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Abstract

Extensive evidence suggests that training dynamics undergo a distinct phase transition, yet our
understanding of this transition still lags behind. In this paper, we introduce an interval-wise
perspective that compares network states across a time window, revealing two new phenomena that
illuminate the two-phase nature of deep learning. i) The Chaos Effect. By injecting an imperceptibly
small parameter perturbation at various stages, we show that the response of the network to the
perturbation exhibits a transition from chaotic to stable, suggesting there is an early critical period
where the network is highly sensitive to initial conditions; ii) The Cone Effect. Tracking the
evolution of the empirical Neural Tangent Kernel (eNTK), we find that after this transition point the
model’s functional trajectory is confined to a narrow cone-shaped subset: while the kernel continues
to change, it gets trapped in a tight angular region. Together, these effects provide a dynamical view
of how deep networks transition from sensitive exploration to stable refinement during training.

1. Introduction

Many recent studies have suggested, either implicitly or explicitly, that there is a phase transition
point during the neural network training, where the model’s properties and behaviors undergo
substantial shifts before and after this time point. For example, Cohen et al. [4], Damian et al.
[S], Wang et al. [18] showed that during training, the network first enters a progressive sharpening
phase, and after which, the sharpness remains roughly constant for the rest of the training. Achille
et al. [1] identified a critical learning period early in training, during which exposure to low-quality
data can cause irreversible damage, while similar exposure later in training can be reversed. Zhou
et al. [21] discovered that the late training phase is critical in improving generalization and robustness
of neural networks.

Despite abundant evidence for the two-phase phenomenon [1, 4,9, 18-20], a complete characteri-
zation and understanding of this phenomenon still lags behind. Moreover, most existing studies adopt
a point-wise perspective: they primarily focus on examining specific properties of the network at
isolated time points. This perspective, while informative, offers only a static snapshot of the model’s
behavior, and does not capture the temporal dynamics of learning: how a property emerges, evolves,
or vanishes as training progresses.
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In this paper, to gain a deeper understanding of the two-phase phenomenon, we introduce two
new empirical observations that exhibit characteristics of the phase transition. Crucially, these are
what we call “interval-wise” phenomena: rather than analyzing a property at specific time points, we
compare the model’s behavior across two different time points of training. We show that this novel
approach reveals patterns that are otherwise invisible to point-wise analysis and offers new insights
into the learning dynamics of neural networks. Specifically, we identify and investigate two distinct
behaviors: the Chaos Effect and the Cone Effect.

The Chaos Effect. First, we observe that the learning dynamics of neural networks transition
from a chaotic to a non-chaotic regime during training. Specifically, we train two networks that
are initialized identically and trained with the same stochastic gradient noise. At a specific time %,
we apply a small perturbation to the parameters of one model, and then we compare the resulting
parameters at a later time ¢;. Particularly, we observe an inflection point during the training process.
We find that when ¢ is in the early stage of training, specifically before the inflection point, even a tiny
perturbation leads to a significant divergence from the original training trajectory. This phenomenon
indicates a high sensitivity of learned parameters to initial conditions, which is a hallmark of chaotic
systems in physics. However, if g is later in training (after the inflection point), the divergence is
minimal, suggesting that the system becomes increasingly stable as training progresses.

The Cone Effect. Second, we discover that after the early training phase, the learning dynamics of
neural networks remain constrained in a narrow cone in the function space. Specifically, we train
a network, and starting from a chosen time point 7, we track the empirical Neural Tangent Kernel
(eNTK) at later time steps and measure their deviation from the eNTK at 7. We observe that when 7
is sufficiently large, the subsequent eNTKSs remain confined within a narrow cone around the eNTKs
at time 7. In contrast, if the 7 is chosen in the early stages of training, the eNTKSs experience chaotic
and large unstructured changes over time, and no such confinement is observed.

2. Related Work

As discussed in Section 1, many studies have suggested neural network training undergoes a phase
transition in practice. In our view, this body of work can be roughly grouped into the following four
categories:

* Transition of the First-order Quantities. A recent line of research investigated phase
transitions in neural network training using gradient-based metrics. For example, Fort et al. [8]
identified a clear branching point in the evolution velocity of the empirical Neural Tangent Kernel
(eNTK), transitioning from a fast to a slow regime. Jastrzebski et al. [14] observed that the largest
eigenvalue of the gradient covariance matrix increases monotonically in the early phase and then
enters a regime of sustained oscillation.

* Transition of the Second-order Quantities Extensive works analyzed the Hessian spectrum
of neural networks to characterize training phase transitions. For example, Cohen et al. [4], Damian
et al. [5], Frankle et al. [10], Wang et al. [18] reported a two-phase pattern in the largest Hessian
eigenvalue (the “sharpness”) during gradient descent: an initial phase of steady growth in sharpness
accompanied by smooth loss reduction, followed by a plateau where sharpness fluctuates around
a critical threshold. Ghorbani et al. [11] studied the full Hessian spectrum, clearly revealing a
structural phase transition. Gur-Ari et al. [12] showed that the subspace spanned by the top Hessian
eigenvectors stabilizes shortly after initialization, indicating a transition in the dominant eigenspace.
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* Transition of the Training Trajectories. Another line of research focused on the phase
transition behavior from the perspective of optimization trajectory and loss landscape geometry.
For instance, Fort et al. [8], Frankle et al. [9, 10], Zhou et al. [20] introduced a spawning method:
a network is initialized and trained for a few epochs, then spawned into two copies that continue
training independently under different sources of SGD randomness (e.g., mini-batch order and data
augmentation). They showed that when spawning occurs late in training, the two models, despite far
in Euclidean distance, remain in the same basin of the loss landscape; whereas early spawning yields
models in distinct basins. Singh et al. [17] analyzed the directionality of the optimization path and
identified a corresponding phase transition from this directional viewpoint.

* Transition in Behaviors/Ability. From a more functional perspective, [19] demonstrate that
neural networks learn concepts sequentially based on their signal strength. There exists a critical
moment when one concept has been fully learned while another remains unlearned, clearly marking
a phase boundary. [1] analyze how models respond to temporary corruptions in training data. They
identify a “critical period” early in training during which such temporary corruption can cause
permanent damage, while similar interventions later in training are reversible.

3. Preliminary and Methodology

Basic Notations. We focus on a classification task. Denote [k] = {1,2,--- ,k}. Let D =
{(@i,yi)}_ be the training set of size n, where x; € R% represents the i-th input and y; € [c]
represents the corresponding target. Here, c is the number of classes. Let f : D x R? — R be the
NN model, and thus f(x,0) € R denotes the output of model f on the input & with parameter
0 € RP. Let £(f(x;,0), y;) be the loss at the i-th data point, simplified to ¢;(@). The total loss over
the dataset D is then denoted as Lp(0) = L 37 | 7,(0). We also use Errp(0)/Accp(6) to denote

n
the classification error/accuracy of the network f(6;-) on the training set D.

Parameter Dissimilarity. Following Singh et al. [17], we first introduce the parameter dissimilarity
to measure the directionality of the optimization process. Specifically, given the training trajectory
consisting of a sequence of checkpoints {Ot}tT:O, we use the pairwise cosine dissimilarity to capture
the directional aspect of the trajectory. For any two time points 4, j € [T]2, we define

(C)ij :=1 = cos(vec(8;), vec(8;)) = 1 — (vec(6:), vec(8;))/([lvec(6;)ll, [[vec(8;)ly), (1)
where vec(6) denotes the flattened parameters of the network.

Kernel Distance. Similar to Fort et al. [8], we use the kernel distance to quantify the evolution of
neural networks in the function space. Specifically, we measure the pairwise distance between the
empirical neural tangent kernel (eNTK) matrix H (0) at two different time points, namely kernel
distance. For two time points 4, j € [T]?, we define:

__ (H(6:),H(9))
LH ()il ¢ [ H (0;)]

(8)iy =1 @)
Loss Barriers. In addition to the directional and functional aspect, we also investigate the geometry
of the neural network’s loss landscape. In particular, we examine the loss barriers [2, 9, 20] between
any two points along the training trajectory. For any two points 4, j € [T]2, we define:

(B)ij := max Lp/(ab; + (1 — )8;) — - (Lp(0;) + L (6;)), 3)

1
2
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Figure 1: The sensitivity of learning dynamics to tiny perturbations. (a) The parameter dissimi-
larity (C')4,.+,. (b) The loss barrier (B)y, +,. (¢) The disagreement rate (D), ;,. Note that the ¢,
and ¢ are presented in iterations, not epochs.

where D’ denotes the unseen test set.

Disagreement Rate. Lastly, we concern about the similarity of the outputs at two points along the
optimization trajectory. Specifically, we introduce the disagreement rate on the test data for any two
points i, j € [T]*

(D)ij = Egep [1(f(x,0;) # f(x,05))], “)

where 1(-) is the indicator function and D’ is the test set.

Main Experimental Setup. We train the VGG-16 architecture [16] and the ResNet-20 architec-
ture [13] on the CIFAR-10 dataset. Optimization is done using SGD with momentum (momentum set
to 0.9). A weight decay of 1 x 10~ is applied. The learning rate is initialized at 0.1 and is dropped
by 10 times at 80 and 120 epochs. The total number of epochs is 160.

4. The Chaos Effect: Sensitivity of Learning Dynamics to Small Perturbations
In the section, we study the sensitivity of neural network learning dynamics to small perturbations.

Experimental Design. We train two networks with identical initializations and the same stochastic
gradient noise. However, at a specific time ¢y, we introduce a small perturbation € to the parameters
of one network, such that 8; = 6;, 4+ €. We then compare the resulting models at a later time #; (
t1 > tp), with the parameters 6;, and 6;, respectively. We consider a tiny perturbation here, where
|€]lo = 10~". We vary the time ¢, {; and compare the two resulting models using different metrics.
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Figure 2: The kernel distance between every pair of two points at the optimization trajectory
{6 }]_,. Our results are reported for both VGG-16 and ResNet-20 on CIFAR-10. Note that the i and
j are presented in iterations, not epochs.

Finding I. Optimization trajectory changes its direction at an inflection point. In Figure 1 (a),
we present the parameter dissimilarity for any pair of g and t; (with ¢; > tg). Notably, there exists a
specific time ¢ at which the value of (C), +, remains relatively high for all choices of ¢(. Typically,
a high value of (C'), 1, indicates the directional change along the optimization trajectory. Therefore,
the optimization trajectory evidently changes its direction at a fixed point, namely the inflection point.

Finding II. Tiny perturbations applied before the inflection point leads to significant loss
barriers and disagreement rate. In Figure 1 (b), we also report the loss barrier between each
pair of time points #o, t;. We observe that even a tiny perturbation (||€||, = 10~7) applied at a early
time point ¢y could result in a substantial loss barrier between the resulting parameters 6, and 6;,
in the later stage of training. This indicates that the two solutions likely reside in different, isolated
“valleys” of the loss landscape. In Figure 1 (c), we further evaluate the disagreement rate between
6;, and 6} . The high disagreement rate validates the functional dissimilarity between 6;, and 6;, .
Together, we show that the learning dynamics pass through a chaotic regime during the early phase
of training, where small perturbations might lead to substantial divergence, namely the chaos effect.

Conjecture 1. The inflection points marks the transition from a chaotic to an non-chaotic
regime. Taking VGG-16 on CIFAR-10 as an example, we observe that a significant loss barrier
(B)1y,+, emerges only when ¢y < 2500 iterations and ¢; > 2500 iterations. Similar observations are
also noted for the disagreement rate. Recall that the 2500 iteration marks the inflection point for
VGG-16 on CIFAR-10. Therefore, we conjecture that the inflection point serves as a hallmark of
the transition from a chaotic to a non-chaotic training regime. To verify, we compute the kernel
distance between every two points along the optimization trajectory. Specifically, we train the neural
network and obtain a sequence of checkpoints {6;}]_,. Then for any i, € [T]?> we compute the
kernel distance, i.e., (S); ;. In Figure 2, we observe that the eNTKs evolve significantly during
the early phase of training, indicating a chaotic regime. Subsequently, the evolution of the eNTKs
stabilizes, transitioning to a non-chaotic phase. Notably, the transition point in the evolution of the
eNTKs aligns with the inflection points identified in earlier experiments.
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Figure 3: Constrained learning dynamics in the second phase. (a) The kernel distance (S),; v.s.
training iteration ¢. (b) The kernel distance (S) 4.q¢ Vs. training iteration ¢. (¢) The visualization of
the changes of the eNTK matrices H (6;).

5. The Cone Effect: Constrained Learning Dynamics in the Second Phase

We have seen that the learning dynamics of neural networks undergo a transition from a highly
chaotic to a more stable, non-chaotic phase. In this section, we dig deeper into the second “stable”
phase. Surprisingly, we find that, contrary to the typical assumption of the lazy training regime [3,
6, 7, 15, 22], the neural network continues to evolve. However, this evolution is confined within a
narrow, “‘cone”-like region in function space, namely the cone effect.

Beyond the Lazy Regime: The Cone Effect. First, we compute the kernel distance between
two adjacent points @(t) and 6(t + dt). In Figure 3 (b), we observe that the kernel distance (S)¢ ¢4t
is significant in the early training phase and then drops quickly to a low but non-negligible value.
However, surprisingly, we note that in the later training phase, the values of (S); ¢4 are upper-
bounded by the same value for different d¢. One possible explanation for this phenomenon is that
during the second phase, the eNTK matrix evolves in a constrained space.

To validate this, we further measure how the distance between the kernel matrices at the current
iterate 8, and a referent point 0 changes during training. In Figure 3 (a), for different referent points
T, the kernel distance S(0, €, first increases and then keeps nearly constant in training. This result
suggests that during the second phase, beyond the lazy regime, the model operates in a constrained
function space. The visualization in Figure 3 (¢) further confirms the existence of the cone effect,
where a clear “cone” pattern is observed during the evolution of eNTK matrices.

6. Conclusion

In this paper, we introduced an interval-wise perspective on neural network training dynamics.
Through this lens, we identified two novel empirical phenomena that characterize a two-phase
transition in deep learning: the chaos effect and the cone effect. Together, these findings suggest a
transition from an exploratory, unstable phase to a more stable, refinement-oriented phase during
training.
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