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ABSTRACT

We study the stochastic shortest path (SSP) problem in reinforcement learning with
linear function approximation, where the transition kernel is represented as a linear
mixture of unknown models. We call this class of SSP problems as linear mixture
SSP. We propose a novel algorithm for learning the linear mixture SSP, which can

attain a O(dB}® /K /cmin) regret. Here K is the number of episodes, d is the
dimension of the feature mapping in the mixture model, B, bounds the expected
cumulative cost of the optimal policy, and ¢nin, > 0 is the lower bound of the cost
function. Our algorithm also applies to the case when cyi, = 0, where a O(K?/3)
regret is guaranteed. To the best of our knowledge, this is the first algorithm with a
sublinear regret guarantee for learning linear mixture SSP. In complement to the
regret upper bounds, we also prove a lower bound of Q(d B, VK ), which nearly
matches our upper bound.

1  INTRODUCTION

The Stochastic Shortest Path (SSP) model refers to a type of reinforcement learning (RL) problems
where an agent repeatedly interacts with a stochastic environment and aims to reach some specific
goal state while minimizing the cumulative cost. Compared with other popular RL settings such
as episodic and infinite-horizon Markov Decision Processes (MDPs), the horizon length in SSP
is random, varies across different policies, and can potentially be infinite because the interaction
only stops when arriving at the goal state. Therefore, the SSP model includes both episodic and
infinite-horizon MDPs as special cases, and is comparably more general and of broader applicability.
In particular, many goal-oriented real-world problems fit better into the SSP model, such as navigation
and GO game (Andrychowicz et al., 2017; Nasiriany et al., 2019).

In recent years, there emerges a line of works on developing efficient algorithms and the corresponding
analyses for learning SSP. Most of them consider the episodic setting, where the interaction between
the agent and the environment proceeds in K episodes (Cohen et al., 2020; Tarbouriech et al., 2020a).
For tabular SSP models where the sizes of the action and state space are finite, Cohen ct al. (2021)

developed a finite-horizon reduction algorithm that achieves the minimax regret O(B, Vv SAK),
where B, is the largest expected cost of the optimal policy starting from any state, .S is the number of
states and A is the number of actions. In a similar setting, Tarbouriech et al. (2021b) proposed the first
algorithm that is minimax optimal, parameter-free and horizon-free at the same time. However, the
algorithms mentioned above only apply to tabular SSP problems where the state and action space are
small. In order to deal with SSP problems with large state and action spaces, function approximation
techniques (Yang & Wang, 2019; Jin et al., 2020; Jia et al., 2020; Zhou et al., 2021b; Wang et al.,
2020b;a) are needed.

Following the recent line of work on model-based reinforcement learning with linear function
approximation (Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b), we consider
a linear mixture SSP model, which extends the tabular SSP. More specifically, we assume that
the transition probability is parametrized by P(s'|s,a) = (¢p(s'|s, a), 0*) for all triplet (s, a, s’) €
S x A x S, where S is the state space and A is the action space. Here we assume that ¢ € R is a
known ternary feature mapping, and 8* € R? is an unknown model parameter vector that needs to be
learned. Such a setting has been previously studied for episodic MDPs (Modi et al., 2020; Jia et al.,
2020; Ayoub et al., 2020; Cai et al., 2020) and infinite-horizon discounted MDPs (Zhou et al., 2021b).
Nevertheless, algorithms developed in these works do not apply to SSP since the horizon length is
random as mentioned above.
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To tackle the challenge of varying horizon length, we propose a model-based optimistic algorithm
with linear function approximation, dubbed LEVIS, for learning the linear mixture SSP. At the core
of our algorithm are a confidence set of the model parameters and a specially designed Extended
Value Iteration (EVI) subroutine for computing the optimistic estimate of the value function, which
together guarantee that the algorithm will reach the goal state in every episode. Compared with the
EVI subroutine developed for infinite-horizon discounted MDPs (Zhou et al., 2021b), we introduce
a shrinking factor ¢ &~ 1/t in our EVI with ¢ being the cumulative number of time steps, which
guarantees the convergence of EVI. To compensate for the bias introduced by this shrinking factor,
our algorithm performs lazy policy update, which is triggered by the doubling of the time interval
between two policy updates or the doubling of the determinant of the covariance matrix. With all
these algorithmic designs, our algorithm is guaranteed to achieve a O(dB}-5\/K/cmin) regret when
Cmin > 0. To the best of our knowledge, this is the first algorithm that enjoys a sublinear regret for
linear mixture SSP.

It is worth noting that a recent work by Vial et al. (2021) studied a different linear SSP model
that is similar to linear MDPs (Yang & Wang, 2019; Jin et al., 2020), where both the underlying
transition probability and cost function are linear in a known d-dimensional feature mapping 1 € R¢,
ie, P(s's,a) = (¥(s,a), u(s)) and ¢(s,a) = (P(s,a),B), and pu(-) and 0 are unknown. They
proposed an algorithm with linear function approximation, which achieves O(y/B2d3 K /¢y, ) regret.
The linear SSP model is different from our model, and we refer the interested readers to Ayoub et al.
(2020); Zhou et al. (2021b) for a detailed comparison between these two assumptions. Besides the
model difference, Vial et al. (2021) further assumed the feature mapping to be orthonormal in order
to obtain the O( VK ) regret. We do not need such restrictive assumptions on the feature mapping,
thus our algorithm provably works for more general cases.

Our contributions are summarized as follows:

* We propose to study a linear mixture SSP model, and devise a novel algorithm, dubbed Lower
confidence Extended Value Iteration for SSP (LEVIS), for learning SSP with linear function
approximation.

« We prove that LEVTS achieves a regret of order O(B15d /K /¢min) when ¢iin > 0 and the agent
has an order-accurate estimate B > B,!. For the general case where cp,i, = 0, our algorithm can
achieve @(K 2/3) regret guarantee by using a cost perturbation trick (Tarbouriech et al., 2021b).

 We prove that for linear mixture SSP, the regret of any learning algorithms is at least Q(dB, vVK).
This suggests that when cpiy > 0, our algorithm is optimal with regard to the dimension of the
feature mapping d and number of episodes /.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters

to denote vectors and matrices respectively. For any positive integer n, we denote by [n] the set

{1,...,n}. For a vector x € R? | we denote by ||x]|; the Manhattan norm and denote by [|x||2 the

Euclidean norm. For a vector x € R? and matrix & € R4*?, we define ||x||s = VxT Ex. For two

sequences {a,} and {b,}, we write a,, = O(b,,) if there exists an absolute constant C' such that

an < Cby. We use O(-) to hide the logarithmic factors.

2 RELATED WORK

Online learning in SSP SSP problems can be dated back to (Bertsekas & Tsitsiklis, 1991; Bertsckas
& Yu, 2013; Bertsekas, 2012), but it is until recently that the regret minimization in online learning
of SSP has been studied. In the tabular case, Tarbouriech et al. (2020a) proposed the first algorithm

achieving a O (D3/28\/AK [ cinin) regret where D is the diameter of SSP”. The regret was further
improved to O(B,Sv AK) by Rosenberg et al. (2020); Cohen et al. (2020), with an extra NG
factor compared with the Q(B,v SAK) lower bound (Rosenberg et al., 2020). More recently, the

O(B4VvSAK) minimax optimal regret were obtained by Cohen et al. (2021) and Tarbouriech et al.
(2020b) independently using different approaches. Specifically, Cohen et al. (2021) reduced SSP
to a finite-horizon MDP with a large terminal cost assuming B, is known; while Tarbouriech et al.
(2021b) avoid such requirement by adaptively estimating B, with a doubling trick, together with

"We say B is an order-accurate estimate of B*, if there exists some unknown constant x > 1 such that
B, < B < kB..
The diameter of an SSP is defined as the longest possible shortest path from any initial state to the goal state.
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a value iteration sub-routine ensuring the optimistic estimate of the value function. Our proposed
method shares a similar spirit with the latter approach, but for learning SSP with linear function
approximation.

The above algorithms are all model-based. Very recently, Chen et al. (2021a) developed the first model-
free algorithm for SSP which achieves the minimax optimal regret when the minimum cost among
all state-action pairs cpiy, is strictly positive. Their method is motivated by the UCB-ADVANTAGE
algorithm (Zhang et al., 2020). For other settings of SSP, (Rosenberg & Mansour, 2020; Chen &
Luo, 2021; Chen et al., 2021b) studied the case of adversarial costs. Also, the pioneering work by
(Bertsekas & Tsitsiklis, 1991) studied the pure planning problem in SSP where the agent has full
knowledge of all the model parameters, and is followed by a series of works (Bonet, 2007; Kolobov
et al., 2011; Bertsekas & Yu, 2013; Guillot & Stauffer, 2020). On the other hand, Tarbouriech
et al. (2021a) studied the sample complexity of SSP assuming the access to a generative model.
Jafarnia-Jahromi et al. (2021) proposed the first posterior sampling algorithm for SSP. Multi-goal
SSP have also been studied by Lim & Auer (2012); Tarbouriech et al. (2020b).

Linear function approximation Linear MDP is one of the most widely studied models for RL with
linear function approximation, which assumes both the transition probability and reward functions are
linear functions of a known feature mapping (Yang & Wang, 2019; Jin et al., 2020). Representative
work in this direction include Du et al. (2019); Zanette et al. (2020); Wang et al. (2020a); He et al.
(2021), to mention a few.

Another popular model for RL with linear function approximation is the so-called linear mixture
MDP/linear kernel MDP (Yang & Wang, 2020; Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020;
Cai et al., 2020; Zhou et al., 2021b;a). For the finite-horizon setting, Jia et al. (2020) proposed a
UCRL-VTR algorithm that achieves a O(dv H3T) regret bound. Zhou et al. (2021a) further improve
the result by proposing a UCRL-VTR+ algorithm that attains the nearly minimax optimal regret

O(dH VT ) based on a novel Bernstein-type concentration inequality. For the discounted infinite
horizon setting, Zhou et al. (2021b) proposed a UCLK algorithm with a O(dv/T /(1 —)?) regret, and

also give a O (VT /(1 — ~)*®) lower bound. The lower bound is later matched up to logarithmic
factors by the UCLK+ algorithm (Zhou et al., 2021a). The SSP model studied in this paper can be
seen as an extension of linear mixture MDPs.

3 PRELIMINARIES

Stochastic Shortest Path  An SSP instance is an MDP M := {S, A, P, ¢, Sinit, g}, where S and A
are the finite state space and action space respectively. Here sipi; denotes the initial state and g € S is
the goal state. We denote the cost function by ¢ : S x A — [0, 1], where ¢(s, a) is the immediate cost
of taking action a at state s. The goal state g incurs zero cost, i.e., ¢(g,a) = 0 for all a € A. For any
(s',8,a) € 8 x A x S, P(s'|s,a) is the probability to transition to s’ given the current state s and
action a being taken. The goal state g is an absorbing state, i.e., P(g|g,a) = 1 for all action a € A.

Linear mixture SSP In this work, we assume the transition probability function P to be a linear
mixture of some basis kernels (Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a).

Assumption 3.1. Suppose the feature mapping ¢ : S x A x S — R? is known and pregiven. There
exists an unknown vector 0* € R? with [|0* || < v/d such that P(s'|s, a) = (¢(s'|s, a), %) for any
state-action-state triplet (s, a, s’) € S x A x S. Moreover, for any bounded function V : S — [0, B,
it holds that ||y (s, a)||2 < Bv/dforall (s,a) € S x A, where ¢y (s, a) = Yoses P(8']s,a)V (s).

For simplicity, for any function V' : § — R, we denote PV (s,a) = >, P(s'|s,a)V(s’) for all
(s,a) € 8 x A. Therefore, under Assumption 3.1, we have

PV(s,a) = Y P(s's,a)V(s') = > (¢(s']s.a),0")V(s") = (v (s,a),0%).
s'eS s'eS
Proper policies A stationary and deterministic policy is a mapping 7 : S — A such that the action
m(s) is taken given the current state s. We denote by 77 (s) the expected time that it takes by
following 7 to reach the goal state g starting from s. We say a policy 7 is proper if 77 (s) < oo for
any s € S (otherwise it is improper). We denote by IL e the set of all stationary, deterministic and
proper policics. We assume that ILoper is non-empty, which is the common assumption in previous
works on online learning of SSP (Rosenberg et al., 2020; Rosenberg & Mansour, 2020; Cohen et al.,
2021; Tarbouriech et al., 2021b; Jafarnia-Jahromi et al., 2021; Chen et al., 2021a).
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Assumption 3.2. The set of all stationary, deterministic and proper policies is non-empty, i.e.,
Hproper 7é a.

Remark 3.3. The above assumption is weaker than Assumption 1 in Vial et al. (2021) which requires
that all stationary policies are proper.

For any policy 7, we define the cost-to-go function (a.k.a., value function) as

T
VT(s):= lim E lZC(SuW(St))

T—
Feo t=1

V7 (s) can possibly be infinite if 7 is improper. The action-value function of policy 7 is defined as

T
Q7 (s,a) = Tll_rgle lc(sl, a1) + Zc(st, m(st))
t=2

where so ~ P(+|s1,a1) and s;41 ~ P(+|s¢, (s¢)) for all £ > 2. Since ¢(-, -) € [0, 1], for any proper
policy 7 € Iyroper, V7 and Q™ are both bounded functions.

s, = 51 ,  where s;41 ~ ]P(- |st,7r(st)).

s1 =8, alzal,

Bellman optimality For any function V' : S — R, we define the optimal Bellman operator £ as
LV (s) = néihl{c(s, a) +PV(s,a)}. 3.1
a

Intuitively speaking, we want to learn the optimal policy 7* such that V*(+) := 7% (+) is the unique
solution to the Bellman optimality equation V' = LV and 7* minimizes the value function V7 (s)
component-wise over all policies. It is known that, in order for such 7* to exist, one sufficient
condition is Assumption 3.2 together with an extra condition that any improper policy 7 has at
least one infinite-value state, i.e., for any 7 ¢ Ilyoper, there exists some s € Ss.t. V7 (s) = +oo
(Bertsekas & Tsitsiklis, 1991; Bertsekas & Yu, 2013; Tarbouriech et al., 2021b). Note that this
additional condition is satisfied in the case of strictly positive cost , where for any state s # g and
a € A, it holds that ¢(s, a) > ¢pin. To deal with the case ol general cost function, one can adopt the
cost perturbation trick (Tarbouriech et al., 2021b) and consider a modified problem with cost function
¢p(s,a) == max{c(s,a), p} for some p > 0. This will introduce an additional cost of order O(pT)
to the regret of the original problem, where T’ is the total number of steps. Therefore, the second
condition can be avoided, and we can assume the existence of 7*.

Throughout the paper, we denote by B, the upper bound of the optimal value function V*, i.e.,
B, = max,cs V*(s). Also, we define T, = max,es T™ (s), which is finite under Assumption 3.2.
Since the cost is bounded by 1, we have B, < T, < +o0o. Without loss of generality, we assume that
B, > 1. Furthermore, we denote the corresponding optimal action-value function by Q* = Q™"
which satisfies the following Bellman equation for all (s,a) € S x A:

Q*(s,a) = c(s,a) + PV*(s,a), V*(s)= ng} Q*(s,a). (3.2)

Learning objective Under Assumption 3.1, we assume c to be known for the ease of presentation.
We study the episodic setting where each episode starts from a fixed initial state sy and ends only if
the agent reaches the goal state g. Given the total number of episodes, K, the objective of the agent
is to minimize the regret over K episodes defined as
K I
Ric =Y cri = K V" (sim), (33)
k=11i=1
where I}, is the length of the k-th episode and ¢y, ; = ¢(S,s, a,;) is the cost triggered at the i-th step
during the k-th episode. Note that R might be infinite if some episode never ends.

4 ALGORITHMS

In this section, we propose a model-based algorithm named LEVIS, as displayed in Algorithm 1.
LEVIS is inspired by the UCLK-type of algorithms originally designed for discounted linear mixture
MDPs (Zhou et al., 2021a;b). Our algorithm takes a multi-epoch form, where each episode is divided
into epochs of different lengths (Jaksch et al., 2010; Lattimore & Hutter, 2012). Within each epoch,
the agent executes the greedy policy induced by some optimistic estimator of the optimal Q-function.
The switch between any two epochs is triggered by a doubling criterion, and then the estimated
Q-function is updated through an Extend Value Iteration (EVI) sub-routine (Algorithm 2). We now
give a detailed description of Algorithm 1.
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Algorithm 1 LEVIS

1: Input: regularization parameter A, confidence radius {;}, cost perturbation p € [0, 1], an
estimate B > B,

2: Initialize: sett < 1, j < 0,19 = 0, g < AL, bg + 0, Qo(s,-),Vo(s) < 1Vs #£ gand 0
otherwise

3fork=1,...,Kdo
4:  Set 84 = Sinit
5:  while s; # g do
6: Take action a; = argmin, . 4 Q;(s¢,a), receive cost ¢; = c(s¢, a¢) and next state s,11 ~
P(-[s¢, ar) -
7: Set Et — Et—l + ¢V} (St, at)qbvj (St, Clt)
8: Set bt < bt—l + (lbv} (St, at)Vj(stH)
9: if det(X;) > 2det(3;;) ort > 2t; then
10: Setj«+j+1
11 Sett; < t.ej ¢ ¢
12: 0, — =; 'b,
13: Set confidence set C; {0 : ||§]t1j/2(0 - §])||2 < ﬁtj}
14: Set Q;(-,-) < EVI(Cj,€5. 1, p)
15: Set V;(+) < minge 4 Q; (-, a)
16: end if
17: Sett«+t+1
18:  end while
19: end for
Algorithm 2 EVI
1. Input: confidence set C, error parameter ¢, transition bonus g, cost perturbation p € [0, 1]
2: Initialize: i < 0, and Q) (-,.), V(O () = 0,and V=V (.) = 400
3 8etQ(, ) « QU(-.-)
4 ifCN B # ¢ then
5. while [V® — V=D > cdo
6:
(i+1) ¢, . .. — ). mi
Q ( ) ) — Cp( ) ) + (1 q) BIEHCII’I%B<07¢V(1)( ) )> (41)
VD () = min QU (-, a) (4.2)
acA
7: Seti«i+1
8: end while
9: Q(v) A Q(H_l)('v')
10: end if
11: Output: Q(-,-)

In Algorithm 1, we maintain two global indices. Index ¢ represents the total number of steps, and
index j tracks the number of calls to the EVI sub-routine, where the output of EVI is an updated
optimistic estimator of the optimal action-value function. Each episode starts from a fixed initial state
sinit (Line 4), ends when the goal state g is reached (Line 5) and is decomposed into epochs indexed
by the global index j. Within epoch j, the agent repeatedly executes the policy induced by the current
estimation @; of the action-value function (Line 6) and updates 3; and b; (Lines 7 and 8). The
current epoch ends when the either criterion in Line 9 is triggered, and the EVI subroutine performs
an optimistic planning to update the action-value function estimator (Lines 10 to 15).

Update criteria As mentioned before, Algorithm 1 runs in epochs indexed by j, and one epoch ends
when either of the two update criteria is triggered (Line 9). The first updating criterion is satisfied once
the determinant of ¥, is doubled compared to the determinant at the end of the previous epoch. This
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is called lazy policy update that has been used in the linear bandits and RL literature (Abbasi-Yadkori
et al., 2011; Zhou et al., 2021b), which reflects the diminishing return of learning the underlying
transition. One intuition behind the determinant doubling criterion is that the determinant can be
viewed as a surrogate measure of the exploration in the feature space. Thus, one only updates the
policy when there is enough exploration being made since last update. Morcover, this update criterion
reduces the computational cost as the total number of epochs would be bounded by O(log T"). Here
T denotes the total number of steps through all K episodes. The doubling visitation criterion used in
tabular SSP (Jafarnia-Jahromi et al., 2021; Tarbouriech et al., 2021b) can be viewed as a special case
of this doubling determinant-based criterion.

However, the above criterion alone cannot guarantee finite length for each epoch as we do not
have that ||¢v (-, )| is bounded from below, which holds for tabular SSP naturally since at most
|S|| Al maxses aean(s,a) steps suffice to double n(s, a) for at least a pair of s, a by the pigeonhole
principle. To address this problem, we show that we only need to add an extra triggering criterion:
t > 2t;. It turns out that despite of being extremely simple this criterion endows the algorithm with
several nice propertics. First, together with the EVI error parameter €; = 1/t;, we can bound the
cumulative error from value iterations in epoch j by a constant, i.e., (Qtj — tj) -€; = 1. Second, it
will not increase the total number of epochs since the time step doubling can happen at most O(log T')
times, which is consistent with the first criterion. These two propertics together allow us to bound the
total error from value iteration by O(log 7). Finally, this criterion is fairly easy to implement and has
negligible time and space complexity.

Optimistic planning The optimism of Algorithm 1 is realized by the construction of the confidence
set C; (Line 11), which is fed into the EVI subroutine. We now describe the construction of the
Q-function estimator in the EVI sub-routine (Algorithm 2). EVI requires the access to a confidence
ellipsoid C; that contains the true model parameter €* with high probability (Line 13). Here we
construct the confidence set C; centered at the minimizer of the ridge regression problem with a
confidence radius parameter 3; (Line 13). Since not every 8 € C; defines a valid transition probability
function, we further take the intersection between C ;7 and a constraint set B defined as follows

B = {0:V(s,a),(¢(:|s,a), ) is a probability distribution and (¢(s|g,a),0) = 1{s’ = g}}.

Then C; N B is still a confidence set containing the true model parameter 8* with high probability as
0" c B. Algorithm 2 requires two additional inputs: optimality gap ¢; and discount factor g. The use
of ¢; is standard, but this discount factor is the key to ensuring convergence of EVI.

Specifically, (4.1) in Algorithm 2 repeatedly conducts one-step value iteration by applying the best
possible Bellman operator to the set C; N B. This is motivated by the Bellman optimality equation in
(3.2), and uses mingecnp (0, ¢y ) ) as an optimistic estimate for PV*. However, using this estimate
alone cannot guarantee the convergence of EVI because (-, ¢y is not a contractive map, which
holds for free in the discounted setting (Jaksch et al., 2010; Zhou et al., 2021b), but not in SSP.
More specifically, in the EVT algorithm for the discounted setting (e.g., Algorithm 2 in (Zhou et al.,
2021b)), there is an intrinsic discount factor 0 < « < 1, which ensures that the Bellman operator is a
contraction. As a result, the value iteration converges in a finite number of iterations. However, the
Bellman equation of SSP does not have a discount factor. To address this issue, in (4.1), we introduce
an extra 1 — ¢ discount factor to ensure the contraction property. Although this causes an additional
bias to the estimated transition probability function, we can alleviate it by choosing g properly. In
particular, for each epoch j we set ¢ = 1/t; (Line 14), and as will be shown, this bias will only
introduce an additive term of order O(log T') in the final regret bound.

Besides the convergence guarantee, the 1 — ¢ factor also brings an additional benefit that it biases
the estimated transition kernel towards the goal state g, further encouraging optimism. Similar
design can also be found in the VI SGO value iteration algorithm used by Tarbouriech et al. (2021b).
The intuition behind such a design is to ensure the existence of proper policies under the estimated
transition probability function. As a result, the output of the value iteration, which solves V = LV

approximately for the Bellman operator £ induced by the estimated transition, can induce a greedy
policy that is proper under the estimated transition.

Regarding the implementation of LEVIS, note that the main computational overhead is from EVI,
where within each inner iteration we need to solve an optimization problem. Fortunately, the loss
function is strongly convex, thus it can be efficiently solved by many convex optimization algorithms.
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5 MAIN RESULTS

In this section, we present the main theoretical results for Algorithm 1. We provide regret upper
bounds for both positive cost functions and general cost functions, followed by a lower bound.

5.1 UPPER BOUNDS: POSITIVE COST FUNCTIONS

We first consider a special case where the cost is strictly positive (except for the goal state g).

Assumption 5.1. There exists an unknown constant cpin € (0, 1) such that ¢(s,a) > cpmin for all
seS\{g}tanda e A.

Let T be the total number of steps in Algorithm 1, then the above assumption allows us to lower
bound the total cumulative cost after the K episodes by cnin - T'. Note that this provides a relation
between the deterministic K and the random quantity 7". To simplify the expression, we assume the
agent has access to B, an order-accurate estimate of B, satisfying B, < B < kB, for some unknown
constant £ > 1. Similar assumptions have also been imposed in previous works (Tarbouriech et al.,
2021b; Vial et al., 2021).

Theorem 5.2. Under Assumptions 3.1, 3.2 and 5.1, for any 6 > 0, let p = 0 and B; =
B.y/dlog (4(t2 + t3B2/)\)/5) ++/Ad forall t > 1, where B > B, and A > 1. Then with probability
at least 1 — 4, the regret of Algorithm 1 satisfies

2 92
Rk <31 %d\/K /i - log? <KBd>+B d 10g2<KBd>>. (5.1)

mind Cmin Cmin0

If B = O(B,), Algorithm 1 attains an O(B,'®d+/K /¢min) regret. The dominating term in (5.1)
has an dependency on 1/cmin. For the tabular SSP, Cohen et al. (2021); Jafarnia-Jahromi et al.
(2021); Tarbouriech et al. (2021b) avoid such dependency by using a Bernstein-type confidence
set. However, it remains an open question whether a similar result can be achieved under the linear
function approximation setting.

Remark 5.3. If we set the parameter § in Theorem 5.2 as 6 = 1/K and define the high probability
event {2 as Theorem 5.2 holds. Then, for the expected regret, we have

E[Rk] < E[Rk|0)] Pr[Q)] + K Pr[Q)]

KBd\ B2d? KBd
=0 (Bl %d\/K/cmin - log? < ) + log? ( >) ,

Cmin Cmin Cmin

which implies an O LPdyK /cmin ) expected regret.

5.2 UPPER BOUND: GENERAL COST FUNCTIONS

When Assumption 5.1 does not hold, an 5(K 2/ 3) regret can be achieved by running Algorithm 1
with p = K—1/3.
Theorem 5.4. Under Assumptions 3.1 and 3.2, for any 6 > 0, let p = K~'/3 and 8, =
B\/dlog (4(t2 + t3B2/)\)/d) ++/Ad forallt > 1, where B > B, and A > 1. Then with probability
at least 1 — 0, the regret of Algorithm 1 satisfies

Ric = O (BYSdK*  x + TK** 4 B2K* )
where B = B + T, /K'/3 and x = log? (B+T)Kd/s).
In Theorem 5.4, the regret depends on B instead of B. Note that B is approximately cqual to By

when K = Q(T2) and B = O(B,). Here T} is defined in Section 3 as the maximum expected time
it takes for the optimal policy to reach the goal state starting from any state.

The cost perturbation p is a common trick to deal with the case of general cost functions in the
SSP literature (Tarbouriech et al., 2020a; Cohen et al., 2020; Tarbouriech et al., 2021b). Similar
to Tarbouriech et al. (2020a), the term ¢! is multiplicative with K in our regret bound given by

min -
Theorem 5.2. As a result, the perturbation can only give an O(K2/3) regret in the case of general
cost functions. §1mlhrly, the regret bound of learning linear SSP (Vial et al., 2021) also has a
multiplicative ¢! . Some later work on tabular §§P (Cohen et al., 2020; Tarbourlech etal., 2021b)

has shown that it is possible to make the term c_. additive instead of multlpllcdtlon which improves

min
the regret to O(K 1/2) for general cost functions. How to get an additive .1 term in the linear
function approximation setting is an interesting future direction.
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For the choice of the other parameters in Algorithm 1, by Theorems 5.2 and 5.4, we can set A = 1
in both the positive and general cost cases. For the upper bound B > B,, note that assuming a
known B is common in existing SSP literature (Cohen et al., 2021; Vial et al., 2021). Although it is
possible to deal with an unknown B in the tabular SSP with a doubling trick (Rosenberg et al., 2020;
Tarbouriech et al., 2021b), it remains an open question for SSP with linear function approximation.

5.3 LOWER BOUND

We also provide a hardness result for learning linear mixture SSP by proving the lower bound for the
expected regret suffered by any deterministic learning algorithms.

Theorem 5.5. Under Assumption 3.1, suppose d > 2, B, > 2 and K > (d — 1)2/2'2. Then for any
possibly non-stationary history-dependent policy 7, there exists a linear mixture SSP instance with
parameter 0* such that ABNE

- [Rk] > ———. )
Ero- [Rk] = 1024 (5.2)

Remark 5.6. The expectation in (5.2) is over the trajectories induced by executing the policy 7 in
the SSP environment parameterized by 8*. Note that here we allow the policy 7 to be non-stationary
and history-dependent. This is equivalent to assuming a deterministic learning algorithm, which is
sufficient for establishing a lower bound (Cohen et al., 2020).

Remark 5.7. Our instance for the lower bound can be also adapted to a linear SSP instance (Vial
et al., 2021), which yields a Q(dB, VK ) lower bound. (See Remark E.1 for a detailed discussion.)

6 PROOF SKETCH OF THE MAIN RESULTS

In this section, we give a proof sketch of the main results in Section 5. Due to space limit, we defer
the proof of the lemmas to the appendix.

6.1 PROOF OF THEOREM 5.2

In this subsection, we prove Theorem 5.2, which gives the regret upper bound of Algorithm 1 for
positive cost functions. The proof relies on the following intermediate result.

Theorem 6.1. Under Assumption 3.1 and 3.2, for any 6 > 0, let p = 0 and 5, =
By/dlog (4(t? + t3B2/)\)/8) + V' Ad for some B > B, where A\ > 1 and p = 0. Then with
probability at least 1 — 4, the regret of Algorithm 1 satisfies

T B2 T%B?
RK§6,6T\/dT10g <1+ )\*>—|—7dB*log (T—I— )\*d>,

where T' is the total number of steps.

Remark 6.2. Theorem 6.1 gives an O(+/T) regret upper bound with respect to the total number
of steps 1'. However, for SSP problems, the horizon of each episode is unknown and 7' can be far
greater than K. Thus, Theorem 6.1 is not satisfactory due to its dependence on 7. To deal with this
problem, we further prove Theorem 5.2, which translates the dependence on 7" into the dependence
on K but has a worse dependence on the dimension d and other logarithmic factors.

Theorem 6.1 applies to the general cost function with p set to 0. Note that the regret upper bound
depends on the total number of time steps 1, which is random. To replace the T'-dependence by the
K-dependence, it suffices to show that 7" = O(K'). As mentioned in Section 5.1, this can be easily
derived under Assumption 5.1. We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. The total cost in K episodes is upper bound by Rx + KB, and is lower
bounded by T - ¢ii,- Together with Theorem 6.1, with probability at least 1 — J, we have

TB2 T°B?
T Conin < G,BT\/dTlog (1 + ,\*> + 7dB, log (T + )\*d) + KB,.

Solving the above inequality for the total number of steps T', we obtain that

1 KB, B2d?
T:O<10g2(5>.<c. + oz ))

Plugging this into Theorem 6.1 yields the desired result. O
Note that for the general cost functions, by simply picking p = K ~1/3 the result immediately follows
from the case of positive costs, which is summarized in Theorem 5.4.
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6.2 PROOF SKETCH OF THEOREM 6.1

The main steps in proving Theorem 6.1 include an analysis of EVI and a regret decomposition. The
complete proof can be found in Appendix D.

Analysis of EVI. By the algorithmic design we claborated in Section 4, EVI guarantees optimism
and finite-time convergence, which is summarized in Lemma 6.3 below.

Lemma 6.3. Let p = 0 and 3; = By/dlog (4(t2 + t3B2/)\)/8) + VAd for all t > 1, where
B > B,. Then with probability at least 1 — ¢/2, for all j > 1, EVI converges in finite time and the
following holds

0 cC;inB, 0<Q,(,)<Q*(), and 0 V() <V*().
Note that in Lemma 6.3 the optimism only holds for the EVI output, i.e., V; for any j > 1. The
initialization Vj in Line 2 of the main Algorithm 1 does not necessarily satisfy the optimism since it is

possible that V*(s) < 1 for some s. Still, such an initialization guarantees ||V ||oc = 1 < B,, which
is crucial for establishing the optimism for j > 1. The proof of Lemma 6.3 is given in Appendix F.1.

Regret Decomposition. In our analysis, instead of dealing with (3.3) directly, we first implicitly
decompose the times steps into intervals, which are indexed by m = 1,..., M in Lemma 6.4 below.
The basic idea here is to decompose all the time steps into disjoint intervals of which the end points
are either the end of an episode or the time steps when the EVI subroutine is triggered . The purpose
of such a regret decomposition is to guarantee that within each interval the optimistic action-value
function remains the same, so the induced policy. This is a necessary and common requirement
and can be found in the case of discounted infinite horizon MDPs (Zhou et al., 2021b). Similar
decomposition trick has also been used in existing works on SSP (Rosenberg et al., 2020; Rosenberg
& Mansour, 2020; Tarbouriech et al., 2021b).

Lemma 6.4. Assume the event in Lemma 6.3 holds, then we have the following upper bound for the
regret defined in (3.3) *:

R(M) < Z%:l hHg1 [Cm,h + ]P)Vj(m)(sm,ha am,h) - Vj(m)(sm,h)]

125
M H,,
+ Zmzl h=1 [Vj(m)(smﬁ-ﬁ-l) - Pv}(m)(sm,hy amA,h)jI 6.1)
E;

TB?
+ 2dB, log (1 + )\*d> + 2B, log(T) + 2.

Bounding £, and E5; We bound the terms E; and Es, separately. Note that Fs is the sum
of a martingale difference sequence, and can be bounded by O(+/T'log(1'/0)) using standard
concentration. Bounding E; is more technical and it requires almost all the properties of our
algorithmic design. In detail, we need to show that every time when EVI is triggered, it can output an
optimistic action-value function estimator with high probability (by Lemma 6.3). Second, we need
to bound the total difference between the estimated functions and the optimal action-value function.
This follows from the elliptical potential lemma and the determinant-based doubling criterion. Third,
we need to bound the length of the epochs (i.e., the number of time steps between two EVIs), which
is achieved by the time-step doubling criterion as explained in Section 4.

7 CONCLUSIONS

In this paper, we proposed a novel algorithm for linear mixture SSP and proved its regret upper
and lower bounds. For future work, there are several important directions. First, there is a BE'E’
gap between the current upper and lower bounds. We believe this gap can be closed by using a
Bernstein-type of confidence set (Zhou et al., 2021a). Second, it remains open to prove a (’)(\/E )
regret bound for linear mixture SSPs for general cost functions when ¢y, = 0.

The interval decomposition is indexed by m in Lemma 6.4. It is implicit and only for the purpose of
analysis. This is different from the epoch decomposition, which is explicit and indexed by j in Algorithm 1. The
difference is that an epoch ends when EVI is triggered, while an interval ends when either EVT is triggered or
the goal state g is reached (i.e., an episode ends).

*R(M) is the same as Ry . We use a different notation to emphasize the interval decomposition.
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