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Abstract

Simulation-based techniques such as variants of stochastic Runge–Kutta are the
de facto approach for inference with stochastic differential equations (SDEs) in
machine learning. These methods are general-purpose and used with parametric
and non-parametric models, and neural SDEs. Stochastic Runge–Kutta relies on
the use of sampling schemes that can be inefficient in high dimensions. We address
this issue by revisiting the classical SDE literature and derive direct approximations
to the (typically intractable) Fokker–Planck–Kolmogorov equation by matching
moments. We show how this workflow is fast, scales to high-dimensional latent
spaces, and is applicable to scarce-data applications, where a non-parametric SDE
with a driving Gaussian process velocity field specifies the model.

1 Introduction
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Figure 1: Views into solutions to SDEs.

Differential equations are the standard method of modelling
change over time. In deterministic systems the dynamics
specifying how the system evolves, are typically written
in the form of an ordinary differential equation (ODE).
The dynamics act as prior knowledge and often stem from
first-principles in application areas such as physics, control
engineering, chemistry, or compartmental models in epi-
demiology and pharmacokinetics. Recently, learning ODE
dynamics with modern automatic differentiation packages
in machine learning has awakened an interest in black-box
learning of continuous-time dynamics (e.g., [6, 37]) and
enabled their more general use across time-series modelling
applications.

A stochastic differential equation (SDE, [30, 40]) can be
seen as a generalization of ODEs to stochastic dynamical settings, where the driving forces fluctuate
or are uncertain. Stochastic dynamics appear naturally in applications where small (and typically
unobserved) forces interact with the process, such as tracking applications, molecule motion, gene
modelling, or stock markets. In machine learning, SDE models have received wide-spread attention
due to their robustness and appealing properties for uncertainty quantification.

The concept of a ‘solution’ to an SDE is broader than that of an ODE. As the process is stochastic,
the full solution entails a probability distribution, p(z, t), depending on time t and covering the space
z (see, e.g., [36]). For Itô type SDEs, the evolution of the probability mass can be described in
terms of the Fokker–Planck–Kolmogorov (FPK) partial differential equation (backward Kolmogorov
equation). This equation is typically intractable, and instead the de facto approach for inference in
SDEs in machine learning is sampling. The most common approaches in this space are based on
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Stochastic Runge–Kutta schemes (such as the Euler–Maruyama scheme) which are derived from the
Itô–Taylor series. These schemes sample realization trajectories of the SDE by driving the dynamics
with numerical simulation of Brownian motion. However, these schemes suffer from drawbacks both
related to (ordinary) Runge–Kutta methods—such as step-size and sensitivity to stiffness—as well as
problems associated with any sampling schemes, such as a high number of samples required for an
accurate representation of the underlying distribution.

Despite these problems, few contemporary SDE approaches in machine learning explore SDE
solutions beyond stochastic Runge–Kutta (or even the Euler–Maruyama scheme). Our aim is to try
to broaden this view, and in Fig. 1 we sketch an example where we show three alternative solution
perspectives to a Gaussian process prior SDE model (GP-SDE): the FPK probability density field,
Euler–Maruyama samples, and a Gaussian assumed density approximation. We argue that a Gaussian
approximation in latent space SDEs is reasonable, as Gaussian approximations are typically employed
anyway in observation models, and allow for speeding-up learning by an order of magnitude.

The contributions of this paper are as follows. (i) We go through the workflow connecting ‘random
ODE’ models with Itô SDEs driven by a Gaussian process prior over the velocity field, which allows
for convenient specification of prior knowledge on the vector field and induces an implicit prior over
the SDE trajectories; (ii) We revisit the classical SDE literature and derive direct approximations
to the (typically intractable) Fokker–Planck–Kolmogorov equation in an assumed density Gaussian
form that avoids sampling-based inference in the latent space, which makes inference fast and does
not require sampling a high number of trajectories; (iii) We show how this workflow is fast, applicable
to scarce-data applications, and how it also extends to previously presented latent SDE models.

1.1 Related Work

Neural ODEs [6] model ODE dynamics by a neural network. Such models were developed further
in [37], where the encoder is an ODE-RNN that improves modelling of irregularly sampled time
series. A latent Bayesian neural ODE model, ODE2VAE, was examined in Yıldız et al. [49], where
an encoder is combined with an ODE model whose second order dynamics are given by a Bayesian
neural network. The neural ODE paradigm of modelling latent dynamics has been expanded to neural
SDEs [26, 12, 46, 19], where the typical workflow is that a variational autoencoder (VAE, [21, 35])
is combined with a latent neural SDE, whose drift and diffusion are modelled by neural networks.
In addition to modelling time series, neural SDEs have been used in generative models [16, 43, 44],
where the generation of images from noise is modelled as the reverse-time process of a diffusion
SDE by using Langevin dynamics on score-based models. Continuous normalizing flows are another
model family, which applies ODE dynamics in a generative model [6, 11].

These works leverage simulation/sampling for solving the SDE in the latent space. The model
can be trained by a stochastic adjoint method [26, 18]. More recently, latent neural SDEs have
been trained deterministically by moment matching [27]. However, they discretized the system
before matching the moments, while we form a direct approximation to the solution of the FPK.
Compared to optimizing the moment ODEs, as discussed in [27], by maximizing likelihood, we
regularize during inference by Gaussian process priors, or prior stochastic processes as in [26].
Approximative solutions to non-linear SDEs have been applied earlier in filtering theory, where the
optimal filter is approximated by a Gaussian assumed density filter [23]. In [39], such approximations
are used for continuous-discrete state-space modelling. An alternative to assumed density filters are
local linearization methods [31, 41], and simulation-based Itô–Taylor series solutions, stochastic
Runge–Kutta methods, and leapfrog methods such as Verlet for second-order SDEs (see [22, 40]).
The approximations presented in this work are also related to GP approximations [4, 2] of SDEs.
The linearization approximations are related to statistical linearization [10, 42], and variational
approximations [4].

Orthogonally to the SDE inference, we also consider SDE model specification in terms of GP priors.
The seminal work by Ruttor et al. [38] considered GP-SDE models with unit diffusion. Yildiz et al.
[48] built a model, where the drift and diffusion are sparse Gaussian processes with time-independent
kernels. In Hegde et al. [13], a spatio-temporal SDE with GP priors for the drift and diffusion was
combined with a GP as a continuous version of deep Gaussian processes. State-space models with a
GP latent state transition function [8] train a non-parametric latent process to approximate unobserved
dynamics. These are related to hierarchical GP dynamics [45, 24], where prior knowledge of the
system can be encoded in multi-level hierarchies, for modelling, e.g., walking dynamics.
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Figure 2: Latent dynamics workflow. The observations (left) are encoded into the latent space, where
the dynamics of the system are learned as an SDE model. We approximate the solution to the SDE by
a Gaussian for which we can approximate the dynamics of the first moments by an ODE system, thus
avoiding sampling in the latent space. Predictions are finally mapped back.

2 Methods

We draft the methodology based on the latent dynamics workflow components as presented in Fig. 2.
The focus is first on specifying models for the latent space dynamics, starting from implicit priors
in terms of random ODEs which we frame as Itô SDEs. Thereafter, the focus shifts from model
specification to inference, where we show that the Fokker–Planck–Kolmogorov equation can be
efficiently approximated in an assumed density form, and finally brings us to cover the likelihood
structure of these models as well.

2.1 Random Field Ordinary Differential Equations as SDEs

The continuous dynamics of a latent (unobserved) z(t) ∈ R
d can conveniently be written in the form

of a general first-order ordinary differential equation

d

dt
z(t) = vθ(z(t), t), (1)

where vθ(·) : Rd × R+ → R
d denotes the velocity field parametrized by θ. This is a general form

of a non-linear ODE system, where the dynamics are deterministic and fully characterized by vθ(·).
The methodology presented in this section directly extends to the case where the vector field vθ is
time-dependent, but we omit the time dimension for simplicity of notation. Previously, the implicit
prior on z(t) over t specified by Eq. (1) has been generalized to stochastic models by considering
vθ(·) to be stochastic. These models are known as ‘random’ ODE models, and the random field vθ(·)
is typically either characterized by a Gaussian random field or Gaussian process model (see, e.g.,
[38, 13]) or some parametric model (e.g., [26]).

We consider an unconventional ODE model (or actually no ODE model at all, to be precise), where
we specify a GP prior [34] over the velocity field in form of a multi-output Gaussian process prior:

v(z, t) ∼ GP(µ(z),κ(z, z′)), (2)

where µ : Rd → R
d is a mean function and κ : Rd×R

d → R
d×d is a matrix-valued covariance

function. The Gaussian process prior is completely specified by its mean and covariance function,
which encapsulate the assumptions about the sample processes/fields v (such as continuity, differen-
tiability, curl, divergence, etc.): µ(z) := E[v(z)] and κ(z, z′) := E[(v(z)−µ(z))(v(z′)−µ(z′))∗].
In Fig. 3, we will consider examples of useful vector-valued covariance functions that encode prop-
erties on the vector field. For inference, the GP is conditioned on input–output pair observations
D = {(zi,∆zi)}ni=1 of the vector field, where ∆zi represents the observed derivative at zi. The
conditioned vector field representation for an arbitrary point z∗ in the latent space can be given by

v(z∗) | D ∼ GP(E[v(z) | D],Cov[v(z) | D]), (3)

where the E[·] and Cov[·] denote the marginal mean and (co)variance (for the multi-output GP, which

means that the marginals are vector-valued). These take the form [34]: E[v(z∗)] = K∗K̂
−1y and
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(a) Independent RBF priors
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(b) Curl-free prior
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(c) Divergence-free prior

Figure 3: Effect of different GP priors in an GP-SDE with 8 observations (large red arrows) to
the GP posterior (small red arrows): (a) Shows results for independent RBF priors over z1 and z2;
(b) shows results for the curl-free covariance function (encoding ‘loop-aversion’); (c) shows results
for the divergence-free covariance function (encoding ‘energy preservation’). The hyperparameters
(ℓ = 0.2, σ2 = 0.1) are the same in each.

Cov[v(z∗)] = κ(z∗, z∗) − K∗K̂
−1K⊤

∗ , where y are the stacked observations of the derivatives

such that y = (∆z⊤1 , . . . ,∆z⊤n )
⊤. The Gram matrix K corresponds to evaluations of the covariance

function such that Kij = κ(zi, zj) are sub-blocks of K corresponding to the observation pairs

(i, j), and K̂ = K + γI, where γ is a nugget (observation noise/discrepancy) term, and K∗ is the
cross-covariance between z and z∗. The prohibitive cubic computational scaling associated with

GP models manifests in the inversion of K̂, and thus for large n, approximations based on inducing
points or projections are used in practice to avoid this explicit inversion. In the light of Eq. (1) with
v(z) ∼ GP(·, ·), the ODE is driven by a multi-dimensional Gaussian random field conditioned on D.
A straightforward way of dealing with a model of this kind, is to do inference by sampling random
draws of the velocity field from the GP, and then drive the ODE with those samples (can be viewed
as an Monte Carlo approach for drawing ODE realizations).

However, a more convenient way is to specify the prior over the stochastic dynamics in a stochastic
differential equation form. At its core, a lot of previous work in this space hinges on the realization
that if everything is essentially Gaussian, an equivalent model can be specified in terms of an Itô
SDE describing the stochastic evolution of trajectories affected by the GP velocity field [see 13,

for discussion]. Informally, this takes the white noise form d
dtz(t) = f(z) + L(z)w(t), where

f(z) = E[v(z)] and L(z) denotes a square-root factor such that LL⊤ = Cov[v(z)] (in the scalar
case, just the square-root, and in the multi-output case, e.g., the Cholesky factor). Here w(t) is a
white noise process with unit spectral density. It is worth noting that we do not give guarantees for a
direct link between the random ODE in Eq. (2) and the following SDE formulation (see App. A.3 for
discussion). Yet, formally we write a similarly-behaving SDE in the standard Itô SDE form:

dz(t) = f(z, t) dt+ L(z, t) dβ(t), (4)

where dβ(t) is vector-valued unit Brownian motion (the spectral density Q is set to I). For a
GP-SDE, the drift is driven by the GP mean, f(z, t) := E[v(z)] and the diffusion by the square-root

factor of the marginal covariance at z(t), L(z, t) :=
√

Cov[v(z)]. To be precise, the GP-SDE drift
and diffusion at a point z∗ are determined by the GP predicted mean and variance at z∗, which can be
written as

f(z∗, t)=E[v(z∗)]=K∗K̂
−1y and L(z∗, t)=

√

Cov[v(z∗)]=

√

κ(z∗, z∗)−K∗K̂−1K⊤
∗ . (5)

2.2 Fokker–Planck–Kolmogorov Equation

We are interested in solving SDE models of the form in Eq. (4), but without the restriction that the drift
and diffusion are defined by a Gaussian process, and present the related theory with a model-agnostic
view on the problem. Because the resulting solutions are stochastic processes, the full solution to the
SDE can be characterized by its time-evolving probability density function. Let z(t0) ∼ p(z(t0)) be
some initial condition which we assumed to be independent of the Brownian motion. The probability
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Figure 4: Approximations to the FPK equation: The top-left figure shows the 8 observations (black
arrows) and the inferred GP velocity (grey arrows, marginal uncertainty in shaded blue). The top-row
shows the progression of the probability mass p(z, t) following the Fokker–Planck–Kolmogorov
equation. The middle rows show Euler–Maruyama sample trajectories for the problem, and the
bottom row compares the two assumed density approximations to the exact Gaussian approximation
of the FPK solution. The bottom row ellipses are 95% confidence regions.

density p(z, t) of the solution of the SDE in Eq. (4) solves the Fokker–Planck–Kolmogorov (FPK)
partial differential equation (PDE):

∂p(z, t)

∂t
= −

∑

i

∂

∂zi
[fi(z, t) p(z, t)]+

1

2

∑

i,j

∂2

∂zi ∂zj

{

[L(z, t)QL⊤(z, t)]ij p(z, t)
}

. (6)

For a proof, see [40]. This PDE is also known as the Fokker–Planck equation (in physics) and the
forward Kolmogorov equation (in stochastics). An appealing alternative form [40, Sec. 5.3] of the
FPK equation can be given in terms of the following evolution equation with the adjoint operator A∗:

∂p

∂t
= A∗ p, with A∗(•) = −

∑

i

∂

∂zi
[fi(z, t) (•)] +

1

2

∑

i,j

∂2

∂zi ∂zj
{[L(z, t)QL⊤(z, t)]ij (•)}.

(7)
Eq. (7) allows for various kind of approaches for direct approximation of the FPK equation either
by basis function approximations, finite differences, or other methods (Sec. 9.6 in [40] provides
examples of using point collocation, Ritz–Galerkin, and FEM type of methods for approximating the
solution). For example, the results in Fig. 1 and Fig. 4 are estimated by a grid discretization over z and
solving the resulting (finite-dimensional) ODE corresponding to Eq. (7) by the matrix exponential:
p(t) = exp(A(t − t0)). See App. A.2 for details. Even if the widely-used Euler–Maruyama,
Milstein, and more general stochastic Runge–Kutta schemes are derived from the Itô–Taylor series,
the resulting methods can still be viewed as an approximation of p(z, t).

2.3 Assumed Density Approximation of FPK

For the purpose of modelling latent space dynamics of systems of the kind in Fig. 2, we note that
there the common practice of solving the latent SDE through costly simulation/sampling and then
employing a variational (Gaussian) approximation in the encoder/decoder seems contradictory. That
is, it might be unnecessary to sample realizations of the trajectory dynamics, if the interest is only in
the time-marginals of the process. Thus, we seek to directly characterize the first two moments of the
solution to the FPK equation in Sec. 2.2. We replace the FPK solution with a Gaussian approximation
of form

p(z, t) ≈ N(z |m(t),P(t)), (8)
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where m(t) and P(t) are interpreted as a mean and covariance of the state of the solution at time t.
This kind of approximation is commonly referred to as a Gaussian assumed density approximation
(see, e.g., [23, 39]), because the computations are done under the assumption that the state distribu-
tion is Gaussian. Assumed density approximations are common in signal processing–driven SDE
methodology, and we refer the reader to Sec. 9.1 in [40] for a detailed overview. Following [39],
we revisit the idea that a Gaussian process approximation to the SDE Eq. (4) can be obtained by
integrating the following differential equations from the initial conditions m(t0) = E[z(t0)] and
P(t0) = Cov[z(t0)] to the target time t:

dm

dt
=

∫

f(z, t)N(z |m,P) dz and (9)

dP

dt
=

∫

f(z, t) (z−m)⊤ N(z |m,P) dz

+

∫

(z−m) f⊤(z, t)N(z |m,P) dz+

∫

L(z, t)QL⊤(z, t)N(z |m,P) dz. (10)

These equations for the evolution of the first moments of the solution to the SDE can be interpreted
as expectations over the drift and diffusion dynamics of the SDE, and can be derived from the FPK in
Eq. (6). Conveniently, these expressions are not stochastic, but instead take the form of an ODE system
that—given the integrals are tractable—can be solved with out-of-the-box ODE solvers. However,
even if Eqs. (9) and (10) provide a generic Gaussian assumed density approximation framework
for SDEs, an implementation of the method requires solving the following kind of d-dimensional
Gaussian integrals:

EN[•] =
∫

[•] N(z |m,P) dz. (11)

In the following sections we will consider two approaches (local linearization and moment matching
with symmetric quadrature) which scale linearly in the number of latent dimensions d.

2.4 Linearizing the FPK Equation

Local linearization around the m (via a Taylor series approximation) is a classical approach widely
used for this type of Gaussian integrals in machine learning and filtering theory [17, 29]. If the
function f(z, t) is differentiable, the covariance differential equation can be simplified by using
Stein’s lemma [32] such that

∫

f(z, t) (z−m)⊤ N(z |m,P) dz =
[∫

Fz(z, t)N(z |m,P) dz
]

P, (12)

where Fz(z, t) is the Jacobian of f(z, t) with respect to z. Linearizing around the mean m and
approximating the diffusion as L(z, t) ≈ L(m, t) gives a linearized form of Eqs. (9) and (10):

dm

dt
= f(m, t) and

dP

dt
= PF⊤

z
(m, t) + Fz(m, t)P+ L(m, t)QL⊤(m, t), (13)

which provides a direct way of propagating the moments of the latent SDE through an ODE for the
mean and covariance without the need of drawing multiple sample trajectories. The resulting ODE is
(d+ d2)-dimensional, and only requires one evaluation of the drift, diffusion, and Jacobian per step.

2.5 Matching Moments of the FPK Equation

The local linearization approach given in the preceding section is efficient, but fully local. An
alternative way of constructing an assumed density approximation to p(z, t) is to directly match the
moments by solving the Gaussian integrals in Eqs. (9) and (10) by Gaussian quadrature methods.

The approximation to Eq. (11) would take the form
∫

g(z, t)N(z |m,P) dz ≈ ∑

i w
(i) g(z(i), t),

for an arbitrary integrand g(z, t), weights w(i), and so called sigma points z(i) = m+
√
P ξi. Here√

P denotes a square-root factor of P such as the Cholesky decomposition. The multi-dimensional
Gaussian quadrature (or cubature, see [7]) rule is characterized by the evaluation points and their
associated weights {(ξi, wi)}. We write Eqs. (9) and (10) in a Gaussian assumed density form which
matches the moments by quadrature as follows [40]:

dm
dt =

∑

i w
(i) f(m+

√
P ξi, t) and (14)

dP
dt =

∑

i w
(i) f(m+

√
P ξi, t) ξ

⊤
i

√
P

⊤

+
∑

i w
(i)

√
P ξi f

⊤(m+
√
P ξi, t) +

∑

i w
(i) L(m+

√
P ξi, t)QL⊤(m+

√
P ξi, t). (15)

6



The computational complexity of this approach is highly dependent on the choice of quadrature
method. A typical choice in ML applications would be Gauss–Hermite quadrature, which factorizes
over the input dimensions leading to an exponential number (pd) of function evaluations/sigma points
in the input dimensionality d for a desired order p. In order to guarantee scalability, we employ
a symmetric 3rd order cubature rule [3] which similarly to Gauss–Hermite (p = 3) is exact for
polynomials up to degree 3. The points are given by scaled unit coordinate vectors ei such that

ξi =

{
√
d ei, for i = 1, . . . , d,

−
√
d ei, for i = d+ 1, . . . , 2d,

(16)

and the associated weights are wi =
1
2d . This approach provides a direct way of propagating the

‘true’ moments of the latent SDE through an ODE for the mean and covariance and without the need
of drawing multiple sample trajectories. The resulting ODE is (d+ d2)-dimensional, and requires
only 2d evaluations of the drift and diffusion per step.

2.6 Analysis of the Computational Complexity
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Figure 5: Empirical timing experiments
with error of final margins matched.

In terms of the asymptotic computational complexity, the
linearization approach in Sec. 2.4 requires O(1) evalua-
tions of the drift, diffusion, and Jacobian per step. The
moment matching approach in Sec. 2.5 requires O(d)
evaluations of the drift and diffusion as well as an O(d3)
Cholesky decomposition per step. The simplest Monte
Carlo simulation method with p samples requires O(p)
evaluations of the drift and diffusion per step. Addition-
ally, the naïve requirement for p grows exponentially in d.
On the other hand, the simulation approach is fully par-
allelizable over p, while the moment matching approach
the number of nonparallelizable operations is O(d2) with
the Cholesky decomposition being the bottleneck, and
the linearization approach is nonparallelizable. While the
linearization approach has the lowest number of function
evaluations with respect to d, the cost of computing the
Jacobian can be prohibitively large for arbitrarily com-
plex models. Nevertheless, the Jacobian is available in
closed-form for GPs and may be evaluated reasonably fast
for neural network based drifts, see App. B.2 for empir-
ical computational costs of evaluating the Jacobian when
growing the network size. Thus we expect the FPK ap-
proximation schemes to always be beneficial in CPU-only
cases (incl. CPU multi-threading and embedded devices).
In multicore GPU use, for low-dimensional d, sampling
remains appealing if GPU memory does not become a
bottleneck.

3 Experiments

The goals of the experiments are three-fold: We first provide a study of the computational complexity.
Then, we look into properties of the GP-SDE model from Sec. 2.1, where the experiments are
concerned with showcasing model specification rather than inference. Finally, we consider two
benchmark problems with high-dimensional inputs for learning a latent SDE model, where we test
the performance of the approximations presented when the model is not defined by GPs, as the SDE
methods presented in Sec. 2 are model-agnostic.

Timing Experiments To confirm the analysis in Sec. 2.6 and provide a practical insight, we run
numerical experiments with the error of final marginal mean/covariance controlled. We use a high-
dimensional model of d independent Beneš SDEs (dz(t) = tanh(z) dt + dβ(t), see [40]) with
different z0 per dimension. The model is non-linear and solution-space multi-modal, but both p(z, t)
and the marginal moments (m(t),P(t)) are available in closed form (see App. B.1). In comparison
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Figure 6: Results on rotating MNIST. (a) shows the latent space prediction mean trajectories for one
test image. Evolution of the true trajectory is shown in HSV colour and the predicted trajectory by
Euler–Maruyama, moment matching, and linearization scheme is shown in green, blue, and orange
(all overlapping one another). (b) shows the progression of the prediction (mean and std dev) of the
test image, when it traverses the learned dynamics in the latent space. Both the moment matching
and linearization schemes match the baseline (with 1000 Euler–Maruyama trajectories).

to Euler–Maruyama, we control the number of trajectories n by bounding the error (in terms of
KL divergence) between Euler–Maruyama and the ground-truth to match the error in our moment
matching approach, and consider the methods equivalent in terms of the quality of the solution. See
App. B.1 for the required number of trajectories to match the KL divergence for each dimensionality
plotted. Fig. 5 shows GPU/CPU wall-clock times (GPU: NVIDIA Tesla V100 32 GB with Intel Xeon
Gold 6134 3.2 GHz; CPU: Xeon Gold 6248 2.50GHz). We implement the models in PyTorch [33]
and report means of 10 repetitions (std negligible). In low-dimensional cases, both approximation
methods outperform sampling, whereas in high dimensions GPU parallelisation becomes dominant
and only the linearized approximation remains highly competitive. This example should favour
sampling: In the Beneš model, the number of trajectories, n, per d in Euler–Maruyama remains low
(n is linear in d), which is due to the diagonal (independent) diffusion matrix. In a correlated latent
space n would grow super-linearly (even exponentially), which would further push the difference
between methods.

GP-SDE Model Specification We consider an GP-SDE model with just 8 observations of the
dynamics, where the lack of data can be compensated for with encoding prior knowledge into the
model. We use the model formulation given in Sec. 2.1, and study the effect of GP priors, the first of
which is an independent squared exponential (RBF) prior for each dimension which encode continuity
and smoothness in the velocity field. The second GP prior is the multi-dimensional curl-free kernel
[47] (see App. B.3) which encodes the assumption of a curl-free random vector field. This property
can be interpreted as ‘loop aversion’ in the GP-SDE context. The third prior, is a multi-dimensional
divergence-free kernel [47] which encodes the assumption of no divergence in the random vector
field. This property can be interpreted as ‘energy preservation’ or source-freeness. These properties
are visible in Fig. 3, where the hyperparameters are fixed to same values for all models.

Assumed Density Approximation of the FPK We provide an illustrative example of the moment
evolution methods in a GP-SDE model with 8 observations along a bean curve and independent
squared exponential GP priors per dimension. As a baseline, we solve the FPK in Eq. (7) by finite-
differences discretization in z (see App. A.2 for details). Fig. 4 shows the evolution of the SDE
solution over the time-course of 5 s. The probability mass dissolves quickly, which is hard to interpret
from the top-row figure alone. Comparison between the point clouds and the top row shows that
even with 1000 trajectories and just a two-dimensional space, it is hard to capture detailed structure
in the SDE solution. The bottom row compares the local linearization (Sec. 2.4) and the moment
matching (Sec. 2.5) assumed density approximations to the exact Gaussian approximation of the
FPK solution. The linearized approach is mode-seeking (matches local curvature), while the moment
matching approach captures the overall structure of the optimal Gaussian approximation.

Rotating MNIST In the spirit of Fig. 2, we run the proposed methods on Rotating MNIST ([25],
available under CC BY-SA 3.0), similar to [49, 5]. The data set consists of various handwritten
digit ‘3’s rotated uniformly in 64 angles. We train a VAE [21] first by freezing the latent space
dynamics, allowing us to generate the latent samples for learning the dynamics by applying the
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Table 1: Rotating MNIST results.

INFERENCE SCHEME MSE NLPD (t = 64)

Euler–Maruyama 0.046 ± 0.006 33.0 ± 5.4
Moment matching 0.051 ± 0.007 52.7 ± 9.5
Linearization 0.052 ± 0.007 54.5 ± 9.9

Table 2: Wall-clock timings for MOCAP.

TIME/S±STD NUMBER OF E-M PATHS

LIN. MOM. MAT. 1 25 200

GPU 2.1±.1 6.0±.1 37.1±.1 39.9±.1 40.4±.7
CPU 1.8±.1 1.8±.1 27.7±.7 38.6±1.5 94.2±3.5

Table 3: Test MSE on 297 future MOCAP
points averaged over 50 samples. 95% con-
fidence interval reported based on t-statistic.
†results from [49], ‡results from [26]

METHOD TEST MSE

DTSBN-S [9] 34.86 ± 0.02†

npODE [14] 22.96†

NeuralODE [6] 22.49 ± 0.88†

ODE2VAE [49] 10.06 ± 1.4†

ODE2VAE-KL [49] 8.09 ± 1.95†

Latent ODE [37] 5.98 ± 0.28‡

Latent SDE [26] 4.03 ± 0.20‡

Latent SDE (assumed density) 7.55 ± 0.05

trained VAE. Then freezing the VAE encoder/decoder and training a 16-dimensional GP-SDE model
in the latent space with independent squared exponential GP priors (see App. B.5). In Fig. 6 we
feed in one observation and let it follow the learned dynamics of rotation. As the baseline, we use
1000 trajectories computed using Euler–Maruyama. Fig. 6a demonstrates the model’s capability to
learn the latent trajectory, and we show the trajectories for all the methods in three latent dimensions
with most variation. The trajectories for the three methods overlap, and qualitatively the results are
identical in Fig. 6b. Quantitatively the brute-force sampling baseline gives slightly better MSEs over
images and final-step mean negative log predictive densities (NLPD, see Table 1).

Motion Capture Data The CMU walking data set ([1], CMU MoCap available under CC BY-
ND 4.0) is a real-world noisy data set with 50 sensors that track a human subject’s walking. As
in Yıldız et al. [49] and Li et al. [26], we model the sequences of a single subject, 35, for which
there are 16 train set, three validation set and four test set sequences. The task is to predict the
state of the system in the future given three initial points. In this experiment, we demonstrate that
replacing SDE solver–based methods by an assumed density approximation, a latent neural SDE
system can be learned efficiently without sampling trajectories. For this purpose, and for better
comparability to earlier work, the latent SDE drift and diffusion are neural networks. As in Li et al.
[26], we regularize the learned posterior process by a prior process. The loss function consists of
three terms: reconstruction loss, VAE encoded initial position KL-divergence, and the KL-divergence
between posterior/prior processes. The moments of the posterior SDE approximation are denoted by
m(t), P(t), those of the prior process m∗(t), P∗(t), and the observation times by {tj}mj=0. The loss
becomes

L = −
∑m

j=0 log p(x(tj) | z(tj)) + DKL [q(z(t0) |x(t0)) ‖ p(z)]
+
∑m

j=1 γDKL [N(m(tj),P(tj)) ‖N(m∗(tj),P∗(tj))] , (17)

where z(tj) and x(tj) are the latent codes and observations, respectively, q denotes the conditional
encoder distribution, p(z) is the normal distribution, and log p(x(tj) | z(tj)) is the model likelihood
of the observations, given latent codes. While training, the parameters to optimize include those of a
latent neural network which defines the prior and posterior dynamics, and of the VAE which encodes
an initial point and decodes at each discrete time step corresponding to a train set frame. As the VAE
is trained simultaneously to the latent dynamics, the approach does not provide a set of true latent
samples to compare to, in contrast to the MNIST experiments. The VAE encoder prior is the normal
distribution, whereas the encoder posterior is acting as the initial distribution for the latent SDEs.
For the encoder design, we use a fully-connected neural network, which encodes the three first data
points to create latent state and context vectors. As the prior process was a SDE with zero drift and
σI diffusion. The context is passed through the dynamics, similar to the treatment of velocity in
Yıldız et al. [49] (see App. B.6).

The result in Table 3 is competitive considering that solving the latent SDE with the linearization
approach roughly matches the required computation budget for one stochastic Runge–Kutta sample
in the other methods. This is highlighted in Table 2 which shows the wall-clock times for the model
used in this experiment both in a CPU and a GPU setting (see hardware description in previous
experiment).
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4 Discussion and Conclusions

In this paper our interest has been in both SDE model specification and approximative inference.
We considered GP-SDE models for data-scarce applications that need injection of prior knowledge
such as in Fig. 3. For inference, we built upon the established methodology of assumed density
approximations in signal processing for directly approximating the solution distribution of an Itô
SDE, where the methods apply to any latent space SDE models.

We put interest in weak solution concepts for SDEs. We considered both linearization and moment
matching based methods for capturing the first two moments of the SDE solutions, which respectively
require only O(1) and O(d) evaluations of the model functions per solver step in latent space
dimensionality d. Furthermore, they only require solving of one ODE rather than simulating multiple
trajectories. This makes them orders of magnitudes lighter than the current state-of-the-art in neural
SDEs, which we analyzed both through theoretical bounds in Sec. 2.6, ran numerical experiments
with the final error controlled (Fig. 5), and highlighted the practical wall-clock time in a MOCAP
experiment. We further argued that a Gaussian assumption makes sense in applications of the form in
Fig. 2 as one is typically employed anyway in the encoder–decoder.

There are some key differences between our assumed density approach and commonly used sampling
approaches to solving neural SDE models. While stochastic Runge–Kutta methods are typically
either concerned with strong (pathwise) or weak (in distribution) solutions, we leverage the even
weaker solution concept of only tracking the first two moments of the solution. This simplification
of turning solving the SDE into a deterministic ODE problem of its moments, comes with some
remarkable computational savings, and often suffice in practical modelling. Then again, the proposed
method does not lend itself well to cases where pathwise sample trajectories are required.

We recognize that we cannot give guarantees for the approximated Gaussian integrals to capture
the evolution of the true moments outside particular special cases (e.g., 3rd order cubature is exact
for polynomials up to order 3). Yet the performance on practical applications is considered reliable,
and these kinds of approached are commonly employed across assumed density filtering in signal
processing. The use of the approximations schemes we present inherently makes the assumption
that the time-marginals of the process are of higher interest compared to the pathwise solutions to
the SDE. While the sampling-based methods are less efficient than assumed density approximations,
their use is well-justified in applications where sampling trajectories is the purpose of the application.

Codes for the methods and experiments in this paper are available at http://github.com/AaltoML/
scalable-inference-in-SDEs.

Acknowledgments and Disclosure of Funding

Authors acknowledge funding from Academy of Finland (grant numbers 324345 and 339730). We
also wish to thank the anonymous reviewers for their comments on our manuscript, and Çağatay
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