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Abstract:
Tight coordination is required for effective human-robot teams in domains involving
fast dynamics and tactical decisions, such as multi-car racing. In such settings,
robot teammates must react to cues of a human teammate’s tactical objective to
assist in a way that is consistent with the objective (e.g., navigating left or right
around an obstacle). To address this challenge, we present DREAM2ASSIST, a
framework that combines a rich world model able to infer human objectives and
value functions, and an assistive agent that provides appropriate expert assistance
to a given human teammate. Our approach builds on a recurrent state space
model to explicitly infer human intents, enabling the assistive agent to select
actions that align with the human and enabling a fluid teaming interaction. We
demonstrate our approach in a high-speed racing domain with a population of
synthetic human drivers pursuing mutually exclusive objectives, such as “stay-
behind” and “overtake”. We show that the combined human-robot team, when
blending its actions with those of the human, outperforms the synthetic humans
alone as well as several baseline assistance strategies, and that intent-conditioning
enables adherence to human preferences during task execution, leading to improved
performance while satisfying the human’s objective.

Keywords: Recurrent State-Space Models, Human-Robot Interactions, Shared-
Control

1 Introduction
In high-stakes situations where members of a team must coordinate their physical actions in the world
for the team to succeed, early coordination on tactical objectives is crucial. In a rapidly-evolving
task, such as in high-speed competitive sports, agents must find a way to attain such coordination
without explicit communication. A robotic assistive agent equipped with an ability to reason using
theory of mind [1] has been shown to be critical to successful collaboration without the burden and
latency of explicit communication. In such settings, agents must maintain a rich-enough model of
the world to cover a common set of concepts that each agent needs to plan. This includes dynamics
of the physical world, the objectives of the team, and the current intent of the other members of the
team. Such considerations are prevalent in sports [2, 3], manufacturing [4], healthcare [5], and traffic
modeling settings [6], among others.

High-speed performance driving presents a domain where accurate and expressive models are
required to have effective human-robot teams. The dynamics in racing evolve quickly, preventing
team members from communicating their goals or objectives before taking an action [7]. Because of
this constraint, existing approaches in shared control or advanced driver assistance often split authority
on predefined boundaries (e.g. steering vs. throttle and brake) [8, 9]. The driving domain also requires
us to tackle the multimodal nature of the human decision-making problem (e.g. rules or maneuvers),
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Figure 1: We mimic human preferences on discrete decisions via population clusters during world
model formation. Our assistive models then learn to decisively help on the overall discrete-continuous
control task while taking into account multiple possible human preferences.

where discrete decisions are required to be made given knowledge of the situation [10, 11, 12, 13].
We hypothesize that a theory-of-mind-inspired model, coupled with recent advances in flexible
planning and reinforcement learning, can enable new ways for machines to help humans drive more
efficiently and effectively. We view our work as complementary to existing works in game-solving
for racing [14] and planning in racing [15].

In this paper, we present a modeling paradigm to explicitly infer and support a human teammate’s
intent, enabling our agent to learn how to interact with diverse human strategies in a high-speed
continuous control task. We consider the problem of a robotic assistive agent in a race car that
helps a human driver perform tactical overtaking maneuvers more safely and more optimally in a
high-speed competitive domain where explicit communication is difficult. While the driver remains
in control of the vehicle at all times, the assistive agent can augment the driver’s lateral (steering) and
longitudinal (throttle and brake) actions. The assistant must infer the driver’s intention (e.g., whether
or not the driver is going to attempt an overtake) in order to provide optimal control augmentations
and modifications that help the driver execute the inferred intention.

We address planning under the unobservable dynamics involved with human decisions acting in
the world via a novel model-based reinforcement learning (MBRL) paradigm that jointly learns
the dynamics of the physical world and the human’s intentions, enabling fluid shared control with
continuous assistance during a race. We contribute the learning of a recurrent state-space model within
an MBRL setup in light of cognitive and neuroscience findings indicating human decision-making
may be modeled as such [16]. We infuse a world model with a richer world-representation by using
fictitious humans with multiple, mutually exclusive, objectives with the aim of encoding diverse
human intents into the model’s world representation. Specifically, we contribute:

1. A novel approach to MBRL for shared control in a tactical setting, leveraging driver intent
modeling using fictitious co-play, conditioned on a fixed set of human objectives.

2. A means for expert human value alignment, which conditions an assistive agent’s rewards
based on inferred intent to reason jointly over the physical world and the human’s behavior.

3. An evaluation of our approach on a shared control racing domain, demonstrating our model’s
utility over a diverse set of imperfect fictitious humans with different personal objectives.

1.1 Related Works

Significant work has taken place in sharing control [8] and human-robot interaction [17, 18], exploring
topics from ergonomics and physiology to language-based strategic teaming. Prior research has



presented learning-based approaches to human-robot interactions that target joint-representation
learning [19, 20, 21, 22, 23, 24, 25, 26]. These works focus on a range of topics, including data-
efficient representation learning [27], intent or plan modeling [28, 29, 30, 31], hypothesis-space
specification and explanation [32, 24, 33], or other cognitive and social motivations [34, 35, 36]. We
go beyond prior work by inferring the human’s discrete intent and modifying our robotic assistant’s
objective to encourage support of the inferred intent.

In the context of driving, shared control has been explored for planning approaches [37, 38, 39, 40,
41, 42, 43, 44, 45] and learning-based approaches [46, 47, 48, 49, 50]. Prior work has also considered
incorporating game-theory into shared control [50, 51], as well as explicit human-centric design
considerations [52, 53]. We refer readers to [54, 55] for comprehensive reviews. Beyond shared
control, significant literature explored intent prediction in driving, see [56, 57], and references therein.

Recent work has proposed a shared-control model using model-predictive control that considers
predicted trajectory information [39], therefore implicitly capturing driver intent. Additional recent
work has augmented a model-predictive controller with the ability to explicitly infer driver intent
[9], enabling the controller to share steering and control actions with a human. In our approach, we
capture discrete driver intent in a way that is conducive to semantically-meaningful, multi-modal
continuous behaviors (e.g., going left or right around an obstacle). Further, by framing our task as a
multi-agent reinforcement-learning problem, our proposed solution extends to multiple agents much
more naturally than prior work. Finally, we frame our decision making approach within a recurrent
state-space model [58] which is extended to infer the objective of the human, building on recent work
that has explored hierarchical or hybrid state abstractions [59, 60].

2 Background and Problem Statement

We target the problem of shared control in the highly-dynamic setting of high-performance racing
against other racing opponents. We aim to build an assistive agent that is capable of reasoning over
well-defined task objectives, as well as more general, harder-to-define, and harder-to-observe human
objectives. The assistive agent is given a map of the track, states of the ego vehicle and opponent
vehicle, the ego driver’s steering and throttle controls. The agent’s task is to assist the ego driver
through modifications to the steering and throttle of the ego car, as depicted in Fig. 1 (lower right).

To achieve optimal performance, the agent must provide continuous control adjustments as the driver
progresses along the track, helping the driver to stay on course, maintain proper speeds, and avoid
collisions. Further, the agent must accurately infer the intentions of the driver (such as “stay to
the opponent’s left”) and provide control augmentations that help the driver to accomplish their
immediate task objective more optimally. Note that this problem is different from a conventional
autonomous driving problem, as the agent’s actions are conditioned explicitly on the human driver’s
control input, and the control signal that actuates the car is a linear blend of the agent and the driver’s
control signals. This problem also differs from conventional human-robot teaming, in that the agent
must infer a human’s intent (i.e., the human objective) early and as consistently as possible, as
the efficacy on its assistance (in terms of safety and performance) depends strongly to how early,
accurately, and reliably the human objective is captured.

3 Approach

Our approach learns a common latent representation in the structure of a recurrent state space
model (RSSM) [61, 62] to build a hybrid discrete / continuous state of the human partner’s behavior,
their rewards, and intent for achieving certain goals. RSSMs have been shown to be suitable for
many domains (e.g. locomotion, Atari, Minecraft), and we are the first to apply this to modeling
human behavior for assistance. To accommodate both a human and assistive agent operating in a
collaborative setting, we train the assistive agent alongside human agents, with both agents sharing
actions taken in an environment. Each agent receives a reward for each action taken, and each are
trained to (1) build an accurate RSSM and (2) learn how to act in order to maximize its own expected
returns [63]. One challenge in collaboration is that part of the assistive agent’s world model includes



Figure 2: Overview of value alignment for the assistive agent. We start with a set of frozen human
policies whose values are annotated with predetermined outcomes. We blend human actions linearly
with the actions from an unfrozen assistive agent. For both human and assistive agents, a multi-head
RSSM architecture is then used to predict the observations, reward, and human intent (assistive only),
trained to maximize their log-likelihoods against samples taken from the environment. The intent
head is trained to match frozen human intents, which are fixed a priori. The assistive agent’s rewards
are shaped based on the optimal policy π∗

ŷA and optimal predicted reward r∗ŷA for inferred intent ŷA.

aspects of the future human’s plan such as preferences, desires, and goals of the human (these are
often collectively referred to as objectives [32] or intents [30] in the literature, we will use these
terms interchangeably in the paper), which are often unknown and only weakly observed by their
behavior [32]. We extend the RSSM formulation to allow it to be supervised on a diverse set of
humans, whose objectives (intents) are known and labeled, to force the representation to be jointly
aware of the behavior and intent across a variety of human types and physical environments. We then
devise a scheme that feeds in inference of the human’s objective into the assistant’s reward function.

3.1 Building a World Model over the Human and Physical Environment

In order to allow the system to maintain an ability to reason over the preferences of the human
independent of that of the joint human-robot system, our approach considers both the human driver
and the assistive agent planner as separate models. The training process is outlined in Fig. 2.
In the cooperative setting, the model of the environment follows a structure in which there are certain
task-specific rewards which are available to both human and assistive agents, with the key distinctions
being human-objective (specific to the human), and intervention penalties (specific to the assistant).
Task-Specific Rewards We assume standard task-specific rewards for high-performance driving
from prior work [64, 15], including an out-of-bounds penalty, passing reward, and collision penalty.

rtaskt = rcollisiont + rboundst + rfinisht (1)

where rcollisiont is a negative reward for collisions, rboundst is a negative reward for driving too far off
the track, and rfinisht is a positive reward for reaching the finish line.
Intent-Aware World Model The objective of the world model is to provide a representation that
the agent can use to interact with the driver and the world, and we posit that this representation can
support the agent to reason jointly about both the task and human objectives. We build off of the
recurrent state-space model (RSSM) of DreamerV2/V3 [65, 61], according to the architecture in
Figure 2. For agent κ ∈ {H,A} (respectively, the Human and Assistive agent), the RSSM model,
parameterized by ϕ and denoted Wκ

ϕ , includes:

Encoder for discrete representation zκt : zκt ∼ qκϕ(z
κ
t |h

κ
t ,xt)

Sequence model for recurrent state hκt : hκt = fκϕ (h
κ
t−1, z

κ
t−1,a

κ
t−1)

Dynamics predictor: ẑκt ∼ pκϕ(ẑ
κ
t |h

κ
t )

(2)

where xt denotes the input observation. The output heads are similar to the DreamerV2/V3 architec-
ture, with the addition of an intent predictor for the assistant agent (in red), and are all bottlenecked
on the hidden states sκt = {hκt , zκt },

Decoder: x̂κt ∼ pκϕ(x̂
κ
t |sκt ) Continue predictor: ĉκt ∼ pκϕ(ĉ

κ
t |sκt )

Reward: r̂κt ∼ pκϕ(r̂
κ
t |sκt ) Intent predictor: ŷAt ∼ pAϕ (ŷ

A
t |sAt )

(3)



To train the intent predictor, we assume at least partial access to the intent labels for a given episode,
which takes the form of an integer-valued target function. We normalize the output by predicting
the symlog (sign(y) ln(|y|+ 1)) of the output, and use a discrete distribution to predict y using the
two-hot encoding of [61]. The parameters ϕ of the world model Wκ

ϕ are trained to minimize the loss

Lκ(ϕ) = Eqκϕ
[
βpredLκpred + βKLLκKL

]
The prediction loss Lκpred minimizes the likelihood under the predictor distributions in (3), LκKL
minimizes the KL divergence between the prior pκϕ and the approximate posterior qκϕ, and βpred and
βKL are scalar weighting values. Given an intent label yt, the portion of loss LApred for the intent
predictor is taken as the negative log-likelihood of the label under pAϕ .

The world model training is alternated with training for the behavior model governing actions aκt ,
with the behavior model learned via an actor-critic policy training over the estimates st, r̂t,

Actor: aκt ∼ πκθ (a
κ
t | sκt ) Critic: vκψ(st) ≈ Epκϕ,πκ

θ
[r̂κt ] (4)

The critic is trained to minimize the temporal-difference loss on the value function vκψ. The actor
attempts to maximize the critic-predicted value. For further details, we refer the reader to [65].

3.2 Alignment with the Human

To learn alignment with human drivers, we expose the assistive agent to different humans at training
time. Training with human partners in a fictitious co-play setting [27] allows the assistant to become
robust to different possible human behaviors, but does not teach the assistant to distinguish between
the discrete modes of human behavior, which is necessary for assistance in our driving task.

Similar to recent work describing human preferences for a task using reward shaping [66, 67], we
generate a population of humans, but different from these works, we group labeled sub-populations
according to certain inherent objectives or preferences. We train several sub-populations using a
separate human reward rHt = rtaskt + ryt , which is composed of the base task rewards in (1), with the
addition of several distinct human objectives, spanning different multimodal behaviors of the human.
These are then formed into a collection of humans {πH1 , πH2 , . . . , πHN } ∈ {ΠH1 ,ΠH2 , . . . ,ΠHN} for N
different objectives. Examples of different settings for ryt are given in Appendix C.

If trained to optimality, such rewards induce optimal behaviors for each human objective
{π∗

1 , π
∗
2 , . . . , π

∗
N}, which we can consider as the collection of expert policies of each enumerated

objective. We extend this notion to that of intent at runtime. At any given moment, the human may
adopt an intent y to abide by policy πHy . To simplify training, we consider drivers and rollouts with
fixed intents, y, though our problem setup generalizes to variable-intent scenarios (e.g., a human
switching from “following” to “passing” during a race).

Humans are error-prone and pursue their objectives irrationally [68]. To capture this, we partially train
human partners to pair with the assistive agent in a process known as fictitious co-play (FCP) [27],
yielding a population of humans {πHy,k}k ∪ {π∗

y} for each intent sub-population ΠHy , where k
represents the policy checkpoint for some amount of completed training. Using the FCP framework,
each checkpoint k ∈ [1,K] is an agent trained to k% completion and the final checkpoint k = K is
an optimal policy. Each (sub)optimal human is endowed with a (sub)optimal RSSM world model.
While we apply FCP in this work, we note that our approach is agnostic to how human behaviors are
generated and future work may consider other approaches to synthesizing human policies [69, 70].

3.3 Assistive Agent Objectives

For continuous actions aHt ,aAt ∈ Rm for the human and assistant, respectively, we encourage the
assistive agent to minimize its action intervention by adopting a reward of the form

rintervt = −∥aAt ∥2

which penalizes the magnitude of the intervention according to an L2-norm. Aggregated over time,
the intervention cost forms a mixed-norm L1 − L2 [71], encouraging time sparsity of interventions.



In addition to the intervention norm penalty, the agent is rewarded for task completion and penalized
for driving out of bounds or for collisions. These sparse negative rewards serve to encourage the
assistant to act as a “racing guardian”, keeping the driver on the track and avoiding collisions while
making progress towards the finish line. Note that these rewards align with the task objective (Sec
3.1), but do not favor any particular human objective or intent.

Finally, the assistive agent receives reward for aligning with the inferred objective of the human
driver. First, the agent receives a reward equal to the inferred reward under the optimal human’s world
model. In other words, at every time step t, the agent predicts the human’s intent, ŷAt and then queries
the world model corresponding to the optimal human policy W ∗

ϕ(ŷAt )
for its reward prediction r̂∗(ŷAt ),

for the current state-action pair. Second, the agent receives reward for maximizing the likelihood of
the human-robot’s combined action under the optimal human model for the predicted human intent:

π∗
ŷAt

(aAt + aHt |xt) := π∗(aAt + aHt |xt, ŷAt ) (5)

Note that aHt is the current sub-optimal human action. Intuitively, these rewards encourage the
assistant to: (1) select actions for which the optimal human assigns high value and (2) select actions
that bring the sub-optimal human closer to the optimal human. Under this setup, although we infer
ŷAt from the joint human-robot trajectory, we consider it to be more aligned with the human’s intent,
due to: (1) the presence of the intervention sparsity term rintervt , and (2) the fact that the inferred
expert alignment term tilts the joint behavior toward the inferred expert human’s behavior.

The complete reward for the assistant is a combination of rewards that promote successful task
execution, minimize the magnitude of intervention, and account for human preferences:

rAt = rtask + rintervt︸ ︷︷ ︸
task performance and intervention sparsity

+αr r̂
∗
t (ŷ

A
t ) + αa∥aHt + aAt − a∗

t (ŷ
A
t )∥2︸ ︷︷ ︸

expert alignment

(6)

Here, scalars αr and αa weight the contributions of the human terms. We capture both the inferred
optimal reward value, r̂∗(ŷAt ), as well as the similarity between the combined human-robot actions
and an action from the inferred optimal policy a∗(ŷAt ) ∼ π∗

ŷAt
(xt). Note that, though we empirically

compare different values of αr and αa in Appendix E, in the next section, we only examine results
for the reward-only case (αr = 1, αa = 0).

4 Experiments and Results
We examine the performance of our approach, dubbed DREAM2ASSIST, on different racing tasks with
a fictitious human driver. We examine two racing settings, each derived from portions of a two-mile
race track, and implemented in the CARLA Simulator [72] using a rear-wheel race vehicle physics
model. For each task, opponents are randomly instantiated as replays of real human trajectories
from the track, meaning that they do not react to the ego vehicle. In each setting, we run two sets of
experiments—one with pass vs. stay fictitious human partners (i.e., the human is trying to overtake
or stay-behind their opponent), and one with left vs. right partners (i.e., the human wants to stay on
the left or right side of their opponent). We also further examine out-of-distribution intent inference
(with intent changing over time), and further ablations in Appendix F and G.

In each experiment, we train a population of humans following each objective (e.g., “left” or “right”),
and then train a DREAM2ASSIST agent over the combined population. We then evaluate the degree to
which the assistive agent can improve fictitious human performance on the track, where performance
is measured by total progress, average speed, and no collisions. To measure the contributions of each
assistive agent for the fictitious human population, we sample checkpoints at every 20% performance
increment for agents up to at least 75% of maximum, or from the bottom five performers if none
are under this threshold. We report the mean change in performance (track progress and collisions)
when an assistive agent is deployed, as well as the return under each human objective in Table 1.
Means and standard deviations are computed over all five sub-optimal fictitious drivers.

The two settings we consider include Straightaway Driving and Hairpin Driving. The straightaway
is a flat 370-meter portion of a track with a concrete barrier on the right-hand side. Because the



Table 1: Results on straightaway and hairpin experiments. Blue indicates improvement, bold is best.

Pass (top) / Stay (bottom) Left (top) / Right (bottom)

Hairpin Straightaway Hairpin Straightaway
Progress ↑ Return ↑ Collisions ↓ Progress ↑ Return ↑ Collisions ↓ Progress ↑ Return ↑ Collisions ↓ Progress ↑ Return ↑ Collisions ↓

DREAMER
-11.3± 13.6 0.5± 2.9 -0.1± 0.2 -0.7± 4.6 -0.1± 0.9 0.0± 0.1 21.8± 28.7 -2.0± 2.2 0.1± 0.1 10.8± 7.3 -0.6± 0.3 0.0± 0.1
-21.1± 68.6 0.3± 0.4 0.0± 0.0 -6.1± 17.5 0.0± 0.1 0.1± 0.2 10.0± 17.9 -1.3± 1.8 0.0± 0.1 -1.1± 6.2 0.2± 1.2 0.0± 0.1

DREAMER-AIL -28.9± 46.2 -5.7± 7.3 -0.3± 0.2 -116.6± 58.7 -9.7± 4.2 -0.4± 0.3 -144.0± 89.9 -7.1± 6.6 -0.4± 0.2 -134.4± 13.0 -2.5± 0.9 -0.5± 0.1
-216.6± 145.6 -1.7± 0.4 0.1± 0.2 -52.5± 45.9 -1.6± 0.2 -0.1± 0.1 -119.1± 79.9 -4.5± 17.3 -0.4± 0.3 -126.3± 53.2 -13.4± 7.0 -0.5± 0.2

DREAM2ASSIST
71.8± 43.9 -1.2± 3.3 -0.2± 0.2 6.0± 9.1 -0.4± 1.4 -0.1± 0.1 54.8± 60.4 1.4± 5.2 0.0± 0.1 5.0± 5.0 0.1± 0.5 0.0± 0.1
60.5± 49.7 0.8± 0.4 0.1± 0.1 57.8± 36.4 -0.1± 0.2 0.1± 0.1 27.2± 23.1 2.2± 2.3 -0.2± 0.2 -1.1± 31.91 -2.8± 2.4 0.2± 0.2

section of road is straight and flat, drivers need only avoid colliding with the concrete wall or their
opponent while racing to the finish. The hairpin section, however, is a 960-meter portion of a track
involving several sharp turns and hills. Drivers must carefully manage their speed to avoid spin-outs
or collisions, and passing is much more challenging in this section of track.

Human Decision Characteristics Based on observed behaviors from a human study (see Ap-
pendix B), we propose two different sets of human characteristics (ground truth intent): pass vs. stay
and left vs. right. We train fictitious human agents to satisfy each of these objectives. For the pass vs.
stay behaviors, the fictitious human agents are trained to either overtake or stay-behind the opponent
vehicle. For the left vs. right behaviors, the fictitious humans are trained with a preference to stay on
either the left or right side of the opponent for as much of the race as possible. Attempting to provide
the wrong type of assistance with such distinct behaviors (e.g., offering “right” assistance to a “left”
human) will result in fighting between the assistant and human, and will likely lead to collisions or
spin-outs. We provide further details on the rewards for each agent in Appendix C.

Action and Observation Spaces The environment itself consists of the rewards in Sec. 3.1 and an
observation and action space for each agent. The human and assistive agent’s actions both adopt
steering and acceleration values in the range of [−1, 1]. The assistant and human actions are summed
together and clipped on [−1, 1] before being passed to the vehicle. The observation space contains
the ego vehicle state (position, velocity, tire slip angles, yaw rate, heading), current distance traveled,
and an array of forward-looking track edge points. Finally, the human and assistive agents are each
able to observe the other’s actions.

Baselines The claim of our work is that an assistive agent will better support a human partner if the
assistant can infer the human’s objective and help to satisfy that objective. To test this claim, we
compare DREAM2ASSIST against a baseline version of DREAMER, which makes no intent inference
and is not rewarded according to a human objective. We also compare to a non-RSSM baseline,
GAIL [73], obtained with the BeTAIL [74] framework. BeTAIL uses a behavior transformer as the
human policy, coupled with an assistive agent trained via adversarial imitation learning to correct for
distribution shift. Our DREAMER-AIL baseline challenges whether our RSSM approach is necessary
at all, or whether a purely data-driven approach using behavior cloning and inverse reinforcement
learning could satisfy the multimodal behavioral assistance task that we consider. For this baseline, a
fictitious human using a DREAMER policy is paired with the AIL assistive agent from BeTAIL.

4.1 Straightaway Results

We observe a consistent trend for all straightaway results – DREAMER offers very low-magnitude
intervention, leading to higher performance with expert drivers but poor performance with novice
drivers (as the assistant is not helping). We show track progress and human-objective return for
assistants deployed to the pass vs. stay problem in Fig. E.1 (bottom). We report additional results in
Appendix E. Conversely, DREAM2ASSIST offers higher-magnitude intervention, leading to higher
performance with novice drivers, but lower performance gains with expert drivers (as the assistant
is not needed). As shown in Table 1, DREAM2ASSIST generally offers the highest performance
over other methods. DREAMER-AIL suffers from mode collapse, trying to turn all drivers into
either a “stay” driver or getting caught between “left” and “right” and therefore not moving. This
behavior means that the DREAMER-AIL agent consistently underperforms a fictitious human with
no assistance at all, as the AIL assistance keeps the driver far behind the opponent.



Figure 3: Examples of the DREAM2ASSIST agent’s actions when paired with a human intending to
pass and a human intending to stay. DREAM2ASSIST recognizes the driver’s intent, making lateral
corrections for a safer overtake (left) or throttle adjustments to stay behind the opponent while still
progressing towards the finish (right), thereby helping to satisfy task and human objectives.

4.2 Hairpin Results

The hairpin domain is more challenging and yields fictitious humans that are not always consistently
able to solve the task, thereby leaving greater scope for assistance from our trained agents. In our pass
vs. stay experiment, DREAM2ASSIST significantly improves the drivers’ abilities to solve the task
while still satisfying the human objectives and not leading to an increase in collisions. Similarly, in the
left vs. right experiment, DREAM2ASSIST leads to significant increases in track progress, reduction in
collisions, and improvements in human-objective alignment. Baseline approaches fail to disentangle
the “left” and “right” modes of driving. The DREAMER baseline instead opts to push the driver to
stay behind the opponent vehicle in an effort to reduce collisions, thereby making it farther down the
track but failing to overtake. The DREAMER-AIL baseline drives aggressively off the track, leading
to a significant drop in track progress, collisions, and human-objective alignment. An illustrative
example of DREAM2ASSIST is in Fig. 3, and videos are at https://youtu.be/PVugoxqX5Co.

Figure E.1 (top) provides an overview of the amount of assistance provided to drivers for both
track progress and human-objective return for assistants deployed to the pass vs. stay problem.
Visualizing the assistance provided to each driver, we can more easily compare the scale of assistance
provided by DREAM2ASSIST compared to baselines, showing that DREAM2ASSIST provides marked
improvements relative to baseline assistive agents.

5 Conclusions and Limitations
We introduce an assistive paradigm, DREAM2ASSIST, that learns to interact with humans to help
them perform more optimally while supporting their personal objectives for the task. We evaluate
DREAM2ASSIST in a dynamic and challenging task of high-speed racing, and we show that our
approach is able to disentangle and accommodate distinct human objectives more effectively than
baseline methods. We show that DREAM2ASSIST results in higher human-robot team performance
than baseline methods, suggesting that explicit intent-conditioning and reward-inference can provide
crucial performance gains in settings with multimodal, mutually-exclusive, human objectives.

While DREAM2ASSIST represents a state-of-the-art improvement in human-robot teaming, there
are limitations in our work that we hope to address in future work. First, our approach has been
tested with fictitious humans, but we have not yet evaluated generalization to real human-robot teams.
In future work, we intend to deploy DREAM2ASSIST in a human-subjects experiment to test how
effectively our framework generalizes to real, sub-optimal human drivers. DREAM2ASSIST also
relies on privileged access to the inferred reward values from the RSSM of an optimal policy; future
work may consider how to estimate optimal policy rewards without such a model. Finally, future
work may consider how to provide assistance via multiple modalities (e.g., providing sparse language
guidance on when to overtake vs. dense control-level assistance during the overtake).

https://youtu.be/PVugoxqX5Co
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A MBRL Preliminaries
We frame the model-based reinforcement learning (MBRL) problem as a two-player (human ego
driver, assistive agent ego driver) partially-observable Markov decision process (POMDP) defined
by the tuple M = ⟨X κ,Aκ, T κ,Rκ, γ⟩κ=H,A, where, for agent κ ∈ {H,A} (for the human, and AI
agent, respectively), X κ denotes the imagined states of the world,Aκ denotes the agent’s (continuous
or discrete) actions, T κ : X κ ×Aκ 7→ [0, 1] is the transition probability,Rκ : X κ ×Aκ ×X κ 7→ R
is a reward function, and γ ∈ [0, 1] is a discount factor. We aim to train both agents such that they
maximize their expected returns Rκ = E

[∑T
t=1 r

κ
t

]
.

Crucially, in the semi-cooperative shared control setting, each reward rκt is factored into sub-
components, with both sharing the same task (driving) rewards, but where rHt contains an additional
term for a human’s objective, and rAt contains additional terms to weaken its contribution in relation
to the human’s and enforces alignment to the human.

B Human Subject Data Collection
We briefly discuss a study conducted for gathering human subject behavior data in the racing domain
we use in the paper. The purpose of the study was to gather qualitative and statistical data on
individuals’ behavior and objectives in a racing context, and to use that to inform what criteria
are important for building models of human objectives. We recruited 48 participants to drive a
simulator with the hairpin and straightaway segments of the two-mile track, the same domains for the
computational results in this paper. The scenarios were chosen so as to present overtake opportunities
in portions of the track of varying levels of difficulty, while keeping the overall task short enough to
ensure there is a rich interaction between the ego and opponent. Participants completed a series of
warm-up trials in each domain, with three trials devoted to the straightaway segment and eight trials
in the hairpin segment, each featuring different opponents of varying difficulty (fixed trajectories) to
race against. Again, these were the same trajectories used in our domains.

At the conclusion of each trial, participants answered the question: “Did you attempt to pass the other
vehicle?” on an iPad. We also gathered, from trajectory data, whether or not the participant actually
completed an overtake without collisions or spin-outs. These results are reported in Table B.1. We
conclude that even in a simulated setting, there were a lower number of actual overtakes that occurred
than were attempted. This suggests that there is room to assist those wishing to overtake, but unable
to do so.

Table B.1: Number and percentage of overtakes occurred and attempted. Note the diversity in intent
and in overtaking-difficulty for the subjects, motivating the need for assistive shared autonomy.

Overtake occurred? Frequency Percentage Overtake attempted? Frequency Percentage

“No” 178 30.07 “No” 65 11.02
“Yes” 414 69.93 “Yes” 525 88.98

We consider additional statistics, including statistics on left- and right-hand passing, as well as
collisions with the other vehicle or objects, and spin-outs. We include these results in Table B.2. We
note that there is a nearly-equal number of overtakes on the right versus left. On an individual level,
we ran chi-square tests of test for given probabilities to look for side preferences. We found that
only 6 of the 48 participants showed a statistically significant (p < .05) passing side bias, with two
participants having a bias for the right side and four participants having a bias for the left side B.2.
We also note that participants were, in general, imperfect in their driving, with nearly 50% of trials
having a collision and 8% having at least one spin-out.

C Human Objectives
In this section, we discuss the reward terms used to generate the explicit decision-making tendencies
of the fictitious human drivers, via rHt = rtaskt + ryt . Each use the task-specific reward terms outlined



Figure B.1: Consistency of overtake versus non-overtakes.

Figure B.2: Consistency of left-handed versus right-handed overtakes.

in (1), in combination with objective-specific rewards. Many of the task rewards are borrowed
from [15]. We focus here on the human objective term ryt .

Pass We adopt a dense reward that provides a penalty when the vehicle is behind the opponent
vehicle, and a reward bonus when in front of that vehicle, up to a threshold, to incentivize passing.
That is,

ryt = cpass (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh))

Where I(·) is the indicator function, and ∆st is the difference in longitudinal positions, relative to
track coordinates, between the ego and opponent vehicles, ∆st = segot − soppt . We take the scalar
cpass = 10. In other words, if the difference between segot (the ego position) and soppt (the opponent
position) is between slow and shigh, the passing reward is equal to 10 ∗ (segot − soppt ). This means
there is a high positive reward for getting far ahead of the opponent, and a high negative reward for
falling behind the opponent. For both the pass reward, we set shigh = −slow = 800, which ensures
that the pass reward is active for the entire trial. Note that we do not impose a progress reward with
the pass objective.

Stay-Behind Due to the non-symmetry of the problem, the stay-behind reward cannot be the
complement of the pass reward (otherwise, the stay-behind agent would drive backwards to get away



Table B.2: Other effects. Percentages are percent of trials with the listed event.

Observed event Percentage

Left-handed overtakes 50.82%
Right-handed overtakes 49.18%
Collisions 48.66%
Spin-outs 8.36%

from the opponent). Because the task reward does not consider making progress, we add that here to
the human-specific reward. The stay-behind reward is then:

ryt = rprogt + cstay (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh))

Where cstay = −2, and we impose a progress reward similar to [15], i.e., rprogt = segot − segot−1,
with segot being the ego’s longitudinal position in track coordinates. For the stay-behind reward, we
set shigh = −slow = 50. In practice, this means that the stay-behind agent is encouraged to make
progress along the track (rprog), but to stay at least 50 meters behind the opponent.

Both the left- and right-biased passing agents are passing agents with an additional reward term that
encourages a bias to the left or right. Note that these additional treatments do not guarantee passing
on one side or the other.

Left-Biased We adopt a reward bonus for driving on the opponent’s left; i.e.

ryt = (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh)) + (∆et + cmargin)

where ∆et is the difference in lateral positions of the two vehicles, in the track coordinate frame; i.e.
∆et = eegot − eoppt , and cmargin is a margin (which we set to cmargin = 0.3).

Right-Biased Right-biased reward is the complement of the left-biased reward:

ryt = (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh))− (∆et + cmargin)

D Additional Model Details
We provide a summary of the DREAM2ASSIST training procedure in Algorithm 1. The procedure is
split into two phases: the first is a human population generation phase in which we use the rewards
in Sec. C to generate a population of humans included in the tuple ⟨WH

i ,ΠHi ⟩ of world models and
policies, respectively, and the expert human models denoted by the tuple ⟨W ∗

i , π
∗
i ⟩ for each human

objective yi. The second phase entails drawing from samples of ⟨{yj}Nj=0, {WH
j }Nj=0, {ΠHj }Nj=0⟩

using fictitious co-play (FCP) [27] in order to train the assistant’s world model WA and policy πA. At
runtime, both the trained policy πA and world model WA are executed, with WA being additionally
useful as a means to interpret the decisions made by πA; e.g. the intent estimate ŷAt , the estimated
reward r̂At or the latent variables ẑt.

Table C.1: Training Hyperparameters.

Hyperparameter Value Hyperparameter Value

Encoder / decoder MLP layers 2 Steps 2e6
Encoder / decoder MLP units 512 Batch size 16
Predictor head layers 2 Batch length 64
Predictor head units 512 Training ratio 512
Discount factor 0.997 Model learning rate 1e-4
Discount λ 0.95 Value learning rate 3e-5
Imagined horizon 15 Actor learning rate 3e-5
Actor entropy 3e-4 Dataset max size 1e6
Dynamics hidden units 512 # Steps between evaluations 1e4
Dynamics discrete dimension 32 # Episodes to evaluate 10



Algorithm 1 DREAM2ASSIST using FCP

Given: diverse intents, yi ∈ {1, 2, . . . ,M}
Given: reward functions for each intent y
for yi, i ∈ {1, 2, . . . ,M} do ▷ Generate human population

Initialize πHi , WH
i

while not converged do
Sample an opponent policy πopp from Πopp
Initialize x0, with t = 0
while not done do

Perform gradient step; update πHi , WH
i

Sample action aHi,t from πHi
Step the environment with action aHi,t and aoppt ∼ πopp

Shape rewards according to ith agent reward
t← t+ 1

end while
Append checkpoint ⟨WH

i , πHi ⟩ to ⟨WH
i ,ΠHi ⟩

end while
Append final ⟨W ∗

i , π
∗
i ⟩ to ⟨WH

i ,ΠHi ⟩
end for
Freeze agents and world models {WH

j }Nj=0, {ΠHj }Nj=0

Initialize πA, WA

while not converged do ▷ Train assistant agent
Sample intent i from ⟨{yi}Mi=0⟩
Sample checkpoint j for intent yi from ⟨{WH

j }Nj=0, {ΠHj }Nj=0⟩
Sample an opponent policy πopp from Πopp
Initialize x0, with t = 0
while not done do

Perform gradient step; update πA, WA using ground truth label yi
Sample action aAt from πA(x), aHt from πHj (xt)

Step the environment using shared action aHt + aAt and aoppt ∼ πopp

Evaluate intent ŷAt using WA

Shape rewards as per (6), using r∗(ŷAt ) from W ∗
j , a∗

t (ŷ
A) ∼ π∗

ŷAt
(xt)

t← t+ 1
end while

end while

D.1 Training Hyperparameters and Environment Specifics

We provide the DREAM2ASSIST hyperparameters in Table C.1. We train using the Adam optimizer
for 2× 106 steps.

The CARLA simulator is used for our environment, and is executed with step size of 0.1 sec. We
terminate episodes if: (a) the ego collides with the opponent or other collidable objects (e.g. static
barriers), (b) the ego vehicle veers too far off course, or (c) a predefined finish line is reached. The
map used is a geospatially-calibrated representation of the Thunderhill Raceway in Willows, CA.

E Additional Experimental Results

E.1 Summarized Performance

We summarize the discussion in Sec. 4.2 and 4.1 here in Fig. E.1.

E.2 Performance Across Different Humans

We provide a more complete comparison of the results, showing additional metrics in an evaluation
that extends Fig. 3 from imperfect to near-perfect humans (1–11, ordered according to unassisted
track progress performance) for DREAMER, DREAMER-AIL, BETAIL, and DREAM2ASSIST.
We show these results in Figs. E.2–E.5. Note that the additional fictitious humans (6–11) achieve



Figure E.1: Change in track progress and return when adding assistance to five imperfect pass (left)
and stay (right) fictitious humans in the hairpin and straightaway problem settings. The addition of
DREAM2ASSIST leads to higher gains in task performance and greater adherence to human objectives
than baselines.

nearly-identical baseline performance across all metrics, as indicated by Figs. E.3 and E.5. Hence,
the changes across humans 6–11 in Figs. E.2 and E.4 are likewise similar.

From Fig. E.2, we observe that DREAM2ASSIST, when applied to the imperfect pass humans (1–5)
generally yield improvements in progress, collisions, and speed, with a slight overall decrease in
reward, and an overall moderate intervention level compared to the baselines. For humans 6–10,
progress, reward, collisions, and speed are all negatively impacted, hinting at room for improvement
in handling near-perfect humans. Similar trends for imperfect humans (1–5) tending to stay can be
seen in Fig. E.4, where all metrics except collision see improvement. For near-perfect humans (6–11),
the results generally indicate marginal improvement across all metrics, except collision.

We also complement Table 1 with additional metrics, including the magnitude of intervention, and
speed, both averaged over time. In Tables E.1 and E.2, we compare Dreamer, DREAM2ASSIST, and
DREAM2ASSIST-AIL, and further include results for a variant of DREAM2ASSIST with the action-
based reward term in (6) using αr = αa = 1, which we call DREAM2ASSIST+a, as well as a variant
of DREAM2ASSIST with the action-based reward term and no reward, i.e. αa = 1, αr = 0, which
we call DREAM2ASSIST+a−r. For the pass vs. stay case in Table E.1, DREAM2ASSIST achieves
best performance in 5 categories, while improving over unassisted humans in 10 categories. The
performance of DREAM2ASSIST+a and DREAM2ASSIST+a−r were mixed. DREAM2ASSIST+a
was able to improve over unassisted humans, but with generally lower progress than DREAM2ASSIST,
while DREAM2ASSIST+a−r almost completely hindered the human’s progress, due to the fact that
the reward term no longer explicitly captures the dense progress sub-reward, and are not implicitly
reflected in the actions of the optimal human. In E.2, we see similar trends, with DREAM2ASSIST
outperforming baseline approaches in 5 categories, and performing better than unassisted humans
in 8 categories. DREAM2ASSIST+a−r is unable to make progress, and DREAM2ASSIST+a also
reveals lower progress than the DREAM2ASSIST in the hairpin and straightaway domains.

E.3 Intent Classification Performance

We next probe the performance of the intent classification. F1 scores achieved on training data yields
high performance, as shown in Table E.3.

We provide two example time traces to illustrate stability of inferring the human’s intent by the
assistant’s world model in Figs. E.7 and E.8.

To uncover whether intent inference is due to world model training, we evaluate the t-SNE embeddings
of the logits of the assistant’s discrete latent state ẑAt . We see that in the Dreamer case, t-SNE is
unable to find strong separations between the ground truth intent classes without intent inference
in the latents, while in DREAM2ASSIST, there is a stronger separation, and the ground truth intent



Figure E.2: Changes in various metrics in the hairpin scenario when adding assistance to various
imperfect (1–5) and near-perfect (6–11) humans tending to pass, averaged over four random seeds.
Due to the fact that BeTAIL uses its own internal human model, we compare only one instance /
human, as denoted by the red line.

Figure E.3: Absolute metrics in the hairpin scenario evaluated for the unassisted imperfect (1–5)
and near-perfect (6–11) humans tending to pass, averaged over four random seeds. 1-σ error bars are
shown.

classes are more strongly clustered in the embedding space, allowing intent to be inferred with much
higher accuracy.

E.4 Learning Curves

We provide learning curves for the DREAMER, DREAM2ASSIST and DREAM2ASSIST+a assistance
schemes in the two domains across all the human objectives in Fig. E.9. We compare these across
track progress, and observe a general trend of stability in training.

E.5 Visuals of Assistance

We show, in Fig. E.11, CARLA and bird’s-eye-view snapshots of driving with assistance, and compare
that to a human without assistance in Fig. E.10.



Figure E.4: Changes in various metrics in the hairpin scenario when adding assistance to various
imperfect (1–5) and near-perfect (6–11) humans tending to stay, averaged over four random seeds.
Due to the fact that BeTAIL uses its own internal human model, we compare only one instance /
human, as denoted by the red line.

Figure E.5: Absolute metrics in the hairpin scenario evaluated for the unassisted imperfect (1–5)
and near-perfect (6–11) humans tending to stay, averaged over four random seeds. 1-σ error bars are
shown.

F Comparisons Without a Recurrent State Space Model

For completeness, we compare to a simple windowed-observation baseline agent that does not
use a recurrent state space model, yet still learns to perform intent classification. We keep our
training pipeline and synthetic human partners the same as that used for DREAM2ASSIST for these
experiments. This agent (NO-RSSM) is given 16 frames of prior history (corresponding to about 1.5
seconds of observations) and is trained with the same rewards as DREAM2ASSIST, in addition to
an auxiliary intent-classification objective. We train this agent to assist pass and stay-behind human
partners on the hairpin section of the track.

The results of this experiment are in Figures F.1 & F.2. We observe that the NO-RSSM baseline
performs significantly worse than DREAM2ASSIST and worse than most RSSM-based methods,
despite having high intent classification accuracy (98% F1, equal to the DREAM2ASSIST agent during



Table E.1: Improvement over unassisted humans for the pass–stay humans on straightaway and
hairpin experiments, with statistics aggregated across four random seeds. Blue indicates improvement
over unassisted humans, bold is best.

Pass (top) / Stay (bottom)

Hairpin Straightaway
Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑ Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑

DREAMER
-11.3± 13.6 0.5± 2.9 -0.1± 0.2 0.2 ± 0.2 0.1 ± 1.1 -0.7± 4.6 -0.1± 0.9 0.0± 0.1 0.1 ± 0.0 -0.4 ± 1.9
-21.1± 68.6 0.3± 0.4 0.0± 0.0 0.1 ± 0.0 2.9 ± 1.6 -6.1± 17.5 0.0± 0.1 0.1± 0.2 0.1 ± 0.0 0.3 ± 0.5

DREAMER-AIL -28.9± 46.2 -5.7± 7.3 -0.3± 0.2 1.0 ± 0.2 1.4 ± 4.4 -116.6± 58.7 -9.7± 4.2 -0.4± 0.3 1.4 ± 0.0 -21.2 ± 10.6
-216.6± 145.6 -1.7± 0.4 0.1± 0.2 0.9 ± 0.1 5.4 ± 2.4 -52.5± 45.9 -1.6± 0.2 -0.1± 0.1 1.4 ± 0.0 -1.2 ± 1.1

DREAM2ASSIST
71.8± 43.9 -1.2± 3.3 -0.2± 0.2 0.7 ± 0.1 0.5 ± 1.4 6.0± 9.1 -0.4± 1.4 -0.1± 0.1 0.3 ± 0.0 -1.2 ± 1.9
60.5± 49.7 0.8± 0.4 0.1 ± 0.1 0.4 ± 0.0 7.1 ± 2.4 57.8± 36.4 -0.1± 0.2 0.1 ± 0.1 0.4 ± 0.1 1.7 ± 1.0

DREAM2ASSIST+a 25.2 ± 11.0 -2.1 ± 7.4 -0.3 ± 0.2 0.7 ± 0.2 0.8 ± 4.9 6.9 ± 9.9 -5.6 ± 2.4 -0.1 ± 0.2 0.8 ± 0.2 -14.8 ± 7.7
24.3 ± 66.6 0.2 ± 0.6 0.0 ± 0.4 0.7 ± 0.0 5.1 ± 3.0 9.2 ± 7.8 -6.6 ± 0.7 0.1 ± 0.1 0.9 ± 0.1 0.4 ± 0.2

DREAM2ASSIST+a−r -79.0 ± 53.2 -13.5 ± 3.9 -0.5 ± 0.6 0.6 ± 0.0 -6.1 ± 5.6 -9.0 ± 20.2 -2.9 ± 1.0 0.0 ± 0.1 0.3 ± 0.3 -0.7 ± 1.2
-281.9 ± 68.7 -2.5 ± 0.5 -0.1 ± 0.1 0.7 ± 0.0 -1.4 ± 2.3 10.4 ± 38.3 -1.0 ± 0.1 0.1 ± 0.3 0.8 ± 0.2 1.8 ± 0.5

training). While the NO-RSSM agent is trained with the same rewards as the DREAM2ASSIST agent,
it regularly terminates episodes early by steering the human driver out of bounds, which could be
the result of a poor understanding of when it will receive positive or negative rewards (as the two
intents result in opposite reward signals). As the NO-RSSM agent is not trained to predict reward,
this information may not be as explicitly captured in its internal representation as it would be in an
RSSM based agent, such as DREAMER or DREAM2ASSIST.

G Evaluations With Random Intent Transitions
While our primary experiments focus on humans with a static intent (i.e., the human is attempting
to pass or stay-behind for the entire episode), here we include additional experiments in which our
synthetic humans randomly change intents in the middle of an episode. For these experiments, we run
10 trials and, after a randomly sampled number of episode steps, we swap out the synthetic human
for a comparably-trained synthetic human with the opposite intent. For example, we might start an
evaluation trial with a pass human that is trained for 10K steps and, after 10 seconds of the trial,
suddenly swap the synthetic-human policy to a stay-behind human that has been trained for 10K
steps.

We run these experiments with a standard DREAMER baseline and our DREAM2ASSIST agent,
evaluating the impact of our inferred-reward and intent classification objective. These experiments are
repeated with 5 random seeds for a total of 50 episodes for each randomized transition. Random seeds
are kept consistent for the DREAMER and DREAM2ASSIST experiments, so the 50 randomly-selected
transition times are consistent for the two agents.

We note that our assistants have never been trained under such dynamics, and so these transitions
are highly out-of-distribution for both the assistants and the synthetic humans. Our synthetic human
agents are therefore very likely to crash, spin-out, or otherwise perform far worse than usual. To
evaluate our assistive agents in this domain, we compare the collision rate, average change in speed,
average track progress (i.e., task-completion), and intervention norm from the assistive agents for
randomized pass-to-stay transitions (Figure G.1) and randomized stay-to-pass transitions (Figure
G.2).

While the DREAMER and DREAM2ASSIST agents can both help to mitigate the problems inherent
to a random intent transition (collisions and spin-outs), we observe that DREAM2ASSIST offers

Table E.2: Improvement over unassisted humans for the left–right humans on straightaway and
hairpin experiments, with statistics aggregated across four random seeds. Blue indicates improvement
over unassisted humans, bold is best.

Left (top) / Right (bottom)

Hairpin Straightaway
Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑ Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑

DREAMER
21.8± 28.7 -2.0± 2.2 0.1± 0.1 0.14 ± 0.1 0.4 ± 1.2 10.8± 7.3 -0.6± 0.3 0.0± 0.1 0.2 ± 0.0 6.0 ± 7.0
10.0± 17.9 -1.3± 1.8 0.0± 0.1 0.2 ± 0.1 0.1 ± 1.5 -1.1± 6.2 0.2± 1.2 0.0± 0.1 0.1 ± 0.0 0.9 ± 1.0

DREAMER-AIL -144.0± 89.9 -7.1± 6.6 -0.4± 0.2 1.2 ± 0.1 -14.4 ± 9.5 -134.4± 13.0 -2.5± 0.9 -0.5± 0.1 1.4 ± 0.0 -11.4 ± 7.8
-119.1± 79.9 -4.5± 17.3 -0.4± 0.3 1.3 ± 0.0 -15.2 ± 5.6 -126.3± 53.2 -13.4± 7.0 -0.5± 0.2 1.4 ± 0.0 -23.1 ± 5.1

DREAM2ASSIST
54.8± 60.4 1.4± 5.2 0.0± 0.1 0.8 ± 0.1 -0.6 ± 6.0 5.0± 5.0 0.1± 0.5 0.0± 0.1 0.6 ± 0.1 -0.1 ± 1.2
27.2± 23.1 2.2± 2.3 -0.2± 0.2 0.8 ± 0.1 3.2 ± 4.7 -1.1± 31.9 -2.8± 2.4 0.2± 0.2 0.8 ± 0.1 -2.1 ± 4.3

DREAM2ASSIST+a 9.3 ± 32.0 3.2 ± 4.3 -0.1 ± 0.1 0.9 ± 0.1 2.9 ± 5.8 -18.3 ± 12.9 0.2 ± 1.7 -0.2 ± 0.2 0.9 ± 0.1 -4.9 ± 5.3
-61.2 ± 40.5 -0.2 ± 2.1 -0.2 ± 0.3 0.9 ± 0.1 -1.4 ± 3.1 -8.2 ± 35.6 -5.2 ± 5.4 -0.1 ± 0.2 1.0 ± 0.0 -14.0 ± 6.0

DREAM2ASSIST+a−r -147.3 ± 93.0 -24.2 ± 13.1 -0.4 ± 0.2 0.5 ± 0.1 -9.6 ± 7.7 6.9 ± 4.1 0.3 ± 1.5 0.0 ± 0.1 0.4 ± 0.1 5.2 ± 3.9
-179.9 ± 104.2 -22.2 ± 16.3 -0.4 ± 0.4 0.6 ± 0.1 -10.7 ± 6.8 -3.2 ± 12.6 -0.0 ± 3.0 0.1 ± 0.2 0.1 ± 0.0 -0.1 ± 1.7



Table E.3: F1-Scores over the training set.

Pass vs. Stay Hairpin Pass vs. Stay Straightaway Left vs. Right Hairpin Left vs. Right Straightaway

0.99 ± 0.006 1.00 ± 0.000 0.95 ± 0.00 0.98 ± 0.00

(a) Dreamer

(b) DREAM2ASSIST

Figure E.6: t-SNE embeddings of ẑAt for: (a) the non-intent-aware world model of Dreamer versus
(b) the intent-supervised world model of DREAM2ASSIST. The consistency of the clusterings present
in the DREAM2ASSIST world model states indicates that the world model has learned to identify the
human’s intent.

a much greater benefit than the standard DREAMER agent. Immediately after a random intent
transition, the human agents perform very poorly and need significant assistance to get “back on
track” to their known state distributions. DREAM2ASSIST consistently outperforms DREAMER for
worse-performing human partners, as the intervention magnitudes for the DREAM2ASSIST agent
consistently show more intervention and assistance. While the DREAMER agent pairs well with
highly performant human partners (due to the low intervention magnitude), DREAMER is not able to
offer as much useful assistance in this experimental setting.

Finally, we show the intent-classification accuracy during a stay-to-pass transition episode with a
medium-performance synthetic human (Figure G.3), and during a pass-to-stay transition episode with



a high-performance synthetic human (Figure G.4). In these figures, we see that intent-classification
accuracy is quite high before the random transition (> 90%), and drops sharply when the transition
occurs (as expected). In the seconds that follow, the agent slowly recovers the new ground-truth
intent as it observes different behavior from the human in the environment. Within 4-8 seconds
after the random transition, we observe that the DREAM2ASSIST agent has recovered > 90%
intent-classification performance with the new human partner.
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Figure E.7: Time traces in the hairpin scenario showing the intent inference (denoted by background
color), along with ego-opponent distance, speed, and DREAM2ASSIST steering and acceleration
modifications for a human tending to pass. Notice that DREAM2ASSIST maintains an accurate
estimate of the driver’s intent, and provides a high-magnitude acceleration intervention to assist as
the ego begins to overtake the opponent.
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Figure E.8: Time traces in the hairpin scenario showing the intent inference (denoted by background
color), along with ego-opponent distance, speed, and DREAM2ASSIST steering and acceleration
modifications for a human tending to stay.



(a) Pass–Stay Humans in the Hairpin Domain (b) Pass–Stay Humans in the Straightaway Domain

(c) Left–Right Humans in the Hairpin Domain. (d) Left–Right Humans in the Straightaway Domain.

Figure E.9: Learning curves for each domain, averaged over four random seeds.



Figure E.10: Example of a time sequence of an imperfect passing human driving in the hairpin
domain.

Figure E.11: Example of a time sequence of DREAM2ASSIST assistance to help an imperfect passing
human in the hairpin domain.



Figure F.1: Changes in various metrics in the hairpin scenario when adding assistance to various
imperfect (1–5) humans tending to pass, averaged over five random seeds. Note that our two NO-
RSSM baseline is trained to perform intent classification and achieves high accuracy, yet performs
far worse when paired with sub-optimal synthetic human partners than our RSSM baselines.

Figure F.2: Changes in various metrics in the hairpin scenario when adding assistance to various
imperfect (1–5) humans tending to stay-behind, averaged over five random seeds. We again note that
the NO-RSSM baseline is trained to perform intent classification and achieves high accuracy, yet
performs far worse when paired with sub-optimal synthetic human partners than our RSSM baselines.



Figure G.1: Changes in various metrics in the hairpin scenario when adding assistance to imperfect
(1–5) humans whose intent randomly swaps from stay-behind to passing, averaged over five random
seeds and ten trials each. We observe that our inferred-reward objective and our intent-classification
objective enable the DREAM2ASSIST agent to generalize much better to this highly out-of-distribution
behavior, particularly with significant reductions in collisions and improvements in track progress
(i.e., task completion).



Figure G.2: Changes in various metrics in the hairpin scenario when adding assistance to imperfect
(1–5) humans whose intent randomly swaps from pass to stay-behind, averaged over five random
seeds and ten trials each. Again, our inferred-reward objective and our intent-classification objective
enable the DREAM2ASSIST agent to generalize much better to this highly out-of-distribution behavior,
particularly with respect to track progress.



Figure G.3: Intent-classification accuracy before and after a synthetic human partner is randomly
swapped from a medium-performance stay-behind to a medium-performance pass partner. We
observe that the DREAM2ASSIST agent is able to accurately classify its partner’s intent in the 8
seconds leading up to the change, at which point intent-classification accuracy drops sharply. In the
following 4 seconds, intent-classification accuracy climbs back up to about 90%, indicating that
DREAM2ASSIST is able to recover a human partner’s intent even if it is dynamic. The performance
dip at the end is likely due to sub-optimalities in the pass partner’s policy, leading to collisions or
spin-outs.

Figure G.4: Intent-classification accuracy before and after a synthetic human partner is randomly
swapped from a high-performing pass to a high-performing stay-behind partner. We observe that the
DREAM2ASSIST agent is able to accurately classify its partner’s intent in the 8 seconds leading up to
the change, at which point intent-classification accuracy drops sharply. Intent-classification accuracy
climbs monotonically after the change, suggesting that DREAM2ASSIST can perfectly recover intent
for high-performing agents, even under unexpected and previously-unseen transitions.
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