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Abstract

Stochastic optimization (SO) attempts to offer
optimal decisions in the presence of uncertainty.
Often, the classical formulation of these prob-
lems becomes intractable due to (a) the number
of scenarios required to capture the uncertainty
and (b) the discrete nature of real-world plan-
ning problems. To overcome these tractability
issues, practitioners turn to decomposition meth-
ods that divide the problem into smaller, more
tractable sub-problems. The focal decomposition
method of this paper is Benders decomposition
(BD), which decomposes stochastic optimization
problems on the basis of scenario independence.
In this paper we propose a method of accelerating
BD with the aid of a surrogate model in place of
an NP-hard integer master problem. Through
the acceleration method we observe 30% faster
average convergence when compared to other ac-
celerated BD implementations. We introduce a
reinforcement learning agent as a surrogate and
demonstrate how it can be used to solve a stochas-
tic inventory management problem.

1. Introduction
Optimization is frequently subject to conditions of uncer-
tainty. If this uncertainty is not sufficiently accounted for by
a solution, even minor perturbations in the environment can
devalue results and lead to catastrophic outcomes. While
uncertainty can often be simulated or even parameterized,
solving over that uncertainty offers incredible complexity.
To make optimal decisions that consider both the uncertainty
and constraints of a system, the field of SO is often applied.
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SO considers a distribution of possible scenarios rather than
a deterministic event, and seeks an optimal outcome across
the range of possibilities.

A common challenge for stochastic optimization is tractabil-
ity. Generating an optimal decision that considers its out-
come across a large number of scenarios can be extremely
costly. To combat these computational issues, a common
approach is to decompose the problem into simpler and in-
dependent sub-problems that can be combined to retrieve
a global certificate of optimality. In this paper, we offer
an adaptation of the common decomposition method of
Benders decomposition (BD).

Despite wide usage since its introduction, BD suffers from
two well-known practical limitations. First, in discrete
space, BD relies on an NP-hard mixed-integer master prob-
lem (MIMP). This MIMP is responsible for making global
decisions that are homogeneous across scenarios. Second,
with each iteration a set of scenario-specific sub-problems
(SP) generate gradient approximations that are passed to the
MIMP as constraints (or cuts). The result is a MIMP with
complexity that scales linearly with the number of required
iterations as constraints are added.

Given these deficiencies, accelerating BD has become a
compelling research problem. In production routing appli-
cations, (Adulyasak et al., 2015) implement lower-bound
lifting inequalities to tighten initial lower bounds, and ex-
ploit scenario grouping to reduce added complexity at each
iteration. (Baena et al., 2020) attempt to localize the loss
approximation of BD by restricting each iteration to a sub-
space centered around strong past solutions. (Crainic et al.,
2016) aid initial iterations by including an informative sub-
set of scenarios within the MIMP. (Lee et al., 2021) offer
a machine learning approach to predicting constraint im-
portance; retaining only important cuts and limiting MIMP
complexity. Each of these proposals has shown computa-
tional benefits, but remain solely dependent on the expensive
MIMP to generate successive solutions. In contrast, (Poo-
jari and Beasley, 2009) replace the MIMP with a genetic
algorithm to produce faster feasible solutions. Although the
heuristic produces fast master problem (MP) solutions, it is
still reliant on SP approximations to undertstand scenario
loss, and offers feasible as opposed to certifiably optimal
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solutions.

Our proposal introduces a surrogate model to quickly gen-
erate solutions to the discrete MP rather than relying on
the MIMP. This surrogate generates fast solutions to un-
seen problems after learning the loss of decisions in similar
stochastic environments. At varying rates, the MIMP is still
run to retrieve the certificate of optimality offered by BD.
In total, our contributions are:

• A generalized method of accelerating BD that retrieves
optimal solutions to stochastic optimization problems
while drastically reducing run times.

• A solution selection method that uses cuts from BD
sub-problems to inform selection of future surrogate
MP solutions; offering a further unification of the sur-
rogate MP within the BD framework.

• A worked inventory management problem with de-
tailed implementation of the acceleration method. We
offer an explicit Benders formulation, and leverage an
RL model as our surrogate MP.

• Experiments showing a 30% reduction in run-time vs
alternative acceleration methods.

2. Background
A widely used form of stochastic optimization is Sample
Average Approximation (SAA). SAA aims to approximate
loss over the distribution of possible scenarios using sim-
ulation. In SAA, R scenarios are simulated, with each
simulation yielding its own deterministic sub-problem with
a loss function f(x,w,Dr), where x is a set of global deci-
sions (universal across all scenarios), w is a cost vector, and
Dr is a set of scenario-specific parameters. The total loss
of the problem is then computed as an average of the loss
across all scenarios,

ℓ(x) =
1

R

∑
∀r∈R

f(x,w,Dr) (1)

Despite success in a number of optimal planning domains,
the struggles of scaling SO problems are well documented.
For example, (Gendreau et al., 1996) note that when solving
stochastic vehicle routing problems, practitioners commonly
resort to comparing heuristics as exact methods become
intractable. To combat scalability issues, decomposition
methods are commonly employed to solve large-scale SO
problems. Here we introduce the principles of Benders
decomposition. Consider an SAA problem of the form:

min
x,y

cTx+
1

R

∑
∀r∈R

wT yr (2)

subject to
Ax = b (3)

Bx+Dryr = g, ∀r ∈ R (4)

x ∈ Z, yr ∈ Z+, ∀r ∈ R (5)

where x is again our set of global decisions, A, b, and B
are parameters that define constraints on x, c is the cost of
global decisions, Dr and g are scenario-specific parameters,
yr is a set of decisions made independently within each
scenario, and w is a cost applied to each scenario-specific
decision. In this formulation, wT yr is equivalent to (1). The
first step of BD is to separate the global decision variables
x and scenario-specific decision variables yr. This leaves
us with a master problem

{min
x,θ

cTx+
1

R

∑
∀r∈R

θr : Ax = b, x ∈ Z+} (6)

and a collection of R sub-problems, where for each r ∈ R
we have

{min
yr

wT yr : Dryr = g −Bx∗, yr ∈ R+} (7)

The sub-problems accept a fixed x∗ based on the solution to
(6), and are solved to obtain optimal sub-problem decisions
yr. Note that BD introduces a set of auxiliary variables
θr,∀r ∈ R to the master problem (6). This auxiliary vari-
able, frequently called the recourse variable, is responsible
for tracking an approximation of the sub-problem loss that
has been moved to (7). Let us assume the sub-problem is
always feasible. This is not a necessary assumption, but
simplifies the following description of BD.

Note that integrality on yr has been relaxed in the sub-
problem. This relaxation is necessary for Benders decompo-
sition, and only possible when a) the sub-problem variables
were not discrete to begin with or b) the decomposition re-
sults in a totally-unimodular sub-problem structure. Taking
the dual of the sub-problem, we get:

{max
qr

qTr (g −Bx∗) : qTr Dr ≤ w} (8)

The dual sub-problem has three essential properties. First,
through strong duality the optimal value of (8) is equivalent
to the optimal value of (7) at x∗. Second, the objective
function (8) is linear with respect to the master problem
decisions x. And lastly, with the optimal dual values of q∗r
we can establish

{minyrw
T yr : Dryr = g −Bx} ≥

q∗Tr (g −Bx),∀x ∈ R,∀w ∈ R (9)
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via weak duality. With these traits established, we see that
the optimal dual SP objective q∗Tr (g−Bx) can be included
as a valid constraint on θr in the MIMP. These constraints
serve as a sub-gradient approximations of the SP loss. For
each SP solution, we can update the MIMP with the valid
constraint of θr ≥ q∗Tr (g − Bx) and re-solve for a new
x. This process is repeated until the SP’s do not offer any
strengthening constraints on θr, indicating convergence and
full approximation of SP loss. Figure 1 offers a visual
representation of this process.

Figure 1. Iterative procedure of Benders decomposition, alternat-
ing between a MIMP (6) and SP (8).

2.1. Reinforcement Learning

Reinforcement Learning (RL) offers a powerful approach to
solving combinatorial problems. (Delarue et al., 2020) gives
one such example of RL applied to combinatorial problems,
solving notoriously challenging capacitated vehicle routing
problems using value-based methods. As shown in (Delarue
et al., 2020), the benefit of RL-based methods is that after
learning a near-optimal policy, they can generate actions in
discrete space very quickly, albeit without a guarantee of
optimality.

RL is typically based on the Markov Decision Process
(MDP) framework as described by Sutton and Barto (Sut-
ton and Barto, 2018). This can be defined by a tuple
⟨S,A, T ,R⟩ where S is the set of states, A is the set of
actions, T is a set of transition probabilities from state s to
the next state s′, and R is the reward function. In temporal
environments, we can adopt the notation of st ∈ S , at ∈ A
for the state and action of a given time step t.

In RL, an agent attempts to learn the optimal action in a
given state. Performance is measured by the collective re-
wards over future states and actions. The behaviors of the
agent are updated based on prior experience, and can col-
lectively be defined by a policy, π(s, a). RL algorithms can
be broadly partitioned into two classes: value-based and
policy based. In a value-based implementations, the pol-
icy π(s, a) is selected using value-function approximation

methods, where

Qπ(st, at) =
∑
∀j∈T

Est+1,at+1,...[γtR(st+j , at+j)] (10)

is the expected reward of an action, γt is a discount rate
placed on future reward, and an optimal policy is determin-
istically selected based on argmaxπQ

π .

Rather than estimating the value-function Q and generating
policies based on actions that maximize that approximation,
policy-based reinforcement learning aims to optimize a func-
tional representation of the policy π(s, a). We define the
functional representation of a policy as πβ(s, a), where β
is a set of learned parameters. Importantly, in policy-based
learning the agent optimizes the parameters β to generate
a stochastic policy. This stochastic policy respects the fact
that the cumulative reward for an action may not be deter-
ministic, and consequentially a single best action may not
exist.

Work from (Sutton et al., 1999) introduces an optimization
procedure for policy-based RL that updates the parameter
set β via an estimate of the policy gradient. A powerful
variation of policy-based optimization was introduced by
(Schulman et al., 2017) to avoid detrimentally large pol-
icy updates. In their version of policy-based optimization,
the policy changes are regulated by limiting the reward
of policy variation. Their method, titled Proximal Policy
Optimization (PPO), updates the objective function to clip
the reward of policy updates where the ratio |π

new
β (at|st)

πold
β (at|st)

|
extends beyond some ϵ.

Policy-based RL is a more applicable form of RL for our
proposal, as it enables a set of diverse actions to be generated
in a given state. Given a requirement for non-deterministic
actions, our working example implements a PPO RL algo-
rithm with a multi-layer neural network serving as our agent.
The parameter set of this network, β, defines our policy πβ.

3. Accelerating Benders Decomposition
With background on BD and RL provided, we introduce our
proposed method of accelerating Benders decomposition.
First, we will offer specifics on how a surrogate model is
used in place of the MIMP. Then, we will introduce three
possible mechanisms for selecting actions from the surro-
gate model. Lastly, we will offer a more thorough coverage
of the theoretical benefits that the surrogate model provides,
and known deficiencies of BD that it addresses.

3.1. Surrogate-MP

Recall the iterative procedure outlined in figure 1. The SP’s
can be solved efficiently using any standard LP solver, but
each iteration calls back to a complex MIMP. Not only is
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the MIMP NP-hard, but its complexity scales linearly with
the number of iterations as a new constraint is added from
the SP. Given these mechanics, there is a strong desire to
a) increase the speed of each master problem iteration and
b) decrease the total number of calls to the MIMP required.
We achieve both results by periodically introducing a faster
surrogate model in place of the MIMP (figure 2). This
surrogate model can be any model that has learned to map
the stochastic input space to the discrete decision space with
intentions of minimizing the problem loss. Later in the
paper, we introduce an RL agent as our surrogate model to
generate master problem solutions. We call this framework
Surrogate-MP.

Figure 2. Iterative procedure of Surrogate-MP.

Note in this modified schema that with each iteration, the
decision to use the surrogate in place of the MIMP is drawn
from a Bernoulli distribution with a control parameter Γ. If
a value of 1 is returned from the Bernoulli distribution, the
surrogate is used to generate global decisions. Otherwise,
the standard MIMP is run and the optimality gap can be
confirmed. Regardless of whether the MIMP or surrogate
are used, global decisions are passed to the sub-problem and
loss approximating cuts are added.

3.2. Controlling Surrogate Usage

The surrogate model usage can be controlled in a variety of
ways, and we offer three forms of control. These variants are
aimed at answering (1) How frequently should we use the
surrogate? (2) How can we be sure the surrogate solutions
are useful for convergence? (3) If surrogate actions are
non-deterministic, how can we decide which action are best
to use? The three methods we implement are a greedy
selection, weighted selection, and informed selection. Each
of these methods assume the surrogate has generated a non-
deterministic batch of actions for the given environment.

Greedy Selection The greedy selection process first eval-
uates every surrogate solution in a batch against the ex-
pectation of demand over the horizon to estimate solution
performance. At each iteration, the decision to use the sur-
rogate is made with some probability. If the surrogate is
used, we select the top performing solution from the batch
and use it as our MP solution. The solution is then removed
from the batch and the process is continued.

Weighted Selection Rather than deterministically select-
ing actions based on their performance against an expecta-
tion, we can perform weighted random sampling. We again
use the calculated loss of action i evaluated against expected
demand, which we call ℓi. However, instead of selecting
argmini(ℓi) as in the greedy method, we create a probabil-

ity vector, where p(i) =
1
ℓi∑

∀i∈I
1
ℓi

. Using this probability

vector, we perform weighted sampling from the batch of
actions each time the surrogate is called.

Informed The final proposal is observed to be strongest
in our experiments, and incorporates feedback from the BD
sub-problems. With informed selection, surrogate solutions
are selected using the constraint set currently placed on θr.
The benefit of utilizing the constraint matrix to select surro-
gate solutions is that these constraints inherently motivate
exploration to either a) minimal or b) poorly approximated
regions of the convex loss. Given final convergence is de-
fined by a binding subset of these constraints, it is necessary
to explore these minimal or poorly approximated regions.

To describe the method, we introduce a constraint matrix
Ar ∈ RI×N which contains the sub-gradient approxima-
tions imposed on θr, and a row vector of constant values
cr ∈ RI that is added to each sub-gradient approximation. I
refers to the iteration number of BD, N refers to the number
of MP decision variables, and r refers to the scenario.

Note each iteration generates a new set of sub-gradient ap-
proximations that are added to the matrix. As mentioned,
these are the same sub-gradients that are applied to θr in
the master problem, and are generated using our dual sub-
problem. On a given iteration, we have a batch of M so-
lutions that have been generated by the surrogate. Deci-
sions for this batch are represented by matrix D ∈ ZN×M .
We begin by computing the loss approximations of each
gradient, for each of the M solutions. This is given as
TCAr ∈ RI×M .

TCAr = Ar ·D + (cr · 11×I)T (11)

The TCAr matrix contains approximations of the sub-
problem loss for each of the M solutions, generated by
each of the I constraints currently placed on θr. We can
now take the maximum value for each column M as the ap-
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proximated cost of solution m. In LP terms, this maximum
value relates to the binding constraint on θr in the MIMP,
and is thus our true approximation of SP cost at that point.
We represent this approximation (ℓmr) as:

ℓm,r = max
∀i∈I

(TCAr)im (12)

Now we fully approximate the expected loss for each of the
M solutions by taking an average across all R scenarios,
and adding the fixed loss of that decision (denoted fm).

ℓm =
1

R

∑
∀r∈R

ℓm,r + fm (13)

the surrogate solution that minimizes the problem

argminmℓm (14)

is then taken as our MP solution, and passed to the sub-
problem for constraint generation.

3.3. Benefits of Surrogate-MP

The benefits of using a surrogate model with learned actions
in place of the MIMP is based on two central principles.

1. The time required to generate solutions from a pre-
trained surrogate model is negligible compared to the
time required to solve a large scale MIP.

2. The surrogate model has learned its actions from past
exposure to the stochastic environment. As a result,
sub-problem loss is expressed in surrogate model solu-
tions regardless of how well θr approximates SP loss.
This means that even early iterations of the surrogate
model will be highly reflective of sub-problem loss.

The first benefit is fairly self-explanatory; we desire faster
MP solutions, and the surrogate provides them. The second
benefit is more nuanced and worth expanding. We recall
the general form MIMP (6), where θr offers an approxi-
mation of sub-problem loss that is refined through linear
constraints generated by (8). It is well observed that this
approximation can converge quickly if global decisions are
localized to the optimal region, but it can also be very slow
if global decisions are far from the optimal region or the
cuts poorly approximate the loss (Crainic et al., 2016; Baena
et al., 2020). At initialization, θr has not received any feed-
back from the SP, and is instead bound by some heuristic
or known lower bound (commonly θr ≥ 0 for non-negative
loss). Given the lack of information initially imparted on θr,
the MP generates global solutions that lack consideration
of SP loss and can be very distant from the optimal region.

Similar to a gradient based algorithm with a miss-specified
learning rate, this can lead BD to oscillate around the mini-
mal region or converge slowly, wasting compute and adding
complexity with minimal benefit to the final solution (Baena
et al., 2020).

The surrogate mitigates this major issue by generating global
decisions that reflect an understanding of their associated
SP loss without requiring strong loss approximations on
θr. As a result, initial global decisions generated by the
surrogate are localized to the minimal region and cuts can
quickly approximate the minimum of the convex loss. These
two fundamental benefits are the basis for a 30% reduction
in run-times, observed in experiments with the working
example that follows.

4. Working Example
Let us introduce an inventory management problem (IMP)
as a working example. In the proposed IMP, we assume the
required solutions must a) choose a delivery schedule from a
finite set, b) decide an order-up-to amount (order = order-up-
to - current inventory) for each order day, and c) place costly
emergency orders if demand cannot be met with current
inventory. For simplicity we consider a single-item, single-
location ordering problem where there is a requirement to
satisfy all demand using either planned schedules, or more
costly just-in-time emergency orders. The demand estimate
is generated using a forecast model with an error term from
an unknown probability distribution.

Adaptations of the general form IMP are applied in indus-
tries ranging from financial services, to brick-and-mortar
retail. In e-commerce, vendors make decisions to either
assume the holding costs associated with stocking inven-
tory near demand locations, or use more costly fulfillment
options to meet consumer needs (Arslan et al., 2021). In
commercial banking, cash must be held at physical locations
and made available to customers when needed, with a com-
pounding cost of capital being applied to any unused cash
(Ghodrati et al., 2013). Or in commodities trading, physical
assets may need to be purchased and held until a desired
strike price is realized in the future (Goel and Gutierrez,
2011).

4.1. SO Formulation and Decomposition

To model the IMP as a SO mixed-integer problem we in-
troduce the following notation: let T be set of days t, R be
set of scenarios r, and S define a finite set of schedules s.
Holding cost of an item (per unit-of-measure, per day) is h,
the cost of emergency services (per unit) is e, the penalty
applied to over-stocking (per unit over-stocked) is q, and
fs is the fixed cost of a schedule. Capacity is defined by m
and starting inventory by y. The parameter wst indicates
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whether schedule s orders on day t. Demand on day t under
scenario r is ntr.

The decision space is defined by seven sets of variables.
The decision to use schedule s is made using variable
us ∈ {0, 1}. The order-up-to amount is decided by
at ∈ Z+, and ktr ∈ Z is the required order quantity
to meet the order-up-to amount. Inventory on hand is
monitored by dtr ∈ Z+, the units of holding space
required to stock the inventory is ptr ∈ Z+, the required
emergency order quantity is otr ∈ Z+, and vtr ∈ Z+

is the number of units that inventory is over-filled by
(all defined ∀t ∈ T, ∀r ∈ R). The formulation of our IMP is

min
∑
∀s∈S

(usfs)+
1

R

∑
∀r∈R

∑
∀t∈T

(ptrh+otre+vtrq) (15)

subject to:

dtr = y − ntr + ktr − vtr + otr, t = 0,∀r ∈ R (16)

dtr = dt−1,r+ktr−ntr+otr−vtr,∀t ∈ {1, ..., T},∀r ∈ R
(17)

ptr ≥ y + ktr − vtr, t = 0,∀r ∈ R (18)

ptr ≥ at,∀t ∈ {1, ..., T},∀r ∈ R (19)

ptr ≥ pt−1,r − at,∀t ∈ {1, ..., T},∀r ∈ R (20)

y + ktr − vtr ≤ m, t = 0,∀r ∈ R (21)

dt−1,r + ktr − vtr ≤ m, ∀t ∈ {1, ..., T},∀r ∈ R (22)

ktr = at − y
∑
∀s∈S

uswst (23)

ktr ≥ at − dt−1,r,∀t ∈ {1, ..., T},∀r ∈ R (24)

ktr ≤ at−dt−1,r+(1−
∑
∀s∈S

uswst)m,∀t ∈ {1, ..., T},∀r ∈ R

(25)
ktr ≤ at,∀t ∈ T, ∀r ∈ R (26)

ktr ≥ −
∑
∀s∈S

uswst ×m, ∀t ∈ T, ∀r ∈ R (27)

vtr ≤ at,∀t ∈ T, ∀r ∈ R (28)

at ≤
∑
∀s∈S

uswst ×m,∀t ∈ T (29)

∑
∀s∈S

us = 1 (30)

The objective (15) minimizes the sum of planned schedule
costs and the average of holding costs, emergency order
costs, and over-fill costs across the R scenarios. Flow con-
straints (16) and (17) balance inflow and outflow of inven-
tory through demand and deliveries. The holding cost is

enforced by constraints (18), (19), and (20). Constraints
(21) and (22) mandate that inventory cannot be filled be-
yond its capacity. Lastly, constraints (23), (24), (25), (26),
(27), (28), and (29) ensure an order exactly fills the inven-
tory to the optimal order-up-to-amount, and that orders are
only placed on scheduled days. (30) guarantees exactly one
schedule is selected.

For BD, we note that a and u are schedule and order-up-to
decisions that must be made the same across all scenarios.
As a result, a, u, (29), and (30) are contained in the MIMP
while the remaining decision variables and constraints are
delegated to the scenario specific sub-problems. For brevity,
we omit the primal sub-problem formulation and directly
introduce the cut-generating dual sub-problem formulation.
We define the dual variables in line with their related con-
straints: α ∈ R [(16), (17)], γ ∈ R+ [(18), (19)], ω ∈ R+

(20), ϕ ∈ R+ [(21),(22)], ξ0 ∈ R (23), ξlb ∈ R+ (24),
ξub ∈ R− (25), σ ∈ R− (26), π ∈ R+ (27), β ∈ R− (28).

Master Problem

min
a,u,θ

∑
∀s∈S

(us × fs) +
1

R

∑
∀r∈R

θr (31)

s.t.
at ≤

∑
∀s∈S

uswst ×m,∀t ∈ T (32)

∑
∀s∈S

us = 1 (33)

θr ≥ 0,∀r ∈ R (34)

Dual Sub-problem (solved independently for each sce-
nario r)

max
α,ϕ,ξ0,ξlb,ξub,σ,π

α0r(y − n0r)+

γ0ry+

ξ0r (a0 − y ×
∑
∀s∈S

usws0)+

ϕ0r(m− y)+

T∑
t=1

(−αtrntr + γtrat − ωtrat + ϕtrm+

ξlbtratr + ξubtr (atr + (1−
∑
∀s∈S

uswst)m))+∑
∀t∈T

(βtrat + σtrat − πtr(
∑
∀s∈S

uswst ×m)) (35)

s.t.
αtr ≤ 0, t = T (36)

αtr−αt+ 1, r+ϕt+ 1, r+ξubt+1,r+ξlbt+1,r ≤ 0,∀t ∈ {0, ..., T−1}
(37)
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γtr − ωt+1,r ≤ h, t = 0 (38)

γtr + ωtr ≤ h, t = T (39)

γtr − ωt+1,r + ωtr ≤ h,∀t ∈ {1, ..., T − 1} (40)

αtr + βtr − ϕtr + γtr ≤ q, t = 0 (41)

αtr + βtr − ϕtr ≤ q,∀t ∈ {1, ..., T} (42)

−αtr ≤ p, ∀t ∈ T (43)

ξ0r − γtr + ϕtr − αtr + σtr + πtr = 0, t = 0 (44)

ξlbtr+ξubtr +ϕtr−αtr+σtr+πtr = 0,∀t ∈ {1, ..., T} (45)

Let us refer to the polyhedron defined by MP constraints
at iteration i as Pi. The master problem generates opti-
mal decisions a∗ and u∗ given the current approximation
of sub-problem costs on θ. The objective function of the
dual sub-problem (referred to as L(a,u, r), where r is the
scenario) is updated with a∗ and u∗, and the sub-problem
is solved. Recalling the mechanics of BD, the optimal
solution to the dual sub-problem has two valuable prop-
erties: a) as a numeric value it defines the true scenario
specific costs, and b) as a function it offers a sub-gradient
on θr. The master problem polyhedron is then updated
to Pi+1 = Pi ∩ {u,a,θ : θr ≥ L∗(a,u, r)}, where
L∗(a,u, r) refers to the optimized loss function of the sub-
problem iteration. This process is repeated until conver-
gence, with each iteration of the MP being solved over a
more refined approximation of sub-problem costs.

4.2. RL Surrogate - Formulation

We leverage an RL agent as the surrogate model in our
Surrogate-MP implementation. The state of our IMP is rep-
resented by the tuple st = ⟨d, h, e, q,m, µ, σ,w,o, r⟩ ∈ S ,
where t is a time step over the horizon T . Parameters d, h,
e, q, w, and m directly follow the definitions introduced
in the SO Formulation and Decomposition section (page
5). Additional state parameters include µ as the expected
demand, and σ as the estimated standard deviation of de-
mand. A vector o tracks orders over the time horizon T .
All future orders are set to zero, and past orders are taken
from actions as they are performed. Similarly, a vector r
tracks the forecast errors from past observations. All future
error observations are set to zero, and events are populated
as they are observed by the state.

The actions are represented by ⟨kt,ut⟩ ∈ A which denotes
(a) the quantity to order, and (b) the schedule to adhere
to, at time t respectively. Note that the schedule must be
determined at the beginning of the horizon, and thus only
ut=0 is relevant. This is enforced through action masking
and for simplicity we will refer to ut=0 as u. The reward is
negative cost, as defined by the objective (15).

As previously mentioned, we use PPO to optimize a multi-
layer neural network as our agent. The network is a feed-
forward neural network with two hidden layers and two
linear output layers. The linear output layers return the log-
odds that define our stochastic action space. We standardize
the network inputs (the state) to be mean centered with unit
variance, and generate kt and ut sequentially ∀t ∈ T .

The agent is presented with an initial state s0 and must
select a scheduling action to take. This scheduling action, u,
relates to a binary vector w ∈ {0, 1}T that defines whether
an order is possible on day t. If wt = 1, an order can be
placed, otherwise the agent cannot order. This schedule
becomes part of the state, over-writing the initial zero vector
w.

With the schedule defined, the agent must generate a second
action for state s0; this time selecting an order amount. The
repeated visitation of state s0 is necessary as the selected
schedule w has now become part of the state. While we
have not temporally shifted, the state has changed.

After a second visitation of s0, the agent sequentially tra-
verses the horizon T . With each time step, an ordering
decision is made and either accepted or masked depending
on the schedule vector w. Updates to the state include pop-
ulation of order quantities, residual updates, and an update
of the inventory on hand based on observed demand and
order amounts. If an order is scheduled, we retrieve the
order-up-to amounts, denoted as a in the SO Formulation
section, by adding inventory on hand at the end of t− 1 to
the ordering decision kt. If an order is not scheduled the
order-up-to amount is 0. After traversing the full horizon
T , the agent will have selected a schedule u ∈ {0, 1}S and
have a vector of order-up-to quantities a ∈ ZT

≥0 from the
agent. These two decision vectors, u and a are the essential
ingredients required by the BD sub-problem. With these
vectors, we can solve (35), generate sub-gradient approxi-
mations on θr, and further refine our approximation of true,
stochastic, sub-problem cost.

5. Experiments
To evaluate the Surrogate-MP method, we implement our
IMP formulation across 153 independent test cases using
real-world data. Each experiment was performed with a
sample size of 500 scenarios (R = 500), a horizon of 28
days (T = 28), and 169 possible schedules (S = 169). The
resultant problem has a high dimensional discrete decision
space, consisting of scheduling and ordering decisions. In
total, the decision space is Z70,197. Experiments were run
on a 36 CPU, 72 GB RAM c5.9xlarge AWS instance. For
solving the integer master problem and linear sub-problems,
we leveraged the CPLEX commercial solver with default
settings, allowing for distribution across the 36 CPU ma-
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chine. We experimented with all three surrogate solution
selection methods: greedy, random, and informed. For ev-
ery implementation of Surrogate-MP, we deactivate calls to
the surrogate after the optimality gap is ≤ 5%. The intu-
ition behind deactivating the surrogate model is that as the
gap percent shrinks, the MIMP must be used to retrieve the
certificate of optimality.

As a benchmark, we evaluate our method against a baseline
implementation of Benders decomposition. Accelerations
implemented in the baseline include scenario group cuts
(Adulyasak et al., 2015) and partial decomposition (Crainic
et al., 2016). We did not compare against a generic im-
plementation of Benders decomposition due to tractability
issues.

6. Results
All three implementations (greedy, random, and informed)
produced faster convergence than the benchmark BD im-
plementation. Random implementation performed 14.96%
(104.51s average run-time) faster than the baseline, greedy
implementation achieved 19.43% (99.92s average run-time)
faster performance, and the informed surrogate implemen-
tation performed 30.45% faster (85.47s average run-time).
The convergence rates are displayed in figure 3.

Method Avg Run-time (seconds)
No Surrogate 122.90

Random Surrogate 104.51
Greedy Surrogate 99.92

Informed Surrogate 85.47

In addition to acheiving faster average convergence,
Surrogate-MP outperformed the baseline BD implemen-
tation across the majority of instances. Surrogate-MP with
informed selection achieved better convergence rates on 135
of the 153 instances (88.24%, figure 4).

Figure 3. Convergence rates of a baseline BD, and Surrogate-MP
with three selection methods (greedy, random, informed).

Figure 4. Count of instances with faster convergence between
Surrogate-MP and a baseline BD implementation.

Acknowledging the strong performance of Surrogate-MP
with informed selection, we continued our experiments
by testing different frequencies of surrogate model usage.
We leveraged three different rate parameters Γ that con-
trol whether to use the surrogate model during each it-
eration ([0, 1] ∼ Bernoulli(Γ)). We experimented with
Γ = 0.25, 0.50, and 0.75. For every value of Γ we use
Surrogate-MP with informed selection. We observe in fig-
ures 5 and 6 that more frequent surrogate model usage re-
sults in improved convergence, with optimal convergence
rates being generated by Γ = 0.75.
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Figure 5. Convergence rates for different levels of informed sur-
rogate usage. The dotted line indicates a gap of 5% (the point at
which we deactivate the Surrogate-MP).

Figure 6. Convergence instances of BD accelerated by an informed
Surrogate-MP, with different surrogate usages.

7. Conclusion & Future Work
In conclusion, by inserting a surrogate model in place of
the MIMP we achieve a drastic reduction in convergence
time. The proposed method is generalizable to any BD im-
plementation, retreives certificates of optimality, and any
surrogate capable of generating MP solutions can be used.
We leverage an RL agent as our surrogate, and display re-
sults showing superiority in 88.24% of instances with a 30%
reduction in average run time.

Observing the performance of our method, a promising ex-
tension of this work would be to design stronger integration

between the surrogate model, SP, and MP. We took steps
toward integration with the informed method of selecting
surrogate solutions, and realized promising results. Some
opportunities for integration we leave unexplored would be
to directly inform the surrogate model on the strength of
past solutions, offer sub-gradient information as a feature, or
redesign the surrogate objective function to focus on weakly
approximated areas of the SP loss as opposed to mirroring
the BD objective directly. We are additionally eager to ob-
serve the performance of Surrogate-MP on other discrete
SO problems.

Disclaimer. This paper was prepared for informational
purposes by the Artificial Intelligence Research group of JP-
Morgan Chase & Co. and its affiliates (“JP Morgan”), and is
not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, accuracy or
reliability of the information contained herein. This docu-
ment is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the
purchase or sale of any security, financial instrument, fi-
nancial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or
to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.
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