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Abstract

Probabilistic representation spaces convey information about a dataset, and to understand
the effects of factors such as training loss and network architecture, we seek to compare
the information content of such spaces. However, most existing methods to compare
representation spaces assume representations are points, and neglect the distributional
nature of probabilistic representations. Here, instead of building upon point-based measures
of comparison, we build upon classic methods from literature on hard clustering. We
generalize two information-theoretic methods of comparing hard clustering assignments to
be applicable to general probabilistic representation spaces. We then propose a practical
method of estimation that is based on fingerprinting a representation space with a sample
of the dataset and is applicable when the communicated information is only a handful of
bits. With unsupervised disentanglement as a motivating problem, we find information
fragments that are repeatedly contained in individual latent dimensions in VAE and InfoGAN
ensembles. Then, by comparing the full latent spaces of models, we find highly consistent
information content across datasets, methods, and hyperparameters, even though there is
often a point during training with substantial variety across repeat runs. Finally, we leverage
the differentiability of the proposed method and perform model fusion by synthesizing the
information content of multiple weak learners, each incapable of representing the global
structure of a dataset. Across the case studies, the direct comparison of information content
provides a natural basis for understanding the processing of information.

1 Introduction

The comparison of representation spaces is a problem that has received much attention, particularly as a
route to a deeper understanding of information processing systems (Klabunde et al., 2023; Mao et al., 2024;
Huh et al., 2024). Existing methods are applicable to point-based representation spaces, including centered
kernel alignment (CKA) (Kornblith et al., 2019) and representational similarity analysis (RSA) (Kriegeskorte
et al., 2008). For representation spaces whose citizens are probability distributions, such as in variational
autoencoders (VAEs) or in biological systems with inherent stochasticity, failure to account for the distributed
nature of representations can miss important aspects of the relational structure between data points (Duong
et al., 2023). There are surprisingly few options for comparing spaces that fully account for the distributional
nature of representations (Klabunde et al., 2023).

One of the only existing methods, stochastic shape metrics (Duong et al., 2023), extends a point-based
approach that quantifies the difficulty of aligning one representation space to another through a specified set
of allowed transformations (Williams et al., 2021). Here we argue that an information theoretic perspective is
most natural when considering the role of a representation space as an intermediate stage of processing in a
deep neural network. To be specific, a probabilistic representation space communicates certain information
about the data, and we propose to compare two such spaces via quantities related to the mutual information
between them. A consequence of focusing on information content is that the spaces can differ in dimensionality,
in contrast to shape metrics (Duong et al., 2023), and in whether they are discrete or continuous.
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We take as a motivating example the task of unsupervised disentanglement, whose goal is to break information
about a dataset into useful pieces. What qualifies as useful depends on the context: although statistical
independence between the pieces of information is the predominant desideratum (Locatello et al., 2019),
interpretability of the factors can be prioritized (Molnar, 2022) and will clash with independence when
correlations are present (Träuble et al., 2021). Other useful properties proposed for disentanglement are
compositionality under group operations (Higgins et al., 2018; Balabin et al., 2023) and performance
enhancement on downstream tasks (Van Steenkiste et al., 2019).

A significant challenge in disentanglement research is evaluation, which relies on assessing the fragmentation of
information about the dataset into channels of a trained model. Models are predominantly evaluated against
ground truth factors of variation on overly synthetic datasets (Chen et al., 2018; Kim & Mnih, 2018; Eastwood
& Williams, 2018; Hsu et al., 2023). It remains unclear how to evaluate disentanglement when datasets are
not accompanied by known generative factors, hindering our understanding of how disentanglement methods
work on more realistic datasets. Methods of unsupervised evaluation have been proposed based on a notion
of model centrality (Duan et al., 2020; Lin et al., 2020): models that split information similarly to other
models are presumed disentangled. Yet, relatedness has failed to account for the probabilistic nature of
the representation spaces of the models. Instead, posterior distributions are reduced to points by taking
the means of posterior distributions or sampling, and then point-based comparisons such as correlation are
applied (Duan et al., 2020).

In this work, we treat probabilistic representation spaces as soft clustering assignments of data, whereby
partial distinguishability between data points is expressed by the overlap between posterior distributions.
We generalize classic information-theoretic measures of similarity between hard clusterings (Fig. 1a) to be
applicable to probabilistic representation spaces (Fig. 1b). By comparing the information content of learned
representation spaces produced by multiple models in an ensemble, we study the effects of method, training
progress, and dataset on information processing.

Our primary contributions are the following:

1. We generalize two classic measures that compare the information content of clusterings for the
comparison of probabilistic representation spaces.

2. We propose a lightweight method to assess information content based on fingerprinting each repre-
sentation space with the distinguishability of a sample from the dataset.

3. We demonstrate model fusion with the representation spaces from a set of weak VAEs, leveraging the
differentiability of the method to maximize the similarity of a synthesis space with respect to the set.

2 Related work

The proposed method builds upon classic means of comparing different cluster assignments (clusterings) of
a dataset and generalizes them to compare the information content of probabilistic representation spaces.
We then use the method to empirically study generative models designed to fragment information about a
dataset in a learned latent space, i.e., for unsupervised disentanglement.

2.1 Similarity of clusterings and of representation spaces

The capacity to compare transformations of data produced by different machine learning models enables
ensemble learning, a deeper understanding of methodology, and benchmarking (Punera & Ghosh, 2007).
Strehl & Ghosh (2002) used outputs of clustering algorithms to perform ensemble learning, based on a
measure of similarity between clustering assignments that we will extend in this work: the normalized mutual
information (NMI). Referred to as consensus clustering or ensemble clustering, efforts to combine multiple
clustering outputs can leverage any of a variety of similarity measures (Wagner & Wagner, 2007; Vinh et al.,
2009; 2010; Vega-Pons & Ruiz-Shulcloper, 2011; Huang et al., 2017). Another measure backed by information
theory is the variation of information (VI), coined by Meilă (2003) for clusters but recognized as a metric
distance between information sources at least twice before (Shannon, 1953; Crutchfield, 1990).
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Figure 1: Similarity of generalized representation spaces. (a) A hard clustering assignment, such
as the living/non-living distinction conveyed by clustering V , communicates certain information about the
dataset (here, CIFAR-10 images). Comparing the information content of different clustering assignments
enables comparative analyses between algorithms, model fusion, and benchmarking. (b) Here we extend
measures for hard clusterings to be applicable to generalized representation spaces. There is no requirement
for the dimensionality of the spaces to match, and hard clusterings can be compared to probabilistic spaces.

Commonly referred to simply as ‘clustering’, hard clusterings assign every input datum to one and only one
output cluster and have been generalized to multiple forms of soft clustering (Campagner et al., 2023). We
focus specifically on fuzzy clustering, where membership is assigned by degree to multiple clusters and must
sum to one for each datum (Zadeh, 1965; Dunn, 1973; Ruspini et al., 2019). Probabilistic representation
spaces can be viewed as communicating a soft assignment over latent vectors for each datum, with degree of
membership expressed by the posterior distributions. Extensions of hard clustering comparisons to fuzzy
clusters have been proposed for measures that only indirectly assess information content by counting agreement
of assignments, such as the Rand index (Punera & Ghosh, 2007; Hullermeier et al., 2011; D’Ambrosio et al.,
2021; Andrews et al., 2022; Wang et al., 2022). Information-based measures have been extended for specific
types of soft clusters (Campagner & Ciucci, 2019; Campagner et al., 2023) but none, to our awareness, for
comparing the information content of fuzzy clusterings over a continuous representation space.

A rich area of research compares point-based representation spaces via the pairwise geometric similarity of
a common set of data points in the space (Kornblith et al., 2019; Hermann & Lampinen, 2020; Klabunde
et al., 2023), building upon representational similarity analysis from neuroscience (Kriegeskorte et al.,
2008). Stochastic shape metrics (Duong et al., 2023) are a probabilistic extension to a distance metric
between two point-based representation spaces based on aligning one with another through prescribed
transformations (Williams et al., 2021). Instead of using point-based methods as our starting point, we build
upon hard clustering literature because of the extensive connections with information theory.

2.2 Unsupervised disentanglement

Disentanglement is the problem of splitting information into useful pieces, possibly for interpretability,
compositionality, or stronger representations for downstream tasks. Shown to be impossible in the fully
unsupervised case (Locatello et al., 2019; Khemakhem et al., 2020), research has moved to investigate how to
utilize weak supervision (Khemakhem et al., 2020; Sanchez et al., 2020; Vowels et al., 2020; Murphy et al.,
2022) and incorporate inductive biases (Balabin et al., 2023; Chen et al., 2018; Rolinek et al., 2019; Zietlow
et al., 2021; Hsu et al., 2024).

A significant challenge for disentanglement is evaluation and model selection when no ground truth is available.
When a dataset’s generative factors are available for evaluation, models are compared against an idealized
disentanglement where the factors are whole and separate in latent dimensions (Chen et al., 2018; Kim
& Mnih, 2018) and simply encoded (Eastwood & Williams, 2018; Hsu et al., 2023). However, methods of
unsupervised model evaluation are few and limited. Duan et al. (2020) proposed that disentangled models
are more similar to each other than are entangled ones, in an ensemble of repeats with different initializations.
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They evaluated the similarity between two models with an ad hoc function of dimension-wise similarity,
which was computed as the rank correlation or the weights of a linear model between embeddings in different
one-dimensional spaces. ModelCentrality (Lin et al., 2020) is similar: the model most central in an ensemble
is taken to be the most disentangled, with similarity quantified with the FactorVAE score (Kim & Mnih,
2018), where one model’s embeddings serve as the labels for another model. PIPE (Estermann & Wattenhofer,
2023) is an unsupervised disentanglement metric that relies on a characterization of the posterior distributions
in a single model rather than an ensemble. In this work we shift focus from assessing model similarity to
channel similarity, under the premise that the fragmentation of information at the core of disentanglement is
more naturally studied via the information fragments themselves.

3 Method

Our goal is to compare the information transmitted about a dataset by different representation spaces, and
we will use the comparison of hard clustering assignments (e.g., the output of k-means) as a point of reference.
Analogously to hard clustering (Fig. 1a), probabilistic representation spaces communicate a soft assignment
over embeddings that is expressed by a probability distribution in the representation space for each data
point (Fig. 1b).

While the proposed method can be applied to any representation space with probabilistic embeddings, we
will focus primarily on variational autoencoders (VAEs) (Kingma & Welling, 2014). Let the random variable
X represent a sample x ∼ p(x) from the dataset under study. X is transformed by a stochastic encoder
parameterized by a neural network to a variable U = f(X, ϵ), where ϵ is a source of stochasticity. We will
make use of two fundamental quantities in information theory (Cover & Thomas, 1999), the entropy of
a random variable H(Z) = Ez∼p(z)[− log p(z)] and the mutual information between two random variables
I(Y ; Z) = H(Y ) + H(Z) − H(Y, Z). The encoder maps each datapoint x to a posterior distribution in
the latent space, p(u|x), and the information passed into U about X is regularized by a variational upper
bound (Alemi et al., 2017), the expected Kullback-Leibler (KL) divergence (Cover & Thomas, 1999) between
the posterior distributions and an arbitrary prior r(u): Ex∼p(x)[DKL(p(u|x)||r(u))]. Commonly, the posteriors
and the prior are parameterized as normal distributions with diagonal covariance matrices, which will facilitate
many of the involved measurements but is not required for the method.

3.1 Comparing representation spaces as soft clusterings

Consider a hard clustering of data as communicating certain information about the data (Fig. 1a). By observing
the cluster assignment U instead of a sample X from the dataset, information I(X; U) will have been conveyed.
For a hard clustering, every data point is assigned unambiguously to a cluster—i.e., H(U |X) = 0—which
makes the communicated information equal to the entropy of the clustering, I(X; U) = H(U).

Given two hard clustering assignments U and V for the same data X, the mutual information I(U ; V )
measures the amount of shared information content they express about the data. Previous works have found
it useful to relate the mutual information to functions of the entropies H(U) and H(V ). Strehl & Ghosh
(2002) proposed the normalized mutual information (NMI) as the ratio of the mutual information and the
geometric mean of the entropies,

NMI(U, V ) = I(U ; V )√
H(U)H(V )

. (1)

Meilă (2003) proposed the variation of information (VI), a metric distance between clusterings that is
proportional to the difference of the mutual information and the arithmetic mean of the entropies,

VI(U, V ) = −2
(

I(U ; V ) − H(U) + H(V )
2

)
. (2)

Soft clustering generalizes hard clustering to allow each datum to have partial membership in multiple clusters,
effectively communicating partial distinguishability between data points (Zadeh, 1965; Ruspini et al., 2019)

4



Under review as submission to TMLR

(Fig. 1b). Here we view a probabilistic representation space as a soft clustering, where a datum’s posterior
distribution p(u|x) expresses a soft assignment over the points u.

The utility of NMI or VI instead of I(U ; V ) to compare clustering assignments largely resides in the
standardization of their values. For two identical hard clustering assignments, U and U ′, NMI(U, U ′) = 1 and
VI(U, U ′) = 0. For identical soft assignments—e.g., two copies of a VAE’s encoder—NMI will generally not
be 1 and VI will not be zero. In contrast to hard clustering assignments, soft assignments include additional
entropy resulting from uncertainty that is separate from the information communicated about the dataset,
H(U) = I(X; U) + H(U |X). The entropy terms in Eqns. 1 and 2 that ground the mutual information
I(U ; V ) thus include entropy that is irrelevant to the communicated information. We posit that a natural
generalization of NMI and VI replaces the entropy of a clustering assignment with the mutual information
between two copies of that assignment: H(U) becomes I(U ; U ′), and similarly for V .

The generalized forms become

NMI(U, V ) = I(U ; V )√
I(U ; U ′)I(V ; V ′)

, (3)

and VI becomes
VI(U, V ) = −2

(
I(U ; V ) − I(U ; U ′) + I(V ; V ′)

2

)
. (4)

The generalization leaves NMI and VI unchanged for hard clustering, where I(U ; U ′) = H(U), and enables
the measures to be applied to both soft and hard assignments.

The conditional independence of clustering assignments given the data—i.e., I(U ; V |X) = 0—allows each
mutual information term in Eqns. 3 and 4 to be rewritten with regard to information communicated about the
data. Namely, I(U ; V ) = I(X; U) + I(X; V ) − I(X; U, V ), and I(U ; U ′) = 2I(X; U) − I(X; U, U ′). Because
we have access to the posterior distributions, it is easier to estimate the mutual information between the data
X and a representation space (or a combination thereof) than it is to estimate the information between two
representation spaces (Poole et al., 2019).

The extended NMI and VI benefit from the generality of information theory: the information content of
two probabilistic representation spaces can be compared regardless of dimensionality or parameterization of
posteriors, and a soft clustering can be compared to a hard clustering, whether from a quantized latent space
or a discrete labelling process (Fig. 1b).

Finally, we note that the generalized VI is no longer a proper metric, as the triangle inequality is not
guaranteed (Appx. C).

3.2 Quick estimation based on fingerprinting a representation space

Mutual information can be challenging and costly to estimate (McAllester & Stratos, 2020), and we will often
be interested in computing all pairwise similarities between many spaces. Fortunately our primary interest
lies in scenarios that simplify the estimation considerably: we will focus exclusively on representation spaces
whose members are Gaussian distributions, and often the points of comparison will be individual channels
(dimensions) of a VAE or GAN latent space that convey only a few bits of information.

We can use a measure of statistical similarity between posteriors p(u|x1) and p(u|x2) in a given representation
space—the Bhattacharyya coefficient (Kailath, 1967), BC(p, q) =

∫
Z

√
p(z)q(z)dz—as a route to quickly

“fingerprint” the information content of spaces with the pairwise distinguishability of a sample of data
points (Murphy & Bassett, 2023). The BC between two multivariate normal distributions can be efficiently
computed in bulk via array operations. Once a matrix BCij := BC(p(u|xi), p(u|xj)) of the pairwise values for
a random sample of N datapoints is obtained, a lower bound for the information transmitted by the channel
can be estimated with I(X; U) ≥ 1

N

∑N
i log 1

N

∑N
j BCij (Kolchinsky & Tracey, 2017) (Appx. B). For fast

estimation of the information content of a representation space with respect to a ground truth generative factor,
we can treat the labels as an effective hard clustering according to that factor, where BC values are either zero
or one. Finally, the matrix BCij for the combination of spaces U1 and U2 is their elementwise product. In
other words, receiving both of the messages from U1 and U2 leads to a distinguishability between data points,
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Figure 2: Comparing similarity measures for synthetic embedding spaces. Left: A dataset of 64
points, x = 1, ..., 64, is transformed into nine representation spaces marked a-i. Each posterior distribution
p(u|x) is a Gaussian with diagonal covariance matrix and standard deviations indicated by the colored ellipses.
Right: Pairwise similarity (blue matrices) and pairwise distances (red matrices) for generalized NMI, VI, and
CKA, derived using either Monte Carlo or the Bhattacharyya fingerprint, and stochastic shape metrics from
Duong et al. (2023). Runtimes to calculate the full matrix are shown above each method. The stochastic
shape metric requires the dimensionality of the compared spaces to match; undefined entries comparing a 2D
space to space f are marked with an X.

as computed by the Bhattacharyya coefficient, that is simply the product of the distinguishabilities under
U1 and U2 separately. Together, the properties allow us to fingerprint each representation space through
Bhattacharyya matrices, and then all subsequent analysis can be done with only the matrices—i.e., without
having to load the models into memory again.

3.3 Discovering consistently learned information fragments

In the context of disentanglement, we are interested in the similarity of information contained in individual
dimensions across an ensemble of models. We compute the pairwise similarities between all dimensions of
all models, and then use density-based clustering to identify information content that is found repeatedly.
OPTICS (Ankerst et al., 1999) traverses elements in a set according to proximity and produces a “reachability”
profile that is similar to a dendrogram produced by hierarchical clustering but more comprehensible for large
sets of points (Sander et al., 2003). Valleys indicate denser regions and natural groupings of elements in the
set. The consistency of information fragments in individual latent dimensions can then be visualized with the
OPTICS reachability profile, the reordered pairwise similarity matrix—which will show a block diagonal form
if the fragments are highly consistent—and the NMI with ground truth generative factors, if available.

3.4 Model fusion

Consider a set of representation spaces found by an ensemble of weak learners. In the spirit of “knowledge
reuse” (Strehl & Ghosh, 2002) originally applied to ensembles of hard clusters, we might obtain a superior
representation space from the synthesis of the set. In contrast to other assessments of representation space
similarity (Duan et al., 2020; Kim & Mnih, 2018; Duong et al., 2023), the proposed measures of similarity are
composed of mutual information terms, which can be optimized with differentiable operations by a variety
of means (Poole et al., 2019). We optimize a synthesis space by maximizing its average similarity with a
set of reference spaces, performing gradient descent directly on the encoding of the data points used for the
Bhattacharyya matrices. Instead of requiring many models to remain in memory during training of a new

6



Under review as submission to TMLR

a

b

d

c

e

Figure 3: Channel similarity of ensembles of fifty models. (a) The channel similarity found in ensembles
of models on dsprites, for β-VAE and InfoGAN-CR. (b) For a β-VAE ensemble trained on cars3d, we
retrieve the most central representation subspace to each cluster and perform latent traversals. Grouping
v can be found in Appx. A. (c) We repeat the analysis for β-TCVAE and FactorVAE, and compare the
information content of the reordered channels to the representatives from panel b. (d,e) Channel similarity
and latent traversals for β-VAEs trained on fashion-mnist and celebA.

encoder, the Bhattacharyya matrices are computed for the ensemble once and then used for comparison
during training, and training is quick because of the involved array operations.
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4 Experiments

4.1 Comparison of related methods on synthetic spaces

We first evaluated the similarity of synthetic representation spaces using ours and related methods (Fig. 2).
A dataset of 64 points were embedded to one- and two-dimensional representation spaces, and then the
pairwise similarities between the spaces were computed. We evaluated NMI and VI with a Monte Carlo
approach and the significantly faster Bhattacharyya fingerprint-based approach. We compare to a modification
of CKA (Kornblith et al., 2019) that uses the Bhattacharyya matrices as the similarity measure between
representations, and to stochastic shape metrics (Duong et al., 2023). For this small dataset, the Bhattacharyya
estimates of NMI and VI are nearly the same as the Monte Carlo alternatives while offering a speed up
of 100×. CKA and NMI find comparable similarity structure between the spaces; while CKA lacks the
information theoretic underpinnings of NMI, it offers an easy-to-use alternative by simply replacing a point-
based distance with a statistical distance between representations. NMI and VI largely agree, though not
always: representation space c is more similar to space f than space e according to NMI, and the reverse is
true for VI. The magnitude of VI is tied to the magnitude of transmitted information, so when the information
of the spaces drops, VI will uniformly assign high similarity. NMI is less dependent on the magnitude of
communicated information, though it becomes more sensitive to the uncertainty of information estimates
when magnitudes are small (discussed below).

All methods except stochastic shape metrics detect the similarity of the quasi-one-dimensional encodings
(representation spaces a, d, and f). These encodings are not related by simple transformations, though a
downstream neural network would be able to extract similar information from each. Representation spaces g
and i are similar by information content, as variations of splitting the data into two groups, but they are
deemed different by stochastic shape metrics. While stochastic shape metrics satisfy the desirable properties
of a metric, the generalized NMI/VI offer a more flexible sense of similarity, owing to their utilization of
mutual information.

4.2 Unsupervised detection of structure: channel similarity

We next analyzed the consistency of information fragmentation in ensembles of generative models trained on
image datasets. Every latent dimension (channel) of every model in an ensemble was compared pairwise to
every other; we used the Bhattacharyya fingerprint approach with a sample size of 1000 images randomly
selected from the training set. Before using OPTICS to group latent dimensions by similarity, we removed
dimensions transmitting less than 0.01 bits of information. We found NMI to more successfully detect channels
with similar information content, and use it for all results in this section (comparison with VI in Appx. D).

In Fig. 3, the matrices display the pairwise NMI between all informative dimensions in the ensemble, and
have been reorganized by OPTICS such that highly similar latent dimensions appear as blocks along the
diagonal. On the left of each similarity matrix is the NMI with the ground truth generative factors (or other
label information), and above is the reachability profile where identified groupings of repeatedly learned
channels are indicated with shading and Roman numerals.

In Fig. 3a, the regularization of a β-VAE is increased for the dsprites dataset (Higgins et al., 2017).
Although there are more channels that convey information for lower regularization (β=4), there is little
discernible structure in the population of channels aside from a group of channels that communicate roughly
the same information about scale. With β = 16, a block diagonal structure is found, and channels with
the same xpos, ypos, and scale information are found repeatedly across runs in the ensemble. We applied
the same analysis to an ensemble of InfoGAN-CR models (Lin et al., 2020), whose models additionally
encoded shape information consistently. We approximated the latent distribution for an image by first
encoding it, then re-generating 256 new images with the predicted latent dimensions fixed and the remaining
(unconstrained) dimensions randomly resampled, and finally using the moments of the newly predicted latent
representations as parameters for a Gaussian distribution. We note that in any scenario where a natural
probability distribution exists per datum in the representation space, the method can be used.
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a b

Figure 4: Comparing full latent spaces. (a) We compare trained models across several methods and
six hyperparameters each, all from Locatello et al. (2019). (b) We compare β-VAE models over the course
of training. I(U ; X)/H(X) is the fraction of total information about the dataset contained in the latent
space; a value of one means all data points are well-separated in the latent space. ⟨NMI⟩ and ⟨V I⟩ denote
the average pairwise NMI and VI values over five models in an ensemble. All mutual information terms
were estimated via Monte Carlo, and the displayed error bars are the standard error after accounting for the
uncertainty on the constituent mutual information terms.

Fig. 3b shows remarkable consistency of information fragmentation by an ensemble of β-VAEs trained on the
cars3d dataset (Reed et al., 2015), though not with regards to the provided generative factors. The object
factor is broken repeatedly into the same set of information fragments, which is sensible given that it is a
fine-grained factor of variation that comprises many lower-entropy factors such as color and height. More
surprising is that three of the fragments contain a mix of camera pose information and object information
that is consistently learned across the ensemble. The majority of existing disentanglement metrics rely on
ground truth generative factors—including the FactorVAE score (Kim & Mnih, 2018), mutual information
gap (Chen et al., 2018), DCI (Eastwood & Williams, 2018), and InfoMEC (Hsu et al., 2023)—and would
miss the consistency found when comparing the information content of individual latent dimensions.

Given a group of latent dimensions identified by OPTICS, we take as a representative the dimension that
maximizes the average similarity to others in the group. Latent traversals visualize the fragmented information:
groups i and iii communicate different partial information about both pose and color, while group vi conveys
information about the color of the car with no pose information.

Is this particular way of fragmenting information about the cars3d dataset reproduced across different
methods? In Fig. 3c we compared the information content of the seven representative latent dimensions from
the β-VAE (β = 16) to the OPTICS-reorganized latent dimensions for different methods (β-TCVAE (Chen
et al., 2018), β = 10 and FactorVAE (Kim & Mnih, 2018), γ = 30). The consistent fragments for the other
methods are recognizable from those of the β-VAE ensemble, though interestingly the FactorVAE conveyed
comparatively less azimuth information in several of the fragments. Channels of group vi for the β-VAE
jointly encoded information about the tint of the windows and the color of the car, and this information was
encoded separately by the β-TCVAE and FactorVAE (traversals in Appx. A).

Finally, we studied the manner of information fragmentation on datasets which are not simply an exhaustive
set of combinations of generative factors (Fig. 3d,e). For β-VAE ensembles trained on fashion-mnist (Xiao
et al., 2017) and celebA (Liu et al., 2015), some information fragments are more consistently learned than
others. A particular piece of information that distinguishes between shoes and clothing (group iii) was
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repeatedly learned for fashion-mnist; for celebA, a remarkably consistent fragment of information conveyed
background color (group v). The remaining information was less consistently fragmented across the ensemble.

4.3 Assessing the content of the full latent space

If an ensemble of models fragments information into channels inconsistently (e.g., Fig. 3a), is it because
the information content of the full latent space varies across repeated runs? We compared the information
contained in the full 10-dimensional latent spaces of five models from each VAE-variant ensemble (Fig. 4). The
amount of information was generally too large for estimation via Bhattacharyya matrices, which saturates at
the logarithm of the fingerprint size, so we used Monte Carlo estimates of the mutual information (Appx. E).
Whereas NMI proved more useful for the channel similarity analysis, VI tended to be more revealing about
the heterogeneity of full latent spaces. Due to its normalization, NMI becomes dominated by uncertainty
when the information contained in the latent space I(U ; X) is small (error bars in Fig. 4 are the propagated
uncertainty from the mutual information measurements).

Across several methods and several hyperparameters for each method (Fig. 4a; models were from Locatello et al.
(2019)), the information contained in the full latent space was largely consistent over different initializations.
For the cars3d dataset, the latent spaces nearly all conveyed the full entropy of the dataset, meaning all
representations were well-separated for the dataset of almost 18,000 images; consequently, the information
content was always highly similar. By contrast, none of the models trained on smallnorb contained more
than around 80% of the information about the dataset, and the similarity of latent spaces across members of
an ensemble was more dependent on method and hyperparameter. The consistency of repeat runs of β-VAE
and β-TCVAE was fairly high even though the transmitted information dropped considerably with increasing
β; DIP-I (Kumar et al., 2018) showed the opposite behavior, where consistency varied strongly with λod but
transmitted information did not.

How does the consistency of latent space information evolve over the course of training? For β-VAE ensembles,
we again compared the full latent spaces for five models with random initializations (Fig. 4b). For all datasets
considered (cars3d, smallnorb, celebA), consistency across the models dropped at around the same point
in training that total information increased dramatically; after this point, all models encapsulated nearly the
same information in their latent spaces up to convergence. Interestingly, the magnitude of the drop in NMI
(or increase in VI) was monotonic with β for smallnorb while the nonmonotonic trend in consistency found
in Fig. 4a was recovered by the end of training.

4.4 Model fusion in a toy example

Finally, we created a toy example to demonstrate the capacity for model fusion with the proposed measures
of representation space similarity. Consider a dataset with a single generative factor with SO(2) symmetry,
such as an object’s hue. Difficulties arise when the global structure of a degree of freedom is incompatible
with the latent space (Falorsi et al., 2018; Zhou et al., 2019; Esmaeili et al., 2024). Here we focus on a trivial
mismatch to clearly demonstrate the synthesis of information from multiple representation spaces.

We trained an ensemble of β-VAEs, each with a one-dimensional latent space that was insufficient to represent
the global structure of the generative factor. Fig. 5a shows an example latent space and its associated
Bhattacharyya coefficient distinguishability matrix between posterior distributions. The matrix shows the
two flaws in the latent space where similar values of the generative factor have dissimilar representations.
Assuming the flaws are randomly distributed from one training run to the next—which need not be true—the
fusion of several such latent spaces might yield an improved representation of the generative factor.

We performed gradient descent directly on posterior distributions in a two-dimensional latent space, with
the objective to maximize average similarity with the ensemble. Namely, we computed either NMI or the
exp(−VI) using the Bhattacharyya matrix corresponding to the optimizable representations—recalculated
every training step—and those of the ensemble. As the ensemble size grew, the synthesized latent space more
closely captured the global structure of the generative factor (Fig. 5b,c). We quantify the performance with
the continuity metric used in Esmaeili et al. (2024), which was adapted from Falorsi et al. (2018), except that
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c

ba

Figure 5: Learning a factor with SO(2) structure by fusing weak representation spaces. (a) A
one-dimensional latent space of a β-VAE trained on a dataset generated from a single periodic factor that
we visualize with color hue. Flaws can be seen in the arrangement of posterior distributions (left) and
the distinguishability matrix of Bhattacharyya coefficient values between posteriors, BCij (right). (b) We
optimized a synthesis representation space to have information content that maximizes similarity with an
ensemble of one-dimensional spaces such as the one in panel a. The continuity of statistical distances between
neighboring points, a proxy for the fidelity of the global structure of the generative factor, is shown for VI
and NMI with slight horizontal offsets for visibility. Error bars are the standard deviation over five repeats of
the experiment. (c) Synthesized representation spaces, where posterior means are displayed as points and
the covariances as shaded ellipses, and their corresponding distinguishability matrices, where the average
NMI (left, middle) and mutual information (right) were maximized.

we used the Bhattacharyya distance between posteriors instead of the Euclidean distance between point-based
representations (Appx. E).

Both NMI and VI boosted an ensemble of weak representation spaces to represent the generative factor,
and fidelity (as measured by continuity) increased for larger ensembles. By comparison, simply maximizing
the average mutual information between the synthesis space and the ensemble (Fig. 5c, right), ⟨I(U ; Vi)⟩i,
scattered all representations such that I(X; U) ≈ H(X). The normalization terms of NMI and VI help to
maintain the relational structure between data points. Finally, we note that after training the ensemble of
weak models, neither the original data nor the models were needed to train the synthesis space: the latent
representations were optimized directly from the Bhattacharyya fingerprints.

5 Discussion

The processing of information can be directly assessed when representation spaces are probabilistic be-
cause information theoretic quantities are well-defined. Here we built upon a perspective of probabilistic
representation spaces as soft clustering and proposed a natural generalization of two classic measures to
compare clustering assignments. Originally, NMI and VI used the entropy of hard clustering assignments
to normalize mutual information, but because H(U) = I(X; U) = I(U ; U ′) for a hard clustering U of data
X, any of the three quantities could have been used. Only the third quantity, I(U ; U ′), maintains the
desirable standardization of NMI = 1 and VI = 0 for identical soft clustering assignments. By focusing on the
information content of a representation space, comparisons are agnostic to aspects of the spaces such as their
dimensionality, their discrete or continuous nature, and even whether a space is side information attached to
the dataset in the form of labels or annotations (Newman & Clauset, 2016; Savić, 2018; Bazinet et al., 2023).

A more subtle contribution of this work is to shift the current focus of unsupervised disentanglement
evaluation. As is clear from the cars3d information fragmentation (Fig. 3b), existing metrics that compare
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latent dimensions to ground truth generative factors can completely miss consistent information fragmentation.
Unsupervised methods of evaluation (Duan et al., 2020; Lin et al., 2020) assess consistency of fragmentation
at the scale of models, which can obscure much about the manner of fragmentation. Consider Fig. 3e, where
two fragments of information about the celebA dataset are significantly more robust than others—what is
special about these two pieces of information? We argue that more fine-grained inspection of information
fragmentation is essential for a deeper understanding of disentanglement in practice.

The current work largely focused on comparing the information content across repeat training runs in an
ensemble, making computational costs an important consideration. We found 50 models per ensemble to
be sufficient to assess channel similarity, and only 5 models per ensemble for the full latent space; further,
we found that there is still much to learn from ensembles of relatively simple models. On our machine with
public code, training a single model from a recently proposed method (QLAE, Hsu et al. (2023)) took more
than five hours, whereas we could train ten β-VAEs with a simpler architecture in the same time. Model
fusion with weak models that are inexpensive to train, as in Sec. 4.4, might offer a promising alternative to
representation learning with more computationally expensive models.
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Figure 6: Latent traversals for cars3d groups from Fig. 3b,c. We traverse the representative channels
for the groups found by OPTICS, and reorder them to align with the ordering for β-VAE (left). Note that
group vi splits in two groups for both the β-TCVAE and the FactorVAE. The tint of the windows and
the color of the car were encoded jointly for the β-VAE, and then separately for the other two methods.
Traversals are over the range [−2, 2].

A Appendix: Extended channel similarity results

In Fig. 6 we present additional latent traversals for the cars3d channel groupings presented in Fig. 3c. With
the channels most centrally located in each group (as before), we also display latent traversals for β-TCVAE
(β=10) and FactorVAE (γ = 30).

Fig. 7 visualizes the channel similarity structure on mnist (LeCun et al., 2010) and fashion-mnist, with
latent traversals for four channels per grouping to show the consistency of the encoded information.

In Figs. 8, 9, and 10, we repeat the structural analysis of Sec. 4.2 with all β-VAE hyperparameters explored
by the authors of Locatello et al. (2019). The effect of increasing β is clearly observed by the emergence of
block diagonal channel similarity matrices, though with fewer informative channels for increased β.

Consider the cars3d ensembles in Fig. 8. With β = 1, 2, the information fragmentation is not consistent
across repeat runs, even though the amount of information shared with the three generative factors is fairly
consistent. This highlights the value of directly comparing the information content of channels with NMI or
VI instead of comparing indirectly via information content about known generative factors, with the added
benefit of being fully unsupervised. For β = 4 the learned fragments of information start to coalesce, with
information regularization breaking the degeneracy that plagues unsupervised disentanglement (Locatello
et al., 2019). For β = 8, 16, the regularization is strong enough to form consistent fragments of information
across random initializations.
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a

b

Figure 7: Channel similarity structure on MNIST and Fashion-MNIST. Channel similarity analysis
for 50 β-VAEs trained on (a) MNIST (β=8), and (b) Fashion-MNIST (β = 4). The most central four
channels to each of the found groupings (indicated by colors) are visualized via latent traversal on the right.
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Figure 8: Channel similarity structure for cars3d, β-VAE, assessed with NMI and VI. (a-f)
Ensembles with values of β from 1 to 16, with channels reordered using OPTICS and either NMI (left) or
VI (right) for the method of comparison. Regardless of the measure used for comparison, the NMI with the
generative factors is shown on the left of each pairwise similarity matrix. All matrices are sized to 500 × 500,
with uninformative channels (I(Ui; X) ≤ 0.01 bits) displayed as white.
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Figure 9: Channel similarity structure for dsprites, β-VAE, assessed with NMI and VI. Everything
in this figure mirrors Fig. 8.
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Figure 10: Channel similarity structure for smallnorb, β-VAE, assessed with NMI and VI.
Everything in this figure mirrors Fig. 8.
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Figure 11: Information estimates with Bhattacharyya fingerprints and Monte Carlo. For 500
channels randomly sampled from across all models released by Locatello et al. (2019) for the cars3d dataset
(including all methods and all hyperparameters), we estimated the amount of information transmitted by each
channel I(U ; X) using the Bhattacharyya matrix fingerprints and Monte Carlo (MC) sampling. Error bars
are displayed for the MC estimates, though they are generally smaller than the markers. The dashed black
line represents equality between the two estimates, and the solid blue line is the logarithm of the fingerprint
size, which is the saturation point for the Bhattacharyya estimate. Listed run times are for a single channel,
excluding the time to load models but including inference and the calculation necessary for I(U ; X).

B Appendix: Information estimation using Bhattacharyya distinguishability matrices

To estimate the mutual information I(U ; X) from the Bhattacharyya distinguishability matrices, we have
employed the lower bound derived in Kolchinsky & Tracey (2017) for the information communicated through
a channel about a mixture distribution (following the most updated version on arXiv1). The bound simplifies
greatly when the empirical distribution is assumed to be a reasonable approximation for the data distribution,
and then we further assume the sample of data used for the fingerprint allows for an adequate approximation
of the marginal distribution in latent space. First we reproduce the bound from Sec. V of Kolchinsky &
Tracey (2017) using the notation of this work, and then we describe our assumptions to apply the bound as
an estimate of the information contained in a probabilistic representation space.

Let X be the input to a channel, following a mixture distribution with N components, x ∼ p(x) =
∑N

i=1 cipi(x),
and U the output of the same channel, u ∼ p(u) =

∑N
i=1 ci

(∫
X p(u|x)pi(x)dx

)
. Then we have

I(X; U) ≥ −
∑

i

ci ln
∑

j

cjBCij + H(U |C) − H(U |X), (5)

where C is a random variable representing the component identity.

In this work, we assume that the data distribution can be approximated by the empirical distribution,
p(x) ≈

∑N
i δ(x − xi)/N , simplifying Eqn. 5 so that ci ≡ 1/N and H(U |C) = H(U |X) because the identity

of the component is equivalent to the identity of the datum. Finally, we assume that the set of posterior
distributions for a representative sample of size M of the dataset, taken for the fingerprint, adequately
approximates the empirical distribution. Larger samples may be necessary in different scenarios when the
amount of information transmitted by channels is larger than a handful of bits, but M = 1000 appeared
sufficient for the analyses of this work.

The corrections to NMI and VI required the information conveyed by two measurements from different
channels, I(X; U, V ) as well as from the same channel, I(X; U, U ′). The matrix of Bhattacharyya coefficients
given measurements U and V is simply the elementwise product of the coefficients given U and the coefficients
given V . The posterior in the joint space of U and V is factorizable given x—i.e., p(u, v|x) = p(u|x)p(v|x)—
because the stochasticity in each channel is independent. The same is true for the joint space of U and U ′,

1https://arxiv.org/abs/1706.02419
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Figure 12: Example that breaks the triangle inequality for generalized VI. Four datapoints a, b, c, d
are clustered according to scheme U , V , or W . The total VI from U to V and then V to W is less than the
VI from U to W .

two draws from the same channel. The Bhattacharyya coefficient of the joint variable simplifies,

BCUV
ij =

∫
U

∫
V

√
p(u, v|xi)p(u, v|xj)dudv

=
∫

U

√
p(u|xi)p(u|xj)du

∫
V

√
p(v|xi)p(v|xj)dv

= BCU
ij × BCV

ij .

(6)

C Appendix: Broken triangle inequality for the generalized VI

Here we provide an example of three clusterings that breaks the triangle inequality for the generalized VI.
Thus, while VI for hard clusters satisfies the properties of a metric (Crutchfield, 1990), the generalization to
soft clusters does not.

In Fig. 12, there are three clusterings (U , V , and W ) of four equally likely data points (x ∈ {a, b, c, d}).
U , V , and W each communicate one bit of information about X, but U and W are hard clusterings while
V is a soft clustering. We have I(U ; V ) = I(V ; W ) = 0.5 bits, I(U ; W ) = 0 bits, I(V ; V ′) = 0.5 bits, and
I(U ; U ′) = I(W ; W ′) = H(U) = 1 bit. The generalized VI from U to V and then from V to W is less than
from U to W directly.

VI(U, W ) = I(U ; U ′) + I(W ; W ′) − 2I(U ; W )
= 2 bits

VI(U, V ) + VI(V, W ) = 2
(

I(U ; U ′) + I(V ; V ′) − 2I(U ; V )
)

= 1 bit.
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Figure 13: Direct comparison of NMI and VI. We convert both measures to a distance measure (black)
and to a similarity measure (blue gray) and compare them for the pairwise channel comparisons from the
ensembles of Fig. 3.

D Appendix: Are NMI and VI interchangeable?

NMI and VI, aside from the inversion required to convert from similarity to distance, can both be seen as a
normalized mutual information. Are they interchangeable, or do they assess structure differently?

In Fig. 13, we compare NMI and VI (estimated via Bhattacharyya matrices) as similarity or distance measures
for the pairwise comparisons between channels used in Fig. 3. Specifically, as measures of similarity, we
plot NMI against exp(−VI), and for distance we plot − log(NMI) against VI. We find that NMI and VI are
non-trivially related, shown clearly by the horizontal and vertical swaths of points where one of the two
measures is roughly constant while the other varies considerably. Interestingly, the corresponding NMI and
VI comparisons in Fig. 13 show multiple distinct arcs of channel similarity, as well as clear vertical bands
where NMI has discerning power and VI does not.
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E Appendix: Implementation specifics

All experiments were implemented in TensorFlow and run on a single computer with a 12 GB GeForce RTX
3060 GPU.

We have attached code to the submission for the methodological comparisons on the one- and two-dimensional
representation spaces of Fig. 2 and ensemble learning of Fig. 5. The heart of the codebase is in utils.py,
containing the Bhattacharyya and Monte Carlo calculations of I(U ; X) and the NMI/VI calculations.

Models: For the dsprites, smallnorb, and cars3d datasets, we used the trained models that were publicly
released by the authors of Locatello et al. (2019). Thus, all of the model and channel numbers recorded above
the latent traversals in Fig. 3b correspond to models that can be downloaded from that paper’s github page2.
Simply add the model offset corresponding to the β = 16 β-VAE for cars3d, 9250 (e.g., for the traversal
labeled with model 31 ch 3, download model 9281 and traverse latent dimension 3, 0 indexed).

For the InfoGAN-CR models on dsprites, we used the trained models that were uploaded with Lin et al.
(2020)3.

For results on the training progression of smallnorb, celebA, and cars3d, we used the same architecture
and training details from Locatello et al. (2019).

For the MNIST and Fashion-MNIST ensembles, we trained 50 β-VAEs with a 10-dimensional latent space.
The encoder had the following architecture:

Conv2D: 32 4×4 ReLU kernels, stride 2, padding ‘same’

Conv2D: 64 4×4 ReLU kernels, stride 2, padding ‘same’

Reshape([-1])

Dense: 256 ReLU

Dense: 20.

The decoder had the following architecture:

Dense: 7 × 7 × 32 ReLU

Reshape([7, 7, 32])

Conv2DTranspose: 64 4×4 ReLU kernels, stride 2, padding ‘same’

Conv2DTranspose: 32 4×4 ReLU kernels, stride 2, padding ‘same’

Conv2DTranspose: 1 4×4 ReLU kernels, stride 1, padding ‘same’.

The models were trained for 2 × 105 steps, with a Bernoulli loss on the pixels, the Adam optimizer with a
learning rate of 10−4, and a batch size of 64.

Clustering analysis: We used the OPTICS implementation from sklearn4 with ‘precomputed’ distance
metric and min_samples= 20 (and all other parameters their default values). For distance matrices we
converted NMI to a distance with − log max(NMI, 10−4).

Ensemble learning: For the ensemble learning toy problem (Sec. 4.4), we trained 250 simple β-VAEs
(β=0.03) whose encoder and decoder were each fully connected networks with two layers of 256 tanh activation.
The input was two-dimensional, the latent space was one-dimensional, and the output was two-dimensional.

2https://github.com/google-research/disentanglement_lib/tree/master
3https://github.com/fjxmlzn/InfoGAN-CR
4https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
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The loss was MSE, the optimizer was Adam with learning rate 10−3, and the batch size was 2048, trained for
3000 steps. Data was sampled anew each batch, uniformly at random from the unit circle.

To perform ensemble learning, we evaluated the Bhattacharyya matrices for 200 evenly spaced points around
the unit circle for each model in the ensemble. Then we directly optimized the parameters for 200 posterior
distributions (Gaussians with diagonal covariance matrices) in a two-dimensional latent space, so as to
maximize the average similarity (NMI, exponentiated negative VI, or mutual information) between the
Bhattacharyya matrix for the trainable embeddings and those of the ensemble. We used SGD with a learning
rate of 3 for 20,000 iterations, and repeated for 5 trials for each ensemble size.

Stochastic shape metrics: We used publicly released code on github5, using the
GaussianStochasticMetric with α = 1 and the parallelized pairwise distances for the timing cal-
culation.

Monte Carlo mutual information estimation: We sampled random data points and then a random
embedding vector from each posterior distribution. Then we computed the log ratio of the likelihood under
the corresponding posterior and the aggregated posterior (iterating over the entire dataset), and repeated N
times to estimate the following expectation:

I(X; U) = Ex∼p(x)Eu∼p(u|x)

[
log p(u|x)

p(u)

]
(7)

For the analysis of Fig. 4, N = 2 × 105 for all datasets except dsprites and celebA, where N = 6 × 104; the
standard error of the estimate was on the order of 0.01 bits or less. The displayed points on the plots are
weighted means of the values, weighted by the propagated uncertainty on each quantity; the error bars are
the standard error of the weighted mean.

CKA: We replaced the dot-product similarity matrices K and L in the Hilbert-Schmidt Independence
Criterion (HSIC) with the Bhattacharyya matrices,

HSIC(BC(1), BC(2)) = 1
(n − 1)2 Tr(BC(1) · H · BC(2) · H), (8)

and then followed the prescribed normalization in Kornblith et al. (2019).

Continuity metric: Falorsi et al. (2018) used the ratio of neighbor distances in representation space to the
corresponding distances in data space, with neighbors taken along continuous paths in data space, as the
basis for a discrete continuity metric. It indicated whether any ratios were above some multiplicative factor
of some percentile value in the distribution, and thus depended on two parameter choices. Esmaeili et al.
(2024) removed one of the parameters—the multiplicative factor—yielding a continuous continuity metric
that reports the maximum ratio value over the 90th percentile value.

The central premise of this work is to respect the nature of representations as probability distributions, so we
used the Bhattacharyya distance (i.e., Dij = − log BCij)) between posteriors instead of Euclidean distances
between posterior means in representation space. Other than this modification, we left the continuity metric
as in Esmaeili et al. (2024): as the maximum ratio value over the 90th percentile value.

5https://github.com/ahwillia/netrep
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