \mathbf{u}_{\theta, \text{TFM}}^*(\mathbf{z}_t, t) dt = \mathbf{u}_{\theta, \text{MF}}^*(\mathbf{z}_t, r, t). \quad (37)$$

1080
1081 **Assumption 2.** The optimal velocity function $u_{\theta, \text{TFM}}^*(z_t, t)$ and the parametric velocity function
1082 $u_{\theta}(z_t, r, t)$ satisfy the following properties:
1083

- 1084 • **Lipschitz Continuity of Optimal Velocity:** There exists a constant $L_1 > 0$ such that for all
1085 $t_1, t_2 \in [0, 1]$ and corresponding z_{t_1}, z_{t_2} ,

$$1086 \quad \|u_{\theta, \text{TFM}}^*(z_{t_1}, t_1) - u_{\theta, \text{TFM}}^*(z_{t_2}, t_2)\|_2 \leq L_1 |t_1 - t_2|. \quad (38)$$

- 1087 • **Lipschitz Continuity of Time Derivative:** There exists a constant $L_2 > 0$ such that for all
1088 $t_1, t_2 \in [r, 1]$ (where $r \in [0, 1]$) and corresponding z_{t_1}, z_{t_2} ,

$$1089 \quad \left\| \frac{du_{\theta}(z_{t_1}, r, t_1)}{dt} - \frac{du_{\theta}(z_{t_2}, r, t_2)}{dt} \right\|_2 \leq L_2 |t_1 - t_2|. \quad (39)$$

- 1090 • **Boundedness of Gradient and Time Derivative:** There exist constants $C_1, C_2 > 0$ such that
1091 for all $r, t \in [0, 1]$ with $r \leq t$, and for the corresponding z_t ,

$$1092 \quad \|\nabla_{\theta}^{\top} u_{\theta}(z_t, r, t)\|_2 \leq C_1, \quad \text{and} \quad \left\| \frac{du_{\theta}(z_t, r, t)}{dt} \right\|_2 \leq C_2. \quad (40)$$

1101 The Lipschitz continuity of the score function is a common assumption widely adopted in the the-
1102oretical analysis of score functions in diffusion models Chen et al. (2022; 2023). Here, we assume
1103 the Lipschitz continuity of the optimal velocity function $u_{\theta, \text{TFM}}^*(z_t, t)$ and the derivative of u_{θ} over
1104 $t, \frac{du_{\theta}(z_t, r, t)}{dt}$. The boundedness of $\|\nabla_{\theta}^{\top} u_{\theta}(z_t, r, t)\|_2$ holds in reality as we using gradient clip over
1105 each element in $\nabla_{\theta}^{\top} u_{\theta}(z_t, r, t)$ to stablize training. Thus, under a finite α :

$$1109 \quad \|u_{\theta, \alpha}^*(z_t, r, t) - u_{\theta, \text{MF}}^*(z_t, r, t)\|_2 = \left\| \frac{1}{t-r} \sum_{k=0}^{\infty} \int_{\tau_{k+1}}^{\tau_k} (u_{\theta, \text{TFM}}^*(z_{\tau_k}, \tau_k) - u_{\theta, \text{TFM}}^*(z_{\tau}, \tau)) d\tau \right\|_2, \quad (41)$$

$$1113 \quad \leq \frac{1}{t-r} \sum_{k=0}^{\infty} \int_{\tau_{k+1}}^{\tau_k} \|u_{\theta, \text{TFM}}^*(z_{\tau_k}, \tau_k) - u_{\theta, \text{TFM}}^*(z_{\tau}, \tau)\|_2 d\tau, \quad (42)$$

$$1117 \quad \leq \frac{1}{t-r} \sum_{k=0}^{\infty} \int_{\tau_{k+1}}^{\tau_k} L_1 (\tau_k - \tau) d\tau, \quad (43)$$

$$1120 \quad = \frac{1}{t-r} \sum_{k=0}^{\infty} \frac{L_1}{2} (\tau_k - \tau_{k+1})^2, \quad (44)$$

$$1123 \quad = \frac{L_1(t-r)}{2} \alpha^2 \sum_{k=0}^{\infty} (1-\alpha)^{2k}, \quad (45)$$

$$1125 \quad = \frac{L_1(t-r)}{2} \cdot \frac{\alpha}{2-\alpha}, \quad (46)$$

1128 $\|u_{\theta, \alpha}^*(z_t, r, t) - u_{\theta, \text{MF}}^*(z_t, r, t)\|_2$ decreases with α and $\lim_{\alpha \rightarrow 0} \|u_{\theta, \alpha}^*(z_t, r, t) - u_{\theta, \text{MF}}^*(z_t, r, t)\|_2 =$
1129 0; hence the two optimal solution coincide as $\alpha \rightarrow 0$, which align with our previous proof.

1131 E.3 NON-SYMPOTIC DISTANCE BETWEEN GRADIENT FROM α -FLOW AND MEANFLOW

1132 From Equation (8), when $\tilde{v}_{s,t} = v_t$ the gradient of α -Flow loss is:

$$\begin{aligned}
\nabla_{\theta} \mathcal{L}_{\alpha}(\theta) &= \mathbb{E}_{t,r,z_t} \left[\alpha^{-1} \cdot \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot (\mathbf{u}_{\theta}(z_t, r, t) - (\alpha \cdot \mathbf{v}_t + (1 - \alpha) \cdot \mathbf{u}_{\theta-}(z_s, r, s))) \right], \\
&= \mathbb{E}_{t,r,z_t} \left[\nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot (\mathbf{u}_{\theta}(z_t, r, t) - \mathbf{v}_t) \right] \\
&\quad + \mathbb{E}_{t,r,z_t} \left[\frac{1 - \alpha}{\alpha} \cdot \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot (\mathbf{u}_{\theta}(z_t, r, t) - \mathbf{u}_{\theta-}(z_s, r, s)) \right], \\
&= \nabla_{\theta} \mathcal{L}_{\text{TFM}}(\theta) + \mathbb{E}_{t,r,z_t} \left[(1 - \alpha) \cdot \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot \frac{1}{\alpha} \int_s^t \frac{d\mathbf{u}_{\theta-}(z_{\tau}, r, \tau)}{dt} d\tau \right]. \tag{47}
\end{aligned}$$

And the gradient of MeanFlow loss could be written as:

$$\begin{aligned}
\nabla_{\theta} \mathcal{L}_{\text{MF}}(\theta) &= \mathbb{E}_{t,r,z_t} \left[\nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot \left(\mathbf{u}_{\theta}(z_t, r, t) - \mathbf{v}_t + (t - r) \frac{d\mathbf{u}_{\theta-}(z_t, r, t)}{dt} \right) \right] \\
&= \nabla_{\theta} \mathcal{L}_{\text{TFM}}(\theta) + \mathbb{E}_{t,r,z_t} \left[(t - r) \cdot \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot \frac{d\mathbf{u}_{\theta-}(z_t, r, t)}{dt} \right] \tag{48}
\end{aligned}$$

Thus, the ℓ_2 distance between $\nabla_{\theta} \mathcal{L}_{\alpha}(\theta)$ and $\nabla_{\theta} \mathcal{L}_{\text{MF}}(\theta)$ is:

$$\begin{aligned}
&\| \nabla_{\theta} \mathcal{L}_{\alpha}(\theta) - \nabla_{\theta} \mathcal{L}_{\text{MF}}(\theta) \|_2 \\
&= \left\| \mathbb{E}_{t,r,z_t} \left[\nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \frac{1}{\alpha} \int_s^t \left((1 - \alpha) \frac{d\mathbf{u}_{\theta-}(z_{\tau}, r, \tau)}{dt} - \frac{d\mathbf{u}_{\theta-}(z_t, r, t)}{dt} \right) d\tau \right] \right\|_2 \\
&\leq \| \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \|_2 \cdot \mathbb{E}_{t,r,z_t} \left[\frac{1}{\alpha} \int_s^t \left\| \frac{d\mathbf{u}_{\theta-}(z_{\tau}, r, \tau)}{dt} - \frac{d\mathbf{u}_{\theta-}(z_t, r, t)}{dt} \right\|_2 d\tau + \int_s^t \left\| \frac{d\mathbf{u}_{\theta-}(z_{\tau}, r, \tau)}{dt} \right\|_2 d\tau \right] \\
&\leq C_1 \cdot \mathbb{E}_{t,r,z_t} \left[\frac{1}{\alpha} \int_s^t L_2(t - \tau) d\tau + \alpha(t - r) C_2 \right] \\
&= \alpha \cdot C_1 \mathbb{E}_{t,r} \left[\frac{1}{2} L_2(t - r)^2 + C_2(t - r) \right] \tag{49}
\end{aligned}$$

Because $t, r \in [0, 1]$, $\mathbb{E}_{t,r} \left[\frac{1}{2} L_2(t - r)^2 + C_2(t - r) \right]$ will be a finite constant no matter the choice of distribution of r and t . Thus the upper bound of $\| \nabla_{\theta} \mathcal{L}_{\alpha}(\theta) - \nabla_{\theta} \mathcal{L}_{\text{MF}}(\theta) \|_2$ is linearly depend on α , and will vanish to 0 when $\alpha \rightarrow 0$, align with our Theorem 1 that $\nabla_{\theta} \mathcal{L}_{\text{MF}}(\theta) = \nabla_{\theta} \mathcal{L}_{\alpha \rightarrow 0}(\theta)$.

E.4 VARIANCE OF α -FLOW GRADIENT

Let $X \triangleq \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot (\mathbf{u}_{\theta}(z_t, r, t) - \mathbf{v}_t)$ and $Y \triangleq \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot \frac{1}{\alpha} \int_s^t \frac{d\mathbf{u}_{\theta-}(z_{\tau}, r, \tau)}{dt} d\tau$.

$$\begin{aligned}
& \mathbb{V}[\nabla_{\theta} \mathcal{L}_{\alpha}(\theta)] \\
&= \mathbb{V}_{t,r,z_t} [\alpha^{-1} \cdot \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \cdot (\mathbf{u}_{\theta}(z_t, r, t) - (\alpha \cdot \mathbf{v}_t + (1 - \alpha) \cdot \mathbf{u}_{\theta-}(z_s, r, s)))], \\
&= \mathbb{V}_{t,r,z_t} [X + (1 - \alpha)Y], \\
&\leq \left(\sqrt{\mathbb{V}_{t,r,z_t}[X]} + (1 - \alpha) \sqrt{\mathbb{V}_{t,r,z_t}[Y]} \right)^2, \\
&\leq \left(\sqrt{\mathbb{V}[\nabla_{\theta} \mathcal{L}_{\text{TFM}}(\theta)]} + (1 - \alpha) \sqrt{\mathbb{E}_{t,r,z_t}[\|Y\|_2^2]} \right)^2, \\
&\leq \left(\sqrt{\mathbb{V}[\nabla_{\theta} \mathcal{L}_{\text{TFM}}(\theta)]} + (1 - \alpha) \sqrt{\mathbb{E}_{t,r,z_t} \left[\left\| \nabla_{\theta}^{\top} \mathbf{u}_{\theta}(z_t, r, t) \right\|_2^2 \cdot \left\| \frac{1}{\alpha} \int_s^t \frac{d\mathbf{u}_{\theta-}(z_{\tau}, r, \tau)}{dt} d\tau \right\|_2^2 \right]} \right)^2, \\
&\leq \left(\sqrt{\mathbb{V}[\nabla_{\theta} \mathcal{L}_{\text{TFM}}(\theta)]} + (1 - \alpha) \cdot C_1 \cdot C_2 \cdot \sqrt{\mathbb{E}_{t,r}[(t - r)^2]} \right)^2,
\end{aligned}$$

Thus, the upper bound of the variance of $\nabla_{\theta} \mathcal{L}_{\text{MF}}(\theta)$ increases as α approaches 0.

F ANALYSIS DETAILS

The detailed implementation of DiT-B/2 is provided in Table 3, where we adopt the DiT-B/2-non-cfg setting. For loss evaluation, at each checkpoint we use a batch size of 128 and run 1000 iterations to compute the mean loss along with its 5% and 95% percentiles, which are reported in the figure. To measure the cosine similarity between different losses, we calculate $\nabla \mathcal{L}_{\text{TFM}}$, $\nabla \mathcal{L}_{\text{FM'}}$, and $\nabla \mathcal{L}_{\text{TC}}$ on the same batch and then compute their pairwise cosine similarities, which is defined as:

$$\text{cosine similarity}(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|},$$

given two vectors \mathbf{a}, \mathbf{b} . This procedure is also repeated over 1000 iterations to obtain the mean similarity and its 5% and 95% percentiles, as shown in the figure.

G IMPLEMENTATION DETAILS

Implementation details are shown in Table 3.

H ADDITIONAL EXPERIMENTS

H.1 ABLATION STUDY OVER BATCH SIZE

Training diffusion/flow-based models can be challenging due to the high variance of their gradients. Past research Zhou et al. (2025); Karras et al. (2022; 2024) often used large batch sizes (1024 or even 4096) to mitigate this issue. In this section, we fine-tune a MeanFlow-XL/2 model (with implementation details in Table 3) for an additional 60 epochs using a large batch size.

As shown in Table 4, a batch size of 512 achieved the best 1-NFE FID of 3.05 and FDD of 164.3. A batch size of 1024, however, yielded the best FDD of 93.4. Overall, a batch size of 1024 performed well across all metrics, so we designate this configuration as MeanFlow-XL/2+. The same setting is applied to fine-tune the MeanFlow-XL/2 model, leading to the MeanFlow-XL/2+ results in Table 1. Our proposed α -Flow-XL/2+ model outperforms MeanFlow-XL/2+ in several key metrics: 1-NFE FID (2.58 vs. 3.06), 1-NFE FDD (148.4 vs. 165.7) and 2-NFE FID (2.15 vs. 2.16), only worse in 2-NFE FDD (96.8 vs. 93.4). These results demonstrate the overall effectiveness of our α -Flow

1242 Table 3: Configurations on ImageNet 256×256. B/2-non-cfg is our ablation and analysis model in
 1243 the main text.

1244

1245	Configs	DiT-B/2-non-cfg	DiT-B/2	DiT-XL/2	DiT-XL/2+
<i>Network Architectures</i>					
1247	Params (M)	131	131	676	676
1248	FLOPs (G)	23.1	23.1	119.0	119.0
1249	Depth	12	12	28	28
1250	Hidden dim	768	768	1152	1152
1251	Heads	12	12	16	16
1252	Patch size	2×2	2 × 2	2 × 2	2 × 2
<i>Training hyperparameters</i>					
1253	Training steps	400K	1.2M	1.2M	1.2M
1254	Batch size for training	256	256	256	256
1255	Fine-tuning steps	–	–	–	75K
1256	Batch size for fine-tuning	–	–	–	1024
1257	Dropout		0.0		
1258	Optimizer		Adam Kingma & Ba (2014)		
1259	lr schedule		constant		
1260	lr		0.0001		
1261	Adam (β_1, β_2)		(0.9, 0.95)		
1262	Weight decay		0.0		
1263	EMA half-life		6931		
1264	Gradient clipping norm		16		
1265	Autoencoder used		sd-vae-ft-ema		
<i>α-Flow hyperparameters</i>					
1266	Ratio of $r = t$ (r, t) sampler	Table 2 (b)	25%	50%	50%
1267			logitnorm(–0.4, 1.0)		
1268	$\tilde{\mathbf{v}}_{s,t}$	Table 5 (a)	\mathbf{v}_t	\mathbf{v}_t	\mathbf{v}_t
1269	Whether to use EMA for \mathbf{u}_θ –	Table 5 (a)	No	No	No
1270	Adaptive weight	Table 5 (b)	$\omega = \alpha / (\ \Delta\ _2^2 + c)$		
<i>Schedule of α</i>					
1271	γ	25	25	25	
1272	k_s		0	600K	600K
1273	k_e	Table 2 (b)	1.2M	1M	1M
1274	η	Table 5 (c)	5×10^{-3}	5×10^{-3}	5×10^{-3}
<i>CFG training</i>					
1275	w	–	1.0	0.2	0.2
1276	κ	–	1.0	0.92	0.92
1277	CFG triggered if t is in	–	[0.0, 1.0]	[0.0, 0.75]	[0.0, 0.75]
1278	Whether use EMA for CFG	–	No	No	No
<i>2-NFE Sampling</i>					
1279	Method	ODE	ODE	consistency	consistency
1280	Intermediate timestep	0.5	0.5	0.55	0.5

1282

1283

1284

1285

method. Notably, the results in Table 4 are obtained using labels sampled from the ImageNet dataset distribution, whereas the results in Table 1 use randomly generated labels. In general, sampling labels from the ImageNet distribution leads to lower FID scores compared to using random labels.

1286

1287

1288

1289

1290

1291

H.2 ABLATION STUDY OVER α -FLOW DESIGN SPACE

1292

1293

1294

1295

This section contains an ablation study on α -Flow, specifically for $\alpha \in (0, 1)$. We use a DiT-B/2-non-cfg model (see Table 3) that is pre-trained on flow matching for 200k iterations and then fine-tuned on α -Flow for another 200k iterations. Across all experiments, α remains a constant, and the ratio of $r = t$ is 25 %.

```

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Algorithm 3  $\alpha$ -Flow: Sampling


---



```

1 = t1 > t2 > ... > tN = 0 :sequence of
 timesteps
z = randn_like(x)
for n in range(N):
 m = n + 1
 if consistency_sampling:
 z = z - tn * fn(z, r=0, t=tn)
 z = z + tm * randn_like(x)
 elif ODE_sampling:
 z = z - (tn - tm) * fn(z, r=tm, t=tn)

```



---



```

$\tilde{v}_{s,t}$	u_{θ^-}	FID	FDD
u_{θ^-}	EMA	188.1	1761.6
u_{θ^-}	Non-EMA	319.0	4009.9
v_t	EMA	202.8	1832.3
v_t	Non-EMA	59.2	964.6

(a) Reformulate the training objective.

α	FID	FDD
10^{-2}	49.7	845.2
5×10^{-3}	46.2	860.8
2×10^{-3}	50.3	833.0
1×10^{-3}	57.2	863.7

(c) Consistency step ratio.

Batch Size	NFE 1		NFE 2	
	FID	FDD	FID	FDD
256	3.13	167.2	2.31	97.1
512	3.05	164.3	2.21	95.2
1024	3.06	165.7	2.16	93.4
2048	3.29	169.6	2.10	96.6
4096	3.13	168.9	2.16	95.1

Table 4: Ablation study over the fine-tuning batch size using the data distribution over class labels.

Loss weight	FID	FDD
$\omega = 1$	59.2	964.6
$\omega = 1 / (\ \Delta\ _2^2 + c)^{0.5}$	55.0	918.5
$\omega = 1 / (\ \Delta\ _2^2 + c)$	52.2	883.6
$\omega = \alpha / (\ \Delta\ _2^2 + c)$	49.7	845.2

(b) Adaptive loss.

Method	FID	FDD
Shortcut Model	59.8	1017.3
$\tilde{v} = v(z_t, t x)$	59.2	964.6
+ Adaptive loss	49.7	845.2
+ $\alpha = 0.005$	45.6	857.8
MeanFlow	43.3	822.3

(d) Overall ablation study.

Table 5: Ablation study over α -Flow.

Training objective. Here, we set $\alpha = 10^{-2}$. Table 5(a) shows that the model only converge when $\tilde{v}_{s,t}$ was set to v_t and without using EMA for u_{θ^-} . This is a key difference from Shortcut Models Frans et al. (2025), which set $\tilde{v}_{s,t} = u_{\theta^-}$. We suspect their objective only works when α is larger (e.g., 0.5).

Adaptive loss. Geng et al. (2025a) uses an adaptive weight: $\omega = 1 / (\|\Delta\|_2^2 + c) = 1 / (\mathcal{L}_{\text{MF}} + c)$. From Equation (12), we could derive $\lim_{\alpha \rightarrow 0} \mathcal{L}_\alpha = \alpha \mathcal{L}_{\text{MF}}$. When α is close 0, we approximate \mathcal{L}_{MF} as $\mathcal{L}_\alpha / \alpha$. This gives us a new adaptive weight, $\omega = 1 / (\mathcal{L}_\alpha / \alpha + c) \approx \alpha / (\mathcal{L}_\alpha + c) = \alpha / (\|\Delta\|_2^2 + c)$ as both c and α is very small. As shown in Table 5(b), this new weight performs better empirically, especially compared to the original MeanFlow adaptive weight.

Consistency step ratio. Ablating the α in Table 5 (c) reveals that $\alpha = 5 \times 10^{-3}$ to be the optimal consistency step ratio. This value was then used as the clamping value for our schedule.

Table 5(d) shows that by combining these improvements, our discrete α -Flow approach significantly reduces the performance gap between Shortcut models and the MeanFlow model.

H.3 OPTIMAL RATIO OF $r = t$ UNDER DIFFERENT NFE

In this subsection, we extend the experiment results in Table 2 (b) to NFE 5. As shown in Table 6, the optimal ratio of $r = t$ required to achieve the best generation quality for NFE 5 is also 75%. We hypothesize this is because Flow Matching inherently possesses a degree of few-step generation capability. Therefore, when mixing the training of standard Flow Matching and α -Flow, varying the ratio $r = t$ introduces a trade-off between single-step and few-step generation.

% $r = t$	Model	NFE 1		NFE 2		NFE 5	
		FID	FDD	FID	FDD	FID	FDD
0%	Constant _{0.0}	46.0	879.6	44.3	867.7	44.0	843.8
	Sigmoid _{0K → 400K}	40.4	822.5	38.9	811.8	38.2	779.0
25%	Constant _{0.0}	44.4	844.1	42.1	836.3	41.3	817.8
	Sigmoid _{0K → 400K}	40.0	785.4	37.1	782.9	36.9	770.0
50%	Constant _{0.0}	43.9	844.1	42.1	836.3	38.4	783.3
	Sigmoid _{0K → 400K}	40.2	781.0	37.1	775.0	35.5	743.5
75%	Constant _{0.0}	43.1	819.2	38.5	787.6	36.0	752.1
	Sigmoid _{0K → 400K}	42.2	810.5	36.2	754.7	33.7	716.1

Table 6: Optimal $\%t = r$ under different NFE.

Model	NFE 1		NFE 2	
	FID	FDD	FID	FDD
FM _{0K → 200K} + MeanFlow _{200K → 400K}	42.3	798.1	37.6	772.4
TFM _{0K → 200K} + MeanFlow _{200K → 400K}	42.3	821.8	37.2	780.2
Sigmoid _{0K → 400K}	40.2	781.0	37.1	775.0
REPA _{0K → 400K} + MeanFlow _{400K → 600K}	32.0	667.4	25.5	594.3
REPA _{0K → 400K} + Sigmoid _{400K → 600K}	30.7	657.1	25.3	601.5

Table 7: Finetuning from pretrained flow models.

H.4 FINETUNING FROM PRETRAINED FLOW MODELS

In this subsection, we study the performance of α -Flow by finetuning from pretrained flow models. Specifically, We have conducted experiments comparing α -Flow with standard MeanFlow finetuning when starting from pre-trained Flow Matching (FM), Trajectory Flow Matching (TFM), and FM + Representation Alignment Yu et al. (2025) (REPA) models. We use DiT-B/2-non-cfg configs in Table 3 for backbone models. Both FM, TFM and FM + REPA are pretrained by ourselves. Experiment results are shown in Table 7. A specific configuration for α -Flow deserves mention: for the experiment labeled REPA_{0K → 400K} + Sigmoid_{400K → 600K}, we adjusted the initial α parameter. Since the pre-trained model was provided at the 400K iterations, we set the initial value of α to 0.5 instead of 1.0 at the beginning of the α -Flow fine-tuning phase.

Under a direct epoch-to-epoch comparison, starting from the same pre-trained model, α -Flow consistently outperforms MeanFlow for one-step generation (NFE 1) and achieves comparable performance for two-step generation. Specifically, under NFE 1, α -Flow (FID 40.2, FDD 781.0) demonstrates significant gains: it surpasses the FM + MeanFlow baseline by 2.1 FID and 17.1 FDD, and it surpasses the TFM + MeanFlow baseline by 2.1 FID and 40.8 FDD. Furthermore, when initialized with the same FM+ REPA model, α -Flow (FID 30.7, FDD 657.1) still outperforms MeanFlow by 1.3 FID and 10.3 FDD in one-step generation. Since the α -Flow method inherently consists of three sequential stages: TFM pre-training, α -Flow annealing, and MeanFlow fine-tuning, these results directly demonstrate the effectiveness of the α -Flow annealing stage. This stage is particularly beneficial for improving the quality of one-step sampling.

H.5 DISTILLATION

In this subsection, we conduct the distillation experiment. Specifically, we distilled the α -Flow model (using the DiT-B/2 architecture) with a DiT-B/2-REPA teacher model, which we trained for 400K iterations.

The experimental results, summarized in Table 8, clearly demonstrate that distillation improves the performance of α -Flow for both NFE 1 and NFE 2 settings. The distilled α -Flow model, using the Sigmoid_{0K → 100K} schedule (the first line in Table above), outperformed the α -Flow trained from scratch with the Sigmoid_{0K → 400K} schedule (the last line of the Table 2 (a)). For NFE 1, the

Schedule	NFE 1		NFE 2	
	FID	FDD	FID	FDD
Sigmoid _{0K → 100K}	36.6	756.9	33.2	701.3
Sigmoid _{50K → 150K}	37.1	749.2	33.4	702.9
Sigmoid _{100K → 200K}	37.8	757.5	33.5	704.7
Sigmoid _{150K → 250K}	36.7	743.2	34.1	706.9
Sigmoid _{0K → 400K}	36.9	738.9	33.6	704.3

Table 8: Distillation of α -Flow-B/2.

Method	NFE 1			NFE 2		
	FID	FDD	FVD	FID	FDD	FVD
MeanFlow-B/2	53.2	1031.9	619.5	49.5	995.3	580.8
α -Flow-B/2	50.7	1010.4	598.0	48.1	983.2	567.3
MeanFlow-B/2-cfg	32.3	779.0	298.1	26.6	719.8	249.6
α -Flow-B/2-cfg	29.6	709.8	276.2	24.9	657.4	217.3

Table 9: Kinetics-700 17×256^2 experiments.

distilled model achieved improvements of 3.4 (FID) and 28.5 (FDD). For NFE 2, the distilled model showed improvements of 3.9 (FID) and 81.6 (FDD).

It is important to note that the optimal distillation schedule shifted to Sigmoid_{0K → 100K}. This change is expected, as the teacher model (DiT-B/2-REPA) was already pretrained. This pretrained knowledge allows the distillation process to reducing the initial $\alpha = 1$ training stage.

H.6 EXPERIMENTS ON KINETICS-700 17×256^2

In this subsection, we demonstrate the generalization capabilities of α -Flow. We apply the framework to a higher resolution and different modality: video generation. Specifically, we choose the Kinetics-700 dataset Carreira et al. (2019), where the video dimension is $256 \times 256 \times 17$ (resolution 256×256 with 17 frames). We employed the DiT-B/2 architecture and trained the model for 600K iterations, both with and without CFG. For CFG training, we set the guidance scale $\omega = 1.0$ and the classifier weight $\kappa = 0.7$. In addition to the standard FID and FDD metrics, we used the Fréchet Video Distance (FVD) Unterthiner et al. (2019) to evaluate the quality of video generation, where a lower value indicates better quality.

As shown in the Table 9, α -Flow consistently outperforms MeanFlow across all metrics and settings. When training without CFG, α -Flow achieved improvements of 2.5 (NFE 1 FID), 21.5 (NFE 1 FDD), 21.5 (NFE 1 FVD), 1.4 (NFE 2 FID), 11.9 (NFE 2 FDD), and 13.5 (NFE 2 FVD); When training with CFG: α -Flow achieved improvements of 2.7 (NFE 1 FID), 69.2 (NFE 1 FDD), 21.9 (NFE 1 FVD), 1.7 (NFE 2 FID), 62.4 (NFE 2 FDD), and 32.3 (NFE 2 FVD). These experimental results successfully demonstrate the effectiveness and robust generalization of the α -Flow framework across more diverse datasets and modalities.

H.7 STABILITY ANALYSIS BETWEEN MEANFLOW AND α -FLOW

In this subsection, we analyze the training dynamics of MeanFlow and α -Flow by evaluating the variance of the MeanFlow loss and the gradient norms throughout the training process. Experiment results are shown in Figure 8, where the variance for each loss and gradient norm is estimated over 500 iterations.

As shown in Figure 8, the variance of the loss and the gradient norm for α -Flow are lower than those for MeanFlow during the TFM pretraining and α -Flow annealing stages (to the left of the blue dot line). This indicates a more stable training process for α -Flow in these early stages. This stability aligns with the statement that α -Flow annealing effectively transitions the training objective from a “high-bias, low-variance” state to the necessary “low-bias, high-variance” state.

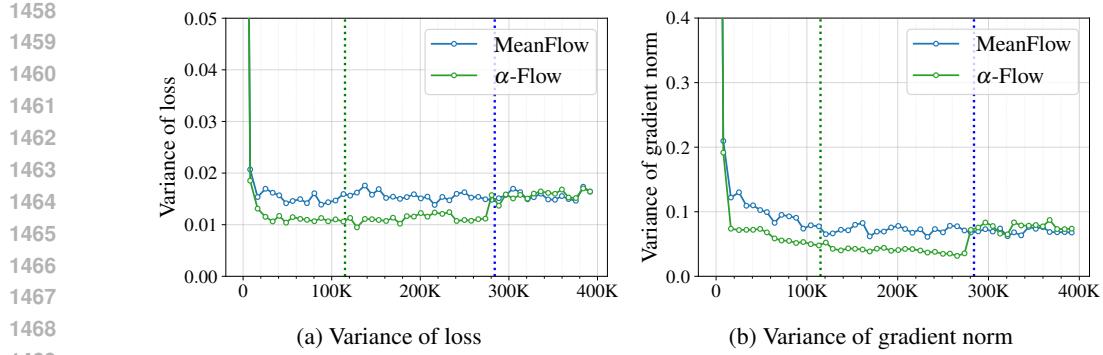


Figure 8: **Stability comparison of α -Flow and MeanFlow.** The green dotted line indicates the transition from TFM pretraining to α -Flow annealing, while the blue dotted line represents the subsequent transition from α -Flow annealing to MeanFlow training.

Guidance method	NFE 1		NFE 2	
	FID	FDD	FID	FDD
u -target guidance	25.1	645.1	9.5	392.7
CFG guidance	10.0	445.8	7.7	365.2

Table 10: **Ablation of guidance methods.**

Despite these early stability advantages, the α -Flow formulation ultimately trains the full MeanFlow loss in its final stage (as $\alpha \rightarrow 1$). Consequently, α -Flow cannot fully circumvent the inherent instability introduced by the MeanFlow objective.

H.8 MORE GUIDANCE METHOD

Beyond standard Classifier-Free Guidance (CFG) training, we explored an alternative guidance method called u -target guidance. This method is based on optimizing the following loss function:

$$\mathcal{L}_{u_{tgt}}(\theta) = \mathbb{E}_{t,r,z_t,c} \left\| \mathbf{u}_\theta(z_t, r, t | c) - (1 + \omega_{u_{tgt}}) \cdot \mathbf{u}_{tgt}(z_t, r, t) - \omega_{u_{tgt}} \cdot \mathbf{u}_\theta(z_t, r, t | \emptyset) \right\|_2^2, \quad (50)$$

where $\omega_{u_{tgt}}$ is the guidance strength. The specific definition of the target vector, $\mathbf{u}_{tgt}(z_t, r, t)$, depends on the underlying loss formulation being used:

- For MeanFlow loss, $\mathbf{u}_{tgt}(z_t, r, t) := \mathbf{v}_t - (t - r) \frac{d\mathbf{u}_\theta(z_t, r, t)}{dt}$
- For α -Flow loss, $\mathbf{u}_{tgt}(z_t, r, t) := (\alpha \cdot \tilde{\mathbf{v}}_{s,t} + (1 - \alpha) \cdot \mathbf{u}_\theta(z_s, r, s))$.

The fundamental difference between u -target guidance and CFG training lies in the unconditional prediction component. The u -target guidance uses $\mathbf{u}_\theta(z_t, r, t | \emptyset)$ for the unconditional prediction conditioned, instead of unconditional prediction $\mathbf{u}_\theta(z_t, r, t | \emptyset)$ employed in CFG training.

We compared u -target guidance with CFG guidance using MeanFlow-B/2 architecture, training on ImageNet-1K 256² for 400K iterations. We set $\omega_{u_{tgt}} = 2.5$. Experiment results are shown in Table 10. The u -target guidance performs significantly worse than CFG guidance when using NFE 1 and is still slightly worse even at NFE 2. Thus in the main paper we use the CFG guidance.

H.9 DISCUSSION OF THE GRADIENT CONFLICT

In this subsection, we discuss the gradient conflict between $\nabla_\theta \mathcal{L}_{TFM}$ and $\nabla_\theta \mathcal{L}_{TC}$ in Figure 3a. In general, for the minimizer x^* of some arbitrary, regular function $f(x) = g(x) + h(x)$, one can trivially show the relation $\nabla_x g(x^*) = -\nabla_x h(x^*)$ from the necessary condition $\nabla_x f(x^*) = 0$.

However, our empirical analysis in Figure 3a shows this gradient relationship from the early start of the optimization process, where the gradients of \mathcal{L}_{TFM} and \mathcal{L}_{TC} are already strongly negatively

1512 correlated (specifically, < -0.9). Crucially, this correlation becomes weaker (around -0.7) as
 1513 training progresses.

1514
 1515 This behavior is opposite to what would be expected if the negative correlation simply resulted
 1516 from convergence to a stationary point. Instead, the decreasing correlation indicates that the two
 1517 loss components exert conflicting optimization signals early in training, and gradually become more
 1518 aligned as the model parameters adapt.

1519 This suggests that the observed gradient dissimilarity reflects a different underlying mechanism than
 1520 the trivial relation implied by $\nabla_x f(x^*) = 0$. This mechanism could be better explained by how
 1521 far apart the corresponding minimizers $\arg \min g(x)$ and $\arg \min h(x)$ are. This evolution likely
 1522 reflects the interaction between two loss components whose minima are initially far apart: early in
 1523 training, their gradients point toward distinct optima, leading to strong opposition, whereas as the
 1524 model parameters evolve and the shared representation (and with the optimizer’s preconditioning
 1525 reweighting the directions) begins to satisfy both objectives, the corresponding descent directions
 1526 become partially aligned.

I LLM USAGE

1530 As requested by the ICLR 2026 policy³, we disclose the usage of Large Language Models in this
 1531 section. LLMs were primarily used in two capacities:

- 1533 • Coding assistance for experiments. LLMs provided code auto-completion functionality to
 1534 ease the process of implementing and analyzing the experiments.
- 1535 • Writing assistance for paper writing. We used LLMs to assist with grammar and phrasing
 1536 validation while working on the submission.

J RANDOM VS BALANCED CLASSES FOR FID COMPUTATION

1541 We treat EDM series (Karras et al., 2022; 2024) as the standard in FID (Heusel et al., 2017) eval-
 1542 uations, which use a randomly sampled class label (from 0 to 999) for each sample in constructing
 1543 50,000 synthetic examples with the model. We found a curious way to decrease the FID values
 1544 by up to 10% by using “balanced” class sampling: instead of using 50,000 independently sampled
 1545 random classes, one can generate 50 samples for each of 1000 classes. This greatly improves FID
 1546 results, but not FDD (*i.e.*, Fréchet Distance in the DINOv2 (Oquab et al., 2023) feature space) or
 1547 FCD (Kynkänniemi et al., 2022) (*i.e.*, Fréchet Distance in the CLIP-L-based (Radford et al., 2021)
 1548 feature space).

1549 Since it is not a standard practice in the community, we only report it separately from the random
 1550 class sampling results and with the appropriate notice. But we emphasize that it might be a more
 1551 reasonable way to evaluate FID since it reduces the variance (we are less likely to sample an unlucky
 1552 set of classes). We provide the results for it in Table 11.

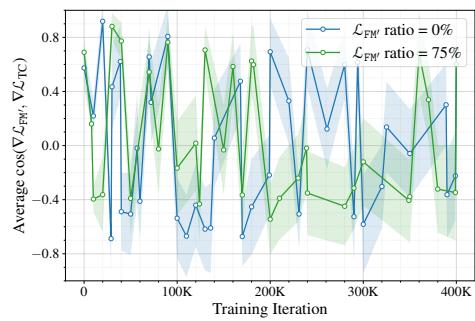
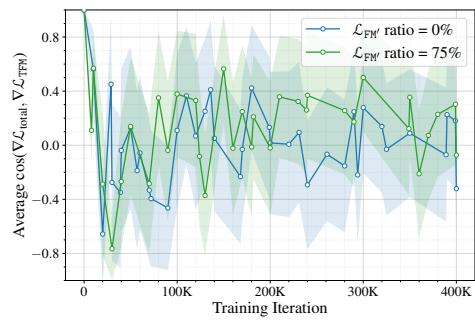
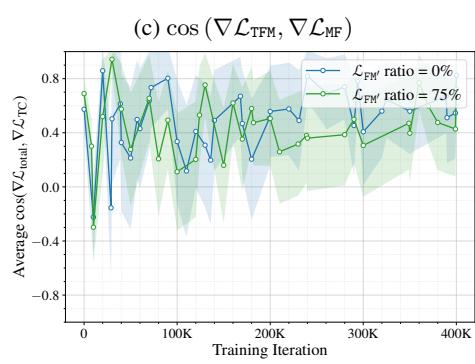
Method	Class sampling	Params	Epochs	NFE 1			NFE 2		
				FID	FDD	FCD	FID	FDD	FCD
MeanFlow-XL/2*	Random $U[1..1000]$	676M	240	3.47	185.8	3.39	2.46	108.7	2.40
α -Flow-XL/2 (ours)	Random $U[1..1000]$	676M	240	2.95	164.6	3.14	2.32	105.7	2.42
α -Flow-XL/2+ (ours)	Random $U[1..1000]$	676M	240+60	2.58	148.4	3.07	2.15	96.8	2.31
MeanFlow-XL/2*	Balanced	676M	240	3.33	182.8	3.34	2.26	106.1	2.36
α -Flow-XL/2 (ours)	Balanced	676M	240	2.81	162.4	3.10	2.16	103.2	2.37
α -Flow-XL/2+ (ours)	Balanced	676M	240+60	2.44	147.2	3.04	1.95	94.6	2.30

1563 Table 11: Balanced vs random class sampling for FID, FDD and FCD.
 1564

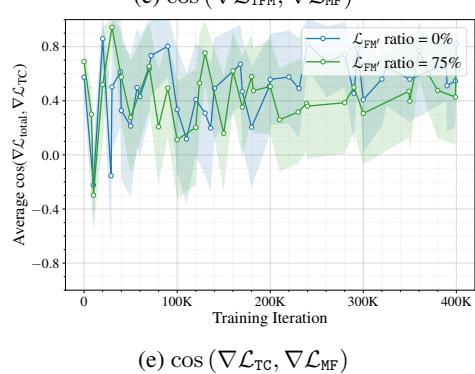
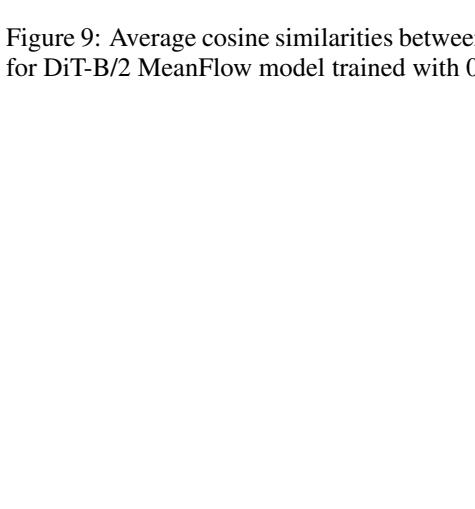
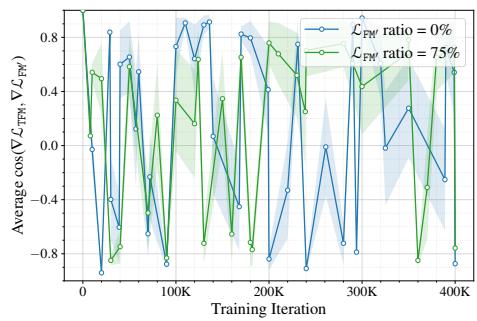
1565
 3³<https://iclr.cc/Conferences/2026/AuthorGuide>

1566 It is curious to observe that while it greatly improves FID results, FDD and FCD are barely affected.
1567 We believe that this constitutes one more reason for the community to switch from FID to more
1568 robust metrics which correlate better with human perception, like FDD and FCD.
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
 1621 **K ADDITIONAL EXPLORATION OF THE MEANFLOW LOSS**
 1622

(a) $\cos(\nabla \mathcal{L}_{\text{FM}'}, \nabla \mathcal{L}_{\text{TC}})$ (b) $\cos(\nabla \mathcal{L}_{\text{TFM}}, \nabla \mathcal{L}_{\text{FM}'})$ (c) $\cos(\nabla \mathcal{L}_{\text{TFM}}, \nabla \mathcal{L}_{\text{MF}})$

1657 Figure 9: Average cosine similarities between the gradients of different losses (\mathcal{L}_{TFM} , $\mathcal{L}_{\text{FM}'}$, $\mathcal{L}_{\text{CT}_c}$, \mathcal{L}_{MF})
 1658 for DiT-B/2 MeanFlow model trained with 0% and 75% of flow matching.
 1659

(d) $\cos(\nabla \mathcal{L}_{\text{FM}'}, \nabla \mathcal{L}_{\text{MF}})$ (e) $\cos(\nabla \mathcal{L}_{\text{TC}}, \nabla \mathcal{L}_{\text{MF}})$ 

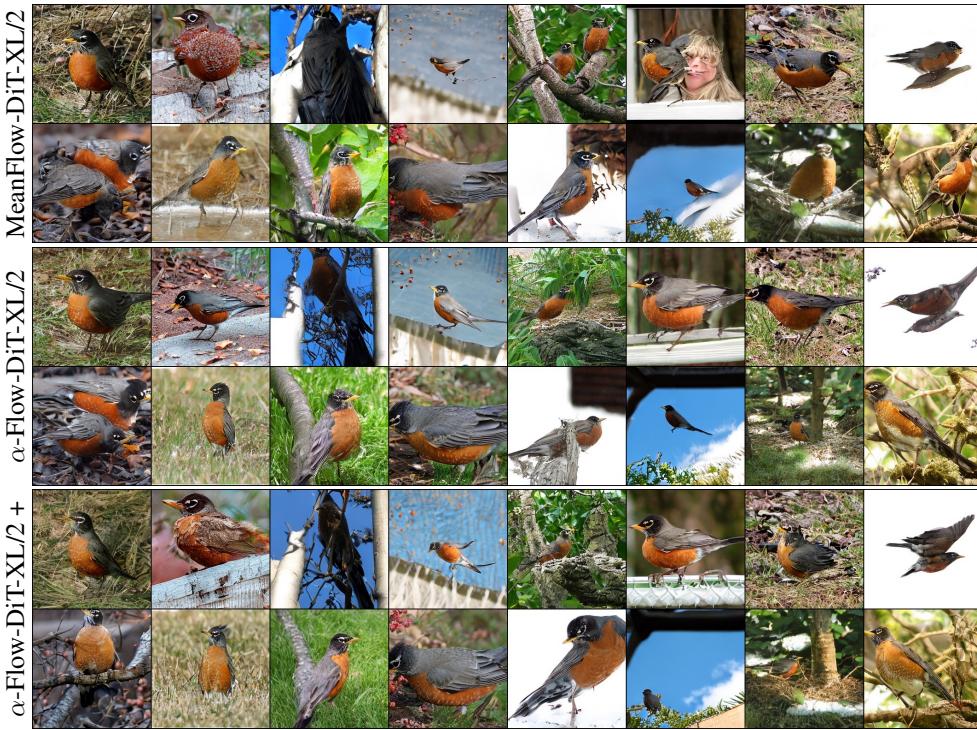
1674
1675 L ADDITIONAL VISUALIZATIONS
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
16981699
1700 Figure 10: Uncurated samples (seeds 1-16) for Class 15 (robin) for NFE=1.
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
17231724
1725
1726
1727 Figure 11: Uncurated samples (seeds 1-16) for Class 15 (robin) for NFE=2.
1728

Figure 12: Uncurred samples (seeds 1-16) for Class 29 (axolotl) for NFE=1.

Figure 13: Uncurred samples (seeds 1-16) for Class 29 (axolotl) for NFE=2.

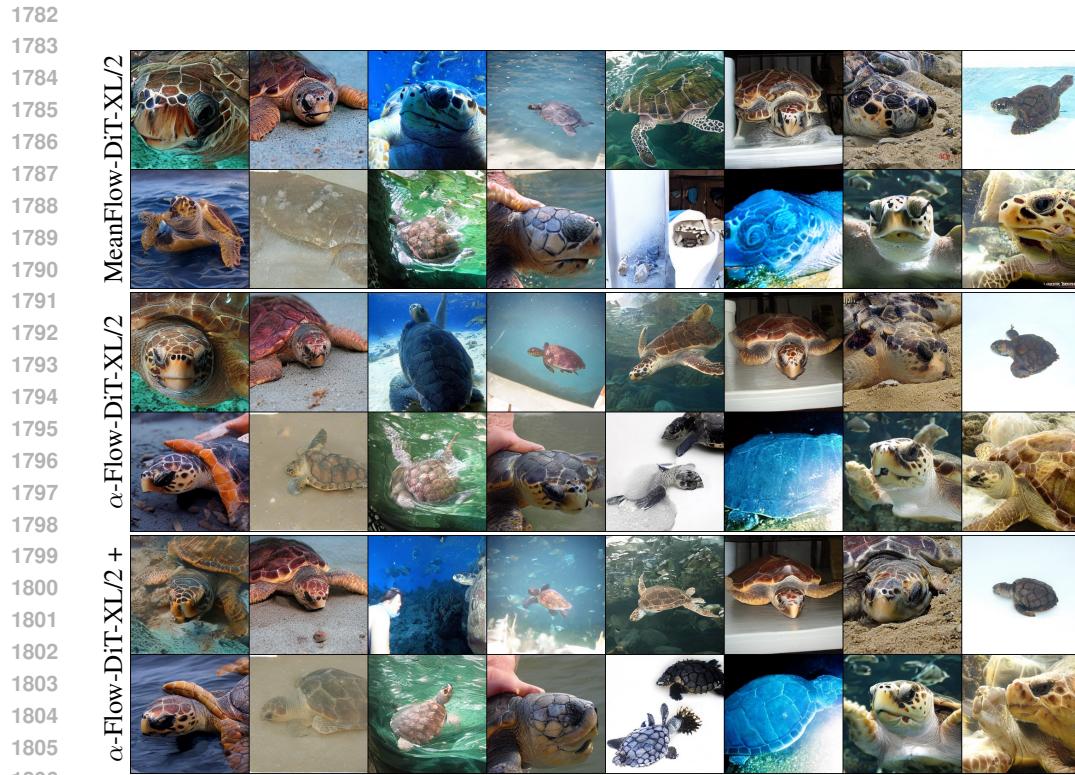


Figure 14: Uncurated samples (seeds 1-16) for Class 33 (loggerhead) for NFE=1.

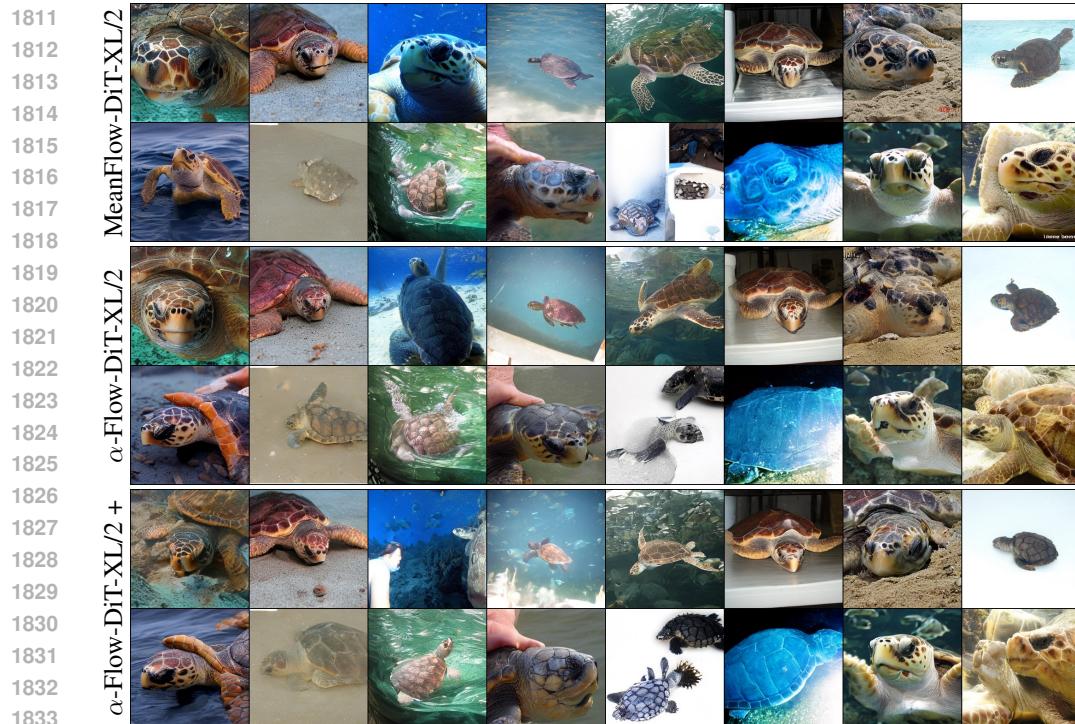


Figure 15: Uncurated samples (seeds 1-16) for Class 33 (loggerhead) for NFE=2.

Figure 16: Uncurated samples (seeds 1-16) for Class 88 (macaw) for NFE=1.

Figure 17: Uncurated samples (seeds 1-16) for Class 88 (macaw) for NFE=2.

1888
1889

Figure 18: Uncurated samples (seeds 1-16) for Class 89 (cockatoo) for NFE=1.

Figure 19: Uncurated samples (seeds 1-16) for Class 89 (cockatoo) for NFE=2.

Figure 20: Uncurred samples (seeds 1-16) for Class 127 (white stork) for NFE=1.

Figure 21: Uncurred samples (seeds 1-16) for Class 127 (white stork) for NFE=2.

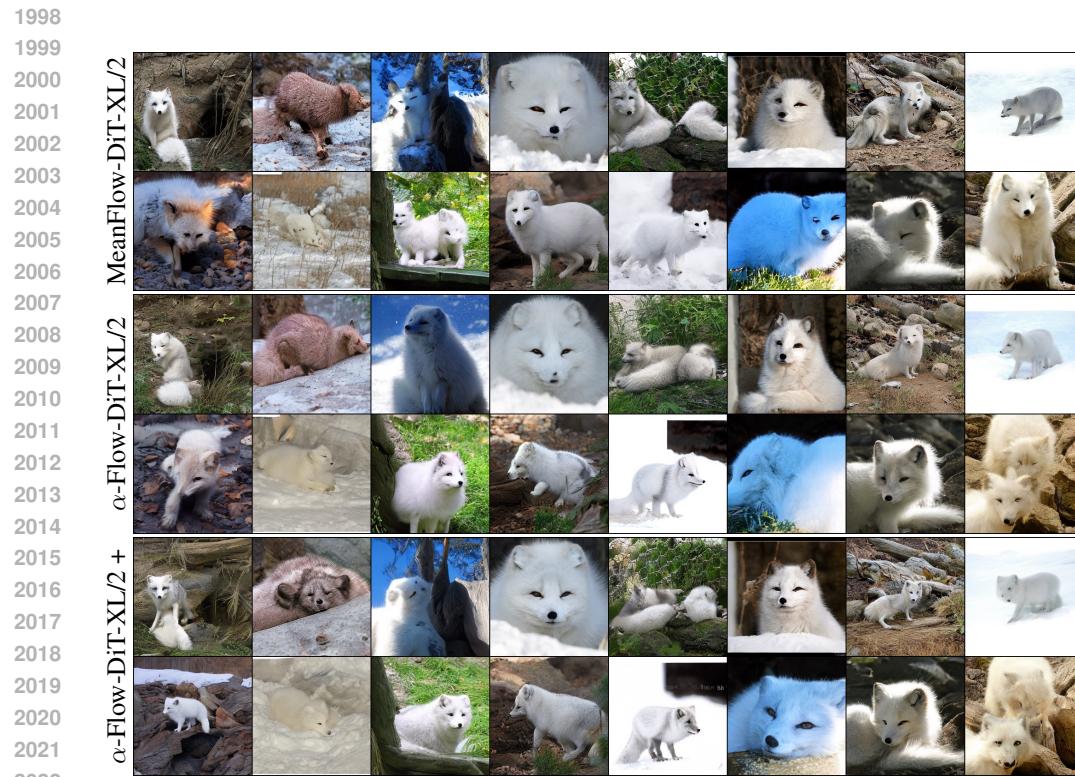


Figure 22: Uncurred samples (seeds 1-16) for Class 279 (arctic fox) for NFE=1.

Figure 23: Uncurred samples (seeds 1-16) for Class 279 (arctic fox) for NFE=2.

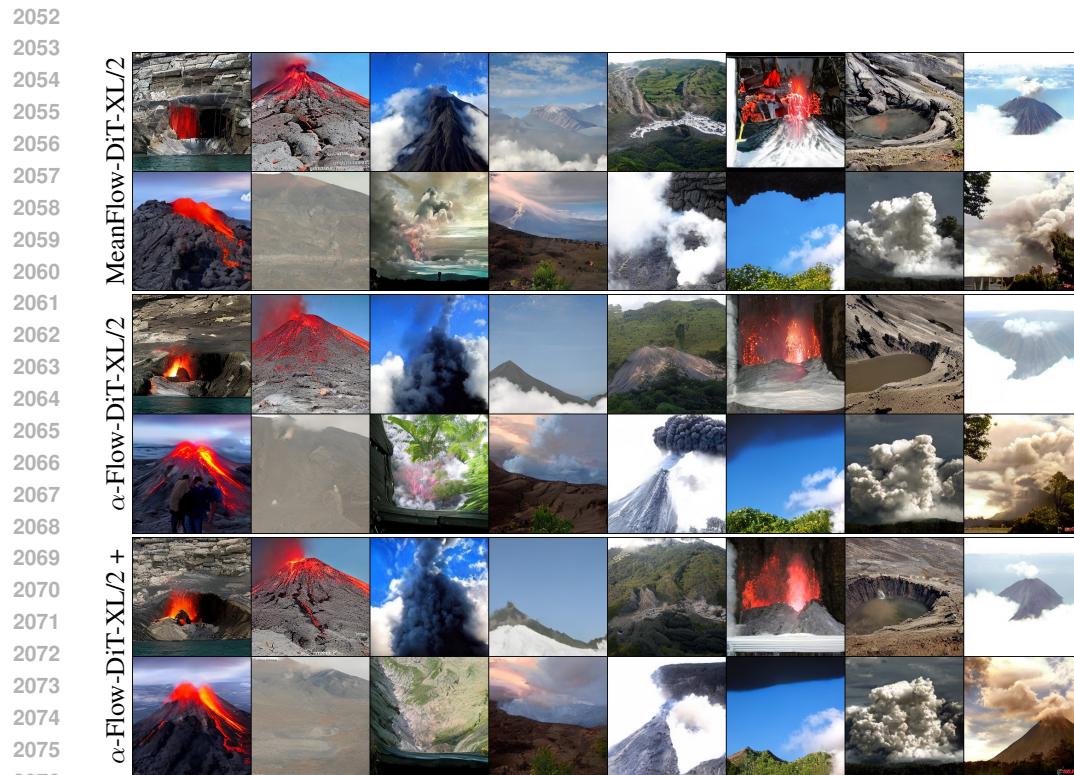


Figure 24: Uncurred samples (seeds 1-16) for Class 980 (volcano) for NFE=1.

Figure 25: Uncurred samples (seeds 1-16) for Class 980 (volcano) for NFE=2.

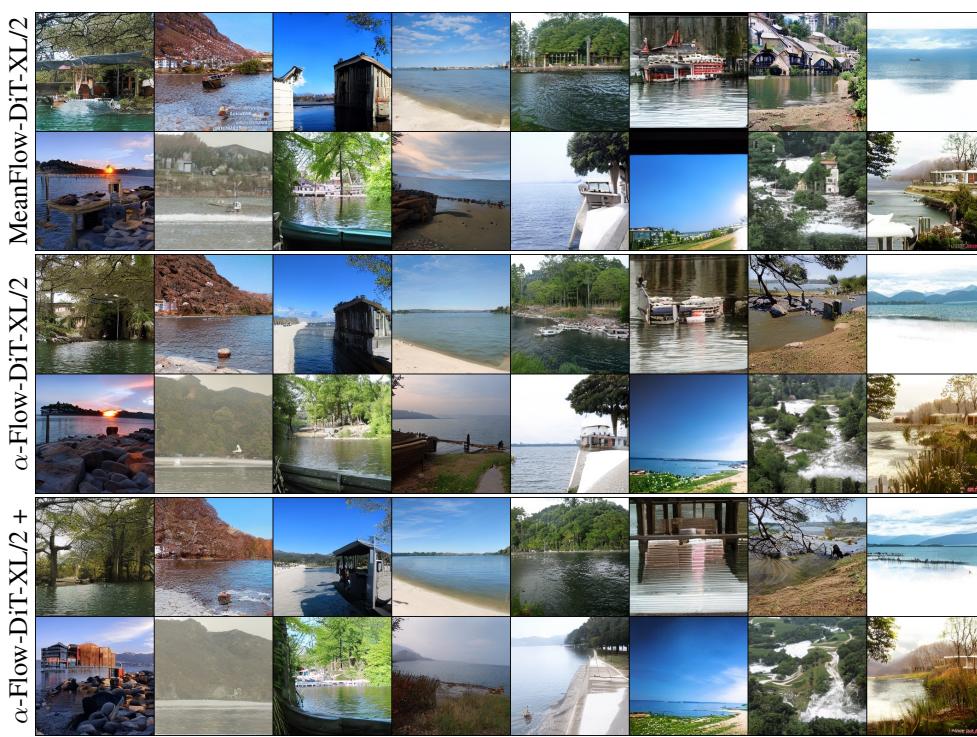


Figure 26: Uncurred samples (seeds 1-16) for Class 975 (lakeside) for NFE=1.

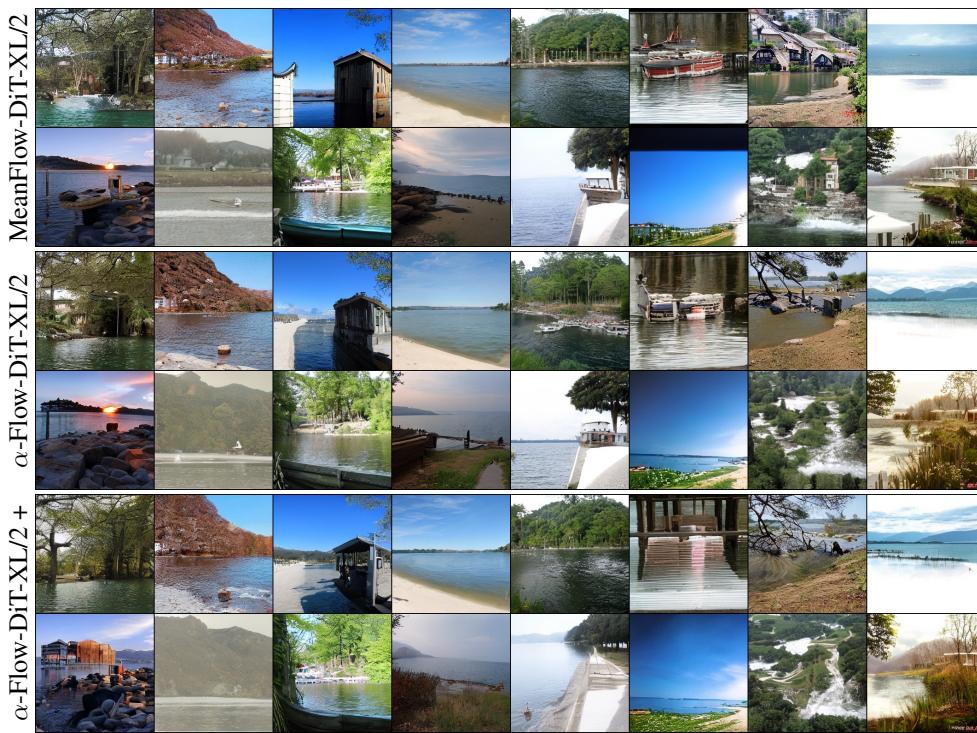


Figure 27: Uncurred samples (seeds 1-16) for Class 975 (lakeside) for NFE=2.