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Abstract
Graph Neural Networks (GNNs) have emerged as the predominant paradigm
for learning from graph-structured data, offering a wide range of applications
from social network analysis to bioinformatics. Despite their versatility, GNNs
face challenges such as lack of generalization and poor interpretability, which
hinder their wider adoption and reliability in critical applications. Dropping has
emerged as an effective paradigm for improving the generalization capabilities
of GNNs. However, existing approaches often rely on random or heuristic-
based selection criteria, lacking a principled method to identify and exclude
nodes that contribute to noise and over-complexity in the model. In this work,
we argue that explainability should be a key indicator of a model’s quality
throughout its training phase. To this end, we introduce xAI-Drop, a novel
topological-level dropping regularizer that leverages explainability to pinpoint
noisy network elements to be excluded from the GNN propagation mechanism.
An empirical evaluation on diverse real-world datasets demonstrates that our
method outperforms current state-of-the-art dropping approaches in accuracy,
and improves explanation quality.

1 Introduction
The capacity to effectively process networked data has a wide range of potential applications,
including recommendation systems [1], drug design [2], and urban intelligence [3]. Graph Neural
Networks (GNN) [4–7] have emerged as a powerful and versatile paradigm to address multiple tasks
involving networked data, from node and graph classification [8–11] to link prediction [12–14] and
graph generation [15–17].

Despite their effectiveness and popularity, GNNs face various challenges that prevent their wider
adoption and reliability in critical applications [18–20], such as lack of generalization [21]poor
interpretability [22], oversmoothing [23, 24], and oversquashing [25]. A significant challenge for
GNNs is their vulnerability to noise, as irrelevant or noisy node features can propagate through the
layers and degrade the model’s performance. Dropping [26] has emerged as an effective paradigm to
reduce noise and improve GNN robustness. Dropping can be performed at different granularities,
from dropping single messages [27] to dropping edges [28], or even nodes [1, 29]. However, existing
approaches often rely on random or heuristic-based selection criteria, and lack a principled method to
identify and exclude nodes that contribute to noise and over-complexity in the model.

In this paper, we argue that explainability should be considered a first-class citizen in determining
which elements of the graph should be dropped to increase the robustness of the learned GNN.
Consider a GNN being trained for node classification. Our intuition is that the fact that the prediction
for a given node has a poor explanation is a symptom of a suboptimal function being learned and that
this symptom is more harmful if the prediction has high confidence. Figure 1 provides a graphical
illustration of this intuition. Guided by this rationale we present XAI-DROP, a novel topological-level

De Luca et al., xAI-Drop: Don’t Use What You Cannot Explain. Proceedings of the Third Learning on Graphs
Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.



xAI-Drop: Don’t Use What You Cannot Explain

Drop 
node A

C

Input grapha) b) c)

1Labels: 0

A

B

Modified graph
B

C

Explanations
conf = 0.9
pred = 1

conf = 0.6
pred = 0

conf = 0.7
pred = 1

C
Node importance:

Hard explanation:

Low High

A
B

conf = 0.9
pred = 1

B

Explanation

Training Training

d)

Figure 1: Illustration of the rationale behind XAI-DROP. Panel (a) shows a Barabási-Albert network
with house-shaped motifs randomly attached. The task here is to classify nodes as either the top of
a house (label 1) or otherwise (label 0). It is easy to see that a triangle is an approximate pattern
for the positive class. The figure highlights three prototypical nodes (A, B, C) which are parts of a
triangle, where only two of them (A, B) are also the top of a house (triangle and houses highlighted
for readability). Panel (b) reports the explanation of a GNN trained on the network, for the three
highlighted nodes. Node A has a high confidence because it has both the correct (the house) and
spurious (the two triangles) patterns. However, its explanation is mostly based on the (simpler)
spurious triangle, which is not sufficient to explain its confidence (as shown by the lower confidence
of nodes B and C). Removing node A (Panel (c)) prevents the network from focusing on the spurious
pattern so that the correct pattern is eventually learned (Panel (d), with node C omitted as no longer
predicted as label 1).

dropping regularizer that leverages explainability and over-confidence to pinpoint noisy network
elements to be excluded from the GNN propagation mechanism during each training epoch.

An empirical evaluation on diverse real-world datasets demonstrates that our method outperforms
current state-of-the-art dropping approaches in accuracy, and improves explanation quality. Our main
contributions can be summarized as follows:

• We identify local explainability during training as a driving principle to discard noisy information
in the GNN learning process.

• We introduce XAI-DROP, an explainability-guided dropping framework for GNN training.
• We show that XAI-DROP consistently outperforms alternative dropping strategies and xAI-based

regularization approaches across various node classification and link prediction benchmarks.
• We demonstrate the effectiveness of XAI-DROP in improving explanation quality.

The rest of the paper is organized as follows. We start by reviewing related work (Section 2) and then
introduce the relevant background (Section 3). Our XAI-DROP framework is presented in Section 4
and experimentally evaluated in Section 5. Finally, conclusions are drawn in Section 6.

2 Related Work
Dropping. Dropping strategies are commonly used in neural networks to prevent overfitting [30]
by randomly setting a portion of neurons to zero during training, which helps the network learn
more robust features. In GNNs, this approach has been extended to the topological level, altering
message propagation between nodes, often to reduce oversmoothing [23]. DropEdge [28] was the
first to introduce this concept by randomly dropping edges during training based on a Bernoulli
distribution. Inspired by DropEdge, subsequent methods include DropNode [31] which drops nodes
and their connections, and its variants DropGNN [29], which removes nodes also at test time;
DropMessage [27], which drops messages during propagation; and DropAGG [32], which omits the
aggregation step for some nodes. While these methods use random sampling, alternative strategies for
component dropping have also been explored in the literature. FairDrop [33] combines randomicity
and fairness to adjust graph topology for link prediction tasks. Learn2Drop [34] is a learnable graph
sparsification procedure deciding which edges to drop to retain maximal similarity to the original
network. Beta-Bernoulli Graph Drop Connect (BBGDC) [35] adapts the drop rate of the edges during
training based on a Beta-Bernoulli distribution. All these methods rely on random or heuristic-based
selection criteria. In this work, we show how a more principled XAI-based method to identify
potentially harmful components substantially outperforms existing dropping strategies.

Post-hoc explanability. Several works investigate post-hoc methods to explain the predictions of
GNN models. GNN explainers can be categorized into model-level and instance-level explainers.
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Model-level explainers [36–38] aim at providing a global understanding of a trained model, e.g., as
motifs or rules driving the model to predict a certain class. In contrast, instance-level explainers [39–
42] aim at identifying components of a given input that are responsible for the model’s prediction for
that input, and are thus more appropriate to design an XAI-based dropping strategy. Instance-level
explainers can be grouped into five categories [43]: decomposition, surrogate, gradient, perturbation,
and generation based. Decomposition-based methods break down the input to identify explana-
tions [44]. Surrogate-based methods rely on an interpretable surrogate to explain the prediction of the
original model [40, 45]. Gradient-based methods define explanations in terms of the gradient of the
network output with respect to the elements of the input graph [44, 46]. Perturbation-based methods
manipulate the input to obtain interpretable subgraphs [39, 47], while generation-based methods
generate subgraphs that can explain the model output [48]. In this work, we used a gradient-based
method, specifically an approximation of the saliency map [49], due to its computational efficiency
(see Appendix C). However, our framework is flexible and can be applied to any explainer that
produces node-level explainability scores (see Appendix D).

XAI-based regularization. Several xAI-driven approaches have been proposed to enhance the
performance of deep learning methods [50], from addressing interactive data augmentation [51]
to enabling automated pruning [52]. A few approaches have been recently proposed to explicitly
introduce XAI-based regularization strategies during the training stage of GNNs. MATE [53]
applies an optimization procedure via meta-learning to enhance explainability of the resulting model.
ExPass [54] works at the message passing level by weighting messages with the importance of nodes
as defined by PGExplainer [47], while ENGAGE [55] presents Smoothed Activation Maps [55]
to perturb low scores edges and features. These methods however fail to consider the quality of
the explanation and are heavily parameterized, resulting in substantial computational overhead,
learnability issues, and eventually suboptimal performance. Our experimental evaluation shows how
our simple XAI-driven dropping strategies outperform these methods in terms of both accuracy and
explainability.

3 Preliminaries
In this section, we provide an overview of the fundamental concepts underlying our approach.

Graph. A graph is a tuple G = (V, E , XV , XE), where V is a set of vertices or nodes, E is a set of
edges between the nodes, XV and XE are node features and edge features, respectively. Node and edge
features may be empty. The set of edges E can be represented as an adjacent matrix A ∈ R|V|×|V|,
where Aij = 1 if (vi, vj) ∈ E , 0 otherwise. In this paper, we will focus on undirected graphs, in
which edges have no directions, i.e., Aij = Aji. Given v ∈ V , the set Nv = {u ∈ V : (u, v) ∈ E}
denotes the neighborhood of v in G.

Graph Neural Network (GNN). A GNN is a class of neural network architecture specifically
designed to process graph data [56–58]. A GNN leverages a message-passing scheme to propagate
information across nodes in a graph. GNNs iteratively learn node representations hv by aggregating
information from neighboring nodes. In most cases, the propagation mechanism for an entire layer
can be compactly represented using the adjacency matrix A, the node embedding matrix H(l) and
one or more layer-specific weight matrices W (l−1). For instance, layerwise propagation in GCN [58]
can be written as:

H(l) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W (l−1)

)
where Ã = A + I|V| is the adjacency matrix enriched with self loops, D̃ii =

∑
j Ãij and σ is a

non-linear activation function such ReLU or sigmoid. Dropping strategies, including our XAI-DROP
approach, can be formalized in terms of modifications to the adjacency matrix A.

GNN explainability. Intuitively, given a graph G and a trained GNN f , an explanation is a subgraph
Gexp ⊂ G that contains the information that is relevant for f to perform inference on G. We use
Gexp(v) to denote the local explanation for the GNN output for node v. In this study, we employ
the saliency map method [49], an instance-based and gradient-based explainer that computes the
attribution for each input by performing backpropagation to the input space. The general idea is
that the magnitude of the derivative provides insights into the most influential features, which, when
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perturbed, result in the highest difference in the output space. Formally, it is defined as

Gexp(v) =
∂fv(G)

∂Xv
(1)

Where fv(G) is the prediction of the model for node v, and Xv is the feature vector of node v.

Fidelity sufficiency (Fsuf ). Fidelity sufficiency [59] is a popular explainability metric for GNNs. It
measures the distance between the probability predicted by f when fed with the entire graph G and
the probability when fed with the explanation Gexp respectively:

Fsuf (v) = 1− d(fv(G), fv(Gexp(v))) (2)

with d(p,p′) being a distance over probability distributions, which in our work we have identified
with the Kullback–Leibler divergence.

4 Explainability-Based Dropping
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Figure 2: A graphical representation of the node dropping strategy (XAI-DROPNODE) employed
by the XAI-DROP algorithm for node classification. Panel a) shows confidence-based selection,
where nodes are selected if the model’s confidence is equal to or greater than a specified threshold θ.
Panel b) presents the computation of fidelity sufficiency scores and dropping probabilities for the
nodes selected in panel a). Lastly, panel c) illustrates the computation of the node dropping mask by
Bernoulli sampling, and the resulting graph after dropping nodes and their associated edges.

XAI-DROP is based on the combination of two concepts: explainability and (over)confidence. On
the one hand, a poor local explanation can be seen as a symptom of an unreliable prediction for the
corresponding node, making it a good candidate for being dropped to reduce noise during training.
On the other hand, a highly confident prediction for a node indicates that the network is very confident
about the features the prediction is based upon, that in principle should correspond to the local
explanation. A confident prediction with a poor explanation is thus a combination one would like
to avoid as much as possible. Building on these intuitions, XAI-DROP is a general framework that
implements a dropping strategy that targets samples with poor explanations and high certainty. In
presenting the XAI-DROP framework we focus on the node classification task (and node dropping)
with XAI-DROPNODE, but the method can be readily applied to link prediction, as discussed in
Section 4.4. In the following, we focus on the transductive setting, which is by far the most common
in node classification. The approach can also be applied to inductive settings, like graph classification
tasks.

Figure 2 presents a graphical representation of the XAI-DROPNODE approach, which consists of two
main phases: node selection and dropping. The node selection phase (further detailed in Section 4.1)
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consists of four steps. In the first step, the most certain nodes are extracted as candidates for dropping,
by setting a threshold θ (θ = 0.7 in Figure 2) over the predicted confidence for the most probable
class. In the second step, the fidelity sufficiency score of these nodes is computed using Eq. 2 to assess
the local explanation of these predictions. This score is then mapped into a dropping probability p(v)
for the node by applying an appropriate transformation (detailed in Section 4.1), such that the nodes
having the worst explanations will have the highest probability of being dropped. Finally, a decision
on whether to retain or drop each candidate node v is made according to a Bernoulli distribution
parameterized by p(v).

4.1 Node selection

First, a forward step is computed on the entire set of nodes V , including training, validation, and test
nodes. This first step aims to compute the confidence score for each node v which is computed as:

C(v) = maxyP (y|Xv) (3)
where Xv is the feature vector associated with node v. From this large set of nodes, only the most
confident nodes are selected as the candidate dropping set, V ′ ⊂ V . For each node v ∈ V ′, its local
explanation Gexp(v) is computed using an approximation of the saliency map [49] as explainer,
which helps to further reduce the computational overhead of generating explanations (see Appendix
C and E for details). We opted for a gradient-based explainer because it is not computationally
demanding and does not require ground truth explanations, but the method is agnostic with respect to
the explanation method being used. Fidelity sufficiency scores are then computed according to Eq. 2.
Note that the metric requires a hard explanation, while the produced explanations are soft masks (i.e.,
a real value associated with each node indicating its importance for the prediction being explained).
In this manuscript, we discretize soft explanations by selecting the top 25% of the edges as part of
the hard explanation. Nonetheless, the approach can in principle be applied to soft explanations by
weighting messages according to the generated explanations.

The next step assigns dropping probabilities to the nodes in V ′, such that worse explanations, i.e.,
low fidelity sufficiency, correspond to higher dropping probabilities. Given a predefined dropping
probability p, the idea is to adjust dropping probabilities for individual nodes according to their
fidelity sufficiency, without affecting the expected number of nodes selected for dropping. The
dropping probability of node v ∈ V ′ is adjusted by mapping the fidelity sufficiency scores into a
Gaussian distribution by applying the Box-Cox transformation [60] which is defined as follows:

ϕ(x;λ) =

{
(x+1)λ−1

λ λ ̸= 0

log(x+ 1) λ = 0
(4)

Where x represents the response variable, which, in our case, is set to x = 1− Fsuf , indicating that
lower sufficiency corresponds to a higher dropping probability. The parameter λ is learnable and
selected through log-likelihood maximization to enhance the normality of the transformed data [60].
Finally, the values are normalized and shifted to achieve a mean equal to p. Preliminary experiments
showed that this solution achieves better results than using the empirical distribution (Appendix L.)

All nodes u ∈ V \ V ′ that do not belong to the confidence node subset retain the default dropping
probability, p(u) = p. Overall, this procedure biases the dropping probability to encourage the
dropping of potentially noisy nodes, while guaranteeing that the expected number of nodes selected
for dropping is equal to the predefined dropping probability p. An empirical evaluation of different
strategies to detect candidate noisy nodes is reported in Appendix G.

4.2 Dropping

Once the biased dropping probabilities p(v) have been computed, they can be employed to alter the
propagation of information to regularize the learning. In detail, XAI-DROPNODE removes nodes
from the node set V based on a node dropping mask b ∈ {0, 1}|V| defined as follows:

bv ∼ Bernoulli(1− p(v)) (5)
Once a node is dropped, all its incident edges Iv = {(u,w) ∈ E : u = v or w = v} are also removed.
Following [27], this operation can be compactly represented in terms of a modified adjacency matrix:

A′ = B A B (6)
where B is a diagonal matrix having the elements of b on the main diagonal (and zero elsewhere).
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4.3 Overall procedure

The overall algorithm for XAI-DROP is outlined in Algorithm 1. The algorithm takes as input
a graph G, the GNN architecture to be trained f , and the hyper-parameters θ and p, for further
detail about these hyper-parameters refer to Appendix F. In each epoch, the algorithm selects the
nodes with a prediction confidence score of at least θ, and computes their explainability in terms of
fidelity sufficiency Fsuf . The fidelity sufficiency values are then used to determine the node-specific
dropping probabilities, guaranteeing that a fraction p of the nodes is dropped in expectation. These
probabilities are in turn used to select nodes (and corresponding incident edges) to be dropped and
produce an adjusted adjacency matrix A′. Finally, A′ is used for another round of training of the
GNN f . Note that the dropping procedure is only performed at training time. Indeed, the inference
procedure (last line of the algorithm) employs the full adjacency matrix A, consistently with what is
done by existing dropping strategies in the literature.

Algorithm 1 XAI-DROP algorithm for node classification tasks. G = (V, E ,XV ,XE) is a graph, f is
the GNN, θ, p are hyper-parameters

1: procedure XAI-DROP(G = (V, E ,XV ,XE),f , θ, p)
2: for e ∈ Epochs do
3: V ′ ← HIGHEST-CONFIDENCE(G,V, f, θ) ▷ Equation 3
4: for v ∈ V ′ do
5: Gexp(v)← SALIENCY-MAP(G, v) ▷ Equation 1
6: Fsuf (v)← FIDELITY(f,G,Gexp(v)) ▷ Equation 2
7: end for
8: p← DROPPING-PROBABILITIES(Fsuf , p) ▷ Equation 5
9: A′ → XAI-DROPNODE(G,p) ▷ Equation 6

10: f ← TRAIN(f,G,A′)
11: end for
12: Y ← EVALUATE(f,G,A)
13: end procedure

4.4 XAI-DROP for Link Prediction

While we focused on node classification in describing the approach for the sake of clarity, the XAI-
DROP framework can also be applied to link prediction, where the goal is dropping edges that have
highly confident but poorly explained predictions. In this setting, which we name XAI-DROPEDGE,
the confidence score is computed at the edge level, rather than the node level, and the explainer
will produce an explanation for each edge. The explanations of the edge predictions are assessed
by aggregating the scores such that each edge has a corresponding normalized fidelity sufficiency.
XAI-DROPEDGE produces a dropping probability score for each edge in the input graph and then the
procedure drops the edges according to a Bernoulli distribution, i.e., Bij ∼ Bernoulli(1− p(eij)).
See Appendix I for further details. In our experimental analysis, we will show the effectiveness
of XAI-DROP with its two main variants: XAI-DROPNODE for node classification tasks and XAI-
DROPEDGE for link prediction tasks.

We presented XAI-DROP for transductive learning settings, which include unsupervised nodes in
the message propagation process. The approach can also be applied to inductive settings, like graph
classification, where it boils down to dropping entire training instances.

5 Experiments
Our experimental evaluation aims to address the following research questions:

Q1: Does XAI-DROP outperform alternative dropping strategies?
Q2: Does XAI-DROP outperform alternative xAI-driven strategies?
Q3: Does XAI-DROP improve explainability?
Q4: Does XAI-DROP work on beyond node classification?

We start by presenting the experimental setting and then discuss the results answering these questions.
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5.1 Experimental setting

Datasets: We employed three widely used datasets for node classification: Cora [61], Citeseer [62],
and PubMed [63]. Each dataset is composed of a single graph with thousands of labeled nodes.
We utilize the publicly available train, validation, and test node splits [63]. We employed the same
datasets for link prediction, where we used 10% of the edges for the validation set, and 20% of the
edges for the test set. Detailed dataset statistics are presented in Appendix A.

Competitors: We compare our XAI-DROP approach with state-of-the-art dropping strategies.
Random dropping methods include: DROPMESSAGE [27], which removes random features from mes-
sages; DROPEDGE [28], which randomly removes edges; DROPNODE [1, 29], which removes random
nodes and all of their incident edges; and DropAgg [32], which discards messages to sampled nodes
during aggregation. Non-random methods include Learn2Drop [34], using parameterized networks
to prune irrelevant edges, and BBGDC [35], which adapts edge drop rates during training. As our
method is XAI-based, we also compare it to XAI-based GNN regularization techniques: ExPass [54]
adjusts message weights based on importance scores; MATE [53] uses meta-learning to optimize
explainer performance; and ENGAGE [55] introduces a novel explainer for data augmentation to
enhance GNN robustness.

GNN Architectures: By operating on the adjacency matrix, XAI-DROP is agnostic about the
underlying GNN architecture. To demonstrate its versatility, we implemented it with three widely
recognized GNN architectures: Graph Convolutional Networks (GCN) [5], Graph Attention Networks
(GAT) [64] and Graph Isomorphism Network (GIN) [65]. For the random strategies, we retained the
hyper-parameters that were optimized in the original work evaluating them [27]. The same holds
for ExPass [54]. For ENGAGE [55] and MATE [53] we optimized hyper-parameters ourselves
over the validation set, as the available configuration was not usable (ENGAGE was trained on
different splits rather than the standard ones, while MATE was mostly evaluated on synthetic data).
In the case of XAI-DROP, we maintained the same GNN hyper-parameters as those used in random
strategies to isolate the role of the explainability component. Concerning XAI-DROP-specific hyper-
parameters, we fixed p = 0.5 in all settings for simplicity, which implies dropping on average 50%
of the edges/nodes (while the dropping probability p is optimized for each single dataset and GNN
architecture in the case of the random strategies [27]), and set the confidence threshold θ to 0.9, 0.45,
and 0.95 for, respectively, Cora, CiteSeer and PubMed, after a coarse-grained optimization on the
validation set. For ablation studies about these hyperparameters refer to Appendix F.

Metrics: Multiclass accuracy is used for addressing research questions Q1 and Q2. To answer
research question Q3, we employed the standard saliency map explainer as defined in Eq.1, instead
of its approximated variant used for training as defined in Section C, and computed the accuracy
sufficiency, defined as:

Asuf (G) =
1

|Vtest|
∑

v∈Vtest

1 (argmax(fv(G)) = argmax(fv(Gexp(v)))) (7)

where Vtest is the set of test nodes in G, Gexp(v) is the (thresholded version of the) saliency map
defined in Eq. 1, and 1(·) is the indicator function. While in the case of the link prediction task (Q4)
we used Area Under the Curve (AUC) for assessing the model predictions.

Availability: The code for reproducing experiments in this paper is available as a GitHub repository1.

5.2 Experimental results

R1: XAI-DROP outperforms alternative dropping strategies. Table 1 shows the test accuracy of
the different approaches we tested on node classification. Mean and standard deviation over 5 runs
with different initialization seeds are reported. Comparing our XAI-DROP strategies with the blocks
of random and learning-based dropping approaches, the advantage of XAI-driven dropping is evident2.
XAI-DROPNODE consistently outperforms its random counterpart (DropNode which in turn improves

1Source code on Github
2Notice that the results in the table are different from those in the original publications of each respective

method, as we had to rerun them all (retaining their optimal hyper-parameters or optimizing them on the
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over the baseline method with no dropping) on all datasets and for all GNN architectures, despite
the fact that the biased dropping probability (Eq. 5) is applied to the most confident nodes. More
importantly, it outperforms all alternative dropping strategies, both random-based and learning-based3.
Indeed, XAI-DROPNODE consistently scores as the best method in almost all scenarios. These results
support our intuition that explainability can be an effective metric to guide the identification and
removal of noisy information in GNN training.

R2: XAI-DROP outperforms alternative xAI-driven strategies. XAI-DROP is not the first
method to propose the use of explainability to enhance training. The XAI-based block in Table 1
reports test accuracy of existing alternative xAI-based regularization methods. These methods
underperform with respect to our XAI-DROP strategies, likely because of the increased complexity
of their training process with respect to our dropping schemes. It is important to remind here that
these xAI-based competitors have been developed with additional goals in mind with respect to
regularization, namely improving explainability (MATE), alleviating oversmoothing (ExPass), or
increasing robustness to adversarial attacks (ENGAGE). For large-scale datasets refer to Appendix J.

GCN GAT GIN
Model Cora CiteS PubM Cora CiteS PubM Cora CiteS PubM
Baseline 79.0±0.3 67.1±0.5 76.9±1.2 78.4±1.2 68.1±0.7 77.3±0.7 78.2±1.0 67.5±1.0 76.7±0.8

R
an

do
m DropEdge 80.0±0.5 68.4±0.6 77.5±0.4 79.8±0.3 68.3±0.7 77.3±0.4 79.2±0.7 69.0±0.8 77.3±0.6

DropMess 80.8±0.5 70.8±0.5 78.1±0.3 80.1±0.6 69.5±0.8 77.5±0.5 78.8±0.5 69.7±0.5 77.9±0.6

DropNode 80.0±0.5 69.4±0.4 78.0±0.4 78.6±1.3 67.5±0.7 77.4±0.2 79.4±1.0 69.4±0.6 77.2±0.5

DropAggr 80.0±0.6 68.8±0.6 78.3±0.3 80.8±0.8 67.3±1.2 77.7±0.2 78.6±0.5 68.2±1.6 76.9±0.4

L
ea

rn BBGDC 74.2±0.3 67.4±0.3 74.1±0.6 - - - - - -
Learn2Drop 79.3±1.1 68.6±0.9 77.1±1.4 80.5±0.7 70.5±0.9 77.4±0.6 78.4±1.4 68.1±0.9 77.0±1.1

xA
I MATE 80.3±0.4 68.4±0.3 74.3±0.5 80.0±0.8 69.2±0.6 76.2±0.7 81.1±0.9 71.2±1.3 78.8±1.2

ExPass 82.2±0.6 72.9±0.4 76.2±0.3 80.3±0.8 70.2±0.3 76.8±0.7 78.5±0.5 69.2±0.3 76.9±0.9

ENGAGE 81.8±0.4 72.4±0.4 78.6±0.5 81.6±0.2 72.2±0.4 77.6±0.5 81.0±1.1 71.7±1.4 77.2±1.7

XAI-DROPNODE 82.8±0.5 74.0±0.4 81.5±0.7 82.6±0.5 72.6±0.4 80.7±0.5 83.0±0.4 73.0±0.6 79.6±0.7

Table 1: Node classification test set accuracy (in percentage). Mean and standard deviation over 5
runs with different initialization seeds. The best performing method is boldfaced.

R3: XAI-DROP improves explainability. Table 2 reports accuracy sufficiency (Eq. 7) over the
entire set of data (training, validation and test), again with mean and standard deviation over the 5
runs. As expected, XAI-based approaches improve explainability with respect to the baseline. It is
interesting to highlight that dropping strategies are also quite effective in improving explainability,
confirming the beneficial effect of dropping on training robustness. Notably, XAI-DROPNODE again
stands out as the best performing method in all settings. The improvement over the other XAI-based
approaches highlights the effectiveness of using XAI as a dropping strategy in isolating the most
relevant part of the input graphs. For additional xAI metrics analysis refer to Appendix G.

R4: XAI-DROP outperforms alternative strategies and improves explainability on link predic-
tion tasks. Tables 3 and 4 report test set area under curve (AUC, a standard performance metric
used in link prediction) and explainability (as measured by accuracy sufficiency) respectively, when
XAI-DROP is applied to link prediction tasks. Results confirm the generality of our XAI-driven
dropping strategy, as XAI-DROPEDGE outperforms all competitors (both dropping or XAI-based
strategies) on all datasets, in terms of both prediction quality and explainability.

6 Conclusion
In this work we introduced a simple XAI-based regularization framework for GNN training that
selects nodes (for node classification) or edges (for link prediction) with highly confident predictions

validation set, as explained in Section 5.1) in order to compute explainability metrics in addition to accuracy.
Accuracy comparisons with the results reported in the original papers are reported in Appendix B, and confirm
the advantage of the XAI-DROP strategy.

3We omit the results of BBGDC on GAT and GIN, because the method was specifically designed for GCN
architectures and it failed to learn usable models when applied to GAT and GIN architectures.
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GCN GAT GIN
Model Cora CiteSeer PubMed Cora CiteSeer PubMed Cora CiteSeer PubMed
Baseline 92.8±0.3 88.3±1.2 92.9±0.8 90.6±1.0 89.6±0.8 92.5±0.6 91.3±0.9 88.8±0.7 92.4±0.8

R
an

do
m DropEdge 93.2±0.7 89.4±1.7 94.1±1.2 90.2±1.1 90.9±0.7 94.2±0.8 90.2±1.1 90.9±0.7 93.8±1.6

DropMess 92.9±0.7 89.2±0.5 92.7±0.9 90.1±0.4 91.5±0.6 92.9±0.5 91.4±0.5 91.1±0.9 92.5±1.1

DropNode 93.7±0.4 90.9±0.5 93.2±0.7 92.9±1.1 92.7±0.8 93.5±0.9 93.1±1.6 92.7±0.7 93.0±1.2

DropAggr 93.8±1.1 88.9±1.2 93.0±0.8 90.6±0.9 89.9±1.3 92.4±0.9 91.2±1.8 89.4±1.4 92.7±0.9

L
ea

rn BBGDG 89.2±0.3 82.3±0.4 84.2±0.4 - - - - - -
Learn2Drop 90.1±1.5 88.6±1.8 93.1±1.0 88.4±1.9 87.7±1.3 92.8±0.9 91.5±1.0 90.2±1.2 93.0±0.9

xA
I MATE 94.6±0.7 92.1±0.8 92.9±1.2 94.0±1.4 92.5±0.9 93.6±1.0 94.0±1.4 92.5±0.9 93.2±1.1

ExPass 92.8±0.5 90.6±0.6 93.9±0.4 90.7±0.3 89.3±0.8 92.3±0.4 90.9±0.9 89.9±0.8 92.7±0.6

ENGAGE 92.9±0.7 90.7±1.0 94.3±0.8 90.2±1.3 91.4±1.1 94.0±0.5 92.9±1.4 92.0±1.5 94.2±0.7

XAI-DROPNODE 97.2±0.6 95.2±0.7 97.3±0.9 95.9±0.8 94.8±1.0 96.7±0.9 96.4±1.0 95.5±1.3 97.0±0.5

Table 2: Explainability of the different methods for node classification as measured by accuracy
sufficiency. The best performing method is boldfaced.

GCN GAT GIN
Model Cora CiteS PubM Cora CiteS PubM Cora CiteS PubM
Baseline 88.0±1.0 86.7±1.3 94.5±0.2 88.3±1.1 85.6±1.9 89.4±0.3 89.1±1.3 87.0±1.9 90.1±0.5

R
an

do
m

DropEdge 94.1±0.7 90.5±1.3 94.6±0.3 92.3±0.3 94.6±0.7 93.8±0.7 92.2±1.0 91.9±1.1 93.0±0.9

DropMess 92.4±0.9 90.8±0.5 92.1±0.8 92.1±0.8 90.4±0.7 91.5±0.7 91.7±0.9 91.2±0.8 91.5±1.6

DropNode 95.0±0.8 91.4±0.4 94.2±0.8 93.2±1.3 90.7±0.8 91.4±0.5 94.1±1.2 92.8±1.5 93.9±1.3

DropAggr 90.5±0.6 90.9±0.5 92.3±0.5 90.8±0.4 90.3±0.9 91.5±0.8 90.5±0.9 91.2±1.1 91.4±1.0

L
. Learn2Drop 89.6±0.6 89.5±0.9 90.3±0.5 90.1±0.7 91.0±1.2 92.1±0.9 90.2±0.6 92.1±1.6 91.6±1.1

xA
I

FairDrop 90.1±0.7 88.4±1.4 94.8±0.2 87.8±1.0 87.1±1.1 87.1±0.6 90.1±1.2 89.3±0.7 89.9±0.9

MATE 91.8±0.6 90.4±0.6 93.3±0.9 90.9±0.8 88.2±0.6 92.2±0.7 90.5±1.2 86.9±1.0 91.9±1.2

ExPass 88.1±1.3 87.2±0.4 92.8±0.9 88.5±1.0 86.2±0.7 92.0±0.8 87.9±1.3 86.4±0.8 90.6±0.5

XAI-DROPEDGE 97.5±0.7 98.6±0.9 96.8±1.1 96.8±1.0 98.4±0.8 95.9±0.9 95.2±1.2 94.8±0.5 95.5±1.3

Table 3: Test set AUC on link prediction, reported as the mean and standard deviation over 5 runs
with different initialization seeds. The best performing method is boldfaced.

GCN GAT GIN
Model Cora CiteSeer PubMed Cora CiteSeer PubMed Cora CiteSeer PubMed
Baseline 93.5±0.8 91.6±1.0 94.0±1.2 92.9±1.3 90.8±1.1 93.8±0.9 93.0±1.3 92.1±0.9 93.0±0.5

R
an

do
m DropEdge 92.1±1.1 90.9±1.5 94.7±1.2 92.3±1.1 90.9±1.2 94.5±1.2 92.4±1.2 90.9±0.7 93.9±1.5

DropMess 93.1±1.1 91.9±0.9 93.6±0.8 91.0±0.5 91.5±0.6 93.9±0.5 92.7±1.0 92.3±0.9 92.9±1.0

DropNode 93.0±0.9 91.9±1.1 94.9±1.2 93.1±1.4 91.7±1.7 92.8±1.0 92.8±1.3 93.1±1.0 92.9±1.2

DropAggr 92.8±1.1 89.9±1.3 95.0±0.6 91.3±1.1 90.9±1.2 94.6±1.1 92.2±0.6 91.9±1.6 92.1±0.7

L
. Learn2Drop 91.9±1.6 90.6±1.2 93.2±1.0 92.4±1.3 87.7±1.3 92.1±1.7 92.1±1.3 91.0±1.4 91.0±0.6

xA
I FairDrop 93.3±0.9 91.3±1.0 94.0±0.9 92.2±0.5 91.9±0.5 91.4±1.1 92.5±0.7 92.2±1.2 92.5±0.9

MATE 94.0±0.9 92.5±1.1 94.3±1.2 94.4±1.2 94.0±0.8 93.2±1.1 94.2±1.5 93.5±0.9 94.2±1.1

ExPass 94.2±0.9 92.2±0.8 92.6±1.2 94.0±1.1 92.9±1.0 93.9±0.4 91.2±1.2 90.5±1.1 92.1±1.4

XAI-DROPEDGE 96.4±1.0 93.9±1.2 95.8±0.8 95.3±1.2 94.4±1.3 95.2±0.9 95.1±1.3 93.8±1.2 94.8±1.1

Table 4: Explainability of the different methods for link prediction as measured by accuracy suffi-
ciency. The best performing method is boldfaced.

but poor explanations as candidates for dropping. Our experimental evaluation clearly showed that
the proposed framework outperforms alternative dropping strategies as well as other XAI-based regu-
larization techniques in terms of both accuracy and explainability. These promising results highlight
the role of explainability-based regularization in improving training dynamics. Future work include
the exploration of the connection between explainability-based regularization and out-of-domain
generalization, the application of similar XAI-based solutions to design augmentation strategies, and
the study of explainability-based dropping for other classes of deep learning architectures.
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A Dataset Statistics
Table 5 outlines the key characteristics of the dataset, including the number of classes, nodes, and
unidirectional edges in the networks.

B Additional results
The computation of explainability for different architectures, methods, and datasets requires access
to the weights of the model. To achieve this goal, we have retrained the models with a specific
regularization method on each, in case the authors do not release the weights of the models. For
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# classes # nodes # edges
CiteSeer 6 3,327 9,104
Cora 7 2,708 10,556
PubMed 3 19,717 88,648
OGBN-Arxiv 40 169,343 2,332,486

Table 5: Dataset statistics.

these motivations, we have reported in Table 1 the accuracy that we get by retraining from scratch
the model of interest with the hyperparameters written in the paper or source and in case of missing
hyperparameters information, by applying grid search during hyperparameter optimization. Table 6
reports for each method the results from the corresponding original paper as reported under the source
column, when available. Results confirm the advantage of XAI-DROPNODE over all alternatives.

GCN GAT
Model Source Cora CiteSeer PubMed Cora CiteSeer PubMed
Baseline [27] 80.7±0.4 70.8±0.5 75.9±0.7 81.4±0.6 70.1±0.6 77.2±0.5

Random

DropEdge [27] 81.7±0.9 71.4±0.7 79.1±0.8 81.8±0.8 71.1±1.0 77.7±0.8

DropMess [27] 83.3±0.6 71.8±0.6 79.2±0.5 82.2±0.7 71.5±0.7 78.1±0.5

DropNode [31] 84.5±0.4 74.2±0.3 80.0±0.3 84.3±0.4 73.2±0.4 79.2±0.6

DropAggr [32] 83.1 72.8 - 83.6±0.7 72.9±0.5 -

Learning Learn2Drop [34] 82.8±0.3 72.7±0.2 79.8±0.2 84.4±0.2 73.7±0.3 79.3±0.1

BBGDC [35] 81.8±1.0 71.5±0.6 - - - -

xAI-Based ExPass [54] - - 76.2±0.3 - - -
ENGAGE [55] 84.1±0.2 72.4±0.5 - 83.8±0.5 72.4±0.5 -

XAI-DROPNODE 84.7±0.7 74.6±0.9 82.0±0.9 84.5±0.6 73.6±0.6 81.2±0.8

Table 6: Test set accuracy on GCN (in percentage). The number of runs for computing standard
deviations, when available, can be found in the corresponding paper reported under the "Source"
column.

C Approximated saliency map
Saliency map is an explainer that produces an importance score for each node feature given a single
model prediction. In general, saliency map is applied to a single node v to get the local explanation in
the k-hop neighborhood of the node of interest v. For computational efficiency, rather than applying
one forward step for each candidate node, we compute a single forward step for the entire set of
candidate nodes. The node feature importance will then be the gradient of a single forward step on
the entire set of candidate nodes, rather than the gradient of a forward step on just one candidate node.
Once we have obtained the node feature importance, the aggregation of them has been considered
as node importance score. These node scores are then used to generate the explanation subgraph
where the top-K% most important neighboring nodes are retained. This means that a batch of
candidate nodes is associated with a single explanation subgraph rather than associating one different
explanation subgraph with each single candidate node in the batch.

This approximated variant of the Saliency Map method dramatically reduces the time complexity
of the approach. Let’s consider the worst case scenario in the transductive node classification
task: all the nodes’ predictions have a confidence score (Equation 3) higher than the threshold
confidence C(v) > θ, ∀v ∈ V , so that all the nodes are candidate noisy nodes v ∈ V ′,∀v ∈ G.
Then n different explanations have to be computed, with n = |V| being the number of nodes in
the graph. In this setting, the standard Saliency Map procedure would require n different forward
steps, one for each node: fv(G);∀v ∈ V to compute n different local explanations. On the contrary,
Approximated Saliency Map applies a single forward step on the entire input graph f(G), and
the prediction is backpropagated to leverage the gradient of each feature in the input graph as the
explanation importance score. Finally, these feature-level importance scores are averaged at the node
level to get the importance of each node. Once we get these importance scores, for each node, the
connections with the θ%-most relevant neighboring nodes are retained, while the incident edges
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from the not-relevant nodes are dropped to prevent the propagation of direct incoming messages
during the forward step. This simple approximation reduces also the computational costs required to
create n different explanation subgraphs. Once the explanation graph, which retains only the most
important connections according to the Approximated Saliency Map explainer, has been isolated,
a single forward step is used to compute the prediction for all the nodes in the graph having the
original topology f(G), and another forward step computes the prediction for all the nodes in the
graph having the explanation topology f(Gexp)V ′ . Finally, the Kullback-Lieber (KL) divergence
sufficiency score KLsuf (v)(Equation 8) is computed, for each node in the set of candidate noisy
nodes v ∈ V ′, between the two probability distributions obtained by feeding the model with the
original graph and the explanation subgraph respectively.

Wrapping up, the overhead introduced by XAI-DROP in the case of node classification consists of:

• performing (only) one forward step to compute the explanations, regardless of the number of
nodes in the set of candidate noisy nodes;

• performing (only) two forward steps to compute the predictions for the original graph and the
explanation subgraph;

• computing the KL-divergence.

D Explainer comparison
In this section, we explore the flexibility of XAI-DROP to the usage of alternative explainers with
respect to the Approximated Saliency Map used in the main paper. In Figure 3, we present the
performance and training time of our method using different explainers in terms of accuracy (left axis)
and training time (right axis). For this ablation study, we have explored different types of explainers:

• Gradient-based (Integrated Gradients [46], Saliency-Map [49])
• Perturbation-based (GNNExplainer [39], PGExplainer [47])
• Decomposition-based (CAM [66])
• Surrogate-based (PGM-Explainer [40])

Quite remarkably, XAI-DROP manages to improve performance with respect to the random node-
dropping strategy regardless of the explainer being used. On the other hand, this plot highlights the
substantial computational advantage of Approximated Saliency Map (and to a lesser extent Saliency
Map and CAM) over more complex alternatives, without incurring in a reduction of generalization
capabilities.
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Figure 3: Test accuracy (left axis) and training time (right axis) when using different explainers for
XAI-DROPNODE applied on Cora (left), Citeseer (center), and Pubmed (right) for node classification
with GCN architecture. The dotted line represents the accuracy achieved when using the baseline
DropNode random strategy.

E Computational complexity
Training time is a crucial challenge in designing topological regularizers for GNNs. In Figure 4,
we report the training time required for each method by iterating training for the same number of
epochs when using Cora as dataset and GCN as architecture. While baseline and random methods (i.e.
DropEdge, DropMessage, DropNode, DropAgg) are extremely fast, and almost have the same training
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time, the additional operations computed in other dropping strategies, introduce additional overhead.
In Figure 4 it is clear that there are strategies whose computational overhead is crucial in analyzing
their performance. ExPass introduces a relevant overhead due to the usage of GNNExplainer for
producing explanations. GNNExplainer is a computationally demanding explainer because it requires
a separate iterative learning procedure and applying it to the input graph dramatically slows down the
training procedure. Also MATE, Learn2Drop, and ENGAGE require a double training procedure.
MATE introduces a Meta-learning approach and is a model that requires more parameters than the
traditional dropping procedure to stabilize its training dynamics. Learn2Drop, apart from training
the model for node classification, needs to train the model to learn a denoised topology and this
objective requires a lot of parameters. ENGAGE incorporates an unsupervised step for learning
robust embeddings by optimizing a contrastive objective and a supervised step for doing prediction
on top of these embeddings. The unsupervised step requires deep, highly non-linear functions and
many parameters to learn to be effective. Our approach XAI-DROPNODE, despite the introduced
overhead, thanks to the approximated variant of Saliency Map, defined in Appendix C, and the Node
selection based on confidence, still guarantees a manageable training time.
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Figure 4: The histogram of the time in seconds required for training GCN on Cora, Citeseer, and
PubMed with each regularization method used for node classification.

In the analysis of the computational complexity, the number of parameters required by each method
also plays a crucial role. As in Figure 4 the analysis is conducted on the Cora dataset trained with GCN.
In Figure 5, the number of parameters is plotted with a log-scale histogram rather than a linear-scale
histogram due to the huge amount of parameters required by ENGAGE for the unsupervised training
procedure, before the finetuning stage. Other methods which requires much more parameters than
the other strategies are Learn2Drop and MATE, because of the need for parameters to, respectively,
optimize the robustness of the topology and the Meta-Learning inner stage. On the contrary, the
released version of BBGDC simply uses a wider hidden layer. Finally, the baseline, random drop
strategies (DropEdge, DropMess, DropNode, DropAgg), and xAI-guided methods (ExPass and xAI-
DropNode) use the same hidden size and the same network depth. The small number of additional
parameters introduced by ExPass is due to the choice of a parametric explainer. Figure 5 confirms, as
Figure 4, that XAI-DROPNODE does not introduce a meaningful computational overhead with respect
to other random dropping strategies; and at the meantime, XAI-DROPNODE exhibits an evident
computational advantage with respect to learnable and alternative xAI-based dropping strategies.

F Hyperparameter sensitivity

F.1 Confidence

One of the most important hyperparameters in our method is the confident threshold θ ∈ [0, 1]. This
hyperparameter is necessary to decide whether a node is a candidate noisy node or not. To fully
comprehend its rule, we can start by analyzing the two extreme cases:

• if θ = 0: all nodes in the graph are candidate noisy nodes, regardless of their confidence. The
consequence is that the dropping probability of each node will be biased exclusively based on
its explanation quality.
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Figure 5: The log-scale histogram of the parameters used for training GCN for node classification
task with Cora, Citeseer, and Pubmed datasets.

• if θ = 1: no node has a confidence larger than the threshold, and the strategy boils down to
random dropping.

In Figure 6, we have reported how the tuning of the confidence hyperparameter θ affects test accuracy
on Cora, Citeseer, and Pubmed trained with GCN for Node Classification task. Results show that both
completely explainability-guided (θ = 0) and completely random (θ = 1) strategies are suboptimal,
and that a threshold around 0.8 is reasonable for all datasets.
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Figure 6: Test Accuracy and standard deviations on some node classification datasets (Cora, Citeseer,
and Pubmed) trained with GCN varying confidence threshold θ.

F.2 Dropping probability

The dropping probability p is a crucial hyperparameter for properly applying XAI-DROP. As with
any dropping strategies, the tuning of this hyperparameter strongly depends on the input graph, and
is also related to the design of the GNN. In Figure 7 we show how the test accuracy varies when
changing the dropping probability. From this empirical evidence, we note that larger datasets such as
Pubmed have better results for larger values of p, i.e., with a more aggressive dropping. Furthermore,
it is interesting to notice that removing the 90% of the input nodes leads to results similar to the
baseline, which does not apply any dropping.

G Evolution of node confidence and explainability, ablation studies
The XAI-DROP method relies on a crucial intuition: the combination of confidence and explanation
quality can be used as a proxy for pinpointing harmful nodes in a graph, the removal of which
stabilizes training. To better show how training evolves using xAI-Drop, Figure 8 reports a series
of confusion matrices (at different stages of training) reporting nodes with high confidence and
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Figure 7: Test accuracy on Node classification with GCN on multiple datasets (Cora, Citeseer,
Pubmed) varying dropping probability θ.

good explanations (HC-GE), high confidence and poor explanations (HC-PE), low confidence and
good explanations (LC-GE) and low confidence and poor explanations (LC-PE). Results show how
most nodes have initially low confidence. Thanks to training, the confidence of nodes increases, but
high-confidence nodes are equally distributed among good-explanation and poor-explanation ones.
While training progresses, increasingly more nodes have high confidence and good explanations, as
expected.
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Figure 8: Confusion matrices for an increasing number of training epochs, showing nodes with high
confidence and good explanations (HC-GE), high confidence and poor explanations (HC-PE), low
confidence and good explanations (LC-GE) and low confidence and poor explanations (LC-PE).

Figure 9 shows the histogram of the dropping probability of a node averaged over the set of training
epochs. Clearly, the histogram converges to a Delta Dirac (on p = 0.5) for the random strategy
(DROPNODE, right plot), which corresponds to a uniform dropping probability for all nodes. On the
contrary, XAI-DROP (left histogram) significantly biases the behavior of nodes over training, so that
part of the nodes is consistently identified as harmful (often dropped during training) or beneficial
(mostly retained during training), stabilizing training.

Finally, Table 7 presents the results of an ablation study where we altered the dropping strategy.
Alternatives explored include confidence-only (high or low), explanation-only (good or poor) and
their combinations. Results clearly indicate the advantage of the XAI-DROP strategy focusing on
high-confidence, poorly explained cases. It is important to highlight that dropping low confidence
nodes is especially detrimental, most likely because it destabilizes training removing instances that
still need to be properly learned.

H Post-Hoc Explanation evaluation across explanations metrics
In this section we evaluate the quality of the explanations obtained using XAI-DROP and its com-
petitors (with a GCN) in terms of alternative explanation quality metrics, namely KL-Necessity and
KL-Sufficiency.

KL-Sufficiency follows the definition of sufficiency described in Equation 2, where the dis-
tance criterion is the Kullback-Lieber divergence as reported in 8 between the two probability
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Figure 9: Histograms showing the average dropping probability of each node in a graph computed
over all the training epochs for XAI-DROPNODE (left) and DROPNODE (right) respectively.

Noisy node selection Criterion Cora
Random 80.0±0.5

HighConfidence 80.6±0.4

LowConfidence 74.5±1.5

LowConfidence+PoorXAI 78.4±0.9

HighConfidence+GoodXAI 79.8±0.5

LowConfidence+GoodXAI 77.4±1.6

LowConfidence+Random 76.9±1.4

HighConfidence+Random 81.2±0.9

PoorXAI 80.4±0.9

GoodXAI 79.5±0.5

xAI-Drop 82.8±0.5

Table 7: Test set accuracy (in percentage) on Cora dataset for node classification trained with GCN
by comparing different metrics for identifying noisy nodes. The standard deviation is computed over
three runs.

distributions((fv(G)i), fv(Gexp(v))) produced by feeding the GNN, respectively, the original graph
G and the explanation subgraph Gexp(v) for the node v ∈ G.

KLsuf (v) =

c∑
i=1

(fv(G))i log

(
(fv(G))i

fv(Gexp(v))i

)
(8)

KL-Necessity, on the other hand, removes the explanation from the neighborhood of the node of
interest, to define whether the explanation is necessary for producing the same prediction. It is
computed as the KL-distance between the probability distributions produced by feeding the entire
graph fv(G)i and the non-relevant subgraph fv(G \Gexp(v)):

KLnec(v) =

c∑
i=1

(fv(G))i log

(
(fv(G))i

fv(G \Gexp(v))i

)
(9)

Figure 10 reports results of the different methods in terms of KL-Sufficiency and KL-Necessity, as
only a reasonable trade-off between the two is an indicator of a good quality explanation. Results
clearly indicate that XAI-DROP scores the best trade-off between the two metrics, thus achieving the
best explanations for all datasets.
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Figure 10: Scatter plot representing the quality of the explanations produced through Saliency Map
on GCN across multiple datasets (Cora, Citeseer, Pubmed), measured in terms of KL-Sufficiency
(x-axis) and 1- KL-Necessity (y-axis).

I xAI-DropEdge
The overall algorithm for XAI-DROPEDGE is outlined in Algorithm 2. As in Algorithm 1, the
algorithm takes as input a graph G, the GNN architecture to be trained f , and the hyperparameters
θ and p. In each epoch, the algorithm from the entire set of edges E selects the edges E ′ with a
prediction confidence score higher than the confidence threshold θ. Explanations qualities for all
edges in E ′ are assessed via the Fidelity sufficiency score Fsuf (Equation 2). These explanation
scores are mapped in probabilities through the Yao-Johnson mapping as described in Equation 4,
as happens for nodes in the xAI-DropNode variant. Once the biased dropping probabilities p(v)
have been computed, XAI-DROPEDGE removes edges e ∈ E from the edge set E based on a edge
dropping mask BE ∈ {0, 1}|V|×|V| defined as follows:

BE
i,j ∼ Bernoulli(1− p((i, j))) (10)

where p((i, j)) = 1 if (i, j) /∈ E . The edge-dropping operation can be compactly represented in
terms of Hadamard product between the binary edge dropping mask BE and the adjacency matrix of
the input graph A:

A′ = A⊗BE (11)

Algorithm 2 XAI-DROP algorithm for link prediction. G = (V, E ,XV ,XE) is a graph, f is the GNN,
θ, p are hyper-parameters

1: procedure XAI-DROP(G = (V, E ,XV ,XE),f , θ, p)
2: for e ∈ Epochs do
3: E ′ ← HIGHEST-CONFIDENCE(G, E , f, θ) ▷ Equation 3
4: for e ∈ E ′ do
5: Gexp(e)← SALIENCY-MAP(G, e) ▷ Equation 1
6: Fsuf (e)← FIDELITY(f,G,Gexp(e)) ▷ Equation 2
7: end for
8: p← DROPPING-PROBABILITIES(Fsuf , p) ▷ Equation 10
9: A′ → XAI-DROPEDGE(G,p) ▷ Equation 11

10: f ← TRAIN(f,G,A′)
11: end for
12: Y ← EVALUATE(f,G,A)
13: end procedure
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J Scaling xAI-Drop
Dropping strategies, apart from the advantages analysed in Section 5, are well-known in the literature
for their capabilities to enhance learning with deeper architectures. In this section we report results
on one large-scale graph (i.e. OGBN-Arxiv [67]) trained on a deeper GNN (i.e. 4 layers), to verify
whether XAI-DROP scales also to large input graphs. Test accuracy on this dataset has been tested on
GCN for all the competitors (apart from Learn2Drop for computational reasons). Results are shown
in Table 8, and confirm the advantage of XAI-DROP over its competitors4

Model OGBN-Arxiv
- Baseline 67.1±0.8

R
an

do
m DropEdge 70.5±1.0

DropMess 71.0±0.6

DropNode 70.7±0.9

DropAggr 69.8±1.2
L

. BBGDC 68.0±1.1

xA
I MATE 68.8±1.6

ExPass 70.9±0.8

ENGAGE 71.5±0.6

XAI-DROPNODE 71.7±1.2

Table 8: Test set accuracy (in percentage) computed on OGBN-Arxiv trained with GCN across
different dropping strategies. The standard deviation is computed on three runs.

K Extracted explanations
In Figure 11, we present explanations generated using saliency maps on a standard GCN compared to
a GCN with our proposed method. The explanations produced after applying our dropping strategies
are notably sparser, resulting in clearer visualizations that enable more reliable insights.

L Probability Mapping
The mapping of the explanation assessments (i.e. Fidelity Fsuf ) is a crucial point in XAI-DROP.
It enables to convert raw explanation metrics that are usually compressed in a range far from the
default dropping probabilities into a range of probabilities p defined in the range [0, 1]. We have
tested multiple mapping approaches, but two distributions better fill our needs: empirical cumulative
distribution and Gaussian distribution (described in Equation 4). In Table 9 we report an empirical
comparison across datasets, architectures, and distributions. For the sake of completeness, we report
also Uniform distribution which is the one used by random dropping strategies.

GCN GAT GIN
Distribution Cora CiteSeer PubMed Cora CiteSeer PubMed Cora CiteSeer PubMed
Uniform 79.0±0.3 67.1±0.5 76.9±1.2 78.4±1.2 68.1±0.7 77.3±0.7 78.2±1.0 67.5±1.0 76.7±0.8

Cumulative 82.6±0.4 72.6±0.6 80.9±0.6 82.5±0.7 71.7±0.8 80.4±0.7 82.0±0.7 72.1±0.6 79.6±0.8

Gaussian 82.8±0.5 74.0±0.4 81.5±0.7 82.6±0.5 72.6±0.4 80.7±0.5 83.0±0.4 73.0±0.6 79.6±0.7

Table 9: Test accuracy across multiple datasets and architectures tested for node classification task
when using different methods for mapping explanation metrics into probability distributions. Note
that Uniform refers to random dropping strategies.

4It is important to remind here that our goal is not that of achieving state-of-the-art results using the most
recent, complex architectures, for which running competitors would be prohibitively expensive, but showing
consistent advantages over alternative solutions when evaluated under the same experimental conditions.
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Figure 11: Examples of explanations generated using a saliency map on a GCN trained on the Cora
network.
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