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Abstract

Video paragraph captioning (VPC) involves001
generating detailed narratives for long videos,002
utilizing supportive modalities such as speech003
and event boundaries. However, the existing004
models are constrained by the assumption of005
constant availability of a single auxiliary modal-006
ity, which is impractical given the diversity and007
unpredictable nature of real-world scenarios.008
To this end, we propose a Missing-Resistant009
framework MR-VPC that effectively harnesses010
all available auxiliary inputs and maintains011
resilience even in the absence of certain modal-012
ities. Under this framework, we propose the013
Multimodal VPC (MVPC) architecture integrat-014
ing video, speech, and event boundary inputs015
in a unified manner to process various auxiliary016
inputs. Moreover, to fortify the model against017
incomplete data, we introduce DropAM, a data018
augmentation strategy that randomly omits019
auxiliary inputs, paired with DistillAM, a reg-020
ularization target that distills knowledge from021
teacher models trained on modality-complete022
data, enabling efficient learning in modality-023
deficient environments. Through exhaustive024
experimentation on YouCook2 and ActivityNet025
Captions, MR-VPC has proven to deliver026
superior performance on modality-complete027
and modality-missing test data. This work high-028
lights the significance of developing resilient029
VPC models and paves the way for more adap-030
tive, robust multimodal video understanding.031

1 Introduction032

Video Paragraph Captioning (VPC) (Park et al.,033

2019) is a fundamental video-language under-034

standing task that requires the model to generate035

paragraph-level captions for minutes-long videos.036

Besides raw video frames, there exist several auxil-037

iary modalities that can potentially serve as supple-038

mentary inputs, such as speech inputs utilized in039

Vid2Seq (Yang et al., 2023b), flow features used in040

MART (Lei et al., 2020), and event boundaries (the041

start and end timestamps of the events) leveraged042
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Figure 1: The performance of the previous SOTA model
Vid2Seq drastically declines as the percentage of ASR
text missing grows. In contrast, our MR-VPC consis-
tently achieves superior performance in both modality-
complete and modality-missing environments.

in various models (Zhou et al., 2018b; Yamazaki 043

et al., 2022a,b, etc). Despite the growing perfor- 044

mance of these models, we notice that they assume 045

to have access to the same auxiliary modality 046

during both training and testing, which contradicts 047

reality. In real-world scenarios, the availability 048

of modalities undergoes dynamic changes, which 049

leads to the following two issues for the models 050

developed under the unrealistic assumption. 051

Issue-1: Under-utilization of available modal- 052

ities. Since a specific auxiliary modality is solely 053

considered during training, the models fail to lever- 054

age unseen modalities that may emerge at test time. 055

For example, VLCap and VLTinT (Yamazaki et al., 056

2022a,b) cannot employ transcribed speech, which 057

is proven extremely beneficial in Vid2Seq (Yang 058

et al., 2023b); conversely, Vid2Seq cannot make 059

use of event boundaries, which contain rich in- 060

formation about the temporal structure of videos. 061

Issue-2: Vulnerability to missing modality in 062

noisy environments. The performance of these 063

models may degrade drastically when the required 064

auxiliary modality is absent or of low quality, 065
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which is common in real-world situations. For in-066

stance, Liu and Wan (2021) find that the VPC mod-067

els relying on event boundaries yield significantly068

lower performance when the ground-truth event069

boundaries are replaced with learned ones. Besides,070

we observe that the state-of-the-art model Vid2Seq071

is vulnerable to the missing of automatically tran-072

scribed speech (ASR texts) as depicted in Figure 1.073

In response to issue-1, we design a multimodal074

VPC (MVPC) architecture to integrate the inputs075

from multiple modalities. Concretely, MVPC076

first encodes the two auxiliary modalities (i.e.,077

tokenized event boundaries and transcribed speech)078

into a unified textual feature space using a shared079

text encoder. Then, the textual features are080

fused with the video features before entering the081

language decoder to generate paragraph captions.082

Further, to alleviate issue-2, we devise two training083

strategies to enhance the robustness of our model084

to missing modalities. Firstly, we simulate the085

absence of auxiliary modalities by randomly drop-086

ping the inputs (named DropAM) during training.087

This approach reduces the model’s reliance on088

auxiliary inputs and improves generalization in089

noisy situations. Second, to take full advantage of090

the auxiliary modalities, we propose to perform091

multimodal knowledge distillation (Hinton092

et al., 2015) (referred to as DistillAM) where093

the model trained on modality-complete data094

acting as the teacher and the model operating in095

modality-missing situations learning as the student.096

By combining MVPC, DropAM and DistillAM,097

we present a Multimodal noise-Resistant Video098

Paragraph Captioning framework (MR-VPC).099

Experimental results on two benchmarks demon-100

strate the superiority of MR-VPC in handling both101

modality-complete and modality-incomplete data.102

Notably, MR-VPC is tailored for the challenging103

VPC task and substantially outperforms prior104

robustness-oriented methods studied for classifi-105

cation tasks. To our knowledge, this work pioneers106

formulating VPC as a multimodal learning107

problem with noisy inputs and presents practical108

solutions that enable VPC systems to utilize inputs109

from diverse modalities while remaining robust110

even when parts of them are missing.111

2 Related Work112

Video Paragraph Captioning (VPC) VPC is a113

widely studied video-language understanding task114

involving producing paragraph-level captions for115

long videos lasting for minutes (Park et al., 2019). 116

Existing VPC models commonly incorporate addi- 117

tional auxiliary information alongside video frames 118

as inputs, such as transcribed speech (Yang et al., 119

2023b) and event boundaries (Zhou et al., 2018b; 120

Yamazaki et al., 2022a,b, etc). Liu and Wan (2021) 121

and Song et al. (2021) build VPC models for raw 122

videos without event boundaries, but their models 123

still underperform those utilizing auxiliary modal- 124

ities. To the best of our knowledge, our work takes 125

the first step to utilize both transcribed speech and 126

event boundaries for VPC in an end-to-end manner, 127

and we are the first to study the robustness of VPC 128

models to noisy inputs with missing modalities. 129

Robustness to Missing Modality As multi- 130

modal neural networks are vulnerable to missing 131

modality (Ma et al., 2022), recent years have seen 132

a surge of studies on enhancing model robustness 133

on modality-incomplete data across various 134

multimodal tasks (Woo et al., 2022; Lee et al., 135

2023; Wei et al., 2023; Yuan et al., 2023, etc). In 136

terms of methodology, researchers have explored 137

approaches such as modality fusion strategy 138

search (Ma et al., 2022), data augmentation in the 139

form of modality dropout (McKinzie et al., 2023), 140

and regularization objectives (Woo et al., 2022; 141

McKinzie et al., 2023). However, existing efforts 142

are limited to relatively simple classification tasks, 143

and model robustness to missing modality in more 144

complex language generation tasks like VPC is 145

yet to be explored. We have found that simply 146

applying the existing approaches in other tasks 147

does not achieve satisfactory results in VPC and 148

bridge this research gap by developing training 149

strategies customized for VPC in our MR-VPC 150

framework, which will be discussed in § 3 and § 4. 151

3 Methodology 152

3.1 Problem Formulation 153

An instance in a VPC dataset can be formulated 154

as (Vi,Ai,Ei,Ci), where V,A,E,C stand for 155

video frames, ASR texts, event boundaries, and 156

the caption, respectively. An example from the 157

YouCook2 (Zhou et al., 2018a) dataset is illustrated 158

in Figure 2. We assume that the video modality 159

V is always available at test time and the auxiliary 160

modalities A and E are likely to be affected by 161

noise in the wild. Given NA and NE as the noise 162

functions for A and E (e.g., random missing in the 163

context of our study on missing modality), respec- 164

tively, for a model F (V,A,E) trained on the clean 165
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…

<47s> <60s>

I‘ll be preparing very popular traditional salad called Fatouche. If you’d like to…

 

Video

Frames

Event

Boundaries

Transcription
（ASR）
Paragraph

Captions

<67s> <89s>

pick the ends off the verdalago.   … combine lemon juice sumac garlic salt and oil in a bowl.

… …

… … …

Figure 2: The composition of an instance in the multi-
modal VPC task from the validation set of YouCook2.

training set Dtr = {(Vi,Ai,Ei,Ci) ,1 ≤ i ≤ ntr},166

where ntr is the size of the training data, our target167

is to maximize the performance on the noisy test set168

Dte = {(Vi,NA (Ai) ,NE (Ei) ,Ci) ,1 ≤ i ≤ nte},169

where nte is the size of the test data.170

3.2 MVPC Model Framework171

Overview Overall, as illustrated in Figure 3, our172

multimodal video paragraph captioning (MVPC)173

model consists of four modules: the video encoder174

Ev to encode V , the text encoder Et to encode the175

concatenation of A and E, a fusion module Ef176

that merges visual and textual features, and a text177

decoder Dt that generates the caption C.178

Video Encoder The video encoder Ev encodes179

the video sequence of F frames xv ∈ RF×H×W×C ,180

where H,W and C are the height, width, and the181

number of channels, respectively, and outputs the182

video embedding sequence Ev (xv) ∈ RF×d, where183

d is the embedding size. Concretely, we use a CLIP184

ViT-L/14 (Radford et al., 2021) image encoder185

to encode each frame and then feed the frame186

features into a 12-layer Transformer (Vaswani187

et al., 2017) for temporal interaction.188

Text Encoder To resolve issue-1, we expect the189

model to be capable of modeling both A and E in-190

puts end to end. Thus before feeding A and E into191

the text encoder Et, we adopt the relative time to-192

kenization (Yang et al., 2023b) to map continuous193

timestamps into discrete time tokens denoting the194

percentage progress. Then Et transforms the con-195

catenation of the ASR sequence and event bound-196

ary sequence xt consisting of n tokens in total into197

the text embedding sequence Et (xt) ∈ Rn×d.198

Fusion Module and Text Decoder At the end199

of the workflow, the text decoder Dt generates the200

target caption sequence in an auto-regressive man-201

ner, conditioned on the encoder embeddings pro-202

duced by the fusion module Ef merging Ev (xv)203

and Et (xt). Specifically, for Ef , we adopt a204

parameter-free concatenation operation; for Et and205

Test Modalities
YouCook2 ActivityNet

METEOR CIDEr METEOR CIDEr

V+E+A 23.11 74.13 14.09 42.29

V+A 21.05 (-2.06) 59.55 (-14.58) 12.24 (-1.85) 29.71 (-12.58)
V+E 12.46 (-10.65) 8.77 (-65.36) 12.91 (-1.18) 43.14 (+0.85)
V 6.79 (-16.32) 3.42 (-70.71) 11.64 (-2.45) 26.08 (-16.21)

Table 1: The performance of the vanilla MVPC model
on YouCook2 and ActicityNet Captions in different
modality missing settings.

Dt, we employ the T5v1.1-base encoder-decoder 206

model (Raffel et al., 2020). 207

Weight Initialization To benefit from large- 208

scale pretraining, we initialize the model with 209

the Vid2Seq weight pretrained on YT-Temporal- 210

1B (Zellers et al., 2022) 1. Note that our work 211

differs from Vid2Seq in terms of the task context 212

and research goal. We aim at the VPC task that 213

generates textual paragraph-level captions C from 214

the input modalities V,A and E, where A and E 215

are likely to be missing, while Vid2Seq is originally 216

designed for the dense video captioning task where 217

the inputs are V and A (without considering miss- 218

ing modality) and the outputs are C and E. To es- 219

tablish a baseline for comparison, we re-implement 220

Vid2Seq and fine-tune its pretrained weights for the 221

VPC task (details in Appendix B). This allows us 222

to evaluate the performance improvement achieved 223

by our proposed framework. Note that MVPC is 224

not a simple extension of Vid2Seq, as our general 225

framework to incorporate A and E unitedly is 226

agnostic to the underlying structure and applies to 227

other vision-language foundation models. 228

3.3 Training Strategies of MR-VPC 229

As the vanilla training of MVPC does not consider 230

potential noise in the inference stage, it suffers from 231

severe performance drops facing missing modality 232

(issue-2), as shown in Table 1. For instance, the 233

absence of A results in a 65.36 (88.17% relatively) 234

CIDEr drop on YouCook2; the missing of E causes 235

a 12.58 (29.75% relatively) CIDEr decline on Ac- 236

itivityNet. 2 In light of this weakness, we explore 237

the following training strategies to enhance the 238

model’s resilience to missing modality (the model 239

trained with them is referred to as MR-VPC later). 240

3.3.1 DropAM: Drop Auxiliary Modalities 241

Since the missing modality can be viewed as a dis- 242

tribution shift from the training data, a fundamental 243

1Available at this link.
2We find that the ASR data of ActivityNet contains little

useful cues and show small negative effects, so we nullify the
ASR input of ActivityNet at test time later.
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Figure 3: The overview diagram of our MVPC (multimodal video paragraph captioning) framework.

idea to enhance model robustness is simulating the244

noise during training. To this end, we randomly245

drop the auxiliary modalities A and E to reduce246

the dependence of the model on them. Specifically,247

we transform the original training set Dtr to D̂tr =248

{(Vi, N̂A (Ai) , N̂E (Ei) ,Ci) ,1 ≤ i ≤ ntrain}, in249

which N̂A and N̂E are the proxy noise functions250

that random replace Ai and Ei with a default null251

character at probabilities pA and pE , respectively:252

N̂A (Ai) = {

′′, p ≤ pA
Ai, p > pA

, N̂E (Ei) = {

′′, p ≤ pE
Ei, p > pE

,

(1)253

where p is a random variable uniformly drawn from254

the range [0,1]. We use pA = pE = 0.5 as the value255

works generally well in practice. Please see the256

discussion about their effects in Appendix D.257

3.3.2 DistillAM: Learning from the Teacher258

with Modality-Complete Data259

Solely applying DropAM turns the model training260

into a multitask learning process involving sub-261

tasks with different input conditions, which possi-262

bly adds to the learning difficulty and compromises263

the performance on modality-complete data. There-264

fore, we resort to knowledge distillation (Hinton265

et al., 2015), a learning paradigm that transfers the266

knowledge from teacher models with better con-267

ditions, such as more training data and a larger268

number of parameters, to student models without269

these advantages. In our problem, we consider270

the vanilla MVPC model trained on the modality-271

complete training set Dtr as the teacher model Ft,272

and our goal is to transfer the knowledge learned by273

Ft to the MR-VPC model that likely faces missing274

modality as the student model Fs. In early trials,275

we have found that distilling from word-level logits276

(WordKD) achieves limited performance gains in277

our task. Therefore, inspired by the sequence-level278

knowledge distillation (SeqKD) (Kim and Rush, 279

2016) studied in machine translation, we create a 280

new training set Dkd by replacing the ground-truth 281

caption C with the predictions given by Ft based 282

on the modality-complete data: 283

Dkd = {(Vi,Ai,Ei, Ft (Vi,Ai,Ei)) ,1 ≤ i ≤ ntr} , (2) 284

and then construct the augmented training set 285

Daug =Dtr⋃Dkd by merging Dkd and the original 286

training data Dtr. It is notable that this procedure 287

named DistillAM is orthogonal to the noise sim- 288

ulation process DropAM in § 3.3.1, so they can 289

be applied together, i.e., the random noise can be 290

injected into the augmented training data Daug in 291

the training phase in the way stated in § 3.3.1. 292

3.3.3 Connection to Prior Strategies for 293

Multimodal Classification Tasks 294

Although MASD (McKinzie et al., 2023), the state- 295

of-the-art approach to enhance model robustness to 296

missing modality in classification problems, also 297

takes the form of modality dropout and knowledge 298

distillation, it differs from our solutions in essence. 299

Concretely, MASD performs self-distillation, 300

namely aligning the predicted probabilities on 301

modality-complete and modalities-incomplete data 302

output by the same model under training. In con- 303

trast, we use a fixed teacher model trained on 304

modality-complete data, which facilitates the effi- 305

cient learning of the student model in the challeng- 306

ing VPC task. We will show the advantage of our 307

MR-VPC over MASD and its variant MASD+Wise- 308

FT (McKinzie et al., 2023) in § 4.2.2. 309

4 Experiments 310

4.1 Experimental Setup 311

Evaluation Protocol Following Yang et al. 312

(2023b), we use CIDEr (C) (Vedantam et al., 2015) 313
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and METEOR (M) (Banerjee and Lavie, 2005)314

metrics to evaluate the accuracy of generated315

captions. For measuring diversity, we use 4-gram316

repetition (R@4) (Xiong et al., 2018) following317

Liu and Wan (2021) and Yamazaki et al. (2022a,b).318

Besides these metrics based on n-gram matching319

commonly used in previous works, we also report320

advanced model-based metrics in § 5.1.321

Benchmarks We conduct main experiments on322

YouCook2 (Zhou et al., 2018a) and ActivityNet323

Captions (Krishna et al., 2017), two widely stud-324

ied VPC benchmarks containing paragraph-level325

captions and annotated event boundaries. We re-326

port the evaluation metrics on the validation set327

of YouCook2 and the as-test split of ActivityNet328

Captions (see Appendix A for details).329

Acquisition of ASR Data For ActivityNet Cap-330

tions, we adopt the ASR data provided by Iashin331

and Rahtu (2020) from the YouTube ASR system.332

For YouCook2, we obtain the ASR data using the333

whisper-timestamped tool (Louradour, 2023) based334

on Whisper (Radford et al., 2022) (the small.en335

model with 244M parameters) and dynamic time336

warping (Giorgino, 2009).337

Model Training and Inference We train the338

model for 40 epochs on YouCook2 and 20 epochs339

on ActivityNet Captions using a batch size of 32.340

The model is trained with the Adam (Kingma and341

Ba, 2015) optimizer to minimize cross-entropy342

loss with an initial learning rate of 2e-4 with343

cosine annealing. For training efficiency, we freeze344

the image encoder in our experiments unless345

otherwise mentioned, so the number of trainable346

parameters is 314M. The weight decay is 5e-2347

and we clip the maximum norm of the gradient to348

1.0. We uniformly sample 100 frames at resolution349

224×224 pixels for the video input and the ASR350

text sequence is truncated at the max length351

of 1000. Temporally consistent random spatial352

augmentation (Qian et al., 2021) is applied. The353

inference beam search size is 4 and the repetition354

penalty is 1.2. See more details in Appendix B.355

Evaluation Settings We mainly report results in356

three representative test settings: (1) the modality-357

complete setting where the auxiliary modalities358

A and E are not affected by any noise; (2) the359

video-only setting where both A and E are miss-360

ing, which is a harsh but realistic setting (in the361

real world, most users do not enter the video’s362

event boundaries E; A is also possibly missing,363

Model
Training Strategies Test Modalities

DropAM DistillAM V+E+A V+E V+A V

MVPC % % 74.13/23.11 8.77/12.46 59.55/21.05 3.42/6.79
- ! % 60.40/22.67 35.17/16.94 64.87/22.54 36.73/16.53
MR-VPC ! ! 69.51/22.83 39.03/16.97 69.37/22.59 38.37/16.86

Table 2: The effect of our training strategies with differ-
ent available modalities at test time on the YouCook2
dataset. CIDEr / METEOR metrics are reported.

e.g., when the ASR system does not support the 364

conversation language); (3) the random-missing 365

setting where A and E are both randomly missing 366

at the probability of 50% independently. 367

Baselines We compare our models with a wide 368

array of baselines and categorize them according 369

to the input modalities in their original settings: 370

● V: The Vid2Seq model finetuned on only 371

the video modality, named Vid2Seq (V); Soft- 372

NMS (Bodla et al., 2017), ESGN (Mun et al., 2019), 373

Memory Transformer (Song et al., 2021), and VPC- 374

Sum (Liu and Wan, 2021); MART, MARTCOOT, 375

Vanilla Transformer, and Transformer-XL. The 376

last four models use event boundaries generated by 377

ESGN at test time as done in Liu and Wan (2021). 378

● V+E: VLTinT (Yamazaki et al., 2022b), VL- 379

Cap (Yamazaki et al., 2022a), MART (Lei et al., 380

2020), MARTCOOT (Ging et al., 2020), Vanilla 381

Transformer (Zhou et al., 2018b), and Transformer- 382

XL (Dai et al., 2019). 383

● V+A: Vid2Seq (Yang et al., 2023b). 384

4.2 Results and Analysis 385

4.2.1 Comparing MVPC and MR-VPC 386

Our training strategies remarkably boost the 387

model’s robustness to missing modality while 388

maintaining the performance in the modality- 389

complete setting. Before comparing our model 390

with baselines, we first examine the effectiveness 391

of our training strategies described in § 3.3. 392

As the results displayed in Table 2, the vanilla 393

MVPC model without these training strategies 394

is extremely susceptible to missing modality at 395

test time, but the MR-VPC model equipped with 396

these techniques shows substantially improved 397

robustness to missing modality with only minimal 398

performance sacrifice on the modality-complete 399

test data. For instance, MVPC disastrously fails 400

in the video-only setting (the CIDEr falls to 3.42), 401

while MR-VPC yields a CIDEr value of 38.37. 402

We also affirm the validity of each strategy by 403

comparing MR-VPC with the model trained with 404

only the DropAM strategy (the last two rows of 405

Table 2). As shown, although DropAM boosts the 406

5



BERTScore↑ YouCook2 ActivityNet

MVPC 82.37 91.72
MR-VPC 91.30 94.16

Table 3: The average BERTScore similarities between
captions generated in modality-complete and video-only
test scenarios.
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(a) Captions generated by the vanilla MVPC model.
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Figure 4: Visualization of the SimCSE embeddings of
the captions generated under modality-complete and
modality-missing (video-only) scenarios.

model robustness on modality-incomplete data, it407

significantly hurts the performance on modality-408

complete data (the CIDEr declines from 74.13409

to 60.40); DistillAM not only further advances410

the robustness to missing modality, but also help411

preserve the performance in the modality-complete412

setting, as it raises the CIDEr metric to 69.51.413

MR-VPC shows higher prediction consistency414

between modality-complete and modality-415

missing scenarios. To intuitively understand the416

impact of our training strategies, we compare the417

BERTScore (Zhang et al., 2019) similarities be-418

tween the captions generated on modality-complete419

and video-only data by the vanilla MVPC and420

MR-VPC models. As listed in Table 3, MR-VPC421

Model
YouCook2 ActivityNet

C ↑ M ↑ R@4 ↓ C ↑ M ↑ R@4 ↓

MVPC (Ours) 74.13 23.11 0.82 43.14 13.91 0.67
MR-VPC (Ours) 69.51 22.83 0.57 41.01 13.84 0.51

Baselines
Vid2Seq 68.25 23.01 0.75 30.77 12.51 0.82
Vid2Seq (V) 36.33 16.79 0.79 28.87 12.38 0.57
VLTinT 48.70 17.94 4.29 31.13 17.97 4.75
VLCap 49.41 17.95 5.16 30.29 17.48 4.18
MART 35.74 15.90 4.39 22.16 15.57 5.44
MARTCOOT 46.06 18.17 6.30 28.19 15.99 6.64
Vanilla Trans. 38.00 11.55 - 21.33 15.54 7.45
Memory Trans. - - - 26.55 15.64 2.75
Trans.-XL 26.40 14.80 - 21.71 14.91 8.79
VPCSum 23.92 15.11 0.65 24.33 15.84 1.54

Table 4: Evaluation results under the modality-complete
setting. ↑ indicates larger is better and ↓ indicates lower
is better. The best result is highlighted in bold.

exhibits substantially higher similarity scores, 422

which indicates that it is capable of generating more 423

consistent predictions, regardless of the availability 424

of auxiliary modalities. Furthermore, we visualize 425

the SimCSE embeddings (Gao et al., 2021) 3 426

of the generated captions on YouCook2 using 427

t-SNE (Van der Maaten and Hinton, 2008) in Fig- 428

ure 4, where we observe that the captions generated 429

by MVPC form two distinct clusters depending on 430

whether modality-missing occurs, but those pro- 431

duced by MR-VPC appear in pairs and seem hard 432

to distinguish based on the test scenario. The visual- 433

ization further proves that DropAM and DistillAM 434

contribute to the consistency of the predictions. 435

4.2.2 Comparison with Advanced Systems 436

Our MVPC and MR-VPC obtain superior 437

performance in the modality-complete setting. 438

We present the evaluation results in the modality- 439

complete setting in Table 4 and observe that our 440

models markedly advance the state-of-the-art on 441

most metrics. In terms of captioning accuracy, we 442

elevate the CIDEr metric from 68.25 (Vid2Seq) 443

to 74.13 on YouCook2 and from 31.13 (VLTinT) 444

to 43.14 on ActivityNet; regarding diversity, we 445

achieve the lowest R@4 repetition scores below 1.0. 446

These results support the necessity to fully leverage 447

the auxiliary modalities A and E (issue-1) and the 448

effectiveness of our MVPC model frameowork. 449

We notice that VLTinT and some earlier baselines 450

do better in terms of METEOR on AcitivyNet than 451

Vid2Seq and our models, but we contend that ours 452

and Vid2Seq are better models for two reasons: 453

(1) CIDEr is a more reasonable metric because it 454

accounts for the importance of different n-grams 455

3We use the unsup-simcse-roberta-large model.
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Model
YouCook2 ActivityNet

C ↑ M ↑ R@4 ↓ C ↑ M ↑ R@4 ↓

MVPC (Ours) 3.42 6.79 2.31 26.08 11.64 0.60
MR-VPC (Ours) 38.37 16.86 0.57 31.37 12.06 0.58

Baselines
Vid2Seq 3.39 6.81 2.80 30.01 12.18 0.73
Vid2Seq (V) 36.33 16.79 0.79 28.87 12.38 0.58
Memory Trans. - - - 26.55 15.64 2.75
VPCSum 23.92 15.11 0.65 24.33 15.84 1.54
SoftNMS 18.18 13.67 4.94 22.58 14.93 10.17
ESGN 21.85 15.74 6.51 17.01 13.37 4.94
Vanilla Trans. 20.95 15.11 7.04 16.88 13.37 2.85
Trans.XL 14.24 12.67 3.20 20.73 14.89 7.45
MART 16.56 13.44 4.63 20.16 14.94 6.09
COOT 19.67 14.21 5.99 21.83 14.67 1.54

Table 5: Evaluation results under the video-only setting.

Model
YouCook2 ActivityNet

C ↑ M ↑ R@4 ↓ C ↑ M ↑ R@4 ↓

MVPC (Ours) 33.31 15.70 1.55 33.55 12.86 0.59
MR-VPC (Ours) 51.13 20.15 0.74 37.05 13.01 0.56

Baselines
Vid2Seq 33.46 14.19 1.46 29.93 12.48 0.75
Vid2Seq (V) 36.33 16.79 0.79 28.87 12.38 0.58
VPCSum 23.92 15.11 0.65 24.33 15.84 1.54

Table 6: Results under the random-missing setting.

and has shown higher consistency with human456

evaluation (Shi et al., 2022); (2) model-based457

metrics in § 5.1 and human study results in § 5.3458

further corroborate the advantages of our models.459

Our MR-VPC model performs significantly bet-460

ter in modality-missing settings than previous461

SOTA models. Given the figures displayed in462

Table 5 and Table 6, MR-VPC yields the best per-463

formance in the video-only and random-missing464

setting with substantial margins over baselines in-465

cluding those specially trained for the video-only466

setting such as Vid2Seq (V) (Yang et al., 2023b),467

VPCSum (Liu and Wan, 2021), and Memory Trans-468

former (Song et al., 2021). This suggests that MR-469

VPC fulfills our objective of developing a robust470

VPC model capable of leveraging available auxil-471

iary modalities while maintaining robustness even472

when they are missing in real-world scenarios.473

Our MR-VPC shows the best cross-dataset474

generalization performance on the video-only475

Charades dataset. To further examine the476

cross-dataset generalization capability, we assess477

the models trained on ActivityNet Captions on the478

test set of the Charades (Sigurdsson et al., 2016),479

where only the video modality is available. As480

the results listed in Table 7, MR-VPC outperforms481

baselines in the zero-shot scenario where domain482

shift and missing modality occur simultaneously,483

further validating the strength of our approach.484

Model CIDEr BERTScore BARTScore

MVPC 6.79 87.08 -4.56
MR-VPC 8.74 87.22 -4.47
Vid2Seq 4.74 86.83 -4.62
Vid2Seq (V) 6.01 87.00 -4.48

Table 7: Zero-shot evaluation results on Charades (the
model weights are trained on ActivityNet Captions).

Method
Test Modalities

Avg.
V+E+A V+E V+A V

WordKD 64.50 30.62 65.33 27.21 46.92
MASD 67.95 32.98 68.72 33.47 50.78
MASD+WiSE-FT 68.90 34.96 69.54 32.54 51.49
MR-VPC (Ours) 69.51 39.03 69.37 38.37 54.07

Table 8: Comparison with other robustness-oriented
methods with different available modalities at test time
on YouCook2. CIDEr metrics are reported.

Our MR-VPC beats the SOTA robustness- 485

oriented training methods in classification prob- 486

lems. As shown in Table 8, MR-VPC remarkably 487

outperforms the state-of-the-art solutions towards 488

robustness to missing modality in classification 489

problems, i.e., MASD and MASD+Wise-FT (McK- 490

inzie et al., 2023). This illustrates that our cus- 491

tomized approaches for the VPC task make signifi- 492

cant strides compared to simply incorporating ex- 493

isting techniques studied for other tasks previously. 494

Besides, we observe that replacing the SeqKD with 495

Word-KD leads to significant performance drops 496

in all scenarios, which supports the rationality of 497

using SeqKD in our DistillAM component. 498

4.3 Qualitative Results 499

Besides the above quantitative results, we provide 500

qualitative evidence to support the superiority 501

of our models. First, we find that MVPC and 502

Vid2Seq tend to produce degenerated captions 503

in the modality-missing setting, whereas the 504

prediction of MR-VPC remains almost unchanged, 505

as exemplified by the instance given in Table 14 506

in Appendix H. Moreover, even in the modality- 507

complete setting, the Vid2Seq and VLTinT 508

baselines often predict concepts that are not 509

present in the video; in contrast, our MVPC and 510

MR-VPC model produces fewer such hallucina- 511

tions, as illustrated in Figure 5 in Appendix H. 512

5 Further Evaluation 513

5.1 Evaluation with Model-Based Metrics 514

Besides the n-gram-based metrics reported in 515

§ 4.2, we further compare our models with 516
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Model
YouCook2 ActivityNet Captions

PPL ↓ BERT ↑ BART ↑ PPL ↓ BERT ↑ BART ↑ EMS ↑ EMSref ↑

VLTinT (Yamazaki et al., 2022b) 21.99 89.01 -3.91 30.97 88.03 -3.94 28.94 36.88
Vid2Seq (Yang et al., 2023b) 15.89 90.58 -3.08 24.68 88.71 -3.78 29.54 36.99
MVPC (Ours) 15.50 90.56 -3.08 18.77 88.98 -3.56 29.37 37.21
MR-VPC (Ours) 15.11 89.51 -3.49 17.17 88.85 -3.58 29.10 36.90

Table 9: The model-based metrics evaluated under the modality-complete setting. ↑ indicates higher is better and
↓ indicates lower is better. We highlight the best model in bold. We do not report EMScore on YouCook2 as the
captions of YouCook2 are longer than the max length limit of CLIP, the backbone of the EMScore metric.

Noise Type Low-Quality ASR ASR Sentence Deletion Event Deletion Boundary Perturbation Generated Boundary

Metric CIDEr BERT BART CIDEr BERT BART CIDEr BERT BART CIDEr BERT BART CIDEr BERT BART

Vid2Seq 60.39 90.35 -3.12 48.01 89.62 -3.31 68.25 90.58 -3.08 68.25 90.58 -3.08 68.25 90.58 -3.08
MVPC (Ours) 59.58 90.36 -3.13 48.95 89.66 -3.29 63.43 90.54 -3.11 72.60 90.57 -3.07 61.71 90.58 -3.07
MR-VPC (Ours) 63.69 90.63 -3.08 53.59 90.04 -3.24 70.72 90.85 -3.02 69.11 90.86 -3.03 67.02 90.84 -3.03

Table 10: The evaluation results under five forms of noise in auxiliary modalities.

Group1
MVPC VLTinT Equal

56.0% 20.7% 23.3%

Group2
MR-VPC VLTinT Equal

56.0% 18.7% 25.3%

Table 11: The average percentage of human preferences.

competitive baselines (Vid2Seq and VLTinT)517

using the following model-based metrics (details518

in Appendix C), as they align better with human519

preference (Shi et al., 2022): (1) Perplexity (PPL)520

for fluency; (2) BERTScore (Zhang et al., 2019)521

and BARTScore (Yuan et al., 2021) measuring522

prediction-reference similarity; (3) EMScore (Shi523

et al., 2022) for the matching extent of the predic-524

tion and the video frames and its extension EMSref.525

We present the results in Table 9 and find that our526

MVPC and MR-VPC obtain the best performance527

across most of these metrics. Notably, although528

VLTinT reaches the highest METEOR on Activ-529

ityNet, it falls behind our models and Vid2Seq on530

these metrics. We will further show the advantage531

of our models through human evaluation in § 5.3.532

5.2 Generalization on Other Forms of Noise533

Besides completely missing, the auxiliary modali-534

ties in the real world may also be affected by other535

weaker forms of noise, such as variations in ASR536

quality between the training and test phases. We537

further test our models and VidSeq under five types538

of noise: lower ASR quality and sentence deletion539

for A; event deletion, boundary perturbation, and540

generated boundaries for E (details in Appendix F).541

We present the results in Table 10 and see that al-542

though these forms of noise are not seen during543

training, our MR-VPC shows the best robustness544

in most cases, which again substantiates the gen-545

eralizability of our training strategies. We believe 546

that we will achieve even better robustness to these 547

types of noises if we consider them in the choice of 548

the proxy noise functions N̂A and N̂E in DropAM. 549

5.3 Human Evaluation 550

We conduct two groups of human evaluation, 551

in which three annotators compare the captions 552

generated by VLTinT and MVPC (or MR-VPC) 553

in the modality-complete setting for 50 randomly 554

sampled videos from the AcitivityNet Captions test 555

set. They need to choose a caption showing higher 556

consistency with the video content or mark that two 557

captions are equally good (details in Appendix I). 558

As shown in Table 11, our MVPC and MR- 559

VPC significantly surpass VLTinT in pair-wise 560

comparison, which again proves their superiority. 561

6 Conclusion 562

We present MR-VPC, a multimodal video 563

paragraph captioning model capable of utilizing 564

three input modalities (video, transcribed speech, 565

and event boundaries) and keeping robust in the 566

presence of missing modality. The MR-VPC frame- 567

work comprises two key contributions: (1) the 568

MVPC architecture, which seamlessly processes 569

inputs from all three modalities in an end-to-end 570

manner; (2) the incorporation of two training tech- 571

niques, DropAM and DistillAM, which enhance the 572

model’s robustness when faced with missing modal- 573

ity. Through exhaustive experimental evaluation 574

on YouCook2 and ActivityNet Captions datasets, 575

we demonstrate the superiority of MR-VPC in 576

various test scenarios, highlighting its practicality 577

and efficacy in addressing the challenges of video 578

paragraph captioning in real-world settings. 579
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Limitations580

We discuss the limitations of our work as follows.581

(1) Despite the outstanding performance of MR-582

VPC in modality-missing settings, it slightly lags583

behind our vanilla MVPC in the modality-complete584

setting. This is comprehensible because the opti-585

mization of the regularization targets introduced586

in DropAM and DistillAM may conflict with the587

learning on modality-complete data to some extent.588

We will conduct more explorations to reduce this589

gap. (2) We primarily study the absence (discussed590

in most of the main text) and other forms of591

noise (studied in § 5.2) in two main auxiliary592

modalities, namely transcribed speech and event593

boundaries, which do not cover all possible harsh594

test conditions in the wild. For future work, we595

intend to investigate the robustness of VPC models596

to other forms of data noise, such as video frame597

blurring, for a more comprehensive evaluation.598

Ethics Statement599

We believe that our proposal would contribute to600

the robustness and security of video captioning601

systems deployed in the open-world environment,602

as the absence and quality reduction of auxiliary603

modalities are common in practice. Our proposal604

also applies to other multimodal natural language605

generation tasks, e.g., multimodal machine trans-606

lation, on which we plan to conduct more studies607

in the future. Moreover, all pretrained models used608

in this work are publicly available, ensuring trans-609

parency and accessibility. Although we do not610

expect any direct negative consequences resulting611

from this paper, we hope to continue to build on612

our MR-VPC framework and develop stronger and613

safer multimodal VPC models in our future work.614
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A Dataset Statistics 880

We conduct main experiments on YouCook2 (Zhou 881

et al., 2018a) and ActivityNet Captions (Krishna 882

et al., 2017). YouCook2 consists of 1,333 videos in 883

the training set and 457 ones in the validation set. 884

Each instance in YouCook2 has 7.7 event segments 885

on average. ActivityNet Captions comprises 886

10,009 samples in the training set and 4,917 ones 887

in the original validation set. Following the prac- 888

tice of Lei et al. (2020) and most of the baselines, 889

we split the validation set to the as-val set of 2,460 890

videos and the as-test split of 2,457 videos. Each 891

sample in ActicityNet Captions has 3.65 event seg- 892

ments on average. The average video length is 2.0 893

minutes in ActivityNet Captions and 5.3 minutes in 894

YouCook2. Also, we test the cross-dataset perfor- 895

mance on the test set of the Charades (Sigurdsson 896

et al., 2016) dataset consisting of 1,760 videos. 897

The average video length of Charades is 30s. 898
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B More Implementation Details899

Vid2Seq and Vid2Seq (V) We notice that the900

original Vid2Seq paper (Yang et al., 2023b) also901

reports the performance of Vid2Seq on the VPC902

task, but we have confirmed that the results are ob-903

tained by removing timestamp outputs from dense904

captioning outputs and they are inferior to the re-905

sults we get by fine-tuning the Vid2Seq weight906

specifically on the VPC task where the inputs are907

V and A. Therefore, we report our fine-tuning re-908

sults as the performance of Vid2Seq in the main909

text. Moreover, to get a competitive baseline in the910

video-only setting, we fine-tune the Vid2Seq pre-911

trained weight in this setting and report the results912

as the performance of Vid2Seq (V) in the main text.913

The training schemes for Vid2Seq and Vid2Seq (V)914

follow the setup stated in § 4.1.915

Our MVPC and MR-VPC During inference,916

we apply a length penalty of 1.0 for YouCook2917

and ActivityNet Captions, and a length penalty of918

0.6 for Charades. In the DistillAM strategy, when919

utilizing the MVPC model to generate training data920

for training the MR-VPC model, we keep the same921

inference hyperparameters. Notably, we notice that922

unfreezing top CLIP layers has minimal impact923

on the performance of MVPC and VidSeq in our924

preliminary experiments, but the choice signifi-925

cantly boosts the performance of MR-VPC. Thus,926

we unfreeze the last six CLIP layers in the video927

encoder when training MR-VPC models. In this928

situation, the total trainable parameters are 390M.929

C Details of Model-Based Metrics930

We use the following model-based automatic eval-931

uation metrics:932

• Perplexity (PPL): To assess the fluency of933

the generated paragraph-level captions, we934

adopt the perplexity score produced by a pre-935

trained language model gpt2-large (Radford936

et al., 2019) (774M parameters).937

• BERTScore (Zhang et al., 2019) and938

BARTScore (Yuan et al., 2021) are two text939

generation metrics based on the similarities940

of BERT (Devlin et al., 2019) embed-941

dings and the generation probabilities of the942

BART (Lewis et al., 2020) model, respectively.943

We use them for evaluating the consistency944

between generated captions and reference cap-945

tions. Specifically, for BERTScore, we use the946

pA pE

Test Modalities
Avg.

V+E+A V+E V+A V

0.1 0.1 23.15 13.50 21.80 10.76 17.30
0.3 0.3 23.04 15.76 22.52 15.39 19.18
0.5 0.5 22.67 16.94 22.54 16.53 19.67
0.7 0.7 22.24 17.10 22.30 17.03 19.67
0.9 0.9 19.86 17.52 19.84 17.57 18.70

Table 12: The effect of the choice of drop rate pA and
pE with different available modalities at test time on
the YouCook2 dataset. Only the DropAM strategy is
applied and METEOR metrics are reported.

F1 score given by the roberta-large (Liu et al., 947

2019) pretrained model (335M parameters); 948

for BART score, we use the facebook/bart- 949

large-cnn model (406M parameters) trained 950

on ParaBank2 (Hu et al., 2019). 4 951

• EMScore (Shi et al., 2022) is an automatic 952

video captioning metric derived by match- 953

ing the video frame embeddings and the 954

text token embeddings produced by the 955

CLIP (Radford et al., 2021) model. Besides 956

the reference-free version EMScore (EMS 957

for short), we also report the reference-based 958

version EMSref additionally considering the 959

similarity of the prediction and the reference 960

annotation. Concretely, we use the clip- 961

vit-base-patch32 pretrained model (151M 962

parameters) following Shi et al. (2022). 963

D Effect of Drop Rates pA and pE 964

Recall that pA and pE are the probabilities to be 965

nullified for the ASR modality A and the event 966

boundary modality E in our DropAM strategy in 967

§ 3.3.1. We enumerate the values of these two 968

hyperparameters (called drop rates) in DropAM 969

and report the CIDEr results on the validation set 970

of YouCook2 in Table 12. We observe that large 971

drop rates hamper performance in the modality- 972

complete setting and small drop rates result in poor 973

performance in the modality-incomplete setting. 974

Generally, setting pA and pE around 0.5 strikes 975

the balance relatively well and performs the best 976

in terms of the average performance with different 977

available modalities. Moreover, we have made 978

similar observations on ActivityNet Captions in 979

preliminary explorations. Therefore, we use pA = 980

pE = 0.5 in our main experiments. 981

4Available at https://github.com/neulab/BARTScore.
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Model
Test Modalities

Avg.
V+E+A V+E V+A V

VidSeq-Concat 22.35 14.08 21.92 12.12 17.62
MR-VPC (Ours) 22.83 16.97 22.59 16.86 19.81

Table 13: Comparison with Vid2Seq-Concat (Yang
et al., 2023a) on YouCook2. METEOR metrics are
reported. When testing Vid2Seq-Concat without E,
we trim the video into seven consecutive clips of the
same length (seven is the average number of events in
YouCook2).

E Comparison with Yang et al. (2023a)982

Concurrent to our work, Yang et al. (2023a) extend983

Vid2Seq to incorporate both A and E for VPC984

(called “video chapter generation given ground-985

truth boundaries” in their paper). Specifically,986

they trim long videos into short clips given the987

ground-truth event boundaries E, train Vid2Seq on988

the short clips for sentence-level captioning, and989

concatenate the predictions on each clip to form990

paragraph-level captions. The proposal by Yang991

et al. (2023a) (named as “Vid2Seq-Concat” by us)992

has two weaknesses: (1) Vid2Seq-Concat simply993

divides the VPC task into video captioning on short994

clips and fails to model the inter-event dependence995

in each long video; (2) the video and ASR input of996

Vid2Seq-Concat is determined by the given event997

boundaries, which makes the system vulnerable998

when the event boundaries are noisy or absent. In999

comparison, our MVPC and MR-VPC schemes1000

model all input modalities in an end-to-end man-1001

ner, bringing two key advantages: (1) effective1002

modeling of inter-event dependence in long videos;1003

(2) no information loss in A and V when E is noisy.1004

The experimental results on YouCook2 in Table 131005

empirically validate the advantage of our proposals1006

over Vid2Seq-Concat (Yang et al., 2023a)5.1007

F Noise Besides Missing Modality1008

In § 5.2, we discuss five types of noise in auxiliary1009

modalities. Here are the details of them:1010

• Low-quality ASR: In real-world scenarios,1011

ASR systems may have hardware limitations,1012

resulting in inferior ASR data compared to the1013

ASR texts used during training generated by1014

state-of-the-art ASR models. To simulate this1015

situation, we replace the Whisper small.en1016

model (244M parameters) with the tiny.en1017

5We uniformly sample 15 frames for each clip in our im-
plementation of Vid2Seq-Concat to keep the total input frames
of each video close to 100.

model (39M) and reduce the inference beam 1018

size from 5 to 1. 1019

• ASR Sentence Deletion: To simulate the cor- 1020

ruption of ASR data, we randomly delete 50% 1021

of all sentences in each test instance. 1022

• Event Deletion: In order to simulate the cor- 1023

ruption of event boundary data, we randomly 1024

delete 50% of the events in the event boundary 1025

data of each test instance. 1026

• Boundary Perturbation: To introduce per- 1027

turbations to the event boundaries, we add 1028

random uniform noise ranging from -5 to +5 1029

units (percentage points) to each timestamp in 1030

the event boundaries of each instance. 1031

• Generated Boundary: Considering that 1032

event boundaries predicted by models are 1033

more realistic noisy inputs than perturbed 1034

ground-truth boundaries, we leverage the 1035

PDVC (Wang et al., 2021) dense captioning 1036

model to generate event boundaries. 1037

G Software and Hardware Requirements 1038

We implement our code based on the PyTorch 1039

(Paszke et al., 2019) and HuggingFace Transform- 1040

ers (Wolf et al., 2020) Python libraries. All experi- 1041

ments in this paper are conducted on a server with 1042

8 NVIDIA A40 GPUs (48 GB memory per GPU). 1043

H Qualitive Example 1044

We present a qualitative case study in Figure 5 1045

to highlight the strengths of our MVPC and MR- 1046

VPC models in the modality-complete setting. As 1047

shown, VidSeq and VLTinT baselines tend to pro- 1048

duce hallucinations and predict concepts inconsis- 1049

tent with the video content. For example, although 1050

there is only one man moving and performing mar- 1051

tial arts in the video, Vid2Seq predicts “The men 1052

continue moving around one another” and VLTinT 1053

generates “another man is seen walking around 1054

him”. In contrast, our MVPC and MR-VPC mod- 1055

els show almost no hallucinations. The generated 1056

captions are more accurate and closely aligned with 1057

the content of the video. 1058

I Details of Human Evaluation 1059

Three voluntary annotators, who are graduate 1060

students fluent in English, are asked to choose a 1061

caption that they deem more coherent with the 1062
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Reference: A man is seen speaking to the camera and pans out into more men standing behind him. The 
first man then begins performing martial arts moves while speaking to he camera. He continues moving 
around and looking to the camera.
MVPC (Ours): A man is talking to the camera in a gym. Several martial arts are shown as he demonstrates 
them. A man is then seen performing several martial arts moves while the camera captures him from 
several angles.
MR-VPC (Ours): A man in a white t-shirt is talking to the camera. He is doing several martial arts moves on 
the mat. He does several kicks on the mat.
Vid2Seq: A man is seen speaking to the camera and leads into several shots of people performing martial 
arts moves. The men continue moving around one another while the camera captures their movements.
VLTinT: A man is seen speaking to the camera while standing in front of a large crowd. He is talking to the 
camera while another man is seen walking around him. He then does several martial arts moves while the 
camera captures his movements.

  

Figure 5: The captions produced by our models and baselines in the modality-complete setting on an ActivityNet
Captions test sample (id: “bXdq2zI1Ms0”). The wrongly predicted concepts are highlighted in red by the author.

Model Predictions Modality-Complete Setting Video-Only Setting

Reference pick the ends off the verdalago. combine lemon juice sumac garlic salt and oil in a bowl. chop lettuce and place it in a bowl. ⋯

Vid2Seq
wash the leaves of verdolago. add lemon juice sumac crushed
garlic salt and olive oil to a bowl and mix. ⋯

um, i’ma add some sea salt to the bowl. add some black
pepper and mix it well. ⋯

MVPC
wash the pita bread slices. mix lemon juice sumac garlic salt and
olive oil in a bowl. ⋯

tv.sv.svs.svv.svv on svvvm.svvm on svhvm on the svvm.

MR-VPC
wash the romaine lettuce leaves. add lemon juice sumac crushed
garlic salt and olive oil to a bowl. ⋯

wash the romaine lettuce leaves. add lemon juice sumac
crushed garlic salt and olive oil to a bowl. ⋯

Table 14: The predictions given by the models on a YouCook2 instance (id: “xHr8X2Wpmno”) in the modality-
complete setting (the second column) and the video-only setting (the third column). We only show the first two
sentences of the predictions due to the limit of space and the degenerated predictions are highlighted in red.

Figure 6: The human annotation interface.

video content from a pair of model predictions1063

or choose the “equal” option if they consider1064

the two predictions to be equally good in terms1065

of coherence. The data collection protocol is1066

approved by an internal ethics review. We depict1067

the layout of the annotation webpage in Figure 6.1068
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