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Abstract

Probabilistic representation spaces convey information about a dataset and are shaped by
factors such as the training data, network architecture, and loss function. Comparing the
information content of such spaces is crucial for understanding the learning process, yet most
existing methods assume point-based representations, neglecting the distributional nature of
probabilistic spaces. To address this gap, we propose two information-theoretic measures
to compare general probabilistic representation spaces by extending classic methods to
compare the information content of hard clustering assignments. Additionally, we introduce a
lightweight method of estimation that is based on fingerprinting a representation space with a
sample of the dataset, designed for scenarios where the communicated information is limited
to a few bits. We demonstrate the utility of these measures in three case studies. First, in
the context of unsupervised disentanglement, we identify recurring information fragments
within individual latent dimensions of VAE and InfoGAN ensembles. Second, we compare
the full latent spaces of models and reveal consistent information content across datasets
and methods, despite variability during training. Finally, we leverage the differentiability of
our measures to perform model fusion, synthesizing the information content of weak learners
into a single, coherent representation. Across these applications, the direct comparison of
information content offers a natural basis for characterizing the processing of information.

1 Introduction

The comparison of representation spaces is a problem that has received much attention, particularly as
a route to a deeper understanding of information processing systems (Klabunde et al., 2023; Mao et al.,
2024; Huh et al., 2024; Lin & Kriegeskorte, 2024) and with applications in tasks like transfer learning,
ensembling, and other forms of representational alignment (Sucholutsky et al., 2023; Muttenthaler et al.,
2024). Existing methods are applicable to point-based representation spaces, including centered kernel
alignment (CKA) (Kornblith et al., 2019) and representational similarity analysis (RSA) (Kriegeskorte
et al., 2008). For representation spaces whose citizens are probability distributions, such as in variational
autoencoders (VAEs) or in biological systems with inherent stochasticity, failure to account for the distributed
nature of representations can miss important aspects of the relational structure between data points (Duong
et al., 2023). Few methods account for the distributional nature of representations (Klabunde et al., 2023).

One of the few existing methods for comparing probabilistic representation spaces, stochastic shape met-
rics (Duong et al., 2023), relies on geometric assumptions and fixed transformations, which can limit its
flexibility. In contrast, we adopt an information-theoretic approach that evaluates representation spaces based
on the information they transmit, providing a method that is agnostic to properties like dimensionality or
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Figure 1: Similarity of representation spaces. In this work, we generalize measures to compare the
information content of clustering assignments to apply to probabilistic representation spaces. (a) A hard
clustering assignment, such as the living/non-living distinction conveyed by clustering V', communicates certain
information about the dataset (here, CIFAR-10 images). Comparing the information content of different
clustering assignments enables comparative analyses between algorithms, model fusion, and benchmarking.
(b) We generalize measures for comparing hard clustering assignments to be applicable to probabilistic
representation spaces, by recognizing the latter as soft clustering assignments. When cast in terms of
information content, there is no requirement for the dimensionality of the spaces to match, and hard
clusterings (e.g. labels or annotations) can be compared to probabilistic spaces.

whether the spaces are discrete or continuous. Specifically, we compare two probabilistic representation spaces
using quantities derived from the mutual information between them, capturing their relational structure
while ensuring broad applicability across diverse contexts.

We take as a motivating example the task of unsupervised disentanglement, whose goal is to break information
about a dataset into useful factors of variation (Higgins et al., 2018; Locatello et al., 2019; Trauble et al., 2021;
Balabin et al., 2023; Van Steenkiste et al., 2019). As an example, a representation space might be trained on
images of cars so that color, orientation, and model information are separated into different latent dimensions
without any supervision about such factors. When ground truth factors of variation are unavailable for
evaluation, as is generally the case for real-world datasets, existing evaluation methods assess the degree of
consensus in an ensemble of trained models (Duan et al., 2020; Lin et al., 2020). However, the relatedness
of representation spaces has failed to account for the probabilistic nature of the representations, reducing
posterior distributions to their means and then using point-based comparisons such as correlation (Duan
et al., 2020). With a direct comparison of the information content of representation spaces, we stand to
improve the characterization of consensus and of unsupervised disentanglement more generally.

In this work, we generalize measures of similarity of the information content of hard clustering assignments
(Fig. 1a) to be applicable to probabilistic representation spaces (Fig. 1b). To motivate the generalization,
we treat probabilistic representation spaces as soft clustering assignments of data, whereby partial distin-
guishability between data points is expressed by the overlap between posterior distributions. We then assess
the information content of learned representation spaces produced by models in an ensemble of random
initializations, and study the effects of method, training progress, and dataset on information processing.

2 Related work

The proposed method builds upon classic means of comparing the information content of different cluster
assignments (clusterings) of a dataset and generalizes them to compare probabilistic representation spaces.
We then use the method to empirically study generative models designed to fragment information about a
dataset in a learned latent space, i.e., for unsupervised disentanglement.

Similarity of clusterings and of representation spaces. The capacity to compare transformations of
data produced by different machine learning models enables ensemble learning, a deeper understanding of
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methodology, and benchmarking (Punera & Ghosh, 2007). Strehl & Ghosh (2002) used outputs of clustering
algorithms to perform ensemble learning, based on a measure of similarity between clustering assignments that
we will extend in this work: the normalized mutual information (NMI). Referred to as consensus clustering or
ensemble clustering, efforts to combine multiple clustering outputs can leverage any of a variety of similarity
measures (Wagner & Wagner, 2007; Vinh et al., 2009; 2010; Vega-Pons & Ruiz-Shulcloper, 2011; Huang
et al., 2017). Another measure backed by information theory is the variation of information (VI), coined by
Meila (2003) for clustering but recognized as a metric distance between information sources at least twice
before (Shannon, 1953; Crutchfield, 1990).

Commonly referred to simply as ‘clustering’, hard clusterings assign every input datum to one and only one
output cluster and have been generalized to multiple forms of soft clustering (Campagner et al., 2023). We
focus specifically on fuzzy clustering, where membership is assigned to multiple clusters and must sum to one
for each datum (Zadeh, 1965; Dunn, 1973; Ruspini et al., 2019). We observe that a probabilistic representation
space communicates for each datum a soft assignment over latent vectors, with the degree of membership
expressed by the probability density of posterior distributions. Comparisons of hard clustering have been
extended to fuzzy clustering for measures that indirectly assess information content, such as the Rand
index (Punera & Ghosh, 2007; Hullermeier et al., 2011; D’Ambrosio et al., 2021; Andrews et al., 2022; Wang
et al., 2022). Information-based measures have been extended for specific types of soft clusters (Campagner
& Ciucci, 2019; Campagner et al., 2023) but none, to our awareness, for comparing the information content
of fuzzy clusterings over a continuous representation space.

A rich area of research compares point-based representation spaces via the pairwise geometric similarity of a
common set of data points in the space (Kornblith et al., 2019; Hermann & Lampinen, 2020; Klabunde et al.,
2023), building upon representational similarity analysis from neuroscience (Kriegeskorte et al., 2008). In place
of geometric similarity, topological similarity more closely probes the information available for downstream
processing by employing specific similarity functions with tunable parameters (Lin & Kriegeskorte, 2024;
Williams, 2024). For comparing probabilistic representation spaces, stochastic shape metrics (Duong et al.,
2023) extend a distance metric between point-based representation spaces based on aligning one with another
through prescribed transformations (e.g., rotations) (Williams et al., 2021). By contrast, the information-
theoretic lens we adopt requires no enumeration of transformations nor tuning of parameters, and directly
assesses the information available for processing by downstream neural networks.

Unsupervised disentanglement. Disentanglement is the problem of splitting information into useful
pieces, possibly for interpretability, compositionality, or stronger representations for downstream tasks. Shown
to be impossible in the fully unsupervised case (Locatello et al., 2019; Khemakhem et al., 2020), research has
moved to investigate how to utilize weak supervision (Khemakhem et al., 2020; Sanchez et al., 2020; Vowels
et al., 2020; Murphy et al., 2022) and incorporate inductive biases (Balabin et al., 2023; Chen et al., 2018;
Rolinek et al., 2019; Zietlow et al., 2021; Hsu et al., 2024).

A significant challenge for disentanglement is evaluation when no ground truth factorization is available.
While one proposed route to evaluation relies on a characterization of the posterior distributions in a model
(PIPE, Estermann & Wattenhofer (2023)), a more common approach assesses consensus among trained
models in an ensemble of randomly initialized repeats. The motivation, first proposed in Duan et al. (2020), is
that disentangled models are more similar to each other than are entangled ones because there are intuitively
more ways to entangle information than to disentangle it. There, the similarity between two models was
evaluated with an ad hoc function of dimension-wise similarity, which was computed as the rank correlation or
the weights of a linear model between embeddings in different one-dimensional spaces. ModelCentrality (Lin
et al., 2020) quantified similarity between models with the FactorVAE score (Kim & Mnih, 2018) where one
model’s embeddings serve as the labels for another model. However, none of these methods fully account for
the distributional nature of representations, instead relying on point estimates such as posterior means or
single embeddings. In contrast, our approach focuses on capturing the probabilistic structure of representation
spaces, and additionally shifts the emphasis from model similarity to channel (or latent subspace) similarity
under the premise that the fragmentation of information, central to disentanglement, is more naturally studied
via the information fragments themselves.
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3 Method

Our goal is to compare the information transmitted about a dataset by different representation spaces, and
we will use the comparison of hard clustering assignments (e.g., the output of k-means) as a point of reference.
Analogously to hard clustering (Fig. 1a), probabilistic representation spaces communicate a soft assignment
over embeddings that is expressed by a probability distribution in the space for each data point (Fig. 1b).

While the proposed method can be applied to any representation space with probabilistic embeddings, we
will focus primarily on variational autoencoders (VAEs) (Kingma & Welling, 2014). Let the random variable
X represent a sample x ~ p(z) from the dataset under study. X is transformed by a stochastic encoder
parameterized by a neural network to a variable U = f(X, €), where € is a source of stochasticity. We will
make use of two fundamental quantities in information theory (Cover & Thomas, 1999), the entropy of
a random variable H(Z) = E._,.)[—logp(z)] and the mutual information between two random variables
IY;Z)=H(Y)+ H(Z)— H(Y,Z). The encoder maps each data point = to a posterior distribution in the
latent space, p(u|z), after which a point u ~ p(u|z) is sampled for downstream processing. Commonly, the
posterior distributions are parameterized as normal distributions with diagonal covariance matrices, which
will facilitate many of the involved measurements but is not required for the method.

3.1 Comparing representation spaces as soft clusterings

Consider a hard clustering of data as communicating certain information about the data (Fig. 1a). By observing
the cluster assignment U instead of a sample X from the dataset, information I(X;U) will have been conveyed.
For a hard clustering, every data point is assigned unambiguously to a cluster—i.e., H(U|X) = 0—which
makes the communicated information equal to the entropy of the clustering, I(X;U) = H(U). We note that
maximizing communicated information, such as by assigning each data point to its own cluster, does not yield
a useful representation. The value of a representation lies in the balance between the information preserved
and the irrelevant variation discarded, highlighting the importance of assessing its specific information content.

Given two hard clustering assignments U and V for the same data X, the mutual information I(U;V)
measures the amount of shared information content they express about the data. Previous works have found
it useful to relate the mutual information to functions of the entropies H(U) and H (V). Strehl & Ghosh
(2002) proposed the normalized mutual information (NMI) as the ratio of the mutual information and the
geometric mean of the entropies,

I(U;V)

NMI(U, V) = THORT

(1)

Meila (2003) proposed the variation of information (VI), a metric distance between clusterings that is
proportional to the difference of the mutual information and the arithmetic mean of the entropies,

H(U) + H(V)> |

VI(U,V) = —2 (I(U; V) - 5 (2)

Soft clustering extends hard clustering to allow each datum to have partial membership in multiple clusters,
allowing partial distinguishability between data points to be communicated (Zadeh, 1965; Ruspini et al.,
2019) (Fig. 1b). While soft clustering is predominantly performed over a discrete set of clusters, here we
view each point u in a continuous latent space as a cluster, with the posterior distribution p(u|z) assigning
membership over the continuum.

The utility of NMI or VI over raw mutual information largely resides in the standardization of values. For
two identical hard clustering assignments, U and U’, NMI(U,U’) = 1 and VI(U,U’) = 0. In contrast, soft
assignments include additional entropy stemming from uncertainty that is unrelated to the information
communicated about the dataset, as is evident from the relation H(U) = I(X;U)+H(U|X) with H(U|X) > 0.
As a result, the entropy terms in Eqns. 1 and 2 that ground the mutual information I(U; V') have components
that disrupt the standardization of values. To address this issue, we propose replacing the entropy of a
clustering assignment with the mutual information between two copies of that assignment: specifically,
substituting H(U) with I(U;U’), and similarly for V. For hard clustering, H(U) = I(X;U) = I(U;U’),
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making these quantities interchangeable. Only the third quantity, I(U;U’), maintains the standardization of
NMI = 1 and VI = 0 for identical soft clustering assignments. The generalized forms then become

I(u;v)
VIO UHI(V V)

I(U;U')+I(V;V’))

NMI(U, V) =

(3)

. @

The generalization leaves NMI and VI unchanged for hard clustering, where I(U;U’) = H(U), and enables
the measures to be applied to both soft and hard assignments. We note that the generalized VI is no longer a
proper metric, as the triangle inequality is not guaranteed (Appx. D).

VI(U, V) = —2 (I(U; V) -

The conditional independence of clustering assignments given the data—i.e., I(U; V|X) = 0—allows each
mutual information term in Eqns. 3 and 4 to be rewritten with regard to information communicated about the
data. Namely, I(U; V) =1(X;U) + I(X;V) - I(X;U, V), and I(U;U’) = 2I(X;U) — I(X;U,U’). Because
we have access to the posterior distributions, it is easier to estimate the mutual information between the data
X and a representation space (or a combination thereof) than it is to estimate the information between two
representation spaces (Poole et al., 2019).

The extended NMI and VI benefit from the generality of information theory: the information content of
two probabilistic representation spaces can be compared regardless of dimensionality or parameterization of
posteriors, and a soft clustering can be compared to a hard clustering, whether from a quantized latent space
or a discrete labelling process (Fig. 1b).

3.2 Routes to estimation

We propose two routes to estimating NMI and VI that offer a tradeoff between precision and speed; both
leverage the known posterior distributions to calculate the information transmitted about the dataset by
combinations of representation spaces, I(X;-). The first route is to compute I(X;-) with a straightforward
Monte Carlo estimate using the aggregated posterior over the entire dataset of size L,

I(X;5U) = Epmp(z)Eunp(ulz) |10 . )
( : ) () [ © Z p(uxl)] ®)

For the second route, we can use a measure of statistical similarity between posterlors p(ulzy) and p(u\xg) in
a given representation space—the Bhattacharyya coefficient (Kailath, 1967), BC(p, q) = [ =V p(2)q(z)dz—to
quickly “fingerprint” the information content of spaces with the pairwise distlngmshablhty of a sample of data
points (Murphy & Bassett, 2023). The BC between two multivariate normal distributions can be efficiently
computed in bulk via array operations. Once a matrix BC;; := BC(p(u|z;), p(u|z;)) of the pairwise values for
a random sample of N data points is obtained, a lower bound for the information transmitted by the channel
can be estimated with I(X;U) > + Ziv log + Z;V BC;; (Kolchinsky & Tracey, 2017). For fast estimation of
the information content of a representation space with respect to a ground truth generative factor, we can
treat the labels as an effective hard clustering according to that factor, where BC values are either zero or one.
Finally, the matrix BC;; for the combination of spaces Uy and Us is their elementwise product (Appx. C). In
other words, receiving both of the messages from U; and U, leads to a distinguishability between data points
that is simply the product of the distinguishabilities under U; and Us; separately. Together, the properties
allow us to fingerprint each representation space through Bhattacharyya matrices, and then perform all
subsequent analysis with only the matrices— i.e., without having to load the models into memory again.

3.3 Discovering consistently learned information fragments via OPTICS clustering of latent dimensions

In the context of disentanglement, we are interested in the similarity of information contained in individual
dimensions across an ensemble of models. We compute the pairwise similarities between all dimensions
of all models—for example, 10 dimensions each from 50 models in an ensemble for a 500x500 matrix of
similarity values in Sec. 4.2—and then use density-based clustering to identify information content that is
found consistently. OPTICS (Ankerst et al., 1999) is an algorithm that orders elements in a set according to
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similarity and produces a “reachability” profile where natural groupings of elements are indicated through
valleys. An OPTICS profile is analogous to a dendrogram produced by hierarchical clustering, but can be
more comprehensible for large sets of points (Sander et al., 2003). The consistency of information fragments
in the latent dimensions of an ensemble of representation spaces can then be visualized with the OPTICS
reachability profile, the reordered pairwise similarity matrix—which will have block diagonal form if the
fragments are consistent—and the information contained about ground truth generative factors, if available.

3.4 Model fusion

Consider a set of representation spaces found by an ensemble of weak learners. In the spirit of “knowledge
reuse” (Strehl & Ghosh, 2002) originally applied to ensembles of hard clusters, we might obtain a superior
representation space from the synthesis of the set. In contrast to other assessments of representation space
similarity (Duan et al., 2020; Kim & Mmnih, 2018; Duong et al., 2023), the proposed measures of similarity are
composed of mutual information terms, which can be optimized with differentiable operations by a variety
of means (Poole et al., 2019). We optimize a synthesis space by maximizing its average similarity with a
set of reference spaces, performing gradient descent directly on the encoding of the data points used for the
Bhattacharyya matrices. Instead of requiring many models to remain in memory during training of a new
encoder, the Bhattacharyya matrices are computed for the ensemble once and then used for comparison
during training, and training is fast because of the involved array operations.

4 Experiments

4.1 Comparison of related methods on synthetic spaces

We first evaluated the similarity of synthetic representation spaces using ours and related methods (Fig. 2).
A dataset of 64 points was embedded to one- and two-dimensional representation spaces, each communicating
different information about the dataset. To assess the information available for downstream processing,
we trained a classification head for each of the nine latent spaces to predict the input = from a sample of
the corresponding posterior, u ~ p(u|z). As shown in Fig. 2b, the classification head’s average predictions,
P(25]2:) = Eymp(ulz) [P(25]u)], reflected the overlap of posterior distributions in latent space by assigning
non-zero probabilities to multiple outputs. The structure of these output probabilities closely matched the
similarity patterns in the distinguishability matrices of panel ¢, supporting our use of the latter as fingerprints
of the information in the latent space. Unlike the classification head’s outputs, the distinguishability matrices
were directly accessible from the latent space without additional network training.

We evaluated the pairwise similarity between the nine latent spaces of panel a using several methods
(Fig. 2d). To assess the information content available for downstream processing, we compared the average
predictions of the trained classification heads for each input x; through the Jensen-Shannon divergence,
(JSD(p®(2|z:)|[p® (2|x:)):. If classification heads for latent spaces a and 38 produce similar output distributions,
the latent spaces likely share similar information content. Next, CKA (Kornblith et al., 2019) can use different
measures of representation similarity as its basis of comparison; we used the inner product between means of
the posterior distributions for the representational similarity in linear CKA, an exponential function of the
Euclidean distance for nonlinear CKA, and the Bhattacharyya coefficient between posteriors as a statistical
basis of representational similarity. Nonlinear CKA requires selecting a distance parameter for each space:
we used the arithmetic mean of the standard deviation of every representation. Next, we computed similarity
according to stochastic shape metrics (Duong et al., 2023). Finally, we computed VI and NMI, both with a
Monte Carlo approach and the significantly faster Bhattacharyya fingerprint-based approach.

Spearman’s rank correlation of the similarity values between all pairs of synthetic spaces reveals multiple
relationships between our proposed measures and the baselines. First, for this small dataset, the Bhattacharyya
estimates of NMI and VI are highly consistent with the Monte Carlo alternatives while offering a speed
up of 100x. Second, VI captures similarity much the same as when comparing the outputs of downstream
classification heads (JSD) even though the former can be evaluated directly from the latent space. Third,
NMI relates the latent spaces in much the same way as the Bhattacharyya variant of CKA. While this ad hoc
variant of CKA lacks the information-theoretic underpinnings of NMI, it offers an easy-to-use alternative by
simply replacing a point-based distance with a statistical distance between representations.
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Figure 2: Comparing similarity measures for synthetic embedding spaces. (a) A dataset of 64
points, x = 1,...,64, is transformed into nine representation spaces marked i-ix. Each posterior distribution
p(ulz) is a Gaussian with diagonal covariance matrix and standard deviations indicated by the colored ellipses.
(b) We trained a classification head on top of the latent spaces of a to predict the input x, given a sample
from the posterior distribution p(u|x). The predicted probability distributions p(Z;|z;) are displayed as a
matrix, with row corresponding to the input x;. (c) The pairwise distinguishability of data points x; and xz;,
as computed by the Bhattacharyya coefficient, serves as a fingerprint of the information content of the latent
space. (d) The pairwise similarity of the representation spaces in panel a, found by a variety of methods.
Runtimes to calculate the full matrix are shown above each method, except for Jensen-Shannon divergence
(JSD) because it required training an additional classification network on top of each latent space. The
stochastic shape metric requires the dimensionality of the compared spaces to match; undefined entries are
grayed out. The Spearman rank correlation between similarity measures is shown in the bottom right.
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We additionally observe differences between the methods in relative similarities between the latent spaces. All
methods except linear CKA and stochastic shape metrics detect the similarity of the quasi-one-dimensional
encodings (representation spaces i, iv, and vi). These encodings are not related by simple transformations,
though a downstream neural network can extract similar information from each (see JSD). Representation
spaces vii and ix are similar by information content, as variations of splitting the data into two groups, but
they are deemed different by all but NMI, VI, and the Bhattacharyya-based CKA. While stochastic shape
metrics satisfy the desirable properties of a metric, the generalized NMI/VT offer a measure of similarity more
relevant for downstream processing owing to their utilization of mutual information.

4.2 Unsupervised detection of structure: channel similarity

We next analyzed the consistency of information fragmentation in ensembles of generative models trained
on image datasets. Using fifty models with ten latent dimensions (channels) each, for a variety of datasets,
methods, and hyperparameters (some released with Locatello et al. (2019)!), we assessed structure in an
ensemble’s channels. Every latent dimension of every model in an ensemble was compared pairwise to every
other; we used the Bhattacharyya fingerprint approach with a sample of 1000 images randomly selected from
the training set. Before using OPTICS to group latent dimensions by similarity (described in Sec. 3.3), we
removed dimensions transmitting less than 0.01 bits of information. We found NMI to more successfully
detect channels with similar information content, and use it in this section (comparison with VI in Appx. E).

In Fig. 3, the matrices display the pairwise NMI between all informative dimensions in the ensemble, and
have been reorganized by OPTICS such that highly similar latent dimensions are close together and appear as
blocks along the diagonal. On the left of each similarity matrix is the NMI with the ground truth generative
factors (or other label information), and above is the OPTICS reachability profile where identified groupings
of consistently learned channels are indicated with shading and Roman numerals.

In Fig. 3a, the regularization of a S-VAE is increased for the dsprites dataset (Higgins et al., 2017).
Although there are more channels that convey information for lower regularization (5=4), there is little
discernible structure in the population of channels aside from a group of channels that communicate roughly
the same information about scale. With g = 16, a block diagonal structure is found, and channels with
the same xpos, ypos, and scale information are found repeatedly across runs in the ensemble. We applied
the same analysis to an ensemble of InfoGAN-CR models (Lin et al., 2020), whose models additionally
encoded shape information consistently. We approximated the latent distribution for an image by first
encoding it, then re-generating 256 new images with the predicted latent dimensions fixed and the remaining
(unconstrained) dimensions randomly resampled, and finally using the moments of the newly predicted latent
representations as parameters for a Gaussian distribution. We note that in any scenario where a natural
probability distribution exists per datum in the representation space, the method can be used.

Fig. 3b shows remarkable consistency of information fragmentation by an ensemble of 5-VAEs trained on the
cars3d dataset (Reed et al., 2015), though not with regards to the provided generative factors. The object
factor is broken repeatedly into the same set of information fragments, which is sensible given that it is a
fine-grained factor of variation that comprises many lower-entropy factors such as color and height. More
surprising is that three of the fragments contain a mix of camera pose information and object information
that is consistently learned across the ensemble. The majority of existing disentanglement metrics rely on
ground truth generative factors—including the FactorVAE score (Kim & Mmnih, 2018), mutual information
gap (Chen et al., 2018), DCI (Eastwood & Williams, 2018), and InfoMEC (Hsu et al., 2023)—and would
miss the consistency found when comparing the information content of individual latent dimensions.

Given a group of latent dimensions identified by OPTICS, we take as a representative the dimension that
maximizes the average similarity to others in the group. Latent traversals visualize the fragmented information:
groups i and iii communicate different partial information about both pose and color, while group vi conveys
information about the color of the car with no pose information.

Is this particular way of fragmenting information about the cars3d dataset reproduced across different
methods? In Fig. 3¢ we compared the information content of the seven representative latent dimensions from
the B-VAE (8 = 16) to the OPTICS-reorganized latent dimensions for different methods (3-TCVAE (Chen

Thttps://github.com/google-research/disentanglement_ lib/tree/master
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Figure 3: Assessing the consistency of channel information in ensembles of models. We used
NMI as a similarity measure for OPTICS to detect fragments of information that are consistently stored
in individual channels in an ensemble of trained models. (a) The channel consistency of models trained on
dsprites, for 5-VAE and InfoGAN-CR. The information with respect to generative factors is shown on the
left of each similarity matrix. The 8 = 4 8-VAE fragmented information inconsistently compared to the
other two ensembles. (b) For a 5-VAE ensemble trained on cars3d, the information content of channels was
highly consistent, with seven distinct combinations of the three generative factors. Latent traversals for a
representative channel from each grouping visualize the information content. (¢) We compare the information
content of the representatives from panel b to that of channels in S-TCVAE and FactorVAE ensembles.
(d,e) Channel similarity and latent traversals for 5-VAE ensembles trained on fashion-mnist and celebA.
Additional channel similarity analyses and latent traversals can be found in Appx. A.
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Figure 4: Comparing full latent spaces. (a) We compare trained models across several methods and
six hyperparameters each, all from Locatello et al. (2019). (b) We compare S-VAE models over the course
of training. I(U;X)/H(X) is the fraction of total information about the dataset contained in the latent
space; a value of one means all data points are well-separated in the latent space. (NM1T) and (VI) denote
the average pairwise NMI and VI values over five models in an ensemble. All mutual information terms
were estimated via Monte Carlo, and the displayed error bars are the standard error after accounting for the
uncertainty on the constituent mutual information terms.

et al., 2018), f = 10 and FactorVAE (Kim & Mnih, 2018), v = 30). The consistent fragments for the other
methods are recognizable from those of the S-VAE ensemble, though interestingly the FactorVAE conveyed
comparatively less azimuth information in several of the fragments. Channels of group vi for the 5-VAE

jointly encoded information about the tint of the windows and the color of the car, and this information was
encoded separately by the 3-TCVAE and FactorVAE (traversals in Appx. A).

Finally, we studied the manner of information fragmentation on datasets which are not simply an exhaustive
set of combinations of generative factors (Fig. 3d,e). For -VAE ensembles trained on fashion-mnist (Xiao
et al., 2017) and celebA (Liu et al., 2015), some information fragments are more consistently learned than
others. A particular piece of information that distinguishes between shoes and clothing (group iii) was
repeatedly learned for fashion-mnist; for celebA, a remarkably consistent fragment of information conveyed
background color (group v). The remaining information was less consistently fragmented across the ensemble.

4.3 Assessing the content of the full latent space

If an ensemble of models fragments information into channels inconsistently (e.g., Fig. 3a), is it because the
information content of the full latent space varies across runs? We compared the information contained in the
full 10-dimensional latent spaces of five models from each VAE ensemble (Fig. 4). The amount of information
was generally too large for estimation via Bhattacharyya matrices, which saturates at the logarithm of the
fingerprint size, so we used Monte Carlo estimates of the mutual information. Error bars in Fig. 4 are the
propagated uncertainty from the mutual information measurements, with additional details in Appx. C.
Whereas NMI proved more useful for the channel similarity analysis, VI tended to be more revealing about
the heterogeneity of full latent spaces. Due to the form of its normalization, NMI becomes unreliable—i.e., is
plagued by large uncertainty—when the information contained in the latent space I(U; X) is small.

Across methods and hyperparameters for each method, the information contained in the full latent space was
largely consistent over an ensemble (Fig. 4a; models from Locatello et al. (2019)). For the cars3d dataset,
most latent spaces conveyed the full entropy of the dataset, meaning all representations were well-separated
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for the dataset of almost 18,000 images, making the information content trivially similar. By contrast, none
of the models trained on smallnorb contained more than around 80% of the information about the dataset,
and the similarity of latent spaces across members of an ensemble was more dependent on method and
hyperparameter. Ensembles of S-VAE and S-TCVAE were fairly consistent even though the transmitted
information dropped considerably with increasing §; DIP-I (Kumar et al., 2018) showed the opposite behavior,
where consistency varied strongly with A,q but transmitted information did not.

How does the consistency of latent space information evolve over the course of training? For S-VAE ensembles,
we again compared the full latent spaces for five models with random initializations (Fig. 4b). For all datasets
considered (cars3d, smallnorb, celebA), consistency across the models dropped at around the same point
in training that total information increased dramatically; after this point, all models encapsulated nearly the
same information in their latent spaces up to convergence.

4.4 Model fusion in a toy example

Finally, we demonstrate the capacity for model fusion with the proposed measures of representation space
similarity. Consider a dataset with a single generative factor with SO(2) symmetry, such as an object’s
hue. Difficulties can arise when the global structure of a degree of freedom is incompatible with the latent
space (Falorsi et al., 2018; Zhou et al., 2019; Esmaeili et al., 2024). In this example, a one-dimensional latent
space cannot represent the global circular topology of SO(2), leading to discontinuities in the representation.

To clearly demonstrate the synthesis of information from multiple representation spaces, we trained an
ensemble of 8-VAEs, each with a one-dimensional latent space that was insufficient to represent the global
structure of the generative factor. Fig. 5a shows an example latent space and its associated distinguishability
matrix, showing pairwise Bhattacharyya coeflicients between posterior distributions. The matrix reveals flaws
in the latent space where similar values of the generative factor have dissimilar representations.

Assuming the flaws are randomly distributed from one training run to the next—which need not be true—the
fusion of multiple such latent spaces might yield an improved representation of the generative factor. We
performed gradient descent directly on posterior distributions in a two-dimensional latent space, with the
objective to maximize average similarity with the ensemble. Namely, we computed either NMI or the
exp(—VI) using the Bhattacharyya matrix corresponding to the optimizable representations—recalculated
every training step—and those of the ensemble. As shown in Fig. 5b,c, the synthesized latent space more
closely captured the global structure of the generative factor as the ensemble size grew. To quantify the
performance, we employed the continuity metric used in Esmaeili et al. (2024) and adapted from Falorsi et al.
(2018), substituting the Bhattacharyya distance between posteriors for the Euclidean distance typically used
for point-based representations (Appx. F).

Both NMI and VI proved effective in boosting an ensemble of weak representation spaces to represent the
generative factor, with fidelity (measured by continuity) improving for larger ensembles. By comparison,
directly maximizing the mutual information between the synthesis space and the ensemble, (I(U;V;));,
resulted in scattered representations with no overlap (Fig. 5c, right). The normalization terms of NMI and
VI were essential for preserving the relational structure between data points. Finally, it is worth noting that
after training the ensemble of weak models, neither the original data nor the models were needed to train the
synthesis space: the latent representations were optimized directly from the Bhattacharyya matrices.

5 Discussion

The processing of information can be directly assessed when representation spaces are probabilistic because
information theoretic quantities are well-defined. In this work, we generalized two classic measures for
comparing the information content of clustering assignments to make them applicable to probabilistic spaces.
By focusing on the information content of a representation space, we can assess what information is available
for downstream processing, while remaining agnostic to aspects of the spaces such as their dimensionality,
their discrete or continuous nature, and even whether a space serves as auxiliary information like labels or
annotations (Newman & Clauset, 2016; Savié, 2018; Bazinet et al., 2023). While the examples in this work
focused on relatively low-dimensional latent spaces that are common in practice, scaling to higher-dimensional
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Figure 5: Fusing weak representation spaces. (a) Example of a one-dimensional latent space of a 5-VAE
trained on a dataset generated from a single periodic factor (color hue), which has SO(2) symmetry. The latent
space exhibits flaws where similar values of the generative factor are mapped to dissimilar representations,
as seen in the posterior distributions (left) and the distinguishability matrix of Bhattacharyya coefficients
between posteriors, BC;; (right). (b) We optimized a synthesis representation space to maximize similarity
with an ensemble of such one-dimensional latent spaces. The continuity of statistical distances between
neighboring points, an assessment of the fidelity of the global structure of the generative factor, improved as
the ensemble size grew. Error bars show the standard deviation over five experiments, and values are offset
horizontally for visibility. (c¢) Synthesized two-dimensional representation spaces (posterior means shown as
points; covariances as shaded ellipses) and their corresponding distinguishability matrices. Panels compare
results when maximizing average NMI (left, middle) and mutual information (right).

representation spaces may face challenges related to the reliable estimation of mutual information (McAllester
& Stratos, 2020).

With differentiable formulations for NMI and VI, model fusion and the more general problem of representational
alignment (Sucholutsky et al., 2023; Muttenthaler et al., 2024) can be effectively approached from an
information theoretic perspective. Potential applications include aligning representation spaces across models
trained on different subsets of data, improving ensemble methods, and evaluating consistency of representations
in multitask learning or domain adaptation, where reconciling heterogeneous latent spaces is often crucial.

A more subtle contribution of this work is to shift the current focus of unsupervised disentanglement
evaluation. As is clear from the cars3d information fragmentation (Fig. 3b), existing metrics that compare
latent dimensions to ground truth generative factors can completely miss consistent information fragmentation.
Unsupervised methods of evaluation (Duan et al., 2020; Lin et al., 2020) assess consistency of fragmentation at
the scale of models, which can obscure much about the manner of fragmentation. Consider the fragmentation
of information about the celebA dataset in Fig. 3e: an assessment of the similarity of models would find
middling values across the ensemble and miss that two fragments of information are remarkably consistent. We
argue that more fine-grained inspection of information fragmentation is essential for a deeper understanding
of disentanglement in practice.

The current work largely focused on comparing repeat training runs in an ensemble, making computational
costs a consideration. We found 50 models per ensemble to be sufficient to assess channel similarity, and 5
models per ensemble for the full latent space. We also found that there is much to learn from ensembles of
relatively simple models. On our machine, training a single model from a recently proposed method (QLAE,
Hsu et al. (2023)) took more than five hours, and in the same amount of time we could train ten 5-VAEs
with a simpler architecture. Model fusion with weak models that are inexpensive to train, as in Sec. 4.4,
might offer a promising alternative to representation learning with more computationally expensive models.
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Figure 6: Latent traversals for cars3d groups from Fig. 3b,c. We traverse the representative channels
for the groups found by OPTICS, and reorder them to align with the ordering for S-VAE (left). Note that
group vi splits in two groups for both the S-TCVAE and the FactorVAE. The tint of the windows and
the color of the car were encoded jointly for the 8-VAE, and then separately for the other two methods.
Traversals are over the range [—2,2].

A Appendix: Extended channel similarity results

In Fig. 6 we present additional latent traversals for the cars3d channel groupings presented in Fig. 3c. With
the channels most centrally located in each group (as before), we also display latent traversals for S-TCVAE
(6=10) and FactorVAE (v = 30).

Fig. 7 visualizes the channel similarity structure on mnist (LeCun et al., 2010) and fashion-mnist, with
latent traversals for four channels per grouping to show the consistency of the encoded information.

In Figs. 8, 9, and 10, we repeat the structural analysis of Sec. 4.2 with all 5-VAE hyperparameters explored
by the authors of Locatello et al. (2019). The effect of increasing § is clearly observed by the emergence of
block diagonal channel similarity matrices, though with fewer informative channels for increased f.

Consider the cars3d ensembles in Fig. 8. With § = 1,2, the information fragmentation is not consistent
across repeat runs, even though the amount of information shared with the three generative factors is fairly
consistent. This highlights the value of directly comparing the information content of channels with NMI or
VI instead of comparing indirectly via information content about known generative factors, with the added
benefit of being fully unsupervised. For 5 = 4 the learned fragments of information start to coalesce, with
information regularization breaking the degeneracy that plagues unsupervised disentanglement (Locatello
et al., 2019). For 8 = 8,16, the regularization is strong enough to form consistent fragments of information
across random initializations.
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Figure 7: Channel similarity structure on MINIST and Fashion-MNIST. Channel similarity analysis
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Figure 11: Full comparison of Bhattacharyya fingerprints and classification outputs from latent
spaces of Fig. 2.

B Appendix: Extended results on synthesized latent space comparison (Sec. 4.1)

We include in Fig. 11 the full set of comparisons between the Bhattacharyya fingerprint and the average
predictions of a trained classification head for the nine synthetic latent spaces of Sec. 4.1. Fig. 12 shows the
pairwise scatter plots for the methods of comparing the latent spaces.

C Appendix: Information estimation using Bhattacharyya distinguishability matrices
and Monte Carlo estimator

To estimate the mutual information I(U; X) from the Bhattacharyya distinguishability matrices, we have
employed the lower bound derived in Kolchinsky & Tracey (2017) for the information communicated through
a channel about a mixture distribution (following the most updated version on arXiv?). The bound simplifies
greatly when the empirical distribution is assumed to be a reasonable approximation for the data distribution,
and then we further assume the sample of data used for the fingerprint allows for an adequate approximation
of the marginal distribution in latent space. First we reproduce the bound from Sec. V of Kolchinsky &
Tracey (2017) using the notation of this work, and then we describe our assumptions to apply the bound as
an estimate of the information contained in a probabilistic representation space.

Let X be the input to a channel, following a mixture distribution with N components, 2 ~ p(x) = Zil cipi(x),
and U the output of the same channel, u ~ p(u) = vazl ¢i ([ p(u|z)p;(xz)dx). Then we have

I(X;U) > =Y ¢;ln Y _¢;BCi; + HU|C) - HU|X), (6)

i J
where C' is a random variable representing the component identity.

In this work, we assume that the data distribution can be approximated by the empirical distribution,
p(x) =~ va d(x — x;) /N, simplifying Eqn. 6 so that ¢; = 1/N and H(U|C) = H(U|X) because the identity
of the component is equivalent to the identity of the datum. Finally, we assume that the set of posterior
distributions for a representative sample of size M of the dataset, taken for the fingerprint, adequately
approximates the empirical distribution. Larger samples may be necessary in different scenarios when the

2https://arxiv.org/abs/1706.02419
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Figure 13: Information estimates with Bhattacharyya fingerprints and Monte Carlo. For 500
channels randomly sampled from across all models released by Locatello et al. (2019) for the cars3d dataset
(including all methods and all hyperparameters), we estimated the amount of information transmitted by each
channel I(U; X) using the Bhattacharyya matrix fingerprints and Monte Carlo (MC) sampling. Error bars
are displayed for the MC estimates, though they are generally smaller than the markers. The dashed black
line represents equality between the two estimates, and the solid blue line is the logarithm of the fingerprint
size, which is the saturation point for the Bhattacharyya estimate. Listed run times are for a single channel,
excluding the time to load models but including inference and the calculation necessary for I(U; X).

amount of information transmitted by channels is larger than a handful of bits, but M = 1000 appeared
sufficient for the analyses of this work.

The generalizations of NMI and VI required the information conveyed by two measurements from different
channels, I(X;U, V) as well as from the same channel, I(X;U,U’). The matrix of Bhattacharyya coefficients
given measurements U and V is simply the elementwise product of the coefficients given U and the coeflicients
given V. The posterior in the joint space of U and V is factorizable given z—i.e., p(u,v|x) = p(u|z)p(v|x)—
because the stochasticity in each channel is independent. The same is true for the joint space of U and U’,
two draws from the same channel. The Bhattacharyya coefficient of the joint variable simplifies,

BCZUJ'V://\/p(uaﬂ\%)p(u,ﬂxj)dudv
uJv

= [ tumdptaleda [ ool

U v
= BC;; x BCjj.

For the Monte Carlo estimator, we sampled random data points from the dataset  ~ p(z) and then a
random embedding vector from each posterior distribution, u ~ p(u|x). Then we computed the log ratio of
the likelihood under the corresponding posterior p(u|x) and the aggregated posterior p(u), which was gotten
by iterating over the entire dataset. We repeated N times to estimate the following expectation:

%

For the analysis of Fig. 4, N = 2 x 10° for all datasets except dsprites and celebA, where N = 6 x 10%; the
standard error of the estimate was on the order of 0.01 bits or less.

Computing the fully aggregated posterior is time consuming; could a subsample of the dataset be used instead?
In Fig. 14, we varied the fraction of the dataset used to compute the (partially) aggregated posterior for a full
10-dimensional latent space for three models that transmit an intermediate amount of information about the
dataset on which they were trained. Each point represents the mutual information estimate following Eqn. 8
for a random subset of the dataset, and the extent of its error bar is given by the standard error: the standard
deviation of the set of values divided by the square root of the size of the set. We find that the transmitted
information is relatively robust to using half of the dataset when computing the aggregated posterior, but
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Figure 14: Partially aggregated posterior for the Monte Carlo estimator. For three models selected
from those of Fig. 4, we seleced random subsets of the full dataset to use when computing the aggregated
posterior for estimating the transmitted information I(U; X) of the full 10-dimensional latent space. The
points are offset horizontally by random amounts for visibility, and the error bars show the standard error on
the mean of the Monte Carlo samples.

deleterious effects grow when reducing the dataset by a factor of 10 or more. Interestingly, the dsprites
estimate was largely insensitive to using 3% of the dataset, perhaps due to its highly structured nature.

In Fig. 4, the NMI and VI values are averaged over all pairwise comparisons for the five representation spaces,
with weights given by the inverse squared uncertainty on each pairwise value. The uncertainty was calculated
by propagating the uncertainty of Monte Carlo estimates of I(X;U) according to the expression for VI or
NMI. To be specific, as VI(U, V) = 2I(X;U,V) — I(X; U, U’) — I(X;V,V’), the propagated uncertainty is
given by

AVI(U,V) = \/4AI(X; UV)? - AI(X;U,U)? - AI(X;V, V)2, (9)

with AI(X;U,V) the standard error from the Monte Carlo estimate. The expression for the uncertainty on
the NMI estimate contains many more terms, and we will not reproduce them here. Finally, the error bars in
Fig. 4 are the standard error of the weighted mean,

AQ = (Z(AQN) ,

2

for quantity Q.

D Appendix: Broken triangle inequality for the generalized VI

Here we provide an example of three clusterings that breaks the triangle inequality for the generalized VI.
Thus, while VI for hard clusters satisfies the properties of a metric (Crutchfield, 1990), the generalization to
soft clusters does not.

In Fig. 15, there are three clusterings (U, V, and W) of four equally likely data points (z € {a,b,c,d}).
U, V,and W each communicate one bit of information about X, but U and W are hard clusterings while
V is a soft clustering. We have I(U; V) = I(V; W) = 0.5 bits, I(U; W) = 0 bits, I(V;V’) = 0.5 bits, and
I(U;U)=I(W;W’') = H{U) = 1 bit. The generalized VI from U to V and then from V to W is less than
from U to W directly.
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Figure 15: Example that breaks the triangle inequality for generalized VI. Four datapoints a,b, ¢, d
are clustered according to scheme U, V', or W. The total VI from U to V and then V to W is less than the
VI from U to W.

VI(U,W) = 1(U;U") + I(W; W) = 2I(U; W)
= 2 bits

VI(U,V) + VI(V, W) = 2 (I(U; U+ I(V; V') = 21(U; V))

=1 bit.
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Figure 16: Direct comparison of NMI and VI. We convert both measures to a distance measure (black)
and to a similarity measure (blue gray) and compare them for the pairwise channel comparisons from the
ensembles of Fig. 3.

E Appendix: Are NMI and VI interchangeable?

NMI and VI, aside from the inversion required to convert from similarity to distance, can both be seen as a
normalized mutual information. Are they interchangeable, or do they assess structure differently?

In Fig. 16, we compare NMI and VI (estimated via Bhattacharyya matrices) as similarity or distance measures
for the pairwise comparisons between channels used in Fig. 3. Specifically, as measures of similarity, we
plot NMI against exp(—VI), and for distance we plot —log(NMI) against VI. We find that NMI and VI are
non-trivially related, shown clearly by the horizontal and vertical swaths of points where one of the two
measures is roughly constant while the other varies considerably. Interestingly, the corresponding NMI and
VI comparisons in Fig. 16 show multiple distinct arcs of channel similarity, as well as clear vertical bands
where NMI has discerning power and VI does not.
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F Appendix: Implementation specifics

Code to reproduce the experiments of Sec. 4 can be found at the following repository:
https://github.com/murphyka/representation-space-info-comparison. The heart of the codebase is in
utils.py, containing the Bhattacharyya and Monte Carlo calculations of I(U; X) and the NMI/VI calcula-
tions.

All experiments were implemented in TensorFlow and run on a single computer with a 12 GB GeForce RTX
3060 GPU.

Models: For the dsprites, smallnorb, and cars3d datasets, we used the trained models that were publicly
released by the authors of Locatello et al. (2019). Thus, all of the model and channel numbers recorded above
the latent traversals in Fig. 3b correspond to models that can be downloaded from that paper’s github page?.
Simply add the model offset corresponding to the g = 16 5-VAE for cars3d, 9250 (e.g., for the traversal
labeled with model 31 ch 3, download model 9281 and traverse latent dimension 3, 0 indexed).

For the InfoGAN-CR models on dsprites, we used the trained models that were uploaded with Lin et al.
(2020)*.

For results on the training progression of smallnorb, celebA, and cars3d, we used the same architecture
and training details from Locatello et al. (2019).

For the MNIST and Fashion-MNIST ensembles, we trained 50 5-VAEs with a 10-dimensional latent space.
The encoder had the following architecture:

Conv2D: 32 4x4 ReLU kernels, stride 2, padding ‘same’

Conv2D: 64 4x4 ReLU kernels, stride 2, padding ‘same’

Reshape([-1])

Dense: 256 ReLU

Dense: 20.
The decoder had the following architecture:

Dense: 7 x 7 x 32 ReLU

Reshape([7, 7, 32])

)

Conv2DTranspose: 64 4x4 ReLU kernels, stride 2, padding ‘same
Conv2DTranspose: 32 4x4 ReLU kernels, stride 2, padding ‘same’

Conv2DTranspose: 1 4x4 ReLU kernels, stride 1, padding ‘same’.

The models were trained for 2 x 10° steps, with a Bernoulli loss on the pixels, the Adam optimizer with a
learning rate of 1074, and a batch size of 64.

Clustering analysis: We used the OPTICS implementation from sklearn® with ‘precomputed’ distance
metric and min_samples= 20 (and all other parameters their default values). For distance matrices we
converted NMI to a distance with — log max(NMI, 10~4).

Ensemble learning: For the ensemble learning toy problem (Sec. 4.4), we trained 250 simple 8-VAEs
(8=0.03) whose encoder and decoder were each fully connected networks with two layers of 256 tanh activation.
The input was two-dimensional, the latent space was one-dimensional, and the output was two-dimensional.

Shttps://github.com/google-research /disentanglement_ lib/tree/master
4https://github.com/fjxmlzn/InfoGAN-CR,
Shttps://scikit-learn.org/stable/modules/generated /sklearn.cluster. OPTICS.html
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The loss was MSE, the optimizer was Adam with learning rate 1072, and the batch size was 2048, trained for
3000 steps. Data was sampled anew each batch, uniformly at random from the unit circle.

To perform ensemble learning, we evaluated the Bhattacharyya matrices for 200 evenly spaced points around
the unit circle for each model in the ensemble. Then we directly optimized the parameters for 200 posterior
distributions (Gaussians with diagonal covariance matrices) in a two-dimensional latent space, so as to
maximize the average similarity (NMI, exponentiated negative VI, or mutual information) between the
Bhattacharyya matrix for the trainable embeddings and those of the ensemble. We used SGD with a learning
rate of 3 for 20,000 iterations, and repeated for 5 trials for each ensemble size.

Stochastic shape metrics: We used publicly released code on github®, using the
GaussianStochasticMetric with o = 1 and the parallelized pairwise distances for the timing cal-
culation.

CKA: We replaced the dot-product similarity matrices K and L in the Hilbert-Schmidt Independence
Criterion (HSIC) with the Bhattacharyya matrices,

HSIC(BC™, BC?) = Tr(BCY . H-BC? . H), (11)

(n—1)?
and then followed the prescribed normalization in Kornblith et al. (2019).

Continuity metric: Falorsi et al. (2018) used the ratio of neighbor distances in representation space to the
corresponding distances in data space, with neighbors taken along continuous paths in data space, as the
basis for a discrete continuity metric. It indicated whether any ratios were above some multiplicative factor
of some percentile value in the distribution, and thus depended on two parameter choices. Esmaeili et al.
(2024) removed one of the parameters—the multiplicative factor—yielding a continuous continuity metric
that reports the maximum ratio value over the 90" percentile value.

The central premise of this work is to respect the nature of representations as probability distributions, so we
used the Bhattacharyya distance (i.e., D;; = —log BC;;)) between posteriors instead of Euclidean distances
between posterior means in representation space. Other than this modification, we left the continuity metric
as in Esmaeili et al. (2024): as the maximum ratio value over the 90" percentile value.

6https://github.com/ahwillia/netrep
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