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Abstract

Many recent successful off-policy multi-agent reinforcement learning (MARL) algorithms
for cooperative partially observable environments focus on finding factorized value func-
tions, leading to convoluted network structures. Building on the structure of independent
Q-learners, our LAN algorithm takes a radically different approach, leveraging a dueling
architecture to learn for each agent a decentralized best-response policies via individual ad-
vantage functions. The learning is stabilized by a centralized critic whose primary objective
is to reduce the moving target problem of the individual advantages. The critic, whose net-
work’s size is independent of the number of agents, is cast aside after learning. Evaluation
on the StarCraft II multi-agent challenge benchmark shows that LAN reaches state-of-the-
art performance and is highly scalable with respect to the number of agents, opening up a
promising alternative direction for MARL research.

1 Introduction

Reinforcement learning (RL) (Sutton & Barto, 1998) is the branch of machine learning dedicated to learning
through trial-and-evaluation by interaction between an agent and an environment. Research in RL has
successfully managed to exceed human performance in many tasks including Atari games (Mnih et al., 2015)
and the challenging game of Go (Silver et al., 2016).

While single-agent RL has been highly successful, many real world tasks – sensor networks (Mihaylov et al.,
2010), wildlife protection (Xu et al., 2020), and space debris cleaning (Klima et al., 2018) – require multiple
agents. When these agents need to act on local observations, or the problem is too large to centralize due to
the exponential growth of the joint action space in the number of agents, an explicitly multi-agent approach
is required. As such, Multi-Agent Reinforcement Learning (MARL) (Buşoniu et al., 2008; Hernandez-Leal
et al., 2019; Shoham et al., 2007) introduces additional layers of complexity over single-agent RL.

In this paper, we focus on partially observable cooperative MARL where the agents optimize the same team
reward. This setting introduces two main challenges that do not exist in single-agent RL. 1) The moving target
problem (Tuyls & Weiss, 2012): the presence of multiple learners in an environment makes it impossible for
an agent to infer the conditional probability of future states. This invalidates most single-agent approaches,
as the Markovian property no longer holds. 2) The multi-agent credit assignment problem: to learn a policy

1

https://openreview.net/forum?id=adpKzWQunW


Published in Transactions on Machine Learning Research (10/2023)

each agent needs to determine which actions contribute to obtaining the maximum reward. While in single
agent RL this problem is only temporal, as the reward can be sparse and delayed, the shared reward increases
the complexity of this problem as the agents also need to determine their individual contribution.

Centralized Training with Decentralized Execution (CTDE) (Oliehoek et al., 2008a; Foerster et al., 2018;
Lowe et al., 2017), has become a popular learning paradigm for MARL. The core idea behind CTDE is that
even though decentralized execution is required the learning is allowed to be centralized. Specifically, during
training, it is often possible to access the global state of the environment, the observations and actions of
all agents allowing to break partial observability, which mitigates both the moving target problem and the
credit assignment problem.

Most of the research in off-policy CTDE MARL for collaborative partially observable environments focuses
on factorizing the joint Q-Value into local agent utilities such as QMIX (Rashid et al., 2018) and QPLEX
(Wang et al., 2021).

In this paper, we take a radically different approach. Our Local Advantage Networks (LAN) algorithm learns
for every agent the advantage of the best response policy to the other agents’ polices. These local advantages,
which are solely conditioned on the agent observation-action history, are sufficient to build a decentralized
policy. In this sense, the architecture of LAN resembles independent Q-learners more than other CTDE
approaches such as QMIX or QPLEX. A key element of our solution is to derive a proxy of the local Q-value
that leverages CTDE to stabilize the learning of the local advantages. For each agent the Q-value proxy
is composed of the sum of the local advantage with the centralized value of the joint policy. Compared
to the local Q-value, LAN’s proxy is able mitigate the moving target problem, by integrating the changes
of the other agents’ policies faster, and to reduce the multi-agent credit assignment, by learning the local
advantage function for each agent. LAN is also highly scalable as the centralized value network reuses the
hidden states of the local advantages to represent the joint observation-action history and the number of
parameters of the centralized value does not depend on the number of agents. Finally, compared to QMIX
and QPLEX which factorize the joint Q-value into individual utilities, LAN learns individual best-response
Q-value proxies. This allows LAN to not have any restriction on the family of decentralized functions that
it can represent, as opposed to QMIX. Indeed, in cooperative environments the optimal policies are best
response policies.

We empirically evaluate LAN against independent Q-Learners (Tan, 1993; Tampuu et al., 2015) and state-
of-the-art algorithms for deep MARL, i.e., VDN (Sunehag et al., 2018), QMIX and QPLEX, on the Starcraft
Multi-agent Challenge (SMAC) benchmark (Samvelyan et al., 2019). We show that on the 14 maps that
compose the benchmark, LAN reaches similar performance of the SOTA in 11, surpasses the others algorithms
with a large margin in 2, and under-performs in 1. In the maps with the most agents, LAN’s centralized
network uses up to 7 times fewer parameters than QPLEX demonstrating the scalability of our algorithm.
Furthermore, in two super hard maps, LAN learns a complex strategy based on an agent sacrificing itself to
lure the enemies far from its teammates, showcasing LAN’s capacity to mitigate the temporally extended
multi-agent credit assignment problem. This strategy allows LAN to obtain a success rate of respectively
40% and 90% on two maps where the current state-of-the-art – QPLEX – struggles to obtain any wins. By
improving performance on these two maps, LAN was able to achieve an average final performance on all 14
maps that is 10% better than QPLEX’s score.

Importantly, the objective of this new method is not to improve performance over the SOTA but rather to
present an alternative research direction to factorizing the joint Q-value.

2 Background

The setting considered in this paper are Dec-POMDPs (Oliehoek & Amato, 2016; Oliehoek et al., 2008a)
G “ xA, S, U , P, R, O, O, γy. At each time-step, every agent a P A selects an action ua P Ua to form the
joint action u P U , where U “

Ś

a Ua, that is processed by the environment to produce: a unique reward r
common to all agents; the next state s1 P S; and the agents’ joint observation o P O, where O “

Ś

Oa, with
oa P Oa the observation of agent a. γ P r0, 1q is the discount factor. As the agents cannot access the real
state of the environment they condition their policy on their observation-action history τa P Ta ” pOa, Uaq˚,
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with τ P T , where T “
Ś

a Ta being the joint observation-action history. We refer to the observation-action
history of an agent as its history, and the joint observation-action history as the joint history. To simplify
the notations in this paper we assume that the observation function is deterministic. However the extension
to stochastic observations is straightforward. With that setting, the next joint history τ 1 is defined entirely
by the current joint history, the joint action and the state xτ , u, s1y. The value, Q-value and advantage
functions of the joint policy π, which can be centralized or decentralized, are defined as:

V πps, τ q “
ÿ

u

πpu|τ q
“

Rps, uq ` γ
ÿ

s1

P ps1|s, uqV πps1, τ 1q
‰

Qπps, τ , uq “ Rps, uq ` γ
ÿ

s1

P ps1|s, uqV πps1, τ 1q Aπps, τ , uq “ Qπps, τ , uq ´ V πps, τ q

We note that, if there is only a single agent a Dec-POMDP is a POMDP, and if this agent can observe the
full state s the POMDP is an MDP.

DQN (Mnih et al., 2013) is a popular algorithm for MDPs that learns an approximation of Q˚ “ maxπ Qπ

with a neural network parametrized by θ. This θ is learned through gradient descent by minimizing
Qps, u | θq ´ yDQN q2 with yDQN “ r ` γ maxu1 Qps1, u1 | θq. DQN uses a replay buffer to improve sam-
ple efficiency and to stabilize the learning. Dueling DQN (Wang et al., 2016) is a variant of DQN that learns
both the value and the advantage, to then produce the Q-value as the sum of both instead of learning Q
directly. This alternative architecture is motivated by the fact that having one part of the neural network
that learns the general value of the state, and a second part that learns the effects of the actions - represented
by the advantage - can be easier than learning both in the same network. DRQN uses a Recurrent Neural
Network (RNN), such as a Gated Recurrent Network (GRU) (Cho et al., 2014) or an LSTM (Hochreiter &
Schmidhuber, 1997), to extend DQN to partial observablity (POMDP).

3 Related work

Applying single agent RL algorithms to Dec-POMDPs, such as Independent Q-Learners (IQL) and Indepen-
dent Actor-Critic, results in poor performance due to the moving target and multi-agent credit assignment
problems (Tan, 1993; Tampuu et al., 2015; Foerster et al., 2018) – with the exception of stateless normal
form games (Nowé et al., 2012). The replay buffer, fundamental to DQN, worsens the moving target problem
as the sampled transitions are quickly outdated and off-environment as the policies evolve. Indeed, as all the
agents are learning, states of transitions saved in the replay buffer might no longer be achievable by changing
the policy of one agent. As removing the replay buffer does not lead to good polices, alternatives such as
importance sampling and the use of fingerprints have been explored leading to small improvements (Foerster
et al., 2017). In contrast, LAN’s centralized value function mitigates the moving target problem sufficiently,
which enables it to take advantage of the replay buffer and to reach state-of-the-art performance.

COMA (Foerster et al., 2018) and MADDPG (Lowe et al., 2017) introduced CTDE to Deep MARL by
building on single-agent actor-critic algorithms but replacing the local critic with a centralized one to improve
the quality of the value estimation guiding the updates. In comparison, our method, LAN, is a value-based
algorithm making it more sample-efficient. While LAN’s joint value is also a centralized critic, it plays an
intrinsically different role, as it fosters learning coordination between the local advantage functions.

Centralized Q-Learning (CQL) and Independent Q-Learners (IQL) form the two extremes of value-based
methods for MARL. On the one hand, CQL learns a unique Q-Value conditioned on the full joint action space
and the joint history. While in this setting the optimal performance is better or equal to the decentralized
one due to the reduction of partial observability, the agents are no longer autonomous as they rely on a
central entity for execution. In addition, this algorithm does not scale well due to the exponential increase of
the joint action space in the number of agents. On the other hand, IQL learns for each agent a local Q-Value
conditioned on its local observation-action history. This algorithm is heavily affected by the moving target
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Centralized Q-Learning
Independent Q-Learning

Value Factorization

LAN

Qπ(s,u) = V π(s) + Aπ(s,u)

Qπ(s, τ ,u) = f(s, (Aπa(τa, ua)a∈A)

Qπa(τa, ua) = V πa(s) + Aπa(τa, ua)

Q̃π
a (s, τ , ua) = V π(s, τ ) + Aπa(τa, ua)

Learns one (1) Learns N Q-Values

Centralized Training Centralized Training

one on each localQ-Value on the
action spacefull action space

Centralized Execution Decentralized Execution Decentralized Execution
Decentralized Training

Figure 1: Comparison diagram between Centralized Q-Learning, Independent Q-Learning, Value factoriza-
tion methods and LAN.

problem. However, in settings with limited interactions between agents, the moving target problem is not
as intense and IQL can show good performance.

Value factorization (VDN, QMIX, QPLEX) emerged as the main alternative in recent years. Closer to CQL
than IQL, those algorithms learn a unique Q-Value over the joint action space. Its factorized architecture
allows recovering for each agent a utility function for action selection. To ensure that the agents select
the same action during training with the centralized component and during decentralized execution, the
factorization follows the individual global max (IGM) principle: the maximizing joint action of the joint
Q-value must be equal to the joint action that results from maximizing the local utilities. The factorization
usually enforces a monotonicity constraint to ensure IGM, i.e., for each agent the derivative of the joint
Q-value to the agent’s local utility is positive. VDN is the first algorithm of this kind and decomposes the
joint Q-value into a simple sum. QMIX extends VDN by learning state-dependent positive weights. The
state dependency broadens the family of Q-value functions that can be learned, and the positive weights
constraint ensures IGM. While QMIX achieves good performance and improves over VDN, the monotonicity
constraints still limits the family of functions learnable. QATTEN (Yang et al., 2020) extends QMIX by
using multi-head attention (Vaswani et al., 2017) to compute the mixing weights. More recently, QPLEX
extends QATTEN by transferring the IGM principle from the Q-value to the advantage function. At the
cost of twice as many parameters on average and a more complex mixing network, QPLEX outperforms
QMIX on SMAC. In contrast to those algorithms, LAN does not factorize the joint Q-value into individual
agents utilities but learns an individual Q-value proxy for every agent. This result in LAN’s architecture
being able to represent any decentralized policy, as opposed to QMIX and VDN.

Figure 1 presents a visual comparison of the structural differences between CQL, IQL, value factorization
and LAN. This figure highlights the fact that while value factorization and LAN are both CTDE methods,
LAN is closer to IQL as it learns for each agent a Q-value on its local action space.

Improving multi-agent exploration or scalability regarding the action space in Dec-POMDPs have been
successfully explored by MAVEN (Mahajan et al., 2019) and RODE (Wang & Dong, 2020). Both works are
orthogonal to ours, and while they use QMIX as a base algorithm they could also be applied to LAN. For
this reason we do not include them as baselines.

Recently, MAPPO (Yu et al., 2021) and IPPO de Witt et al. (2020) showed that actor-critic-based algorithms
could achieve good performance on cooperative MARL. However, they require significantly more interactions,
10 million timesteps instead of 2 million, and more computing power. Comparison with those two algorithms
is also harder because MAPPO changed the state space, IPPO changed the difficulty of the enemy team,
and they do not use the same version of the environment. Also, they both have different hyperparameters
per map whereas the other algorithms have one set of hyperparameters for the full benchmark challenge.
However, just like LAN, both MAPPO and IPPO propose an alternative to off-policy value factorization.
While comparing the three methods might not be straightforward due to the need to retune the three
algorithms on a fixed version of SMAC, a further comparative study would help to better understand the
strengths and weaknesses of each algorithm.
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4 Method

In this section, we present Local Advantage Networks (LAN), a novel value-based algorithm for col-
laborative partially observable MARL. LAN goes in the opposite direction of the current state-of-the-art in
MARL, which focuses on factorizing the Q-value of the joint policy Qπ into individual utilities. Instead,
LAN learns for each agent the advantage of the best response policy to the other agents’ policies. The
local advantages are only conditioned on the own agent’s history allowing for decentralized execution. The
main contribution of LAN is to stabilize the learning of those advantages by leveraging CTDE to use the
value of the joint policy V π to coordinate their learning. The centralized nature of V π allows to reduce the
partial observability, mitigate the moving target problem and the multi-agent credit assignment problem.
By combining the local advantages with the centralized value, LAN derives a proxy of the individual Q-value
of each agent and can simultaneously learn all components with DQN. Two key differences with a factorized
Q-function are: (1) that LAN does not learn the Q-value of the joint policy, which is in fact more difficult
to learn than the value V , and its factorization, but proxies of the individual Q-Values and (2) that in
contrast to VDN and QMIX, LAN’s architecture does not limit the the family of decentralized policies it
can represent. We note that QPLEX can also represent all these policies at the cost of a more complex
architecture.

Best response policies We start from the observation that in a Dec-POMDP when the agents reach an
optimal policy, their individual policies are best responses to the other agents’ policies. Indeed, if one agent
could improve its policy while the other agents polices are fixed, the joint policy cannot be optimal as the
agents share the same reward. Based on this observation, LAN focuses on learning best response polices.

To better understand how to learn best response policies, we first focus on a single agent a P A and assume
that the joint policy of the other agents π´a is fixed. As in (Foerster et al., 2017), we derive from the Dec-
POMDP G a POMDP Ga “ xS̃, Ua, Pa, Oa, Oa, Ra, γy, with S̃ “ xS, T ´ay being the original state space
extended with the observation-action histories of the other agents, Pa and Ra are defined as follows:

Papxs1, τ 1
´ay|xs, τ´ay, uaq “

ÿ

u´a

π´apu´a|τ´aqP ps1|s, xua, u´ayqppτ 1
´a|τ´a, s, s1, u´aq

Rapxs, τ´a, uaq “
ÿ

u´a

π´apu´a|τ´aqRps, xua, u´ayq

The value, Q-value and advantage of Ga can then be derived as follows, with pps̃|τaq the probability of being
in an extended state s̃ P S̃ when τa is agent a’s local history.

V πa pτaq “
ÿ

ua

πapua|τaq
ÿ

s̃

pps̃|τaq
ÿ

u´a

π´apu´a|τ´aq
“

Rps, pua, u´aqq ` γ
ÿ

s1

P ps1|s, xua, u´ayqV πa pτ 1
aq

‰

Qπa pτa, uaq “
ÿ

s̃

pps̃|τaq
ÿ

u´a

π´apu´a|τ´aq
“

Rps, pua, u´aqq ` γ
ÿ

s1

P ps1|s, xua, u´ayqV πa pτ 1
aq

‰

Qπa pτa, uaq “ V πa pτaq ` Aπa pτa, uaq

Partial observability Due to the partial observability, agent a needs to disambiguate the state of Ga

corresponding to the original state s and the joint history of the other agents τ´a. As the environment
is no longer Markovian, the agent needs to base its policy on a belief over the extended state. The most
straightforward way to compute this belief is to keep the full history of the agent. However, this strategy
does not scale well in the number of time-steps or state space. As analyzed in the work on influence-based
abstractions (Oliehoek et al., 2012), in a Dec-POMDP maintaining a belief over the subset of features that
allows to locally regain the Markovian property is sufficient, using the property of d-separation. This belief
is much more compact than keeping track of the entire action-observation history, and therefore offers the
possibility to keep a fully sufficient representation that remains tractable. In the ideal case, the RNN’s
history representation will capture the belief over the d-separating features, enabling the reinforcement
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learning agent to learn an optimal Dec-POMDP policy. In practice of course, we aim to closely approximate
such a representation, but are often uncertain of its existence, or of its size if it does exist.

Applying DQN to the single-agent POMDP Ga learns, for each agent a, the best response policy to π´a,
as the probability distribution over the relevant features Pa results from executing fixed policies for the
other agents. A naive solution to learn good decentralized policies would therefore be to improve each agent
successively. However, this approach fails if the environment requires the agents to explore simultaneously to
find the optimal policy. On the other hand, optimizing Qπa for all the agents simultaneously, i.e., Independent
Q-Learning (IQL) (Tan, 1993; Tampuu et al., 2015) also has key downsides. While IQL allows agents to
explore together, it does not perform well in more complicated tasks due to the moving target problem as
it ignores that the environment Ga perceived by agent a is shifting as π´a evolves. So while we need agents
that learn together, they need to do so in a coordinated manner.

Q-Value proxy LAN simultaneously learns best response policies and mitigates the moving target prob-
lem. These best response policies are expressed as local advantage functions that are solely conditioned on
the agent’s observation-action history, Aπa pτa, uaq, allowing for decentralized execution. To coordinate the
learning of those local advantage functions, following the CTDE paradigm, LAN leverages full information
about the state and the other agents observation-action history at training time via a centralized value
function V π. More specifically, LAN derives Q̃π

a a proxy of the local Q-value Qπa for each agent a P A.

Q̃π
a ps, τ , uaq “ V πps, τ q ` Aπa pτa, uaq (1)

The proxy is constructed by summing the local advantage Aπa with the centralized value of the joint policy
V π. While Q̃π

a is not a real Q-value and it is conditioned on the full state and the joint history τ it can be
used to extract decentralized policies as the maximizing actions only depend on the agent’s history τa, as
shown by equation 2. We obtain this equation by remarking that for both decomposition of Qπa and Q̃π

a ,
the local and centralized values are not conditioned by the agent’s actions.

arg max
ua

Q̃π
a ps, τ , uaq “ arg max

ua

Aπa pτa, uaq “ arg max
ua

Qπa pτa, uaq (2)

LAN uses DQN to learn the individual Q-value proxy Q̃π
a for all agents a P A simultaneously. This allows

LAN to learn the local advantages Aπa and the centralized value V π in parallel by optimizing a unique
loss, resulting in an efficient learning scheme. LAN’s DQN target for agent a is defined as follows with the
subscript t referring to a delayed copy of the networks to increase learning stability (van Hasselt et al., 2015).
Appendix E contains the pseudo code of LAN.

ya “ r ` γQ̃π
ta

ps1, τ 1, arg max
u1

a

Q̃π
a ps1, τ 1, u1

aqq “ r ` γrV π
t ps1, τ 1q ` Aπa

t pτ 1
a, arg max

u1
a

Aπa pτ 1
a, u1

aqqs (3)

The following Theorem, shows that our Q-value proxy is an unbiased estimator of the local Q-value it
approximates.
Theorem 4.1. For any agent a P A, and any realisable local history τa P Ta, and any action ua P Ua , the
Q-value proxy Q̃a is an unbiased estimator of the local Q-value Qπa

E
s,τ´a„pp¨|τaq

Q̃aps, xτ´a, τay , uaq “ Qπa pτa, uaq (4)

We prove the Theorem in Appendix F. In a nutshell, this Theorem shows that by optimizing the Q-value
proxy we are optimizing in the same direction of the local Q-value.

Compared to the local Q-value Qπa , the learning of LAN’s proxy Q̃π
a has two interesting properties that

help stabilize and coordinate the learning, and give an intuition on how LAN solves the task as a whole. We
note that these properties result from applying DQN to LAN’s Q-value proxies to all agents in parallel, and
cannot be tested independently.

Property 1: Q̃π
a mitigates the moving target problem, which results from all the agents learning at the

same time. This simultaneous learning allows the agent to explore together, which is necessary to find an
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Figure 2: Architecture of LAN.

optimal strategy in non-monotonic environments, but because of it the environment is constantly changing
and locally loses its Markovian property. To provide meaningful updates and prevent the learning to plateau
prematurely as in IQL, the updates need to reflect as closely as possible the ever changing environment.
LAN achieves this thanks to the centralized value, which coordinates the learning of all the local advantages.
This happens in two steps. First, as an update of Q̃π

a results in the update of both the centralized value
and the local advantage with the same transitions, a modification of a local advantage function results in a
change of the centralized value. Second, as the centralized value is part of the target update of every agent’s
Q-value (eq. 3), the change is then propagated to the other agents’ advantage.

Property 2: Q̃π
a mitigates the multi-agent credit assignment problem. As the centralized value function

approximates the expected return of the joint policy, the agents can easily evaluate the effect of their actions
on the effective return simply by subtracting it from the centralized value. This difference is learned by the
local advantages. Indeed, by applying DQN to Q̃π

a the induced update of the local advantage network of
agent a (eq. 5) is similar to the one used by COMA (Foerster et al., 2018) to reduce the multi-agent credit
assignment problem. We stress the fact that we learn all the networks in parallel with the Equation 3.

yAa
“ r ` γQ̃π

ta

ˆ

s1, τ 1, arg max
u1

a

Q̃π
a

`

s1, τ 1, u1
a

˘

˙

´ V π ps, τ q (5)

Additionally, we also have two intuitions regarding LAN’s performance. While we were not able to prove
them, we believe that they are still valuable leads to explore.

Intuition 1: Q̃π
a allows to provide better update targets by breaking the partial observability. In a POMDP,

the same observation-action history can be linked to different states forcing the agent to learn a Q-value
that marginalizes over the possible states. In a Dec-POMDP this aspect is even more apparent as all the
agents a P A need to marginalize over the possible states but also over the possible joint histories of the
other agents xs, τ´ay as shown by the derivation of Ga. By its conditioning on the next state and the joint
history xs1, τ 1y, LAN’s DQN target does not suffer from the partial observability and can therefore provide
updates taking into account this information. As highlighted by (Lyu et al., 2021), using a centralized target
to learn a decentralized object might lead to high variance updates. The authors mention that the choice of
a centralized versus decentralized critic is a bias-variance trade-off. In LAN, the value is centralized while
the Advantage is decentralized. This means that LAN by using the Q-value proxy (not as precise as the real
Q-values) to compute the targets induces a bias which in turn reduces the variance of the updates.

Intuition 2: Q̃π
a reduces the learning complexity associated with decentralized policy optimization. Typ-

ically, extracting a policy from a value-based algorithm involves selecting the action that maximizes the
Q-value or advantage, as they have the same action ordering. However, advantage and value functions
exhibit different learning complexities, depending on the characteristics of the environment. While the ad-
vantage function learns the impact of each action on the overall return, the value function learns the expected
cumulative return, necessitating more marginalization over different states and other agents’ histories. This
distinction motivated the introduction of Dueling DQN in MDPs (Wang et al., 2016). Nonetheless, learning
the advantage function in isolation is not feasible; it requires learning the corresponding value function,
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which suffers from both the partial observability and the moving target problem. Therefore, LAN’s proxy
provides a straightforward and efficient approach to learn local advantages without relying on local values.

Architecture

To overcome the partial observability the local advantages networks use a GRU which learns to represent
the observation-actions history into a hidden state ha, with the aim to capture the necessary features to
locally regain the Markov property as stated above. This hidden state is then used to compute the local
advantages. LAN leverages the work done at the agent level to represent τa to build a representation of τ .

For each agent a the centralized value network combines the id a of the agent with its hidden state ha,
its last observation oa and its last action ua into a vector h̃a “ rha, oa, ua, as. To represent τ efficiently
we first embed h̃a into ĥa for all agents with a shared network and sum those embedding. The embedding
allows to limit the potential information loss of the summation, and this combination performs better than
concatenation. Finally, the value is computed from τ using an MLP. LAN’s architecture, represented in
Figure 2, provides two main benefits. First, the centralized value network does not learn a second recurrent
network, which are knowingly difficult to train. Second, as the embedding for all agents are computed with
the same weights, the number of parameters of the centralized value network does not depend on the number
of agents.

As the policies are deterministic, the local advantages should be negative with the maximizing value equal
to 0. However as (Wang et al., 2016) studies, even when computing the real Q-value in single agent MDP
enforcing this constraint has a negative impact on the learning. Their experiments showed that applying the
following transformation to the output of the neural network provides better stability.

Aπa pτa, uaq Ð Aπa pτa, uaq ´
1

|Ua|

ÿ

uPua

Aπa pτa, uq (6)

In the single agent case, this results in the learned advantage to differ from the real advantage by a fixed
offset. In LAN, as the centralized value is shared between all the agents, enforcing the local advantages to
have a zero mean means that the offset will be shared between all the agents. As in (Wang et al., 2016),
we investigated enforcing negative advantages and observed that the learning was also highly impacted by
it in LAN. While sharing the offset between the agents can have a positive impact on collaboration it can
also hinder the learning by adding an additional constraint on both networks. Appendix D reports LAN’s
performance with the mean constraint (eq. 6). Therefore, in LAN we do not apply any constraint on the
output of the advantage network.

5 Experiments

To benchmark LAN we use the StarCraft Multi-Agent Challenge1 (SMAC) (Samvelyan et al., 2019), a set
of environments that runs in the popular video game StarCraft II. SMAC does not focus on the full game
but rather on micromanagement tasks where two teams of agents - possibly heterogeneous and imbalanced
- fight. A match is considered won if the other team is eliminated within the time limit. The time limits
differ per task. Each agent only observes its surroundings and receives a team reward proportional to the
damage done to the other team plus bonuses for killing an enemy and winning. The action space of each
agent consists of a move action to each cardinal direction, a no-op action, and an attack action for each
enemy which is replaced by a heal action for each team member for the Medivacs units. The attack/heal
action only affects units within range. As the agent’s observation and action space are linearly dependent
on the number of agents to perform well scalability is a key issue. SMAC also provides the real state of the
environment, which we use as input for the centralized value. The benchmark is composed of 14 different
maps that are designed to assess different aspects of cooperation. They are ranked into 3 categories: easy,
hard, and super hard maps.

1We use version SC2.4.6.2.69232 and not SC2.4.10. Performances are not comparable between versions.
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Figure 3: Median battle won rate during learning on 9 maps of SMAC. Each algorithm is run on at least 10
different seeds per map. Following the evaluation method of Samvelyan et al. (2019), we train the agents on
2 million steps and plot the median, 1st and 3rd quantiles. IQL (no fog) is introduced in 5.4

5.1 Configuration

To ensure a fair comparison, the decentralized network architecture, the version of the game, the ε-annealing
parameters, the batch size, the replay buffer size, the use of a single environment, and the use of a unique set
of parameters across all maps is consistent with the QMIX and QPLEX papers. Appendix B lists the hyper-
parameters used, and Appendix D reports the results of a variation of LAN where we force the advantage to
have a zero-mean as in Dueling DQN (Wang et al., 2016). The training and evaluation follows the procedure
described in Samvelyan et al. (2019), namely 2 million training timesteps, and evaluation of the decentralized
greedy polices over 32 episodes every 10k timesteps. We train LAN on at least 10 different random seeds
and report the median of the battle win rate over the learning time as well as the first and third quantiles.

5.2 Results

We compare LAN to IQL, VDN, QMIX and QPLEX. For the first three algorithms we used the implemen-
tation of QMIX and we used the official implementation of QPLEX. In the following, we present LAN’s
performance on 9 maps (Figure 3). The other maps are presented in Appendix C. The first row features
fights between marines with an increasing number of agents and the enemy controlling more units. The
second row is composed from left to right of a balanced map with 24 heterogeneous units per team, a map
where 2 power-full units fight a swarm of 64 smaller enemies, and an unbalanced heterogeneous map with a
medic units that as a side effect increases the action space. The last row shows the result on two super-hard
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Table 1: Number of parameters (x1000) of the value function in LAN vs. the mixing network in
QPLEX/QMIX for the first 4 maps of Figure 3. See Appendix A for the other maps. The dependency
of the dimension of the observation and action space in the number of agents is the only cause of the
difference in the number of parameters of LAN’s centralized value network in the different maps

5m_vs_6m 10m_vs_11m 27m_vs_30m bane_vs_bane
LAN 56 68 111 125

QPLEX 43 106 709 555
QMIX 32 70 283 241

maps where the baselines do not reach any wins, and a map where LAN seems to under-perform. Finally,
we discuss LAN’s average performance across all maps (Figure 4).

In the maps of the first row of Figure 3, two unbalanced teams with homogeneous units fight against each
other, with our team composed of fewer units than the enemy: in 5m_vs_6m 5 agents fight 6 enemies, in
10m_vs_11m 10 agents fight 11 enemies, and in 27m_vs_30m 27 agents fight 30 enemies. The ratio between
the number of agents and the number of enemies makes the map 10m_vs_11m easier compared to the other
two. In the map 27m_vs_30m, both the number of agents and the dimension of the observation and action
space constitute a real challenge for MARL. In those three maps, LAN dominates IQL and performs on par
with SOTA. First, as IQL is a natural ablation of LAN, we deduce from this experiment that the centralized
value introduced by LAN does indeed help to coordinate the learning of the agents and that LAN can
address the shortcomings of IQL. Second, LAN does not only performs on par with the SOTA, and slighty
outperforms the other algorithms in the more difficult map, it is also more scalable than QMIX and QPLEX
in terms of parameters of its centralized component with respect to the number of agents (Table 1). Indeed,
between 5m_vs_6m and 27m_vs_30m the number of agents is multiplied by 5.4 and the number of parameters
of LAN’s centralized value is only multiplied by a factor of 2, while for the centralized component of QMIX
and QPLEX this factor is respectively 8.8 and 16.5.

The second row of Figure 3, is composed of two hard and one super-hard maps. The first one, bane_vs_bane,
opposes two large and balanced teams of 24 heterogeneous units. We observe that while IQL easily reaches
100% of winning rate, VDN struggles to learn and QMIX fails to learn. This hints at a limitation of both
monotonous mixing strategies regarding scaling to a large number of agents, supporting our claim that an
alternative research direction to value factorization is needed. QPLEX is able to learn the perfect strategy
at the cost of doubling the number of parameters compared to QMIX. LAN also learns to consequently
eliminate the opposing team and reaches a perfect score with 5 times fewer parameters than QPLEX. The
second map, 2c_vs_64zg, matches two powerful agents against 64 weaker agents. The numerous enemies
make the action space very large, with 70 actions, which is a known challenge in RL (Zahavy et al., 2018).
In this map, QPLEX reaches a final performance of 83% win rate followed closely by LAN with 80%, while
QMIX, VDN and IQL score respectively around 50%, 20% and 15% win rate. The third map, MMM2, features
two unbalanced heterogeneous teams, with the enemy team having 2 additional units, and is the only map
including medical units. While IQL and VDN do not obtain any wins, QMIX and QPLEX score 60% and
80% respectively. LAN obtains the same final performance as QPLEX.

The last row of Figure 3 presents LAN’s performance on 2 super-hard maps alongside the easier version of
one of those maps. In the super hard map corridor, 6 agents of type ’zealot’ fight a team 24 enemies of type
’zerlings’. While the SMAC paper claimed that the only solution for this map was to take advantage of the
terrain (a spawning zone connected to a second zone by a corridor) to limit the number of enemies that can
attack our agents, LAN discovered another solution. One agent lures part of the enemies to a remote location
while the rest fights the remaining enemies. After killing the bait a fraction of the enemies attack our agents
while the majority go through the corridor to reach the second zone. Our agents defeat their attackers, and
after regenerating part of their shields move to the second zone to finish off the enemies. While the current
SOTA flattens to zero, LAN obtains an almost perfect score with around 90% success rate. On the next super
hard map, 3s5z_vs_3s6z, LAN learns good decentralized policies with a performance at around 40%. The
only other algorithm that was able to achieve any wins is QPLEX with less than 10%. The strategy is similar
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as the one learned in corridor, a stalker (long-range unit) baits most of the enemy’s zealots (close combat
units) into targeting him. It then flees far away from his teammates and sacrifices himself so that the other
agents can kill the stalkers and remaining zealots. The agents can then easily kill the remaining enemies as
they are no longer protected by any long-range support. The last map of Figure 3, 3s5z, is the balanced
version of the previous map and therefore easier. In this map, LAN reaches 87% median battle win rate,
whereas VDN only scores 80%, and QMIX and QPLEX obtain 97%. This underperformance is intriguing
as LAN performs better than the other algorithms in the harder version of this map. By visualizing the
learned policies in 3s5z we discovered that LAN converges to two different policies: a) a basic confrontation
policy which is the policy learned by QMIX and QPLEX; b) a baiting strategy identical to the one learned
in 3s5z_vs_3s6z. We also remark that LAN appears to still be learning and might converge to the same
performance as the other QPLEX if given more time.

LAN’s performance in last two super-hard maps can be attributed to is its ability to train an agent to lure
the enemies and to sacrifice itself for the team’s survival. We believe that this behavior is easier to discover
with LAN than with the mixing algorithms because of the shared Value network, as it allows dead agents to
benefit directly from the rewards scored by the other agents after their death. LAN, by focusing on learning
best response policies instead of factorizing a joint Q-value, learns for each agent the policy that maximizes
the team return. On the other hand, QMIX and QPLEX introduce individual rewards through factorization,
which agents learn to maximize. However, if these individual rewards do not align with the team reward,
as is the case in baiting strategies, mixing algorithms struggle to learn effectively. The complex strategy
learned by LAN demonstrates its capacity to mitigate effectively the multi-agent credit assignment problem.

Figure 4: (Left) Averaged median test win on the 14 maps during learning. Shaded area denotes average first
and third quantile. (Right) Number of maps where the algorithms are first by at least 1/32 during learning.

As in the SMAC benchmark and QPLEX papers, Figure 4 shows, on the left plot, LAN’s general average
performance on the 14 maps that composes the SMAC benchmark, and, on the right plot, the number of
maps where each algorithm outperforms the others by a margin of at least 1{32th. IQL only achieves 30%
averaged median test wins and is the best on 0 maps. This under-performance was expected as it is the only
fully decentralized learning algorithm, and because it is highly vulnerable to the moving target problem.
At the beginning of the learning, VDN and QMIX show similar performance, but QMIX takes the lead
obtaining 60% and beating VDN by 8%. QPLEX learns faster than the other algorithms and reaches the
same final performance of QMIX in just a million timesteps to obtain 67% at the end of the learning. Finally,
LAN learns faster than the baselines except QPLEX, which it exceeds at around 1.25 ˆ 106 timesteps. LAN
finishes first with 77% wins. The right plot shows that LAN bests the other algorithms on 3 maps, namely
corridor, 3s5z_vs_3s6z, 5m_vs_6m.

5.3 Credit assignment analysis

In the most difficult maps of SMAC the enemy teams have more units and the contribution of all the agents
is required to win. The difference of performance between 3s5z and 3s5z_vs_3s6z (same team of agents
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but one more enemy) is a good example of that. The baiting strategy discovered in 3s5z_vs_3s6z and
corridor showcase the credit assignment of LAN. Indeed, while the agent that serves as bait acts at the
beginning of the episode the correct behavior is reinforced even though the rewards for killing the enemies
and for defeating the enemy team arrives later.

(a) Initial state of the environment. (b) Final state of the environment
reached by LAN’s policy, with the
first agent having eaten all the ap-
ples.

Figure 5: The Checkers environment. The green boxes are the apples, they yield `10 rewards when eaten
by the first agent and `1 when eaten by the second agent. The yellow boxes are the lemons that yields ´10
and ´1 to the first and second agent respectively. The supplementary material contains a gif of the policy.

To further emphasize this, we performed an additional experiment on Checkers, an environments of VDN
designed to asses credit assignment. In Checkers the red agent gets `10 rewards for eating apples (green)
and ´10 rewards for eating lemons (yellow), while the second agent gets `1 and ´1 respectively. The agents
receive the sum of both rewards. Each agent receives as observation its location in the map and a 3x3 window
around it. The environment finishes when there are no more apples or after 100 steps. Agent 2 needs to eat
the lemons (-1 reward) that block the way for agent 1 to eat the apples (`10 reward), as shown by the initial
state of the environment (Figure 5a). While the agents get the same team reward, they have distinctive
roles as the second agent needs to learn that negative immediate rewards lead to a better team return. LAN
converges to the policies described above, with the 3 lemons on the top row left uneaten (Figure 5b). As
this environment was designed to assess the credit assignment problem, this shows that LAN mitigates it.

5.4 Moving target problem analysis

IQL serves as a natural ablation of LAN, wherein the shared centralized Value component of our Q-Value
proxy is swapped. As discussed in the preceding section, the primary drawback of IQL lies in its susceptibility
to the moving target problem, as it disregards the learning of other agents. Consequently, IQL lacks any
mitigation strategy against this issue. In scenarios such as bane_vs_bane, where coordination is unnecessary
or when agents have no mutual influence, IQL can exhibit satisfactory performance. However, the notable
superiority of LAN over IQL across all maps demonstrates that LAN effectively addresses the limitations of
IQL, including the challenge posed by the moving target problem.

Since the centralized Value of LAN allows to break partial observability we carried out an additional ex-
periment to make sure that the increased performance of LAN was not only due to targets with increased
observability. In this experiment, we trained IQL without the fog of war so that all the agents could observe
the entire map. While the RNN is no longer needed we kept the same architecture and training procedure of
replaying full episodes. This experiment is labelled as "IQL (no fog)" in Figures 3 and 4. In all the maps IQL
performs better than IQL without the fog of war. This shows that LAN’s performance is not only due to
the increased observability of its centralized component and strengthens our claim that our Q-Value proxy
mitigates the moving target problem.

In summary, LAN performs on par with the SOTA on the easy and hard maps while dominating the other
methods on the super hard maps, even the ones where the other methods did not achieve any wins. LAN
outperforms QPLEX by 10% in averaged performance. These results showcase LAN’s performance and
scalability potential, and its capacity to handle many agents and large observation and action spaces.
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6 Conclusion

In this paper, we proposed Local Advantage Networks (LAN); a novel value-based MARL algorithm for
Dec-POMDPs. LAN leverages the CTDE approach by building, for each agent, a proxy of the local Q-value
composed of the local advantage and the joint value. LAN trains both networks by applying DQN to a
Q-value proxy. The centralized learning allows to condition the joint value on the real state to overcome the
partial observability during training. In parallel, it learns the advantages together with the joint value, to
synchronize all value functions to the ever changing policies. This results in more accurate DQN targets and
mitigates the moving target problem. Conditioning the local advantages solely on the agent’s observation-
action history, ensures decentralized execution. To ensure scalability, LAN’s joint value efficiently summarizes
the hidden states produced by the GRUs of the local advantages to represent the joint history. Therefore,
the number of parameters of this value function is independent of the number of agents.

We evaluated LAN on the challenging SMAC benchmark where we performed significantly better or on par
compared to state-of-the-art methods, while its architecture is significantly more scalable in the number of
agents. In the two most complex maps, LAN was able to learn a complex strategy where one agent would
sacrifice itself for the survival of the team, and therefore proving experimentally LAN’s ability to mitigate
the multi-agent credit assignment problem. We believe that the lean architecture of LAN for learning
decentralized policies in a Dec-POMDP is key to learning efficiently in decentralized partially observable
settings.

Most of the recent work in value-based Deep MARL for Dec-POMDP focused on improving the value
factorization of QMIX. The need for a different research direction is therefore real, and LAN, by moving
away from value factorization, offers an alternative. LAN is not only able to achieve better performance
than value factorization but is also more scalable parameter-wise.

Future work In future work, we aim to explore how the history representation of the centralized value can
be improved through the use of Attention (Vaswani et al., 2017) or Graph Neural Networks (Kipf & Welling,
2017). We also aim to investigate how explicit communication (Oliehoek et al., 2008b; Messias et al., 2011;
Wang et al., 2020; Das et al., 2019) can be added to LAN to further improve the coordination between the
agents and to improve robustness of the learned policies. We also plan to investigate how LAN’s architecture
might benefit MARL algorithms in settings with continuous action spaces.
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A StarCraft Multi-Agent Challenge

The complete information about the SMAC benchmark can be found in the introductory paper (Samvelyan
et al., 2019). Table 2 lists the 14 different maps of the challenge with the number of agents in each team
and the number of parameters of the centralized part of LAN, QPLEX and QMIX. Table 3 lists the number
of parameters of the centralized component of LAN, QMIX and QPLEX for the 14 maps.

Table 2: The different maps of SMAC.

Map Name Ally Units Enemy Units
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots

1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots
5m_vs_6m 5 Marines 6 Marines

10m_vs_11m 10 Marines 11 Marines
27m_vs_30m 27 Marines 30 Marines
3s5z_vs_3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 3 Marauders & 8 Marines
2s_vs_1sc 2 Stalkers 1 Spine Crawler
3s_vs_5z 3 Stalkers 5 Zealots
6h_vs_8z 6 Hydralisks 8 Zealots

bane_vs_bane 20 Zerglings & 4 Banelings 20 Zerglings & 4 Banelings
2c_vs_64zg 2 Colossi 64 Zerglings

corridor 6 Zealots 24 Zerglings

Table 3: Number of parameters (x1000) of the value function in LAN vs. the mixing network in
QPLEX/QMIX.

LAN QPLEX QMIX
2s3z 62 50 36
3s5z 74 90 60

1c3s5z 83 113 73
5m_vs_6m 56 43 32

10m_vs_11m 68 106 70
27m_vs_30m 111 709 283
3s5z_vs_3s6z 76 95 63

MMM2 86 136 85
2s_vs_1sc 46 18 12
3s_vs_5z 54 31 22
6h_vs_8z 61 59 42

bane_vs_bane 125 555 241
2c_vs_64zg 119 116 72

corridor 79 109 69

B Implementation details

We use neural networks with ReLu activation functions, to approximate the local advantage and the central-
ized value. To increase the learning speed and reduce the number of parameters we share the neural network
weights of the local advantages between all the agents. The input of the advantage network conditions on
the agent ID so that the policy can differ per agent. The advantage network is composed of a 2 hidden
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layers, a 64 units feed forward network and a 64 units GRU, which is consistent with the architecture used
in the SOTA algorithms to represent the decentralized utilities (Rashid et al., 2018; Wang et al., 2021).

The centralized value network (Figure 2, left) first computes an embedding of h̃a for each agent, ĥa, using
a feed forward network of 128 units. The agents’ embeddings are then merged together by summing them
resulting in a joint history embedding of fixed size. This joint history embedding is then concatenated with
the real state provided by the environment to create a state-history embedding. Finally, this state-history
embedding goes through an feed forward network of two hidden layers of 128 units to compute the value.

We train LAN for 2 million timesteps using a replay buffer of 5k episodes. During training we use an ε-greedy
exploration strategy over the local advantages, with ε decaying from 1 to 0.05 over the first 50k timesteps.
After every episode we optimize both networks twice using Adam with a learning rate of 5e´4 and without
TD(λ). For each update we sample a batch of 32 episodes from the replay buffer. The DQN target are
computed with a target network that is updated every 200 gradient updates. We clip to 10 the norm of the
gradient.

We note that LAN does not require parameter sharing, and that each type of agent could have its own
model. In that case, every agent type also needs its own embedding network to compute h̃a.

C Remaining maps of SMAC

Figure 6: Median battle won rate during learning on the last 5 SMAC maps.

Figure 6 includes the 5 SMAC maps that are not included in the main paper. The first map, 2s_vs_1sc,
is an easy map and LAN learns the perfect strategy as the other algorithms do. In the second and third
maps, 2s3z and 1c3s5z, all the algorithms but IQL learn near-optimal policies. In 3s_vs_5z, LAN and
QPLEX learn the optimal policy followed closely by QMIX and VDN that both reach around 85%. Finally,
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in the last map 6h_vs_8z no algorithm is able to score any wins. We note that the difference in performance
between IQL and IQL (no fog) is consistent with the other maps: removing the fog of war does not increase
performance.

D Discussion regarding the advantage

Figure 7: Median battle won rate during learning on the all the SMAC maps.

Figure 7 shows the performance on all the SMAC maps with a variation of LAN called LAN mean, which
applies the equation 6 . While in two maps 3s5z, 27m_vs_30m the mean version of LAN improves over the
classical version, it degrades the performance in others other maps such as 5m_vs_6m, 2c_vs_64zg, and MMM2,
and prevents the learning in corridor and 3s5z_vs_3s6z. This empirically shows that while in the single
agent case the equation 6 stabilizes the learning it might not be the case when multiple agents are involved.
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E Algorithm

Algorithm 1: Local Advantage Networks (LAN)
Input : Agent set N
Input : Replay memory capacity MC
Input : Frequency of target update C
Input : Exploration rate ϵ

1 Initialize(replay memory D with capacity MC);
2 Initialize(centralized value function V with random weights);
3 Initialize(for each agent a P N local advantage function Aa, containing RNNa, with random

weights);
4 Initialize(target value function Vt with weights of V , and for each agent a target local advantage Aa

t

with weights Aa) ;
5 Initialize(epsilon decay ϵdecay and minimum epsilon ϵmin);
6 for episode do

// Interaction with environment
7 Initialize(empty episode memory E)
8 ResetEnvironment(s, o Ð env) // get state and joint observation
9 ResetHiddenStates(@a P N, τa “ 0);

10 ResetLastAction(@a P N, ua “ 0)
11 while episode is not finished do
12 for agent a P N do
13 UpdateHiddenState(τa Ð RNNapτa, ua, oaq);
14 SelectAction(ua Ð πϵpAapτaqq);
15 ExecuteJointAction(u) ;
16 Observe next state s1, next joint observation o, reward r ;
17 StoreTransition(s, o, u, r, s1 o1, in episode memory E) ;
18 UpdateCurrentState(s Ð s1) ;
19 UpdateCurrentJointObs(o Ð o1) ;
20 Store episode memory E in replay memory D ;

// Perform learning step
21 Sample random batch B of episodes from D ;
22 for each episode e in the batch B do
23 for each timestep t “ 1 to last step of the episode T peq do
24 Unroll RNN of current and target networks;
25 For each agent a compute current Q̃ estimate using Equation 1;

// Q̃π
a ps, τ , uaq “ V πps, τ q ` Aπa pτa, uaq

26 For each agent a compute TD target with target networks using Equation 3;
// ya “ r ` γrV π

t ps1, τ 1q ` Aπa
t pτ 1

a, arg maxu1
a

Aπa pτ 1
a, u1

aqqs

27 For each agent a compute TDa,e,t the temporal difference error;

28 UpdateValueAndLocalAdvantages(using gradient descent on the mean square temporal difference
error);

// Update target network and exploration
29 UpdateTargetNetwork(@a P N, At

a Ð A; V t Ð V ) (every C steps) ;
30 UpdateExploration(ϵ Ð maxpϵ ˆ ϵdecay; ϵminq) ;
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F Proof

Episodic process. A POMDP P is episodic if it includes a special reset state that is fully observable by
the agent, and that under any policy the environment is almost surely eventually reset. Furthermore, when
the environment is reset it transition to the initial state.

For this proof we consider an agent a with policy πa and the induced POMDP Ga obtained by fixing the
policy of the other agents π´a (defined in Section 4).

Without any loss of generality, we augment Ga with an observable reset state so that Ga is episodic. This
ensures the ergodicity of Ga, as every epsiodic process is ergodic or can be made ergodic without loss of
generality Huang (2020), and consequently the existence of a stationary distribution pπps̃, τaq “ pπps, τ q.

As LAN learns greedy policies we consider only deterministic policies.

F.1 Warm-up

By decomposing the next joint history τ 1 as a tuple containing the new joint observation o1, the joint action
u and the joint history τ we obtain the following equality:

p
`

τ 1 “
@

o1, u, τ̃
D

| s1, πpτ q, τ
˘

“ δτ̃ pτ qδupπpτ qqO
`

o1 | s1, πpτ q
˘

(7)

Where δypxq is the Kronecker delta symbol. It is equal to 1 if x “ y and 0 otherwise.

We can obtain a similar result for the next local history τ 1
a

p
`

τ 1
a “

@

o1
a, ua, τ̃a

D

| s1, πpxτ´a, τayq, xτ´a, τay
˘

“ δτ̃a
pτaqδua

pπapτaqqOa

`

o1
a | s1, πapτaq

˘

(8)

For any local history τa of agent a that is realisable under the policy πa we can define the following conditional
probability:

pps, τ´a | τaq “
pπps, xτ´a, τayq

ppτaq
“

pπps, xτ´a, τayq

Es1,xτ 1
´a

,τ 1
ay„pτ

δτ 1
a
pτaq

(9)

For any realisable history τa of agent a that is realisable under the policy πa, and next history τ 1
a we have:

p
`

τ 1
a | τa

˘

“ E
s,τ´a„pp¨|τaq

E
s1„Pp¨|s,πpxτ´a,τayqq

p
`

τ 1
a | s1, xτ´a, τay , πpxτ´a, τayq

˘

(10)
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Proof:

p
`

τ 1
a | τa

˘

“

ż

s

ż

s1

ż

τ´a

p
`

τ 1
a | s1, xτ´a, τay , πpxτ´a, τayq, s

˘

p
`

s1, τ´a, πpxτ´a, τayq, s | τa

˘

dτ´ads1ds

(law of total probability)

“

ż

s

ż

s1

ż

τ´a

p
`

τ 1
a | s1, xτ´a, τay , πpxτ´a, τayq, s

˘

pps, τ´a | τaqP
`

s1 | s, xτ´a, τay , πpxτ´a, τayq
˘

dτ´ads1ds

(chain rule)

“

ż

s

ż

τ´a

pps, τ´a | τaq

ż

s1

P
`

s1 | s, xτ´a, τay , πpxτ´a, τayq
˘

p
`

τ 1
a | s1, xτ´a, τay , πpxτ´a, τayq, s

˘

ds1dsdτ´a

(linearity)

“

ż

s

ż

τ´a

pps, τ´a | τaq E
s1„Pp¨|s,πpxτ´a,τayqq

p
`

τ 1
a | s1, xτ´a, τay , πpxτ´a, τayq, s

˘

dsdτ´a

(definition of expectation)
“ E

s,τ´a„pp¨|τaq
E

s1„Pp¨|s,πpxτ´a,τayqq

p
`

τ 1
a | s1, xτ´a, τay , πpxτ´a, τayq, s

˘

(definition of expectation)

“ E
s,τ´a„pp¨|τaq

E
s1„Pp¨|s,πpxτ´a,τayqq

p
`

τ 1
a | s1, xτ´a, τay , πpxτ´a, τayq

˘

(conditional independence of τ 1
a and s given s1)

For any realisable history τa, that is realisable under the policy πa, and any next state s1 and next joint
history τ 1 we have

p
`

s1, τ 1 | τa

˘

“ E
s,τ´a„pp¨|τaq

P
`

s1 | s, πpxτ´a, τayq
˘

p
`

τ 1 | s1, xτ´a, τay , πpxτ´a, τayq
˘

(11)

Proof

p
`

s1, τ 1 | τa

˘

“ E
s,τ´a„pp¨|τaq

p
`

s1, τ 1 | s, xτ´a, τay
˘

(law of total probability)

“ E
s,τ´a„pp¨|τaq

p
`

s1 | s, xτ´a, τay
˘

p
`

τ 1 | s1, s, xτ´a, τay
˘

(chain rule)

“ E
s,τ´a„pp¨|τaq

P
`

s1 | s, πpxτ´a, τayq
˘

p
`

τ 1 | s1, s, xτ´a, τay , πpxτ´a, τayq
˘

“ E
s,τ´a„pp¨|τaq

P
`

s1 | s, πpxτ´a, τayq
˘

p
`

τ 1 | s1, xτ´a, τay , πpxτ´a, τayq
˘

(conditional independence of τ 1 and s given s1, xτ´a, τay , πpxτ´a, τayq)

F.2 Unbiased estimator

Theorem F.1. For any agent a P A, and any realisable local history τa P Ta, and any action ua P Ua , the
Q-value proxy Q̃a is an unbiased estimator of the local Q-value Qπa

E
s,τ´a„pp¨|τaq

Q̃aps, xτ´a, τay , uaq “ Qπa pτa, uaq (12)

Proof
We fix a P A, ua P Ua, τa P Ta

E
s,τ´a„pp¨|τaq

“

Q̃aps, xτ´a, τay , uaq ´ Qπa pτa, uaq
‰

“ E
s,τ´a„pp¨|τaq

rV πps, xτ´a, τayq ` Aπa pτa, uaq (13)

´ pV πa pτaq ` Aπa pτa, uaqqs

“ E
s,τ´a„pp¨|τaq

rV πps, xτ´a, τayq ´ V πa pτaqs
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By definition we have:

V πps, τ q “ rps, πpτ qq ` γ E
s1„Pp¨|s,πpτ qq

E
τ 1„pp¨|s1,πpτ q,τ q

V π
`

s1, τ 1
˘

V πa pτaq “ E
s,τ´a„pp¨|τaq

rps, πpxτ´a, τayqq ` γ E
s,τ´a„pp¨|τaq

E
s1„Pp¨|s,πpxτ´a,τayqq

E
τ 1

a„pp¨|s1,πpxτ´a,τayq,xτ´a,τayq

V πa
`

τ 1
a

˘

We define ∆r and ∆p as follow:

∆rps, xτ´a, τayq “ rps, πpxτ´a, τayqq ´ E
s̃,τ̃´a„pp¨|τaq

rps̃, πpxτ̃´a, τayqq

∆pps, xτ´a, τayq “ E
s1„Pp¨|s,πpxτ´a,τayqq

E
τ 1„pp¨|s1,πpxτ´a,τayq,xτ´a,τayq

V π
`

s1, τ 1
˘

´ E
s̃,τ̃´a„pp¨|τaq

E
s1„Pp¨|s̃,πpxτ̃´a,τayqq

E
τ 1

a„pp¨|s̃1,πpxτ̃´a,τayq,x ˜τ´a,τayq

V πa
`

τ 1
a

˘

This allows us to rewrite Eq 13 as

E
s,τ´a„pp¨|τaq

“

Q̃aps, xτ´a, τay , uaq ´ Qπa pτa, uaq
‰

“ E
s,τ´a„pp¨|τaq

r∆rps, xτ´a, τayqs ` γ E
s,τ´a„pp¨|τaq

r∆pps, xτ´a, τayqs

(14)

Let’s first focus on the first part of the RHS of Equation 13.

E
s,τ´a„pp¨|τaq

r∆rps, xτ´a, τayqs “ E
s,τ´a„pp¨|τaq

„

rps, πpxτ´a, τayqq ´ E
s̃,τ̃´a„pp¨|τaq

rps̃, πpxτ̃´a, τayqq

ȷ

“ E
s,τ´a„pp¨|τaq

rps, πpxτ´a, τayqq ´ E
s,τ´a„pp¨|τaq

E
s̃,τ̃´a„pp¨|τaq

rps̃, πpxτ̃´a, τayqq

(linearity of expectation)
“ E

s,τ´a„pp¨|τaq

rps, πpxτ´a, τayqq ´ E
s̃,τ̃´a„pp¨|τaq

rps̃, πpxτ̃´a, τayqq

(second part does not depend on s, τ´a)
“ 0

Let’s now focus on the second part of the RHS of Equation 13.

E
s,τ´a„pp¨|τaq

r∆pps, xτ´a, τayqs “ E
s,τ´a„pp¨|τaq

„

E
s1„Pp¨|s,πpxτ´a,τayqq

E
τ 1„pp¨|s1,πpxτ´a,τayq,xτ´a,τayq

V π
`

s1, τ 1
˘

´ E
s̃,τ̃´a„pp¨|τaq

E
s1„Pp¨|s̃,πpxτ̃´a,τayqq

E
τ 1

a„pp¨|s̃1,πpxτ̃´a,τayq,x ˜τ´a,τayq

V πa
`

τ 1
a

˘

ff

“

A
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

E
s,τ´a„pp¨|τaq

E
s1„Pp¨|s,πpxτ´a,τayqq

E
τ 1„pp¨|s1,πpxτ´a,τayq,xτ´a,τayq

V π
`

s1, τ 1
˘

´ E
s,τ´a„pp¨|τaq

E
s̃,τ̃´a„pp¨|τaq

E
s1„Pp¨|s̃,πpxτ̃´a,τayqq

E
τ 1

a„pp¨|s̃1,πpxτ̃´a,τayq,x ˜τ´a,τayq

V πa
`

τ 1
a

˘

looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

B
(linearity of expectation)
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A “ E
s,τ´a„pp¨|τaq

E
s1„Pp¨|s,πpxτ´a,τayqq

E
τ 1„pp¨|s1,πpxτ´a,τayq,xτ´a,τayq

V π
`

s1, τ 1
˘

“ E
s,τ´a„pp¨|τaq

ż

s1

P
`

s1 | s, πpxτ´a, τayq
˘

ż

τ 1

p
`

τ 1 | s1, πpxτ´a, τayq, xτ´a, τay
˘

V π
`

s1, τ 1
˘

ds1 dτ 1

(definition of expectation)

“

ż

s1

ż

τ 1

E
s,τ´a„pp¨|τaq

P
`

s1 | s, πpxτ´a, τayq
˘

p
`

τ 1 | s1, πpxτ´a, τayq, xτ´a, τay
˘

V π
`

s1, τ 1
˘

ds1 dτ 1 (linearity)

“

ż

s1

ż

τ 1

p
`

s1, τ 1 | τa

˘

V π
`

s1, τ 1
˘

ds1 dτ 1 (see Eq. 11)

“ E
s1,τ 1„pp¨|τaq

V π
`

s1, τ 1
˘

(definition of expectation)

B “ E
s,τ´a„pp¨|τaq

E
s̃,τ̃´a„pp¨|τaq

E
s1„Pp¨|s̃,πpxτ̃´a,τayqq

E
τ 1

a„pp¨|s̃1,πpxτ̃´a,τayq,x ˜τ´a,τayq

V πa
`

τ 1
a

˘

“ E
s̃,τ̃´a„pp¨|τaq

E
s1„Pp¨|s̃,πpxτ̃´a,τayqq

E
τ 1

a„pp¨|s̃1,πpxτ̃´a,τayq,x ˜τ´a,τayq

V πa
`

τ 1
a

˘

(does not depend on s, τ´a)

“ E
s̃,τ̃´a„pp¨|τaq

E
s1„Pp¨|s̃,πpxτ̃´a,τayqq

ż

τ 1
a

p
`

τ 1
a | s̃1, πpxτ̃´a, τayq, x ˜τ´a, τay

˘

V πa
`

τ 1
a

˘

dτ 1
a

(definition of expectation)

“

ż

τ 1
a

E
s̃,τ̃´a„pp¨|τaq

E
s1„Pp¨|s̃,πpxτ̃´a,τayqq

p
`

τ 1
a | s̃1, πpxτ̃´a, τayq, x ˜τ´a, τay

˘

V πa
`

τ 1
a

˘

dτ 1
a (linearity)

“

ż

τ 1
a

p
`

τ 1
a | τa

˘

V πa
`

τ 1
a

˘

dτ 1
a (see Eq. 10)

“ E
τ 1

a„pp¨|τaq

V πa
`

τ 1
a

˘

(definition of expectation)

By using the value of A and B we get:

E
s,τ´a„pp¨|τaq

r∆pps, xτ´a, τayqs “ E
s1,τ 1„pp¨|τaq

V π
`

s1, τ 1
˘

´ E
τ 1

a„pp¨|τaq

V πa
`

τ 1
a

˘

“ E
τ 1

a„pp¨|τaq
E

s1,τ 1
´a

„pp¨|τa,τ 1
aq

V π
`

s1,
@

τ 1
´a, τ 1

a

D˘

´ E
τ 1

a„pp¨|τaq

V πa
`

τ 1
a

˘

(chain rule)

“ E
τ 1

a„pp¨|τaq
E

s1,τ 1
´a

„pp¨|τ 1
aq

V π
`

s1,
@

τ 1
´a, τ 1

a

D˘

´ E
τ 1

a„pp¨|τaq

V πa
`

τ 1
a

˘

(τ 1
a contains τa)

“ E
τ 1

a„pp¨|τaq
E

s1,τ 1
´a

„pp¨|τ 1
aq

“

V π
`

s1,
@

τ 1
´a, τ 1

a

D˘

´ V πa
`

τ 1
a

˘‰

(linearity)

Therefore we obtain:

E
s,τ´a„pp¨|τaq

rV πps, xτ´a, τayq ´ V πa pτaqs “ γ E
τ 1

a„pp¨|τaq
E

s1,τ 1
´a

„pp¨|τ 1
aq

“

V π
`

s1,
@

τ 1
´a, τ 1

a

D˘

´ V πa
`

τ 1
a

˘‰

(15)
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By applying recursively n times Equation 15 we obtain:

E
s,τ´a„pp¨|τaq

rV πps, xτ´a, τayq ´ V πa pτaqs

“ γn E
τ1

a „pp¨|τaq
E

τ2
a „pp¨|τ1

a q

... E
τn

a „pp¨|τn´1
a q

E
sn,τ n

´a
„pp¨|τn

a q

“

V π
`

sn,
@

τ n
´a, τn

a

D˘

´ V πa pτn
a q

‰

(16)

We then define Rmax “ maxsPS maxuPU |Rps, uq|. This allows us to bound the difference between the
centralized value and the local value:

@s P S, τ P T , |V πps, xτ´a, τayq ´ V πa pτaq| ď |V πps, xτ´a, τayq| ` |V πa pτaq| (triangular inequality)

ď
Rmax

1 ´ γ
`

Rmax

1 ´ γ
(upper-bound on the value)

ď
2Rmax

1 ´ γ

This allows us to bound the LHS of Equation 16:
ˇ

ˇ

ˇ

ˇ

E
s,τ´a„pp¨|τaq

rV πps, xτ´a, τayq ´ V πa pτaqs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

γn E
τ1

a „pp¨|τaq
E

τ2
a „pp¨|τ1

a q

... E
τn

a „pp¨|τn´1
a q

E
sn,τ n

´a
„pp¨|τn

a q

“

V π
`

sn,
@

τ n
´a, τn

a

D˘

´ V πa pτn
a q

‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď γn E
τ1

a „pp¨|τaq
E

τ2
a „pp¨|τ1

a q

... E
τn

a „pp¨|τn´1
a q

E
sn,τ n

´a
„pp¨|τn

a q

“
ˇ

ˇV π
`

sn,
@

τ n
´a, τn

a

D˘

´ V πa pτn
a q

ˇ

ˇ

‰

(Jensen inequality)

ď γn E
τ1

a „pp¨|τaq
E

τ2
a „pp¨|τ1

a q

... E
τn

a „pp¨|τn´1
a q

E
sn,τ n

´a
„pp¨|τn

a q

„

2Rmax

1 ´ γ

ȷ

(see above)

ď γn 2Rmax

1 ´ γ

As γ Ps0, 1r, when n Ñ ` inf we obtain:
ˇ

ˇ

ˇ

ˇ

E
s,τ´a„pp¨|τaq

rV πps, xτ´a, τayq ´ V πa pτaqs

ˇ

ˇ

ˇ

ˇ

ď 0

And finally, using Eq. 13:

E
s,τ´a„pp¨|τaq

“

Q̃aps, xτ´a, τay , uaq ´ Qπa pτa, uaq
‰

“ 0

G Additional Experiment

We conducted an evaluation of LAN and the selected baseline algorithms within a modified version of the
simple spread environment from the Multi-Agent Particle Environment suite (MPE) Lowe et al. (2017). In
the original environment, three agents are tasked to spread efficiently across three landmarks while avoiding
collisions with one another. The reward structure combined two components: a) the cumulative negative
distance between each landmark and its closest agent; b) penalties for collisions between agents. Both agents
and landmarks are randomly spawned on the map at the beginning of an episode. Notably, we introduced
partial observability into the environment, restricting agents to observe only those agents and landmarks
within a fixed radius. Additionally, modifications were made to the environment, allowing for any number
of agents while maintaining a constant ratio between the environment size and the agent count.
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Figure 8: Median return during learning on the simple spread environment of MPE with 3, 6 and 9 agent.
Each algorithm is run on 10 different seeds. We train the agents on 2 million steps and plot the median, 1st
and 3rd quantiles.

Figure [8 depicts the median return obtained by LAN and the baseline algorithms with 3, 6, and 9 agents.
The results are averaged over 10 runs. The hyper-parameters from SMAC were adopted without further
tuning. The results consistently demonstrate LAN’s accelerated learning compared to other algorithms in
all three instances. With 3 agents, both QPLEX and QMIX exhibit slightly inferior performance relative to
LAN. In contrast, VDN significantly underperforms in comparison to LAN, while IQL appears to struggle
in learning. With 6 and 9 agents, the learning curves of LAN, QPLEX, QMIX, and VDN align closely,
eventually reaching similar performance levels. However we note that LAN consistently achieves quicker
convergence. IQL fails to learn a good policy in all the instances.
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