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Abstract
We present simulation-free score and flow match-
ing ([SF]2M), a simulation-free objective for in-
ferring stochastic dynamics given unpaired source
and target samples drawn from arbitrary distribu-
tions. Our method generalizes both the score-
matching loss used in the training of diffusion
models and the recently proposed flow matching
loss used in the training of continuous normal-
izing flows. [SF]2M interprets continuous-time
stochastic generative modeling as a Schrödinger
bridge (SB) problem. It relies on static entropy-
regularized optimal transport, or a minibatch ap-
proximation, to efficiently learn the SB without
simulating the learned stochastic process. We find
that [SF]2M is more efficient and gives more accu-
rate solutions to the SB problem than simulation-
based methods from prior work. Finally, we apply
[SF]2M to the problem of learning cell dynam-
ics from snapshot data. Notably, [SF]2M is the
first method to accurately model cell dynamics
in high dimensions and can recover known gene
regulatory networks from simulated data.

Code: https://github.com/atong01/
conditional-flow-matching.

1. Introduction
Score-based generative models (SBGMs), including diffu-
sion models, are a powerful class of generative models that
can represent complex distributions over high-dimensional
spaces (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal &
Nichol, 2021). SBGMs typically generate samples by sim-
ulating the evolution of a source density – nearly always
a Gaussian – according to a stochastic differential equa-
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tion (SDE) (Song et al., 2021b). Despite their empirical
success, SBGMs are restricted by their assumption of a
Gaussian source, which is essential for optimization with
the simulation-free denoising objective. This assumption
is often violated in the temporal evolution of physical or
biological systems, such as in the case of single-cell gene ex-
pression data, which prevents the use of SBGMs for learning
the underlying dynamics.

An approach of choice in such problems has been to use
flow-based generative models, synonymous with continuous
normalizing flows (CNFs) (Chen et al., 2018; Grathwohl
et al., 2019; Finlay et al., 2020). Flow-based models assume
a deterministic continuous-time generative process and fit
an ordinary differential equation (ODE) that transforms
the source density to the target density. Flow-based mod-
els were previously limited by inefficient simulation-based
training objectives that require an expensive integration of
the ODE at training time, but recent work has introduced
simulation-free training objectives that make CNFs com-
petitive with SBGMs when a Gaussian source is assumed
(Lipman et al., 2023; Pooladian et al., 2023) and extended
these objectives to the case of arbitrary source distributions
(Liu, 2022; Albergo & Vanden-Eijnden, 2023; Tong et al.,
2023b). However, these objectives do not yet apply to learn-
ing stochastic dynamics, which can be beneficial both for
generative modeling and for recovering the dynamics of
natural systems.

The Schrödinger bridge (SB) problem – the canonical prob-
abilistic formulation of stochastically mapping between two
arbitrary distributions – considers the most likely evolution
between a source and target probability distributions un-
der a given reference process (Schrödinger, 1932; Léonard,
2014). The SB problem has been applied in a wide variety of
problems, including generative modeling (De Bortoli et al.,
2021; Vargas et al., 2021; Chen et al., 2022; Wang et al.,
2021; Song & Ermon, 2019), modeling natural stochastic
dynamical systems (Schiebinger et al., 2019; Holdijk et al.,
2022; Koshizuka & Sato, 2023), and mean field games (Liu
et al., 2022). Except for a small number of special cases
(e.g. Gaussian (Mallasto et al., 2022; Bunne et al., 2022a)),
the SB problem typically does not have a closed-form solu-
tion, but can be approximated with iterative algorithms that
require simulating the learned stochastic process (De Bor-
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Figure 1: Left: ODE and SDE paths from 8-Gaussians to moons, sampled from a model trained using [SF]2M. [SF]2M
makes it possible to vary the diffusion schedule at inference time and thus interpolate between ODEs and SDEs that have
the same marginal densities. Right: Illustration of the stochastic regression objective in [SF]2M. Given a source point
x0 and target point x1 sampled from an entropic OT plan between marginals, an intermediate point xt is sampled from
the Brownian bridge (marginal in light blue) in a simulation-free way. Neural networks are regressed to the ODE drift
u◦
t (xt|x0, x1) and to the conditional score ∇ log pt(xt|x0, x1). The regression objective is stochastic, as the same point xt

may appear on different conditional paths, e.g., the dotted path from x′
0 to x′

1. The stochastic regression recovers dynamics
that transform the marginal at time 0 to that at time 1.

toli et al., 2021; Chen et al., 2022; Bunne et al., 2022a).
While theoretically sound, these methods present numeri-
cal and practical issues that limit their scalability to high
dimensions (Shi et al., 2023).

This paper introduces a simulation-free objective for the
Schrödinger bridge problem called simulation-free score
and flow matching ([SF]2M). [SF]2M simultaneously gen-
eralizes (1) the simulation-free objectives for CNFs (Tong
et al., 2023b; Pooladian et al., 2023) to the case of stochastic
dynamics and (2) the denoising training objective for dif-
fusion models to the case of arbitrary source distributions
(Figure 1). Our algorithm uses a connection between the
SB problem and entropic optimal transport (OT) to express
the Schrödinger bridge as the Markovization of a mixture of
Brownian bridges (De Bortoli et al., 2021; Léonard, 2014).
In contrast to dynamic SB algorithms that require simulating
an SDE on every iteration, [SF]2M can take advantage of
static entropic OT maps between source and target distribu-
tions, which are efficiently approximated by the Sinkhorn
algorithm (Sinkhorn, 1964; Cuturi, 2013; Altschuler et al.,
2017) or stochastic algorithms (Genevay et al., 2016; Seguy
et al., 2018).

We demonstrate the effectiveness of [SF]2M on both syn-
thetic and real-world datasets. On synthetic data, we show
that [SF]2M performs better than related prior work in
generative modeling metrics and finds a better approxi-
mation to the true Schrödinger bridge. As an application
to real data, we consider modeling sequences of cross-
sectional measurements (i.e., unpaired time series obser-
vations) by a sequence of Schrödinger bridges. While there

are many prior methods on modeling cells with Schrödinger
bridges in the static setting (Schiebinger et al., 2019; Huguet
et al., 2022b; Lavenant et al., 2021; Nolan et al., 2023) or
low-dimensional dynamic setting (Bunne et al., 2022b;a;
Koshizuka & Sato, 2023), [SF]2M is the first method able
to scale to thousands of gene dimensions, as its training
is completely simulation-free. We also introduce a static
manifold geodesic map which improves cell interpolations
in the dynamic setting, demonstrating one of the first practi-
cal applications of Schrödinger bridge approximations with
non-Euclidean costs. Finally, we show that unlike in the
static optimal transport case, we are able to directly model
and recover the gene-gene interaction network driving the
cell dynamics.

Outline. In §2, we review the mathematical background
needed to formulate [SF]2M. §3 presents and analyzes the
proposed algorithm. §4 reviews related work, and §5 is
dedicated to experiments.

2. Preliminaries: Neural SDEs and
Schrödinger bridges

In this section we review the mathematical background and
common assumptions needed to state our new algorithms.
The exposition closely follows that of Tong et al. (2023b)
but extends it to the stochastic case.

We will consider a pair of compactly supported distributions
over Rd with densities q(x0) and q(x1) (also denoted q0, q1).
The densities may not be explicitly known, but instead we
may have finite datasets of samples available. The problem
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of continuous-time stochastic generative modeling, or SDE
inference, consists in finding a stochastic mapping f that
transforms q0 to q1. Samples from q1 can then be generated
by drawing a sample from q0 – which could be an easy-to-
sample distribution, such as a Gaussian – and transforming
it by f to obtain a sample from q1.

2.1. SDEs, scores, and probability flows

We consider a stochastic differential equation1 defined by a
smooth time-dependent vector field u : [0, 1] × Rd → Rd

and a continuous, positive diffusion function g : [0, 1] →
R>0:

dx = ut(x) dt+ g(t) dwt, (1)

where ut(x) is used interchangeably with u(t, x) and dwt

is the standard Brownian motion. Given a distribution over
initial conditions p(x0), this SDE defines a stochastic pro-
cess, or distribution over paths, which is a joint distribution
over variables xt indexed by t ∈ [0, 1].

Although the evolution of points according to the SDE
over short time ranges is simple – p(xt+∆t|xt) is approxi-
mated by the Gaussian N (xt + ut(xt)∆t, g(t)2∆t) – the
long-range conditional distributions p(xt | x0) induced by
the SDE may be quite complex. This property enables
continuous-time stochastic models, such as diffusion mod-
els, to sample multimodal distributions by iterative addition
of conditional Gaussians to an initial noise sample.

A density p(x0) evolved according to the SDE (1) induces
marginal distributions p(xt), with their densities also de-
noted pt. The marginal densities, viewed as a function
p : [0, 1]× Rd → R, are characterized by the initial condi-
tions p0 and the Fokker-Planck equation:

∂p

∂t
= −∇ · (ptut) +

g2(t)

2
∆pt, (2)

where ∆pt = ∇ · (∇pt) is the Laplacian. In the degenerate
case g(t) ≡ 0, the SDE becomes an ODE and we recover
the continuity equation ∂p

∂t = −∇·(ptut). From the Fokker-
Plank and continuity equations, it can easily be derived that
the ODE

dx =

[
ut(x)−

g(t)2

2
∇ log pt(x)

]
︸ ︷︷ ︸

u◦
t (x)

dt, (3)

together with distribution over initial conditions p(x0), in-
duces the same marginal distributions pt(·) as the SDE (1);
therefore, (3) is called the probability flow ODE of the
process. Conversely, if the probability flow ODE’s drift
u◦
t (x), the diffusion schedule g(·), and the score function

1Because the diffusion term depends only on t, the SDE can be
either in the Itô or the Stratonovich sense.

∇ log pt(x) are known, then the SDE’s drift term can be
recovered via

ut(x) = u◦
t (x) +

g(t)2

2
∇ log pt(x). (4)

Therefore, specifying an SDE is tantamount to specify-
ing its probability flow ODE and its score function. By
reversing the sign in of u◦

t in the ODE (3) and converting
to an SDE using (4), we also recover the formula for the
reverse-time SDE from Anderson (1982):

dx =

[
−u◦

t (x) +
g(t)2

2
∇ log pt(x)

]
dt+ g(t) dwt

=
[
−ut(x) + g(t)2∇ log pt(x)

]
dt+ g(t) dwt, (5)

which induces the same distribution on x1−t as (1) does on
xt.

Approximating SDEs with neural networks. If the
marginal pt(x) can be tractably sampled and one knows the
probability flow ODE’s drift u◦

t (x) and score ∇ log pt(x),
both can be approximated by neural networks. Specifically,
time-varying vector fields vθ(·, ·) : [0, 1] × Rd → Rd and
sθ(·, ·) : [0, 1]× Rd → Rd can be trained with the (uncon-
ditional) score and flow matching objective

LU[SF]2M(θ) = Et∼U(0,1),x∼pt(x)

[
∥vθ(t, x)− u◦

t (x)∥2︸ ︷︷ ︸
flow matching loss

+λ(t)2 ∥sθ(t, x)−∇ log pt(x)∥2︸ ︷︷ ︸
score matching loss

]
,

(6)

where λ(·) is some choice of positive weights. (In prac-
tice, it can be more stable to approximate g(t)2∇ log pt(x)
rather than ∇ log pt(x), a simple parametrization change
that does not change the learning problem or the objective.)
Once trained, vθ and sθ can be used to simulate the SDE
from source samples x0. This procedure is described in
Algorithm 2.

Remarkably, with a separate parametrization of the proba-
bility flow ODE and the score, we can simulate the SDE
at inference time with an arbitrary diffusion rate g(·) that
need not match the one used at training time and still obtain
samples from the same marginals if the global optimum of
(6) is attained (Figure 1). For example, we can simulate
the probability flow ODE by setting g(t) ≡ 0. Similarly,
the backward SDE can be simulated starting at samples x1

using the time reversal formula (5).

Gaussian marginals and Brownian bridges. We will
require some facts about ODEs and SDEs whose marginals
are Gaussian, i.e., pt(x) = N (x;µt, σ

2
t ). By Theorem 3 of

Lipman et al. (2023) or Theorem 2.1 of Tong et al. (2023b),
these marginals are generated by the ODE defined by

u◦
t (x) =

σ′
t

σt
(x− µt) + µ′

t, (7)
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where σ′
t, µ

′
t denote time derivatives, and have score

∇ log pt(x) = −(x− µt)/σ
2
t . A case of particular interest

is the Brownian bridge from x0 to x1 with constant diffu-
sion rate g(t) = σ, which has pt(x) = N (x; tx1 + (1 −
t)x0, σ

2t(1− t)) and therefore satisfies

u◦
t (x) =

1− 2t

t(1− t)
(x− (tx1 + (1− t)x0)) + (x1 − x0),

∇ log pt(x) =
tx1 + (1− t)x0 − x

σ2t(1− t)
. (8)

2.2. Schrödinger bridges via entropic optimal transport

In this section, we briefly recall the entropically-
regularized optimal transport problem and its connections
to Schrödinger bridges.

Entropically-regularized optimal transport. For two
probability measures q0 and q1, the entropically-regularized
OT problem is defined as follows:

OTε(q0, q1) = min
π∈U(q0,q1)

∫
d(x0, x1)

2 dπ(x0, x1)

+ εKL(π∥q0 ⊗ q1), (9)

where U(q0, q1) is the set of admissible transport plans
(joint distributions over x0 and x1 whose marginals are
equal to q0 and q1), d(·, ·) is the ground cost, ε is the reg-
ularization parameter, and q0 ⊗ q1 is the joint distribution
over x0, x1 in which x0 and x1 are independent. We denote
the entropic optimal transport plan – the argmin in (9) – as
π⋆
ε . When ε → 0, we recover the classical (Kantorovich)

optimal transport, which we call exact optimal transport.

Schrödinger bridge. The Schrödinger bridge problem
asks what the most likely evolution between two marginals
with respect to some reference stochastic process is. For-
mally, the Schrödinger bridge is the solution to the following
problem:

P⋆ = min
P:p0=q0,p1=q1

KL(P ∥Q), (10)

where P is a stochastic process (distribution over continu-
ous paths [0, 1] → Rd) with law pt and Q is a reference
process. One often considers Q = σW where W is the
standard Brownian motion defined by the SDE dx = dwt,
in which case the solution to (10) is known as the diffusion
Schrödinger bridge (De Bortoli et al., 2021; Bunne et al.,
2022a). Interestingly, the marginals of the Schrödinger
bridge can be characterized as a mixture of Brownian
bridges weighted by an entropic OT plan in the following
way:

pt(x) =

∫
pt(x|x0, x1) dπ

⋆
2σ2(x0, x1) (11)

where pt(x|x0, x1) = N (x; (1− t)x0 + tx1, σ
2t(1− t)) is

the marginal of the Brownian bridge between x0 and x1 with

diffusion rate σ. This formulation motivates our approach,
which uses fast solutions to the entropy-regularized OT prob-
lem (9) and the closed-form u◦

t and ∇ log pt of Brownian
bridges (8) to approximate the Schrödinger bridge.

3. [SF]2M: Simulation-free training of SDEs
We next describe our method of simulation-free score
and flow matching, which is summarized in Alg. 1. We
present the general case in §3.1, then consider the discrete
Schrödinger bridge case with entropy-regularized joint in
§3.2, and specializations to cell dynamics with a geodesic
cost in §3.3.

3.1. Matching the conditional flow and score

Tong et al. (2023b) described a general simulation-free
stochastic regression objective, conditional flow matching
(CFM), that fits an ODE generating marginal distributions
pt(x) that are mixtures of Gaussian probability paths, given
unpaired samples of x0 and x1. We generalize CFM to the
stochastic setting.

Suppose the marginal probabilities pt(x) are representable
as mixtures over a latent distribution q(z) i.e.

pt(x) =

∫
pt(x|z)q(z) dz. (12)

Suppose also that pt(x|z) is generated by u◦
t (x|z) from

initial conditions p0(x|z). One then has expressions for an
ODE that generates pt(x) from initial conditions p0, and
for the score of pt(x), in terms of the conditional ODEs and
scores:

u◦
t (x) = Eq(z)

u◦
t (x|z)pt(x|z)

pt(x)
,

∇ log pt(x) = Eq(z)

[
pt(x|z)
pt(x)

∇ log pt(x|z)
]
. (13)

To be precise, we have the following generalization of The-
orem 3.1 from Tong et al. (2023b):

Theorem 3.1. Under mild regularity conditions, the ODE
dx = u◦

t (x) dt generates the probability path (12) from
initial conditions p0(x), and the score of pt is given by (13).

A stochastic regression objective. The expressions for
the marginal ODE drift and score in (13) motivate objec-
tives for fitting u◦

t (x) and ∇pt(x) with neural networks
when only the conditional ODEs and scores are known.
Generalizing (6), we define the (conditional) simulation-
free score and flow matching objective ([SF]2M) for neural
networks vθ(·, ·) approximating the ODE drift and sθ(·, ·)
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approximating the score:

L[SF]2M(θ) =

= Et∼U(0,1),z∼q(z),x∼pt(x|z)
[
∥vθ(t, x)− u◦

t (x|z)∥2︸ ︷︷ ︸
conditional flow matching loss

+ λ(t)2 ∥sθ(t, x)−∇ log pt(x|z)∥2︸ ︷︷ ︸
conditional score matching loss

]
, (14)

where, as in (6), λ(·) is some choice of positive weights.
This objective can be used to approximate the quantities de-
fined in (13), provided the conditional ODEs and scores are
known and pt(x|z) can be tractably sampled. Correctness
is guaranteed by the following:

Theorem 3.2. If pt(x) > 0 for all x ∈ Rd and t ∈
[0, 1], then L[SF]2M(θ) and LU[SF]2M(θ) are equal up to
a constant, and ∇θLU[SF]2M(θ) = ∇θL[SF]2M(θ), where
LU[SF]2M(θ) is the unconditional score and flow matching
loss (6).

This result generalizes Theorem 3.2 of Tong et al. (2023b). It
provides a simulation-free way to train neural networks suf-
ficient to simulate an SDE generating marginals pt(x) with
arbitrary diffusion rate g(·) (cf. the discussion following
(6)). The training and inference algorithms are summarized
as Algs. 1 and 2.

We remark that the conditional ODEs and scores themselves
arise from SDEs, then the SDE recovered from the ODE
and score defined via (13) is the Markovian projection of
the mixture of stochastic processes indexed by z. The
Markovization of a mixture of SDEs, approximated in a
simulation-based way, is also used to solve the Schrödinger
bridge problem in De Bortoli et al. (2021); Shi et al. (2022;
2023).

Algorithm 1 Simulation-Free Score and Flow Matching
Training

Input: Efficiently samplable q(z), pt(x|z), computable
ut(x|z), initial networks vθ and sθ.
while Training do

z ∼ q(z); t ∼ U(0, 1); x ∼ pt(x|z)
L[SF]2M ← ∥vθ(t, x)−ut(x|z)∥2+λ(t)2∥sθ(t, x)−
∇x log pt(x|z)||2 ▷ see eq. 14
θ ← Update(θ,∇θL[SF]2M)

return vθ, sθ

Sources of conditional ODEs and scores. Although the
[SF]2M framework can handle general conditioning infor-
mation z, in this paper we consider the case where z is
identified with a pair (x0, x1) of a source and target point.
For a given z = (x0, x1), we will take the conditional prob-
ability path pt(x|z) to be a Brownian bridge with constant
diffusion scale σ, so that u◦

t (x|z) and ∇ log pt(x|z) are

given by (8). To avoid numerical issues for t close to 0 or
1, we add a small smoothing constant σmin to the variance.
The conditional distributions are thus peaky at x0 and x1 at
t = 0 and t = 1. (An extension to nonconstant diffusion
scale is described in §C.)

For the resulting marginal pt(x) to satisfy the boundary con-
ditions p0(x) = q0(x) and p1(x) = q1(x), q(x0, x1) must
be a coupling of (q0, q1), which we denote as U(q0, q1).
This can be formalized in the following theorem:

Theorem 3.3 ([SF]2M solves the generative modeling prob-
lem). If q(x0, x1) ∈ U(q0, q1) and v∗θ , s

∗
θ globally minimize

L[SF]2M(θ) then if pt is the marginal probability induced
by an SDE with drift [v∗θ + 1

2g(t)
2s∗θ] and diffusion g, and

initial conditions p0, then pt(x) = qt(x) for all t and x.

Taking t = 1, this tells us that as long as our joint dis-
tribution q(x0, x1) has the correct marginals, [SF]2M will
optimize for a valid generative model which pushes q0 to q1
or vice-versa. For the ODE case, various options were stud-
ied in Tong et al. (2023b). Various choices for the stochastic
case will be discussed in §3.2.

3.2. Building Schrödinger bridges via [SF]2M and
entropic optimal transport

In the previous section, we showed that our method SF2M
can approximate marginal probability pt in the form of
eq. 12. In this section, we explain how our [SF]2M frame-
work is able to approximate a Schrödinger bridge as a spe-
cial case.

[SF]2M approximates the Schrödinger bridge. In order
to achieve an efficient approximation of the Schrödinger
bridge, we leverage a significant insight: its marginals can
be expressed as a mixture of Brownian bridges, which are
weighted by an entropic optimal transport plan as shown in
eq. 11. Therefore, to approximate the Schrödinger bridge
with [SF]2M, we just need to set the distribution q(x0, x1)
to be equal to the entropic OT plan π⋆

2σ2(q0, q1) and then,
to train our networks vθ and sθ following Algorithm 1. We
show in the next proposition that our [SF]2M method cor-
rectly approximates the Schrödinger bridge, which is a di-
rect consequence of Theorem 3.3 and eq. 11.

Proposition 3.4 ([SF]2M with entropic OT computes the
SB marginals). Denote the law of the Schrödinger bridge
between q̂0 and q̂1 as p. Then if v⋆θ , s⋆θ globally minimize
L[SF]2M with respect to π⋆

2σ2(q̂0, q̂1), then they generate the
marginals of the empirical SB pt (eq. 11).

Empirical distributions of finite support. Unfortunately,
the real distributions q0 and q1 are usually unknown and
we only have access to i.i.d. samples forming empirical
distributions q̂0 and q̂1 of size n. Therefore, we can only
approximate the true entropic OT plan by computing the
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entropic OT plan between empirical distributions q̂0 and
q̂1, which we denote π⋆

2σ2(q̂0, q̂1) (Cuturi, 2013; Altschuler
et al., 2017). This also means that we only have access to an
empirical Schrödinger bridge. Note that it is straightforward
to adapt Proposition 3.4 to show that [SF]2M approximates
the empirical Schrodinger bridge. Fortunately, it has been
established that the true entropic OT cost can be efficiently
approximated using empirical distributions, even in high-
dimensional spaces (Genevay et al., 2019; Mena & Niles-
Weed, 2019), and it was recently shown that the Schrödinger
bridge inherits this property (Stromme, 2023, Theorem 5)
with O(n1/2) error.

The entropic OT plan between empirical distributions can be
efficiently computed using the Sinkhorn algorithm (Cuturi,
2013), which has a quadratic computational complexity in
the number of samples n (Altschuler et al., 2017). However,
this cost may be too high, either because n is too large or
because arbitrarily many samples can be drawn from the
source or target (such as in the Gaussian-to-data setting).
Therefore, we consider the minibatch OT approximation
that we discuss in the next paragraph.

Approximating Schrödinger bridge via minibatch opti-
mal transport. When n is too large, we consider batches
of size m≪ n, following Fatras et al. (2020; 2021b). In this
case the minibatch optimal transport is defined informally
as the average over many smaller “minibatch” plans.

MBOTm(q̂0, q̂1) := Eα∼q̂⊗m
0 ,β∼q̂⊗m

1
OTε(α, β) (15)

The MBOT complexity complexity scales with O(km2) for
a k-sample Monte Carlo approximation. In practice, we
set m equal to the stochastic gradient descent batch size
following Tong et al. (2023b); Pooladian et al. (2023). This
has extremely small computational overhead in practice. We
also find that the minibatch ε should be smaller than 2σ2

(or even equal to zero) in the minibatch setting to reach best
empirical performance. We show that this might be due to
the implicit entropy-inducing regularization of minibatch
OT (Fatras et al., 2020; 2021b), which we detail further in
§B.1 and illustrate in Figure S1.

3.3. Applications to learning cell dynamics and
regulatory networks

The modeling of cell dynamics is one of the most impor-
tant open problems in single-cell data science (Lähnemann
et al., 2020). Successful modeling of cell dynamics is im-
portant for understanding – and eventually intervening in –
cellular programs of development and disease (Tong et al.,
2023a). Cellular dynamics between time-resolved snapshot
data, representing observations of cells lying in the space of
gene activations, are commonly modeled using Schrödinger
bridges (Hashimoto et al., 2016; Schiebinger et al., 2019;
Bunne et al., 2022a; Koshizuka & Sato, 2023). The applica-

bility of the SB formulation to cell dynamics relies upon the
principle of least action, which is thought to hold for cellular
systems over short timescales (Schiebinger, 2021). Over
longer timescales, this assumption no longer holds; to this
end, non-Euclidean costs have been explored in the static
context (Huizing et al., 2022; Huguet et al., 2022b), but they
are difficult to formulate in the dynamic (SB) framework.

High-dimensional transport with geodesic costs. Cells
are thought to lie on a low-dimensional manifold in the
space of gene expressions (Moon et al., 2018). Recent
methods have tried to take advantage of this with density-
adhering regularizations (Tong et al., 2020; Koshizuka &
Sato, 2023) or embedding into a space where Euclidean
distances reflect manifold geodesic distances (Huguet et al.,
2022a). Because [SF]2M is able to match a coupling be-
tween marginals q(x0, x1) defined by entropic OT with an
arbitrary cost function, we propose to fit a Schrödinger
bridge with marginals that match a geodesic cost.

Specifically, we use the Geodesic Sinkhorn method (Huguet
et al., 2022b), which computes the static joint q(x0, x1)
using (entropic) OT with cost

cgeo(x0, x1) =
√
− logHt(x0, x1). (16)

The matrix Ht is an approximation of the heat kernel de-
fined via the Laplace-Beltrami operator on the manifold,
efficiently approximated using a k-nearest-neighbour graph
(see Huguet et al. (2022b)). We find using this cost leads to
more accurate trajectories in high dimensions.

Learning developmental landscapes. A common model
of cell development, known as Waddington’s epigenetic
landscape (Waddington, 1942), assumes that cells evolve
and differentiate in the space of gene expressions by follow-
ing (noisy) gradient descent on an energy function. While
there have been attempts to approximate this energy func-
tion from single-cell data before (Tang, 2017; Qin et al.,
2023), we formalize a method to do so from single-cell
sequencing data using [SF]2M. To do this, we impose a
Langevin dynamics parametrization on the flow and score:
vθ(t, x) = −∇xEv(t, x) and sθ(t, x) = −∇xEs(t, x),
where Ev and Es are neural networks. We can define the
Waddington’s landscape by W := Ev + 1

2g(t)
2Es. The

drift of the SDE is then ut(x) = −∇xW (t, x), meaning
that the time-evolution of a cell follows gradient dynamics
on W with added Gaussian noise of scale g(t). We visualize
these landscapes in Figure 2 with further details in §F.6.

Learning gene regulatory networks. Finally, we use
[SF]2M to learn gene regulatory networks from population
snapshots of gene expressions, a persisting challenge in
cellular biology (Pratapa et al., 2020). Following previ-
ous work in discovering sparse interaction structure from
continuous-time systems (Tank et al., 2021; Aliee et al.,
2021; Bellot & Branson, 2022; Aliee et al., 2022; Atanack-
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Figure 2: Visualization of learned Waddington’s landscape
W with a bifurcating trajectory for one Gaussian to two
Gaussians (left) and for the Embryoid Body (EB) data
(right) (Moon et al., 2019). Three dimensions are space
(left-right), time (forward-back), and potential (up-down).

ovic et al., 2023), we define the gene regulatory network in
this setting as the directed graph whose vertices are genes
(dimensions of the space) and an edge i → j is present if
and only if ∂(vθ(t,x))j

∂xi
̸= 0. This directed graph is expected

to be sparse.

Previous work resorted to performing inference of trajecto-
ries in a low-dimensional (and dense) representation (Tong
et al., 2023a; Bunne et al., 2022b), which complicated
the discovery of the sparse graph structure in gene space.
[SF]2M is the first Schrödinger bridge method to scale to
high dimensions instead of compressing to low dimensional
PCA space. This allows us to learn a dynamics model di-
rectly in the gene space and recover the sparse gene interac-
tions. To accomplish this, we use a specialized parametriza-
tion of vθ, inspired by Bellot & Branson (2022), which
enables the graph structure to be read out from the sparsity
pattern of the initial layer of the trained model (see §F.7 for
details).

4. Related work
Stochastic continuous-time modeling. Our framework
is related to both flow-based (Chen et al., 2018; Grath-
wohl et al., 2019; Albergo et al., 2023; Albergo & Vanden-
Eijnden, 2023; Neklyudov et al., 2022; Liu, 2022) and score-
based (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
2020; Song et al., 2021b; Ho et al., 2020; Winkler et al.,
2023; Dhariwal & Nichol, 2021; Watson et al., 2022) gen-
erative modeling. Both have drawn attention due to their
stability and efficiency in training and high quality of gener-
ated samples.

Previous studies have focused on simulation-free training
of CNFs, including ones with Gaussian source distribution
(Rozen et al., 2021; Ben-Hamu et al., 2022; Lipman et al.,
2023; Fernandes et al., 2022) and those that use indepen-
dent samples from q0 and q1 (Albergo & Vanden-Eijnden,

2023; Albergo et al., 2023). Recent research has also in-
vestigated the regularization of flows through dynamic OT
(Liu et al., 2023b; Pooladian et al., 2023; Shi et al., 2023)
and Schrödinger bridges and dynamic OT from unpaired
samples (Shi et al., 2022; Wang et al., 2021; Tong et al.,
2023b). De Bortoli et al. (2021); Chen et al. (2022); Var-
gas et al. (2021); Peluchetti (2023) also fit SDEs between
unpaired distributions, but require an alternating minimiza-
tion that fits both forward and backward processes, while
our method can directly target the drift and score without
iterative optimization in continuous space. Shi et al. (2023);
Peluchetti (2023) propose an iterative procedure for training
Schrödinger bridge models using similar ideas however they
do not make use of fast static optimal transport solvers, and
still require simulation during outer loops. We note this
outer iterative looping method can also be applied to our
method which improves the Schrödinger bridge marginals
at the cost of generative performance (Table S1).

Applications to cell dynamics. When the observer seeks
to recover dynamics from multiple snapshots with scRNA-
seq data, the machinery of optimal transport (Schiebinger
et al., 2019; Yang et al., 2020; Tong et al., 2020; Bunne
et al., 2022b; Huguet et al., 2022a; Bunne et al., 2022a;
Koshizuka & Sato, 2023) can be used. However, these
methods all require simulation during training, which causes
issues when scaling to large dimensions. We introduce the
first fully simulation-free Schrödinger bridge model for cell
dynamics and show it can be applied to high-dimensional
data, contrary to previous work.

5. Experiments
In this section we empirically evaluate [SF]2M with respect
to optimal transport, generative modeling, and single-cell
interpolation criteria. We compare:

• Minibatch [SF]2M with exact OT minibatches ([SF]2M-
Exact), with entropic OT (Sinkhorn) minibatches
([SF]2M-Sink), and with Geodesic OT ([SF]2M-Geo)
when applicable.

• A variety of (ODE) flow-based models, including opti-
mal transport conditional flow matching (OT-CFM, Tong
et al. (2023b)), rectified flow (RF, Liu (2022)), and flow
matching (FM, Lipman et al. (2023)).

• Schrödinger bridge models: diffusion Schrödinger bridges
(DSB, De Bortoli et al. (2021)) and diffusion Schrödinger
bridge matching (DSBM, Shi et al. (2023)), which is
equivalent to the concurrent work on iterated diffusion
mixture transport (IDBM, Peluchetti (2023)).

All results are presented as mean ± standard deviation over
five seeds. Additional experimental details can be found in
§F.
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Table 1: Two-dimensional data: generative modeling performance (W2) and dynamic OT optimality (NPE) divided into
SDE methods (top) and ODE methods (bottom). [SF]2M performs the best on 3 of 4 datasets and is similar to OT-CFM,
which is equivalent to [SF]2M as g(t)→ 0. *Denotes results from Shi et al. (2023).

Metric W2 (↓) Normalized Path Energy (↓)
Dataset 8gaussians moon-8gaussians moons scurve 8gaussians moon-8gaussians moons scurve

[SF]2M-Exact 0.275 ± 0.058 0.726 ± 0.137 0.124 ± 0.023 0.128 ± 0.005 0.016 ± 0.012 0.045 ± 0.031 0.053 ± 0.038 0.034 ± 0.024
DSBM-IPF (Shi et al., 2023)* 0.315 ± 0.079 0.812 ± 0.092 0.140 ± 0.006 0.140 ± 0.024 0.022 ± 0.020 0.244 ± 0.027 0.383 ± 0.034 0.297 ± 0.036
DSBM-IMF (Shi et al., 2023)* 0.338 ± 0.091 0.838 ± 0.098 0.144 ± 0.024 0.145 ± 0.037 0.029 ± 0.017 0.345 ± 0.049 0.230 ± 0.028 0.286 ± 0.033
DSB (De Bortoli et al., 2021)* 0.411 ± 0.084 0.987 ± 0.324 0.190 ± 0.049 0.272 ± 0.065 — — — —

OT-CFM (Tong et al., 2023b) 0.303 ± 0.043 0.601 ± 0.027 0.130 ± 0.016 0.144 ± 0.028 0.031 ± 0.027 0.015 ± 0.010 0.083 ± 0.009 0.027 ± 0.012
SB-CFM (Tong et al., 2023b) 2.314 ± 2.112 — 0.434 ± 0.594 0.341 ± 0.468 1.000 ± 0.000 — 0.995 ± 0.000 0.745 ± 0.039
RF (Liu, 2022) 0.421 ± 0.071 1.525 ± 0.330 0.283 ± 0.045 0.345 ± 0.079 0.044 ± 0.031 0.203 ± 0.090 0.130 ± 0.078 0.099 ± 0.066
I-CFM (Tong et al., 2023b) 0.373 ± 0.103 1.557 ± 0.407 0.178 ± 0.014 0.242 ± 0.141 0.202 ± 0.055 2.680 ± 0.292 0.891 ± 0.120 0.856 ± 0.031
FM (Tong et al., 2023b) 0.343 ± 0.058 — 0.209 ± 0.055 0.198 ± 0.037 0.190 ± 0.054 — 0.762 ± 0.099 0.743 ± 0.116

Low-dimensional data: Conditional generative model-
ing and optimal transport. We first evaluate how well
various methods approximate dynamic optimal transport
in low dimensions. Table 1 summarizes our results, show-
ing that [SF]2M outperforms all methods, both stochas-
tic (top) and deterministic (bottom). We report the 2-
Wasserstein distance between the predicted distribution and
the target distribution with samples of size 10,000. Fol-
lowing Tong et al. (2023b), we also report the Normalized
Path Energy relative to the 2-Wasserstein distance, defined
as NPE(p, q) := |

∫
∥vθ(t, x)∥2dt −W2

2 (p, q)|/W2
2 (p, q).

This metric is equal to zero if and only if vθ solves the
dynamic optimal transport problem.

Schrödinger bridge construction. Next we evaluate
how well various methods can model a Schrödinger
bridge between Gaussian distributions. The Gaussian-to-
Gaussian Schrödinger bridge has closed-form Gaussian
marginals (Mallasto et al., 2022; Bunne et al., 2022a). Fol-
lowing De Bortoli et al. (2021), it is possible to evaluate the
quality of empirical marginals with respect to the ground
truth by sampling trajectories using Algorithm 2 and calcu-
lating the KL divergence between the empirical Gaussian fit
to the marginal at various timepoints and and the Gaussian
marginal of the ground truth Schrödinger bridge. This eval-
uation is shown in Table 2 at just the last timepoint (t = 1)
and an average over 21 equally spaced timepoints. We train
each method for an equal number of steps, using 20 outer
loops for DSB (De Bortoli et al., 2021) and DSBM (Shi
et al., 2023), which require iterative optimization of for-
ward and backward models. We find that in low dimensions
SB-CFM, which is closely related to [SF]2M but fits only
the ODE and not the score, performs the best, closely fol-
lowed by [SF]2M-Exact. In high dimensions, [SF]2M-Exact
better matches the target distribution, performing roughly
equally well as the algorithm from concurrent work (Shi
et al., 2023) and significantly better than the simulation-
based DSB method (De Bortoli et al., 2021).

Single cell dynamics. To test the ability of all methods
to model real cellular dynamics, we evaluate them on three

datasets in the setup established by Tong et al. (2020). Given
K timepoints, we perform leave-one-out interpolation, in-
terpolating timepoint k using a model trained on timepoints
[0, . . . , k−1, k+1, . . . ,K] (solving a SB problem between
every two successive time points, but sharing parameters be-
tween the models used on different intervals). We first mea-
sure the error on three datasets using the first five whitened
principal components (mean zero standard deviation one)
in Table 3. We find that [SF]2M performs the best among
Schrödinger bridge methods and approximately the same
as the recent OT-CFM method (Tong et al., 2023b). As this
benchmark may be somewhat saturated, we also consider
higher-dimensional PC (50 and 100 dimensions, Table 4),
as well as the 1000 dimensions corresponding to the most
highly variable genes (Wolf et al., 2018). In higher di-
mensions, the advantage of geodesic interpolation becomes
apparent with [SF]2M-Geo outperforming all other meth-
ods.

Gene regulatory network recovery. Here we demon-
strate the use-case of [SF]2M for recovering gene regulatory
networks (GRNs) from single-cell gene expression using
the algorithm described at the end of §3.3. We show how
we can use [SF]2M to simultaneously learn dynamics and
GRN structure from single-cell gene expression data. We
use BoolODE (Pratapa et al., 2020) to simulate two single-
cell systems given ground truth GRNs: (1) a system with
bifurcating trajectories (7 genes), and (2) a system with tri-
furcating trajectories (9 genes). We summarize our results
in Table 5. We also measure how accurately the ground truth
GRN is recovered using the standard AUC-ROC and aver-
age precision (AP) metrics. We find that [SF]2M with no
noise (collapsing to OT-CFM (Tong et al., 2023b)) performs
best at inferring the underlying GRN as compared to correla-
tion baselines (Pearson and Spearman correlation), a mutual
information baseline DREMI (Krishnaswamy et al., 2014),
and pairwise Granger causality (Granger, 1969). Higher
values of σ do not work quite as well, but still outperform
the baselines on most metrics.
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Table 2: Gaussian-to-Gaussian Schrödinger bridges with 10,000 datapoints between a Gaussian with parameters estimated
from empirical samples (pt) with error to the continuous Schrödinger bridge marginals (qt) either at the target distribution
(left) or averaged across 21 timepoints (right).

Metric KL(p1, q1) Mean KL(pt, qt)

dim 2 5 20 50 2 5 20 50

[SF]2M-Exact 0.003 ± 0.000 0.007 ± 0.000 0.029 ± 0.002 0.124 ± 0.003 0.004 ± 0.000 0.006 ± 0.000 0.028 ± 0.001 0.258 ± 0.001
DSBM-IPF (Shi et al., 2023) 0.006 ± 0.003 0.015 ± 0.005 0.132 ± 0.004 0.528 ± 0.013 0.002 ± 0.001 0.005 ± 0.002 0.050 ± 0.002 0.221 ± 0.004
DSB (De Bortoli et al., 2021) 2.783 ±— 8.757 ±— 49.963 ±— 221.213 ±— 2.783 ±— 8.757 ±— 49.963 ±— 221.213 ±—

SB-CFM (Tong et al., 2023b) 0.001 ± 0.000 0.001 ± 0.000 0.034 ± 0.003 0.170 ± 0.002 0.003 ± 0.000 0.008 ± 0.000 0.086 ± 0.002 0.447 ± 0.003

Table 3: Single-cell comparison over three datasets, aver-
aged over leaving out different intermediate timepoints on 5
PCs. For each left-out point, we measure the 1-Wasserstein
distance between the imputed and ground truth distributions
at the left-out time point, following Tong et al. (2020). *In-
dicates values taken from aforementioned work.

Cite EB Multi

[SF]2M-Geo 1.017 ± 0.104 0.879 ± 0.148 1.255 ± 0.179
[SF]2M-Exact 0.920 ± 0.049 0.793 ± 0.066 0.933 ± 0.054
[SF]2M-Sink 1.054 ± 0.087 1.198 ± 0.342 1.098 ± 0.308
DSBM (Shi et al., 2023) 1.705 ± 0.160 1.775 ± 0.429 1.873 ± 0.631
DSB (De Bortoli et al., 2021) 0.953 ± 0.140 0.862 ± 0.023 1.079 ± 0.117

OT-CFM (Tong et al., 2023b) 0.882 ± 0.058 0.790 ± 0.068 0.937 ± 0.054
I-CFM (Tong et al., 2023b) 0.965 ± 0.111 0.872 ± 0.087 1.085 ± 0.099
SB-CFM (Tong et al., 2023b) 1.067 ± 0.107 1.221 ± 0.380 1.129 ± 0.363

Reg. CNF (Finlay et al., 2020)* — 0.825 ±— —
T. Net (Tong et al., 2020)* — 0.848 ±— —

Table 4: Leave-one-timepoint-out testing of dynamics inter-
polation methods measuring the error between the predicted
and ground truth left out timepoint using the 1-Wasserstein
distance. We test on 50 and 100 principal components as
well as 1000 highly variable genes.

dim = 50 dim = 100 dim = 1000

Cite Multi Cite Multi Cite Multi

[SF]2M-Geo 38.524 ± 0.293 44.795 ± 1.911 44.498 ± 0.416 52.203 ± 1.957 40.092 ± 1.529 51.292 ± 0.090
[SF]2M-Exact 40.009 ± 0.783 45.337 ± 2.833 46.530 ± 0.426 52.888 ± 1.986 43.656 ± 0.715 53.149 ± 1.859
DSBM (Shi et al., 2023) 53.811 ± 7.736 66.427 ± 14.39 58.994 ± 7.623 70.751 ± 14.03 50.085 ± 4.809 61.708 ± 13.90

OT-CFM (Tong et al., 2023b) 38.756 ± 0.398 47.576 ± 6.622 45.393 ± 0.416 54.814 ± 5.858 43.246 ± 0.728 52.289 ± 1.553
I-CFM (Tong et al., 2023b) 41.834 ± 3.284 49.779 ± 4.430 48.276 ± 3.281 57.262 ± 3.855 44.117 ± 0.523 52.991 ± 1.502

Table 5: GRN recovery from simulated time-lapsed single-
cell gene expression. Shows structure predictive perfor-
mance in terms of area under the receiver operator charac-
teristic (AUC-ROC) and average precision (AP).

Bifurcating System Trifurcating System

AUC-ROC (↑) AP (↑) AUC-ROC (↑) AP (↑)
NGM-[SF]2Mσ=0 0.786 ± 0.081 0.521 ± 0.160 0.764 ± 0.066 0.485 ± 0.105
NGM-[SF]2Mσ=0.1 0.723 ± 0.014 0.444 ± 0.030 0.731 ± 0.077 0.453 ± 0.091

Spearman 0.755 ± 0.003 0.438 ± 0.002 0.718 ± 0.005 0.413 ± 0.005
Pearson 0.744 ± 0.000 0.415 ± 0.000 0.710 ± 0.002 0.405 ± 0.002
DREMI (Krishnaswamy et al., 2014) 0.594 ± 0.017 0.293 ± 0.011 0.419 ± 0.021 0.205 ± 0.007
Granger (Granger, 1969) 0.664 ± 0.013 0.421 ± 0.043 0.613 ± 0.048 0.343 ± 0.039

6. Conclusion
We have introduced a novel class of simulation-free ob-
jectives for learning continuous-time stochastic generative
models between general source and target distributions. For

sources and targets with finite support, we can directly ap-
proximate the continuous-time Schrödinger bridge without
simulation by computing the entropic OT plan via efficient
algorithms. We have shown how this can be applied to learn
cell dynamics to extract the gene regulatory structure from
snapshot data.

One limitation of [SF]2M is that it requires closed-form con-
ditional flows. Closed-form conditional flows are not avail-
able if one considers Schrödinger bridges with more general
reference processes (Fernandes et al., 2022), which may
be useful to encode further biological priors (Koshizuka &
Sato, 2023). Future work can consider how to train [SF]2M-
like models with interventional data, which can substantially
improve gene regulatory network inference.
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Appendix

A. Proofs of theorems
Theorem 3.1. Under mild regularity conditions, the ODE dx = u◦

t (x) dt generates the probability path (12) from initial
conditions p0(x), and the score of pt is given by (13).

Proof of Theorem 3.1. The first statement is Theorem 3.1 from Tong et al. (2023b), but we reproduce the key derivation
here for completeness:

d

dt
pt(x) =

d

dt

∫
pt(x|z)q(z)dz

=

∫
d

dt
(pt(x|z)q(z)) dz

= −
∫
∇ · (u◦

t (x|z)pt(x|z)q(z)) dz

= −∇ ·
(∫

u◦
t (x|z)pt(x|z)q(z)dz

)
= −∇ · (u◦

t (x)pt(x)) ,

showing that pt and u◦
t satisfy the continuity equation d

dtpt(x) +∇ · (u◦
t (x)pt(x)) = 0, which implies that u◦

t generates pt
from initial conditions p0.

To show the score is given by the expression in (13), using that pt(x) = Eq(z)pt(x|z), we have

∇ log pt(x) =
∇Eq(z)[pt(x|z)]

pt(x)

=
Eq(z)[∇pt(x|z)]

pt(x)

= Eq(z)

[
pt(x|z)∇ log pt(x|z)

pt(x)

]
,

as desired.

Theorem 3.2. If pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1], then L[SF]2M(θ) and LU[SF]2M(θ) are equal up to a constant, and
∇θLU[SF]2M(θ) = ∇θL[SF]2M(θ), where LU[SF]2M(θ) is the unconditional score and flow matching loss (6).

Proof of Theorem 3.2. We show this individually for the flow matching and score matching parts of the losses. (Note that
the equality of gradients of the flow matching parts of U[SF]2M and [SF]2M is equivalent to Theorem 3.2 of Tong et al.
(2023b).)

We claim that for any conditional vector field w◦
t (x|z) and w◦

t (x) := Eq(z)
pt(x|z)
pt(x)

w◦
t (x|z), and approximating vector field

wθ(t, x), under some regularity conditions on wt(x|z), we have

∇θEz∼q(z),x∼pt(x|z)
[
∥wθ(t, x)− w◦

t (x|z)∥2
]
= ∇θEx∼pt(x)

[
∥wθ(t, x)− w◦

t (x)∥2
]
. (17)

Assuming this claim, the theorem would follow from applying the claim to w◦
t (x|z) = u◦

t (x|z) and to w◦
t (x|z) = ∇pt(x|z)

for every value of t, noting that in these cases w◦
t (x) = u◦

t (x) and w◦
t (x) = ∇pt(x), respectively, by Theorem 3.1, and

integrating over t.

We proceed to prove the claim. We drop the distributions in the expectations for conciseness, noting that because
pt(x) = Ez∼q(z)p(x|z), no ambiguity is caused: the marginal distribution over x that stands under the expectation is the
same in Ex∼pt(x) and in Ez∼q(z),x∼pt(x|z).

∇θ

(
Ez,x

[
∥wθ(t, x)− w◦

t (x|z)∥2
]
− Ex

[
∥wθ(t, x)− w◦

t (x)∥2
])

=∇θ (−2Ez,x⟨wθ(t, x), w
◦
t (x|z)⟩+ 2Ex⟨wθ(t, x), w

◦
t (x)⟩)
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where we rewrote the squared norms as inner products and used that w◦
t (x|z), w◦

t (x) are independent of θ and that wθ(t, x)
is independent of z. To conclude, we compute

Ex ⟨wθ(t, x), w
◦
t (x)⟩ =

∫∫
⟨wθ(t, x), w

◦
t (x)⟩ pt(x) dx

=

∫ 〈
wθ(t, x),

∫
pt(x|z)
pt(x)

w◦
t (x|z)q(z) dz

〉
pt(x) dx

=

∫∫
⟨wθ(t, x), w

◦
t (x|z)⟩ pt(x|z)q(z) dx dz

= Ez,x ⟨wθ(t, x), w
◦
t (x|z)⟩ ,

showing that the difference of gradients vanishes. Note that the above derivation required exchanging the order of integration,
which requires some assumptions of regularity at infinity. (Absolute convergence of the integrals is sufficient, and in
particular, guaranteed by polynomial growth of in x of wθ w

◦
t (x|z) and exponential decay of pt(x|z) uniformly in z.)

Theorem 3.3 ([SF]2M solves the generative modeling problem). If q(x0, x1) ∈ U(q0, q1) and v∗θ , s
∗
θ globally minimize

L[SF]2M(θ) then if pt is the marginal probability induced by an SDE with drift [v∗θ + 1
2g(t)

2s∗θ] and diffusion g, and initial
conditions p0, then pt(x) = qt(x) for all t and x.

Proof of Theorem 3.3. By Theorem 3.2, assuming sufficient regularity, optimization of L[SF]2M(θ) is equivalent to optimiza-
tion of LU[SF]2M(θ), which is globally miminized when vθ(t, x) = u◦

t (x) and sθ(t, x) = ∇ log pt(x) for (Lebesgue,pt)-
almost all t ∈ [0, 1] and x ∈ Rd. Moreover, ‘almost all’ implies ‘all’ if u◦

t ,∇ log pt, vθ, sθ are continuous in t and x and pt
has full support.

By hypothesis, the vector field u◦
t (x) satisfies the continuity equation jointly with pt(x) = Eq(z)pt(x|z), which was assumed

to satisfy p0(x) = q0(x) and p1(x) = q1(x). By the algebraic derivation in §2, u◦
t (x) +

1
2g(t)

2∇ log pt(x) and pt(x)
jointly satisfy the Fokker-Planck equation. Assuming all derivatives appearing in the Fokker-Planck equation exist and are
continuous everywhere, the given SDE generates marginal probabilities pt from initial conditions p0.

Proof of Proposition 3.4. This is an immediate consequence of Theorem 3.3, which shows that the SDE learned by [SF]2M
generates the desired marginals at all t, and of (11), which characterizes the marginal of the Schrödinger bridge as that of a
mixture of Brownian bridges with mixture weights given by the entropic OT plan.

B. Background on optimal transport
In this section, we review optimal transport and its application in machine learning.

Algorithm 2 Simulation-Free Score and Flow Matching Inference (with Euler-Maruyama integration)

Input: Source distribution q0, flow and score networks vθ and sθ, diffusion schedule g(·), integration step size ∆t.
x0 ∼ q0(x)
for t in [0, 1/∆t) do

ut ← vθ(t, xt) +
g(t)2

2 sθ(t, xt)
xt+∆t ∼ N (x+ ut∆t, g(t)2∆t)

return Samples x1

B.1. Minibatch OT

In the context of generative modeling, the source distribution is a Gaussian distribution and the target distribution is the
real data distribution. This scenario corresponds to a semi-discrete optimal transport problem. Therefore, the Sinkhorn
algorithm cannot be used to compute the entropic OT plan between distributions. It is nonetheless possible to compute it
with stochastic algorithms (Genevay et al., 2016). Unfortunately, these stochastic algorithms are slow to converge and it is
prohibitive for large scale datasets. Therefore, we chose to rely on a minibatch optimal transport approximation (Fatras
et al., 2020; 2021b).
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The minibatch optimal transport approximation has been successfully before used in generative modeling (Genevay et al.,
2018; Salimans et al., 2018). As it is different from the original optimal transport problem, we want to make sure that the
basic properties from Schrödinger Bridges are conserved. We use the minibatch optimal transport plans definitions from
Fatras et al. (2020), namely

Definition B.1 (minibatch transport plan (Fatras et al., 2020)). Consider αn and βn two empirical probability distributions.
For each A = {a1, . . . , am} ∈ Pm(αn) and B = {b1, . . . , bm} ∈ Pm(βn) we denote by ΠA,B the optimal plan between
the random variables, considered as a n× n matrix where all entries are zero except those indexed in A×B. We define the
averaged minibatch transport matrix:

Πm(αn, βn) =

(
n

m

)−2 ∑
A∈Pm(αn)

∑
B∈Pm(βn)

ΠA,B . (18)

Following the subsampling idea, we define the subsampled minibatch transportation matrix:

Πk(αn, βn) := k−1
∑

(A,B)∈Dk

ΠA,B (19)

where Dk is a set of cardinality k whose elements are drawn at random from the uniform distribution on Γ :=
Pm({x1

0, · · · , xn
0})× Pm({x1

1, · · · , xn
1}).

O
T

m
at

ri
x

O
T

of
sa

m
pl

es

MEOT (m=4) MEOT (m=4,λ=0.001) MEOT (m=6) MEOT (m=6,λ=0.001) Entropic(λ=0.002) OT

0.000

0.025

0.050

0.075

0.100

0.000

0.025

0.050

0.075

0.100

Figure S1: Optimal transport couplings for different OT costs and batch sizes on a 2D example. The top row represent the
OT matching between samples while the bottom row represent the minibatch OT plan. We can see that coupling entropic OT
with minibatches lead to a uniform plan contrary to using only entropic regularization or minibatch approximation.

Note that Πk converges exponentially fast to Πm as k grows (Fatras et al., 2020, Theorem 2). In practice, it is enough
to set k equal to 1 to get good performance in deep learning applications (Genevay et al., 2018; Damodaran et al., 2018;
Fatras et al., 2021a). Therefore, the subsampling estimator does not have the correct marginals in general, contrary to Πm

which has always the right marginals (Fatras et al., 2020, Proposition 1). Minibatch optimal transport has been shown to
implicitly regularize the transport plan (Fatras et al., 2020; 2021b). Indeed, as we draw uniformly at random sample to build
the minibatches, we create non optimal connections. This is similar to the entropic optimal transport which densifies the
transport plan. Therefore, coupling the minibatch approximation with the entropic OT cost might lead to an extremely dense
plan that is close to the uniform transport plan. Unfortunately such a transport plan looses all geometric insights from data
and is also far from the original entropic OT cost. We illustrate this phenomenon in Figure S1 on a toy example between two
2D data distributions. Notably, the minibatch OT plan is closer to the entropic OT plan than the minibatch entropic OT plan.
That is why in our experiments, we observed that the minibatch approximation with exact optimal transport outperforms the
minibatch approximation with the entropic OT cost. We leave the question of closeness between minibatch OT and entropic
OT as future work. While it would have been possible to decrease these nonoptimal connections with OT variants (Fatras
et al., 2021a) it would have added extra hyperparameters that would have led to more compute.
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C. Schrödinger bridges with varying diffusion rate
While we consider constant diffusion for the majority of this paper, the theory also applies for time varying diffusion with
the variation as specified in the following Lemma.

Lemma C.1 (Brownian bridge with time-varying diffusion). Suppose xt is a stochastic process with values in functions
[0, 1]→ Rd, defined by initial conditions x0 = a and SDE dxt = σ(t) dwt, where σ(t) is continuous and positive on (0, 1).
Define F (t) =

∫ t

0
σ2(s) ds. Then xt satisfies

xt ∼ N (a, F (t))

xt | x1 = b ∼ N
(
a+ (b− a)

F (t)

F (1)
, F (t)− F (t)2

F (1)

)
.

Proof. The constraints on σ guarantee that F has a unique inverse F−1 on [0, F (1)]. Consider the process

yt =
xF−1(F (1)t) − a√

F (1)
,

which is equivalently characterized by
xt = a+

√
F (1)yF (t)/F (1).

A straightforward computation using the chain rule shows that yt satisfies y0 = 0 and dyt = dwt, i.e., yt is Brownian
motion.

By standard facts about Brownian bridges, we have

yt ∼ N (0, t)

yt | y1 =
b− a√
F (1)

∼ N
(

b− a√
F (1)

t, t(1− t)

)
.

The result follows by applying the reverse transformation to obtain the marginals of xt.

Because Markovization commutes with time reparametrization, and the SB is the Markovization of a mixture of Brownian
bridges, this immediately implies:

Corollary C.2. The solution p to the SB problem with reference process dxt = σ(t) dwt has marginal p(x0, x1) =
π2F (1)(x0, x1).

D. Further discussion of related work
Next we discuss similarities and differences in related algorithms including deterministic flow models and stochastic
score-based generative models.

D.1. Flow models

Recently, there has been significant advances in simulation-free training of flow models, which were originally trained
using maximum likelihood training in what is termed as continuous normalizing flows (Chen et al., 2018; Grathwohl et al.,
2019). In this section, we discuss the more recent flow matching techniques, which allow for simulation-free training of flow
models. In this paper we show that any deterministic flow model can be converted into a stochastic model with the addition
of a conditional score matching loss. This generalizes flow matching ideas to SDEs and provides a simple link between
score-based generative modelling and flow-based generative modeling.

Conditional flow matching, terminology introduced by Lipman et al. (2023), and extended to dynamic optimal transport in
Tong et al. (2023b); Pooladian et al. (2023), trains with the conditional flow matching loss,

LCFM (θ) = Et∼U(0,1),z∼q(z),x∼pt(x|z)∥vθ(t, x)− u◦
t (x|z)∥2. (20)

for some predefined conditional paths z, q(z), ut(x|z), and pt(x|z). Depending on the choice of conditioning and probability
paths we can recover most known flow matching techniques, such as the originally described flow matching (Lipman
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Table S1: Gaussian-to-Gaussian Schrödinger bridges with 10,000 datapoints. Here we text Sinkhorn-Exact which uses the
exact OT (default), against the Sinkhorn algorithm for the static OT within batches, and using outer loops where we simulate
10,000 trajectories for further training 20 times following Shi et al. (2023).

Dim [SF]2M-Sinkhorn [SF]2M-Exact [SF]2M-Exact-Looped

KL(p1, q1) 2 0.002 ± 0.000 0.003 ± 0.000 0.032 ± 0.009
5 0.004 ± 0.001 0.007 ± 0.000 0.088 ± 0.011

20 0.029 ± 0.001 0.029 ± 0.002 0.293 ± 0.021
50 0.122 ± 0.003 0.124 ± 0.003 0.610 ± 0.033

100 0.493 ± 0.010 0.486 ± 0.005 1.578 ± 0.026

Mean KL(pt, qt) 2 0.001 ± 0.000 0.004 ± 0.000 0.006 ± 0.002
5 0.004 ± 0.000 0.006 ± 0.000 0.019 ± 0.003

20 0.042 ± 0.001 0.028 ± 0.001 0.080 ± 0.006
50 0.276 ± 0.001 0.258 ± 0.001 0.243 ± 0.012

100 1.000 ± 0.007 0.977 ± 0.003 0.792 ± 0.008

et al., 2023), action matching (Neklyudov et al., 2022), stochastic interpolants (Albergo & Vanden-Eijnden, 2023; Albergo
et al., 2023), the 1-rectified flow (Liu, 2022), optimal transport conditional flow matching (OT-CFM) (Tong et al., 2023b)
also known as multisample flow matching (Pooladian et al., 2023), and its deterministic Schrödinger bridge counterpart,
Schrödinger bridge conditional flow matching (SB-CFM) (Tong et al., 2023b).

SDEs vs. ODEs Flow models are a powerful way to learn deterministic dynamics which are often faster to sample
from (Song et al., 2021a), particularly with ideas from dynamic optimal transport (Tong et al., 2023b; Pooladian et al., 2023).
However, recent (Liu et al., 2023a) and concurrent work (Shi et al., 2023) has noted advantages of stochastic dynamics which
we also observe (see Table 1 and Table 2), particularly in high dimensional settings and in terms of generative performance.
In this work, we also seek to model an inherently stochastic system, where there is randomness introduced based on a
variety of external factors. In particular, the fact that a single-cell develops into a whole organism, and similarly, the fact that
a single population of stem cells develops into a multitude of different cell types, requires the modelling with stochastic
dynamics that can model complex conditional distributions. While it is possible to approximate the conditional distribution
with lineage-tracing techniques (Kester & van Oudenaarden, 2018; Wagner & Klein, 2020; Klein et al., 2023), these are
biologically complex, and we leave their analysis to future work.

D.2. Learning Schrödinger bridges

Schrödinger bridge models have been used as the source-conditioned variation of score-based generative models, which can
be conditioned on a variety of source distributions including dirac (Wang et al., 2021), and from data or noised data (Somnath
et al., 2023; Liu et al., 2023a). Most algorithms are based on mean-matching, which is simulation-based and requires
simulating, storing, and matching whole trajectories (De Bortoli et al., 2021), with similar algorithms introduced by Vargas
et al. (2021); Chen et al. (2022). In particular, these algorithms parameterize a forward drift vfθ and backwards drift vbθ,
simulating trajectories in one direction and training the reverse direction to match them. Concurrent work extends this to
markovian bridges (Shi et al., 2023; Peluchetti, 2023), which greatly improves performance.

Often a consistency loss is added to make sure the forward and backwards drift are consistent which increases stability of
the training procedure (Song, 2022). The consistency loss can be seen as making sure the forward and backwards flows
match the (weighted) score function.

Lcons = Et∼U(0,1),z∼q(z),x∼pt(x|z)

[
∥vfθ (t, x) + vbθ(t, x)− g(t)2∇ log pt(x|z)∥2

]
/g(t)2 (21)

which should be zero when the forward and backward drifts are consistent. [SF]2M directly parameterizes the flow and
score, and recovers the forward and backwards bridges.
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Figure S2: Learned ODE (top) and SDE (bottom) simulations for σ ∈ [0.1, 1, 2, 3] from left to right for trained [SF]2M
model. The marginals match regardless of the chosen σ. Trajectory initializations are matched between runs.

E. Additional results and ablations
E.1. Looped [SF]2M

As previously discussed, the majority of Schrödinger bridge algorithms to date have used outer iterations to perform
iterative proportional fitting on the continuous distributions. This can create marginals closer to the true Schrödinger bridge
marginals at the cost of additional computation, and potentially worse generative modelling performance. [SF]2M is the
first Schrödinger bridge method to approximate Schrödinger bridges without performing the iterative proportional fitting in
continuous time and space, instead using much more efficient iterations in the static, discrete OT setting.

However, [SF]2M is compatible with outer looping. In Table S1 we see that outer looping (with 20 outer loops following (Shi
et al., 2023)) produces better Schrödinger bridge marginals, but worse marginals at time 1 indicating worse generative
performance. We note that outer looping takes much longer to train as [SF]2M effectively takes a single outer loop, and
may have advantages even over a single outer loop as shown in Tong et al. (2023b); Pooladian et al. (2023) where the static
solution sped up training in the deterministic setting.

Here we accomplish outer looping by simulating 5,000 (stochastic) trajectories from the backwards SDE and 5,000
trajectories from the forwards SDE. We then use the start and end points of these trajectories as samples from the
approximate static OT matrix in the next iteration. This algorithm is detailed in Algorithm 3. We always set n (the number
of samples per outer loop) to the size of the empirical dataset, fix the number of outer loops to 20, and the number inner
loops to the [SF]2M without outer loops divided by 20. This gives the same number of gradient descent steps for all methods,
but we note that the outer loop methods require simulation for each outer loop. This adds additional computation cost.

E.2. On the choice of static OT method: Sinkhorn vs. Exact

As the minibatch size gets large, [SF]2M with entropic OT with ϵ = 2σ2 is the correct choice. However, with minibatching,
we want a smaller ϵ. In practice we often use ϵ = 0 corresponding to exact (unregularized) optimal transport. We test
this on the Gaussian-to-Gaussian experiment in Table S1. Here we see that [SF]2M with sinkhorn OT works better in low
dimensions, but struggles in high dimensions. We believe this is because minibatch-OT effectively adds more entropy in
higher dimensions. More experimentation and theory is needed to determine the optimal setting of ϵ for a given dataset and
minibatch size.
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Figure S3: From top to bottom vθ(t, x), sθ(t, x) and ut(x) inferred through eq. 4 for the 8-Gaussians to moons dataset.

Table S2: GRN recovery and leave-last-timepoint-out testing using single-cell gene expression over two simulated datasets.
We measure performance of predicting the distribution of the final left-out timepoints (2-Wasserstein and radial basis
function maximum mean discrepancy) as well accuracy of structure recovery (AUC-ROC and AP).

Bifurcating System Trifurcating System

W2 (↓) RBF-MMD (↓) AUC-ROC (↑) AP (↑) W2 (↓) RBF-MMD (↓) AUC-ROC (↑) AP (↑)
OT-CFM 0.782 ± 0.105 0.054 ± 0.004 — — 0.921 ± 0.142 0.068 ± 0.006 — —
[SF]2M 0.791 ± 0.097 0.056 ± 0.005 — — 0.932 ± 0.159 0.062 ± 0.006 — —
NGM-[SF]2Mσ=0 0.783 ± 0.112 0.055 ± 0.006 0.786 ± 0.081 0.521 ± 0.160 0.912 ± 0.161 0.064 ± 0.005 0.764 ± 0.066 0.485 ± 0.105
NGM-[SF]2Mσ=0.1 0.835 ± 0.089 0.064 ± 0.011 0.723 ± 0.014 0.444 ± 0.030 1.049 ± 0.195 0.080 ± 0.014 0.731 ± 0.077 0.453 ± 0.091
NGM-[SF]2Mσ=0.01 0.813 ± 0.101 0.064 ± 0.008 0.715 ± 0.047 0.442 ± 0.033 0.956 ± 0.121 0.069 ± 0.005 0.726 ± 0.081 0.451 ± 0.094
NGM-[SF]2Mσ=0.001 0.844 ± 0.063 0.082 ± 0.018 0.699 ± 0.043 0.418 ± 0.060 1.005 ± 0.150 0.094 ± 0.014 0.725 ± 0.080 0.445 ± 0.082
Spearman — — 0.755 ± 0.003 0.438 ± 0.002 — — 0.718 ± 0.005 0.413 ± 0.005
Pearson — — 0.744 ± 0.000 0.415 ± 0.000 — — 0.710 ± 0.002 0.405 ± 0.002
DREMI (Krishnaswamy et al., 2014) — — 0.594 ± 0.017 0.293 ± 0.011 — — 0.419 ± 0.021 0.205 ± 0.007
Granger (Granger, 1969) — — 0.664 ± 0.013 0.421 ± 0.043 — — 0.613 ± 0.048 0.343 ± 0.039

F. Experimental details
F.1. Implementation details and settings

Throughout we use networks of three layers of width 64 with SeLU activations (Klambauer et al., 2017) except for the
1000 dimensional experiment where we use width 256, and for the neural graphical model (NGM) model used in the gene
regulatory network recovery task. For optimization we use ADAM-W (Loshchilov & Hutter, 2019) with learning rate 10−3

and weight decay 10−5. We train for 1,000 epochs unless otherwise noted. The flow network and score networks always
have exactly the same structure. We provide a more detailed picture of the algorithm used in Algorithm 4. For sampling we
always take 100 integration steps with either the Euler integrator for ODEs or Euler-Maruyama integrator for SDEs, except
for the Gaussian experiments where we take 20 steps to match the setup of De Bortoli et al. (2021); Shi et al. (2023). When
there are multiple timepoints (e.g. single-cell trajectories) we take 100 steps between each timepoint for a total of 100k
steps for all methods. We use σ = 1 unless otherwise noted.

F.1.1. WEIGHTING SCHEDULE λ(t)

Similar to other score and diffusion-based losses, the [SF]2M loss is defined with a weighting schedule λ(t). Since
∇ log pt(x|z) goes to infinity as t tends to zero or one, we must standardize the loss to be roughly even over time. We set
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Algorithm 3 Looped Minibatch Simulation-Free Score and Flow Matching Training

Input: Samplable source and target q0, q1, number of outer loop iterations L, inner loop iterations I , cache size n, noise
term σ, weighting schedule λ(t), initial networks vθ and sθ.
for Outer loop l ∈ [1, . . . , L] do

for Inner loop i ∈ [1, . . . , I] do
if l = 0 then

x0, x1 ∼ q⊗m
0 , q⊗m

1

π ← Sinkhorn(x0, x1, 2σ
2) ▷ Or OT(x0, x1) see §B.1

x0, x1 ∼ π⊗m ▷ Resample OT pairs from π
else

x0, x1 ∼ T⊗m

t ∼ U(0, 1)
pt(x|x0, x1)← N (x; tx1 + (1− t)x0, σ

2t(1− t))
x ∼ pt(x|x0, x1)
L[SF]2M ← ∥vθ(t, x)− ut(x|x0, x1)∥2 + λ(t)2∥sθ(t, x)−∇x log pt(x|x0, x1)||2
θ ← Update(θ,∇θL[SF]2M)

Tf ← (x0, x̂1)
⊗n//2 ▷ where x̂1 is sampled according to Alg. 2

Tb ← (x̂0, x1)
⊗n//2 ▷ where x̂0 is sampled according to the backwards analog of Alg. 2

T← [Tf ,Tb]
return vθ, sθ

Algorithm 4 Minibatch Optimal Transport Simulation-Free Score and Flow Matching Training

Input: Samplable source and target q0, q1, noise term σ, weighting schedule λ(t), initial networks vθ and sθ.
while Training do

t ∼ U(0, 1)
x0, x1 ∼ q⊗m

0 , q⊗m
1

π ← Sinkhorn(x0, x1, 2σ
2) ▷ Or OT(x0, x1) see §B.1

x0, x1 ∼ π⊗m ▷ Resample OT pairs from π
pt(x|x0, x1)← N (x; tx1 + (1− t)x0, σ

2t(1− t))
x ∼ pt(x|x0, x1)
L[SF]2M ← ∥vθ(t, x)− ut(x|x0, x1)∥2 + λ(t)2∥sθ(t, x)−∇x log pt(x|x0, x1)||2 ▷ see 8, 14
θ ← Update(θ,∇θL[SF]2M)

return vθ, sθ
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λ(t) such that the target has zero mean and unit variance, i.e. we predict the noise added in sampling x from µt before
multiplying by σ

√
t(1− t). This leads to the setting:

λ(t) = σt = σ
√
t(1− t) (22)

this weighting schedule ensures that the regression target for sθ is distributed N (0, 1).

We also experiment with directly regressing sθ against the scaled target 1
2σ

2∇x log pt(x|z), with a different weighting
function

λ(t) =
2

σ2
σt =

2
√
t(1− t)

σ
(23)

which also ensures the regression target for σ is distributed N (0, 1). With this λ, and since ∇x log pt(x|z) with a Gaussian
pt(x|z) can be simplified to −ϵ/σt where ϵ ∼ N (0, 1) we have the simplified objective:

λ(t)2 ∥sθ(t, x)−∇x log pt(x|x0, x1)∥2 = ∥λ(t)sθ(t, x)− λ(t)∇x log pt(x|x0, x1)∥2 (24)

= ∥λ(t)sθ(t, x) + ϵt∥2 (25)

This is also numerically stable as it avoids dividing by anything that approaches zero. We leave improved weighting
schedules to future work. In practice we use the schedule in eq. 23 and the simplfied objective in eq. 25.

F.1.2. STATIC OPTIMAL TRANSPORT

As discussed in §B.1 it is sometimes preferable to use exact optimal transport instead of entropic optimal transport. In
addition to the “entropy” added by minibatching, there are also numerical and practical considerations. In practice, we
find that for batches of size < 10000, implementations of exact OT through the Python Optimal Transport package
(POT) (Flamary et al., 2021) are often faster than implementations of the Sinkhorn algorithm (Cuturi, 2013), as the Sinkhorn
algorithm is known to have numerical difficulties and needs many iterations for good approximation of the true entropic
transport for small values of σ.

F.2. Computational resources

All experiments were performed on a shared heterogeneous high-performance-computing cluster. This cluster is primarily
composed of GPU nodes with RTX8000, A100, and V100 Nvidia GPUs, and CPU nodes with 32 and 64 CPUs.

F.3. Two-dimensional experimental details

For the two-dimensional experiments we follow the setup from Shi et al. (2023). This is adapted from the setup of Tong
et al. (2023b) except using larger test sets for lower variance in the empirical estimation of the Wasserstein distance. We use
a training set size of 10,000, a validation set size of 10,000, and a test set size of 10,000 for all methods and models.

We evaluate the empirical 2-Wasserstein distance for 10,000 forward samples from our model pushing the source distribution
to the target. The number reported forW2 is then

W2 =

(
min

π∈U(p̂1,q1)

∫
∥x− y∥22dπ(x, y)

)1/2

(26)

where p̂1 is sampled via eq. 2, and q1 is the test set.

As mentioned in the main text, we also measure the Normalized Path Energy. We note that this is only defined for ODE
integration, hence for stochastic methods, (i.e. [SF]2M, DSBM) we measure the normalized path energy of the probability
flow ODE (see eq. 3). The normalized path energy measures the relative deviation of the path energy of the model
(
∫
∥vθ(t, x)∥2) to the path energy of the optimal paths (W2

2 (q0, q1)), which is equivalent to the squared 2-Wasserstein
distance between the test set source and the test set target. More formally, the normalized path energy can be calculated as

NPE(q0, q1, vθ) =
|Ex(0)∼q0

∫
∥vθ(t, xt)∥2dt−W2

2 (q0, q1)|
W2

2

(27)
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where xt is the solution of the probability flow ODE with dx = vθ(t, x)dt with initial condition x0. This measures how
close the paths defined by vθ(t, x) are to the optimal transport paths in terms of average energy. We note that measuring
the path energy rather than the length (W2

2 instead ofW1) has the additional benefit that the energy differentiates between
models that follow the same paths, but at different rates, encouraging constant rate models.

F.4. Gaussian-to-Gaussian experimental details

Similar to experiments in De Bortoli et al. (2021); Shi et al. (2023), we train on a sample of 10,000 points from aN (−0.1, I)
source to 10,000 points sampled from a N (0.1, I) target, for dimensions 5, 20, and 50. We could not find all the details of
those previous experiments but we match what we can here. Since we know the closed-form solution to the Schrödinger
bridge from Mallasto et al. (2022); Bunne et al. (2022a) qt, we can compare our estimate of the marginal at time t (p̂t) with
the true distribution at time t. In particular, we compare a Gaussian approximation of p̂t, p̃t with mean and covariance
estimated from 10,000 samples of the model with qt which has the form

qt(x) = N
(
x; 0.2t− 0.1, (t(1− t)

√
4 + σ4 + (1− t)2 + t2)I

)
(28)

with the KL divergence.

We compare either the average KL over 21 timepoints (including the start and end timepoints) i.e.

KL =
1

20

20∑
k=0

KL(p̃k/20||qk/20) (29)

to measure how closely the learned flow matches the true Schrödinger bridge marginals, and we also compare the KL
divergence at time t = 1, to measure the performance as a generative model.

KL(p̃1||q1) (30)

F.5. Waddington’s landscape experimental details

We use two Waddington landscapes, one Gaussian to two Gaussians and cross-sectional measurements of Embryoid Body
(EB) data, to demonstrate the versatility of [SF]2M for trajectory inference. The three dimensions of the landscape are space,
time and potential.

More specifically, the space dimension is evolved according to the drift of the SDE by ut(x) = −∇xW (t, x). The
potential dimension is the Waddington’s landscape by W := Ev + 1

2g(t)
2Es, where vθ(t, x) = −∇xEv(t, x) and

sθ(t, x) = −∇xEs(t, x) are the flow and score for Langevin dynamics. Es and Ev are both parameterized by three layer
neural networks of width 64, the only difference with our standard implementation of vθ and sθ is that they have output
dimension width of one instead of d.

For the experiment of one Gaussian to two Gaussians, we train on a sample of 256 points from the one-dimensional source
N (0, 0.1) to 256 points sampled from the one-dimensional target N (−1, 0.1) ∪N (1, 0.1) for 10,000 steps. We then plot
20 trajectories from the source to the target with the potentials following from the gradient descend of W .

For the cross-sectional measurements from the embryoid body (EB) data, we first embed the data in one dimension with the
non-linear dimensionality reduction technique PHATE (Moon et al., 2019), which we then whiten to ensure the data is at a
reasonable scale for the neural network initialization. We train the [SF]2M model following Algorithm 5 for 50,000 steps
and plot 100 stochastic trajectories along with the height of W (t, x) normalized so to gradually descend over time.

F.6. Single-cell interpolation experimental details

Here we perform two comparisons, the first matching the setup of Tong et al. (2020) in low dimensions and the second
exploring higher dimensional single-cell interpolation. Following Huguet et al. (2022b), we repurpose the CITE-seq and
Multiome datasets from a recent NeurIPS competition for this task (Burkhardt et al., 2022) as well as the Embryoid-body
data from Moon et al. (2019); Tong et al. (2020), which has 5 population measurements over 30 days.

For the Embryoid body (EB) data, we use the same processed artifact which contains the first 100 principal components of
the data. For our tests in Table 3, we truncate to the first five dimensions, then whiten each dimension following (Tong et al.,
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Algorithm 5 Trajectory Simulation-Free Score and Flow Matching Training

Input: Samplable source and target Q = {q0, · · · , qK−1}, noise term σ, weighting schedule λ(t), initial networks vθ
and sθ.
while Training do

for k ∈ [0, · · · ,K − 2] do
xk, xk+1 ∼ q⊗m

k , q⊗m
k+1

π ← Sinkhorn(xk, xk+1, 2σ
2) ▷ Or OT(xk, xk+1) see §B.1

Xk ∼ π⊗m ▷ Resample OT pairs from π
k ∼ U(1,K)⊗m

t ∼ U(0, 1)⊗m

xi
0, x

i
1 ← Xi

k

pt(x|x0, x1)← N (x; tx1 + (1− t)x0, σ
2t(1− t))

x ∼ pt(x|x0, x1)
L[SF]2M ← ∥vθ(t+ k, x)− ut(x|x0, x1)∥2 + λ(t)∥sθ(t+ k, x)−∇x log pt(x|x0, x1)||2
θ ← Update(θ,∇θL[SF]2M)

return vθ, sθ

2020) before interpolation. For the Embryoid body (EB) dataset which consists of 5 timepoints collected over 30 days we
train separate models leaving out times 1, 2, 3 in turn. During testing we push forward all observed points Xt−1 to time t
then measure the 1-Wasserstein distance between the predicted and true distribution.

For the Cite and Multi datasets these are sourced from the Multimodal Single-cell Integration challenge at NeurIPS 2022,
a NeurIPS challenge hosted on Kaggle where the task was multi-modal prediction (Burkhardt et al., 2022). Here, we
repurpose this data for the task of time series interpolation. Both of these datasets consist of four timepoints from CD34+
hematopoietic stem and progenitor cells (HSPCs) collected on days 2, 3, 4, and 7. For more information and the raw data
see the competition site.2 We preprocess this data slightly to remove patient specific effects by focusing on a single donor
(donor 13176).

Since these data have the full (pre-processed) gene level single-cell data, we try interpolating on higher-dimensional
unwhitened principle components, and on the first 1000 highly variable genes, which is a standard preprocessing step in
single-cell data analysis. To our knowledge, [SF]2M is the first method to scale to the gene space of single-cell data. In
Table 4, we again measure the 1-Wasserstein distance between the push forward predicted distribution and the ground truth
distribution.

F.6.1. GEODESIC GROUND COSTS

We also introduce the Geodesic Sinkhorn method from Huguet et al. (2022b) for dynamic Schrödinger bridge interpolation.
Here the cost is a geodesic cost based on a k-nearest-neighbour graph between cells.

F.7. Gene regulatory network recovery experimental details

Using the neural graphical model (NGM), we can parameterize the gene-gene interaction graph directly within the ODE
drift model vθ(t, x). To do so, following from Bellot & Branson (2022) we can define:

vθj (t, x) = ϕ(· · ·ϕ(ϕ(xθ(1)j )θ
(2)
j ) · · · )θ(K)

j , j = 1, . . . , d, (31)

where θ(1)j ∈ Rd×h represents a continuous adjacency matrix of the gene-gene interactions, θ(k)j ∈ Rh×h, k = 2, . . . ,K − 1

are parameters of each proceeding hidden layer, θ(K)
j ∈ Rh×1, x ∈ Rd, and ϕ(·) is an activation function. Then we can

consider vθ(t, x) = (vθ1(t, x), . . . , vθd(t, x)) as h ensembles over structure θ(1). We can then use Algorithm 1 to train the
NGM model with the addition of an L1 penalty over structure to enforce sparsity on gene-gene interactions, i.e λ1∥θ(1)∥1.
We include bias terms in our implementation of eq. 31.

Using BoolODE (Pratapa et al., 2020), we generate simulated single-cell gene expression trajectories for a bifurcating

2https://www.kaggle.com/competitions/open-problems-multimodal/data

https://www.kaggle.com/competitions/open-problems-multimodal/data
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Figure S4: Simulated single-cell trajectories given synthetic GRNs emulating bifurcating (top) and trifurcating (bottom)
systems. GRNs contain directed edges of Boolean relationships between genes. For example, a red edge between gene 3
and gene 0 (top left) indicates that the rule for gene 0 is (not gene 3). Likewise, a blue edge between gene 6 and gene 4
indicates that rule for gene 6 is (gene 4 and gene 6). This follows from the procedure for defining synthetic GRNs using the
BoolODE framework (Pratapa et al., 2020). The color bar indicates the scale of temporal progression.

system and a trifurcating system. For the bifurcating system we consider 7 synthetic genes and generate trajectories over
1000 cells using a simulation time of 5 and an initial condition on gene 1 at a value of 1. We post-process the data and
sub-sample to 55 timepoints and scramble the cell pairing to emulate real-world data. For the trifurcating system we consider
9 synthetic genes and generate trajectories over 800 cells using a simulation time of 6 and an initial condition on gene 1 at a
value of 1. We post-process the data and sub-sample to 66 timepoints and scramble the cell pairing to emulate real-world
data. We use a train-test data split of {0.8, 0.2} respectively, and leave out the end timepoints for trajectory prediction
evaluation. We the show underlying synthetic GRNs and simulated single-cell trajectories in Figure S4.

For OT-CFM (i.e. [SF]2M with σ = 0), we parameterize the NGM model with two hidden layers where θ
(1)
j ∈ Rd×h

with h = 100 and d represents the number of input genes. Then the second layer (i.e. k = 2) is θ(2)j ∈ Rh×1. We use
this parameterization for both the bifurcating system and trifurcating systems. For [SF]2M with σ > 0, we use two heads
stemming from θ

(1)
j for the flow matching model and score matching model, respectively. Specifically, we use an additional

layer θ̃(2)j ∈ Rh×1 such that sθj (x, t) = ϕ(ϕ(xθ
(1)
j )θ

(2)
j ), j = 1, . . . , d. We use the SeLU activation functions for both

models. To train [SF]2M and NGM-[SF]2M models on the bifurcating system, we use the Adam optimizer with a learning
rate of 0.01 and batch size of 128 and use λ1 = 10−5. On the trifurcating system, we use the Adam optimizer with a
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learning rate of 0.01 and batch size of 64 and use λ1 = 10−6. We generate results for 5 model seeds. For baseline methods
(i.e. Spearman, Pearson, DREMI, and Granger) we generate results over 5 cell-pair scramble seeds. To evaluate GRN
recovery performance, we compute the area under the receiver operator characteristic (AUC-ROC) and average precision
(AP) scores of the predicted GRNs compared to the ground truth GRNs used for generating the simulated data. We mask out
the diagonal elements (self regulation loops) of the predicted and ground truth GRNs for computing the AUC-ROC and AP.
We provide the full results of the GRN recovery experiments in Table S2.


