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Abstract
Parameter-Efficient Fine Tuning (PEFT) has been demonstrated
to be effective and efficient for transferring foundation models
to downstream tasks. Transferring pretrained uni-modal models
to multi-modal downstream tasks helps alleviate substantial com-
putational costs for retraining multi-modal models. However, ex-
isting approaches primarily focus on multi-modal fusion, while
neglecting the modal-specific fine-tuning, which is also crucial
for multi-modal tasks. To this end, we propose parameter-efficient
CollaborativePrompt Learning (CoPL) to fine-tune both uni-modal
and multi-modal features. Specifically, the collaborative prompts
consist of modal-specific prompts and modal-interaction prompts.
The modal-specific prompts are tailored for fine-tuning each modal-
ity, while the modal-interaction prompts are customized to explore
inter-modality association. Furthermore, prompt bank-based mu-
tual coupling is introduced to extract instance-level features, further
enhancing the model’s generalization ability. Extensive experimen-
tal results demonstrate that our approach achieves comparable
or higher performance on various audio-visual downstream tasks
while utilizing approximately 1% extra trainable parameters.

CCS Concepts
• Information systems→Multimedia information systems; •
Computing methodologies→ Artificial intelligence.
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1 Introduction
Large-scale pretrained models have experienced notable progress
in recent years [2, 33, 34, 41]. While fully fine-tuning pretrained
models for downstream tasks can achieve commendable perfor-
mance, the expensive computational cost renders it impractical
for most researchers. Consequently, investigators tend to explore
parameter-efficient fine-tuning (PEFT) methods [15–18, 25], aiming
to achieve excellent performance with limited trainable parameters,
thereby reducing the computational cost. These PEFT paradigms
such as Adapter [16, 38], Prompts [18, 25, 47], and LoRA [15, 17],
have demonstrated remarkable efficiency and effectiveness. They
transfer the foundation models to downstream tasks by attaching a
few extra parameters while keeping the pretrained models frozen.

Most PEFT-based researches focus on transferring pretrained
ViT [4] or CLIP [34] to few-shot or zero-shot uni-modal tasks
[12, 14, 18, 19, 53, 54]. There are still lacking profound exploration
in transferring pretrained uni-modal model to multi-modal task, es-
pecially in audio-visual domain. Transferring pretrained uni-modal
models to multi-modal downstream tasks is promising for two rea-
sons. First, the optimizing objective of CLIP [34] or AudioCLIP [11]
is to align the multi-modal semantic features, which means that
extending to another modality requires retraining from scratch.
Existing freely large-scale uni-modal foundation models could al-
leviate substantial computational costs and huge paired data for
retraining multi-modal models. Second, the contribution of each
modal to different multi-modal tasks is peculiar and irreplaceable.
Transferring uni-modal models to multi-modal tasks can provide
both modal-specific and modal-interaction information.

Existing methods typically focus on multi-modal fusion by intro-
duce additional adapter branches, due to the fact that pre-trained
uni-modal models lack mutual interaction between modalities, as
depicted in Fig.1. For instance, LAVISH [29] uses shared encoders
to explore task-specific multi-modal information with a specially
designed adapter. DG-SCT [5] introduces a dual-guidance attention
mechanism for extracting features across spatial, channel, and tem-
poral dimensions. PFM [26] proposed an efficient and flexible multi-
modal fusion approach, which employ cross-attention operation in
pretrained encoder layers to learn mutual interactions. However,
these approaches have limitations. First, current models primarily
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Figure 1: Comparison of CoPL with previous methods. The
top shows that we achieve both modal-specific and modal-
interaction fine-tuning, whereas previous methods only fo-
cus on multi-modal interaction. The bottom illustrates the
efficiency and effectiveness of the proposed CoPL. Different
colors represent results on AVE (green), AVS (yellow), and
AVQA (red) tasks, respectively.

focus on fusing multi-modal features, neglecting the crucial aspect
of modal-specific fine-tuning for multi-modal tasks. Multi-modal
tasks rely on each modality to provide complementary and unique
insights in different scenarios. While frozen encoders provide uni-
modal information, they are pretrained on single datasets, limiting
their ability to provide task-specific cues for various audio-visual
tasks. Second, shared prompts are employed for fine-tuning all sam-
ples for a given specific task. Due to the limited parameters and
expressive capability of prompts, they are unable to adequately rep-
resent diverse sample features, resulting in a lack of instance-level
feature fine-tuning. Third, they lack the alignment of multi-modal
features, a factor proven crucial for multi-modal learning [6, 27].

To address the above limitations, we propose parameter-efficient
Collaborative Prompt Learning (CoPL) for transferring pretrained
uni-modal models to audio-visual tasks. CoPL achieves remark-
able performance with a significantly reduced number of trainable
parameters, as illustrated in Fig.1. Specifically, vanilla prompts
are divided into Modal-Specific Prompts and Modal-Interaction
Prompts. Modal-specific prompts, including video-level prompts
and frame-level prompts, explore peculiar cues of each modality
in various scenarios to achieve modal-specific fine-tuning. Video-
level prompts extract features from the entire video, while local
frame-level prompts are appended to each frame to capture local

spatio-temporal associations. Modal-interaction prompts are tai-
lored to transfer information between modalities for multi-modal
fusion. They are added only to the last few layers of the pretrained
model to further enhance efficiency. Modal-specific prompts and
modal-interaction prompts collectively enhance the transfer perfor-
mance of pretrained uni-modal models on audio-visual downstream
tasks. To learn fine-grained instance-level features, we introduce
prompt bank-based mutual coupling. The prompt bank consists of
randomly initialized prompts. Modal-interaction prompts are adap-
tively matched with different samples from the prompt bank. The
mutual coupling leverages the pretrained model to enhance modal-
interaction prompts achieving multi-modal fusion. Additionally, a
consistency constraint is introduced to align multi-modal repre-
sentations, alleviating data distribution bias in uni-modal models.
We employ a dual-stream architecture to ensure model flexibility,
allowing the backbone to be easily replaced with various pretrained
foundation models. The proposed method is evaluated on audio-
visual event localization [39], audio-visual segmentation [52], and
audio-visual question answering [24] tasks. The main contributions
of this work can be summarized as follows:

• Our proposed parameter-efficient Collaborative Prompting
Learning (CoPL) decompose vanilla prompts tomodal-specific
prompts and modal-interaction Prompts for achieving both
modal-specific fine-tune and multi-modal fusion.

• Prompt bank-base mutual coupling adequately utilize the
generalization ability of pretrained model to achieve multi-
modal fusion. This strategy also enhances themodel’s expres-
sion ability to extract fine-grained instance-level features.

• Extensive experiments are conducted across various tasks to
demonstrate the effectiveness and efficiency. Our proposed
model achieve competitive results with minimum additional
trainable parameters compared to previous methods.

2 Related Work
2.1 Audio Visual Learning
Audio-visual learning aims to explore the association and comple-
mentarity between the audio and visual to achieve multi-modal
perception. By jointly processing audio and visual inputs, audio-
visual learning can enhance the performance and generalization
ability of models [1, 32, 40, 42, 48, 51]. Audio-visual learning has
applications in a wide range of fields, such as audio-visual event lo-
calization, audio-visual segmentation, visual sound localization, and
audio-visual question answering [43, 55]. For instance, audio-visual
event localization aims to detect events occurring simultaneously
in both visual and audio streams within a video [7, 8, 39, 46]. The
goal of visual sound localization is to localize the visual regions that
emit sound [30, 35–37], while audio-visual segmentation achieves
pixel-level localization of sound-emitting objects [10, 13, 52]. Audio-
visual question answering is an emerging task that seeks to answer
given questions through the integration of visual, audio, and their
associations [21, 24, 49]. However, these tasks usually extract fea-
tures from pretrained models, primarily focusing on designing
fusion strategies. The lack of early fusion hinders the effective cap-
ture of associations and complementarity between visual and audio.
Our proposed method freezes the pretrained models and achieves
early fusion through additional prompts.
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Figure 2: Overview of the CoPL framework. The audio and visual input are initially projected into token sequences via patch
embedding. These input tokens are then concatenated with trainable collaborative prompts, consisting of modal-specific and
modal-interaction prompts. The modal-specific prompts include global prompts for video-level feature extraction and local
prompts tailored for frame-level features. Modal-interaction prompts are employed to transfer information between modalities
through prompt bank-based mutual coupling (PMC).

2.2 Parameter-Efficient Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) aims to adapt large-scale
pretrained foundation models to downstream tasks for competitive
performance with minimal additional trainable parameters [12, 25,
44, 45]. The current strategies for PEFT primarily encompass meth-
ods such as Adapter [9, 16, 38], Prompt [18, 22, 53], and LoRA [17].
The adapter approaches introduce additional branches to transfer
large pretrained models to different downstream tasks. Prompt
customizes the model for specific task by concatenating trainable
prompts with input, while LoRA focuses on learning a low-rank fac-
torization of the model’s weights. Currently, PEFT in multi-modal
learning is predominantly concentrated in the visual-language do-
main [19, 20, 26, 27], with relatively limited exploration in audio-
visual field. The research of PEFT in the audio-visual domain is
just beginning to take off. LAVISH first employed a shared encoder
for both video and audio by specially designed additional adapter
[29]. They employ shared prompts for all samples which limits
the model’s ability to generalize on downstream tasks. DG-SCT
introduced a dual-guidance attention mechanism to fuse audio and
visual [5]. They utilizes one modality to guide the feature extrac-
tion of counterpart modality across spatial, channel, and temporal
dimensions. But the attention mechanisms unavoidably introduce
a substantial number of trainable parameters. This render it inca-
pable of alleviating computational costs effectively. Furthermore,
these methods primarily focus on fusing multi-modal features, ne-
glecting the crucial aspect of modal-specific fine-tuning for multi-
modal tasks. We propose a more efficient prompt-based fine-tuning

method that can generalize the pretrained unimodal model to audio-
visual tasks.

3 Approach
Our objective is to transfer large-scale pretrained uni-modal mod-
els to audio-visual downstream tasks while maintaining a limited
number of trainable parameters. Our proposed method, parameter-
efficient collaborative prompt learning (CoPL), achieves both modal-
specific and modal-interaction fine-tuning for specific task. The
overall architecture is depicted in Fig. 2. To enhance model flexi-
bility, we adopt a two-stream structure that integrates pretrained
visual and audio encoders within a multi-modal framework. No-
tably, the audio and visual encoders are interchangeable. Previous
studies have demonstrated the effectiveness of ImageNet-Pretrained
encoders in extracting audio features [3, 29]. In our experiments,
we validate the performance of both shared and unshared encoders.
For instance, we utilize SwinTransformerV2 [31] as both the visual
and audio encoder, as well as SwinTransformerV2 as the visual
encoder in combination with HTS-AT [3] as the audio encoder.

We begin by revisiting the uni-modal transformer-based encoder
in Section 3.1, followed by a detailed exposition on how our collab-
orative prompts transfer uni-modal models to multi-modal tasks
in Section 3.2. Subsequently, Section 3.3 introduces the prompt
bank-based mutual coupling, which facilitates efficient multi-modal
interaction. Finally, a consistency constraint is introduced aimed at
guiding the learnable prompts to achieve alignment between audio
and visual features. Detailed explanations will follow.
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3.1 Revisiting Unimodal Transformer
This work primarily considers transformer-based pretrainedmodels
as both visual and audio encoders. Given a video input, we initiate
the process by extracting visual frames and audio streams. For visual
frames 𝑉 ∈ R𝑇×𝐻×𝑊 ×3, each frame is cut into𝑚 non-overlapping
patches, which are subsequently projected into visual embeddings
denoted as 𝐸𝑣 = {𝐸1𝑣, 𝐸2𝑣, · · · , 𝐸𝑚𝑣 }, 𝐸𝑣 ∈ R𝑚×𝑑𝑣 . Regarding audio,
we transform the 1-D audio stream into a 2-D spectrogram rep-
resented as {𝐴𝑡 }𝑇𝑡=1, where 𝐴 ∈ R𝐿×𝐹 with time 𝐿 and frequency
𝐹 . Subsequently, the audio spectrogram is divided into 𝑛 patches
and transformed into audio embeddings 𝐸𝑎 = {𝐸1𝑎, 𝐸2𝑎, · · · , 𝐸𝑛𝑎 },
𝐸𝑎 ∈ R𝑛×𝑑𝑎 . Assuming the pretrained transformer-based visual
and audio encoders are denoted as 𝑇𝑣 and 𝑇𝑎 , respectively. The
visual and audio embeddings are fed into the transformer encoder
layer to extract features. This process is expressed as follows:

𝑍 𝑙+1
𝑣 = 𝑇 𝑙

𝑣 (𝑍 𝑙
𝑣)

𝑍 𝑙+1
𝑎 = 𝑇 𝑙

𝑎 (𝑍 𝑙
𝑎)

(1)

Here, 𝑙 ∈ (1, 𝐿) denotes the layers of transformer. Each trans-
former layer𝑇 𝑙

𝑣 and𝑇 𝑙
𝑎 consists of a stack ofmulti-head self-attention

(MSA) and feed-forward network (FFN) [4, 31]. The features ex-
tracted by each transformer layer are represented as𝑍 𝑙

𝑎 and𝑍 𝑙
𝑣 , with

𝑍 0
𝑎 = 𝐸𝑣 and 𝑍 0

𝑣 = 𝐸𝑎 denoting the features after patch embedding.
During the training stage, we keep the pre-trained 𝑇𝑣 and 𝑇𝑎

frozen and introduce additional learnable prompts to transfer pre-
trained model to various downstream tasks. The detailed explana-
tion of introducing collaborative prompts is provided in Sections
3.2 and 3.3.

3.2 Efficient Collaborative Prompting
The collaborative prompts consist of modal-specific prompts and
modal-interaction prompts, where all prompts are continuous learn-
able parameters. The modal-specific prompts assist in exploring
particular information of each modality for specific audio-visual
downstream tasks, while modal-interaction prompts are used to
transfer information between modalities for fusing multi-modal
information. The modal-specific prompts and modal-interaction
prompts enhance the transfer performance through modal-specific
fine-tuning and multi-modal fusion. A detailed illustration is pre-
sented in Fig.2.

Modal-Specific Prompts. Modal-specific prompts, represented
as𝑀𝑙 = {𝑀𝑙

𝑎, 𝑀
𝑙
𝑣}, consist of a set of learnable parameters tailored

to audio and visual modalities, respectively. Given specific multi-
modal task, modal-specific prompts fine-tune each modality to
extract task-specific information. In audio-visual downstream tasks,
it’s crucial to explore both global semantic information of video clips
and local temporal associations among video frames in fine-tuning
the pretrained model. To achieve this, modal-specific prompts are
designed to include global video-level prompts and local frame-
level prompts. For brevity, visual and audio modalities are denoted
by subscripts 𝑣 and 𝑎, while superscripts 𝑔 and 𝑓 represent global
video clip and local frame prompts.

Global video-level prompts, defined as 𝑀𝑔 = 𝑀
𝑔
𝑎 , 𝑀

𝑔
𝑣 for audio

and visual, respectively, have dimensions𝑀𝑔
𝑎 ∈ R𝐿𝑔×𝑑𝑎 and𝑀𝑔

𝑣 ∈
R𝐿𝑔×𝑑𝑣 , where 𝐿𝑔 represents the length of global prompts. The
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Figure 3: Illustration of prompt bank-based mutual coupling
(PMC).

global prompts are directly appended with the input video clip to
learn features at a holistic level.

Local frame-level prompts are denoted as {𝑀 𝑓
𝑎 , 𝑀

𝑓
𝑣 }, where

𝑀
𝑓
𝑎 ∈ R𝐿𝑓 ×𝑑𝑎 , 𝑀 𝑓

𝑣 ∈ R𝐿𝑓 ×𝑑𝑣 , 𝐿𝑓 is set to be the same as the
length of the video sequence 𝑇 . They are attached with each video
sequence 𝑇𝑖 to emphasize intricacies within the video.

All these prompts are randomly initialized.Modal-specific prompts
are obtained by combining global and local prompts using Eqn.(2),
where ‘[]’ represents concatenation.

𝑀𝑙
𝑣 =

[
𝑀

𝑔
𝑣 , 𝑀

𝑓
𝑣

]
𝑀𝑙
𝑎 =

[
𝑀

𝑔
𝑎 , 𝑀

𝑓
𝑎

]
(2)

Modal-Interaction Prompts. Our framework employs pre-
trained uni-modal models as the encoder, making effective multi-
modal fusion crucial formulti-modal tasks.Modal-interaction prompts,
denoted as 𝐼 𝑙 = {𝐼 𝑙𝑎, 𝐼 𝑙𝑣}, facilitate the transfer of information be-
tween two modalities. 𝐼 𝑙 is generated from the prompt bank to
achieve mutual interaction, as detailed in Section 3.3. Unlike modal-
specific prompts 𝑀𝑙 , which are appended to all encoder layers,
modal-interaction prompts 𝐼 𝑙 are only concatenated to the last 𝑘
layers of the encoder due to the deeper layers having larger recep-
tive fields and capturing high-level features.

After constructingmodal-specific andmodal-interaction prompts,
we concatenate them with visual and audio embeddings and input
them into the transformer layer, as illustrated below:

𝑍 𝑙+1
𝑣 = 𝑇 𝑙

𝑣

[
𝑍 𝑙
𝑣, 𝑀

𝑙
𝑣

]
𝑍 𝑙+1
𝑎 = 𝑇 𝑙

𝑎

[
𝑍 𝑙
𝑎, 𝑀

𝑙
𝑎

] 𝑖 𝑓 𝑙 < 𝑘 (3)

𝑍 𝑙+1
𝑣 = 𝑇 𝑙

𝑣

[
𝑍 𝑙
𝑣, 𝑀

𝑙
𝑣, 𝐼

𝑙
𝑣

]
𝑍 𝑙+1
𝑎 = 𝑇 𝑙

𝑎

[
𝑍 𝑙
𝑎, 𝑀

𝑙
𝑎, 𝐼

𝑙
𝑎

] 𝑖 𝑓 𝑙 ≥ 𝑘 (4)

The representations 𝑍𝑎 and 𝑍𝑣 from the final encoder layer are
utilized for audio-visual downstream tasks.

3.3 Prompt Bank-based Mutual Coupling
Audio-visual downstream tasks often involve diverse samples, and
existing methods commonly utilize shared prompts for fine-tuning
these samples. However, due to the limited capacity of prompts,
shared prompts may inadequately represent all samples. In essence,
previous approaches focus on task-level fine-tuning, disregarding
instance-level feature extraction. To address this limitation, we
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introduce prompt bank-based mutual coupling to extract more fine-
grained instance-level features, as illustrated in Fig.3.

This process commences by constructing two latent tokens 𝐿𝑎
and 𝐿𝑣 . We employ cross-modal attention (CMA) from [29] to com-
press the feature 𝑍𝑣 and 𝑍𝑎 in current layer 𝑙 into 𝑍 ′

𝑣 and 𝑍 ′
𝑎 . This

process is defined as:

𝑍 ′
𝑎 = 𝐿𝑎 + 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑎𝑍𝑎⊤)𝑍𝑎
𝑍 ′
𝑣 = 𝐿𝑣 + 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑣𝑍𝑣⊤)𝑍𝑣

(5)

Here 𝐿𝑎 ∈ R𝑏×𝑑𝑎 and 𝐿𝑣 ∈ R𝑏×𝑑𝑣 are randomly initialized.
The prompt bank, denoted as 𝐵 = {𝑃𝑏1, 𝑃𝑏2, . . . , 𝑃𝑏𝑞}, is intro-

duced, which consists of 𝑞 randomly initialized prompts. Next, we
choose prompts from the bank that are semantically similar to 𝑍 ′

𝑣

and 𝑍 ′
𝑎 . Specifically, we calculate the similarity between 𝑍 ′ and

each prompt 𝑃𝑏𝑖 in prompt bank, where the similarity is defined as:

𝑒𝑖𝑎 =
𝑒𝑥𝑝 (𝑍 ′

𝑎𝑃𝑏𝑖 )∑𝑞

𝑖=1 𝑒𝑥𝑝 (𝑍
′
𝑎𝑃𝑏𝑖 )

𝑒𝑖𝑣 =
𝑒𝑥𝑝 (𝑍 ′

𝑣𝑃𝑏𝑖 )∑𝑞

𝑖=1 𝑒𝑥𝑝 (𝑍
′
𝑣𝑃𝑏𝑖 )

(6)

The similarity score serves as the coefficient for performing a
weighted average of the prompts in the bank, yielding 𝑃𝑣 ∈ R𝐿𝐼 ×𝑑𝑣

and 𝑃𝑎 ∈ R𝐿𝐼 ×𝑑𝑎 .

𝑃𝑎 =

𝑞∑︁
𝑖=1

𝑒′𝑎𝑃𝑏𝑖 𝑃𝑣 =

𝑞∑︁
𝑖=1

𝑒′𝑣𝑃𝑏𝑖 (7)

Subsequently, 𝑃𝑣 and 𝑃𝑎 undergo transformation via a mapping
layer 𝐹 to achieve mutual coupling, yielding counterpart prompt
representations 𝑃 ′𝑣 and 𝑃 ′𝑎 . This transformation is represented as:

𝑃 ′𝑣 = 𝐹 (𝑃𝑣) 𝑃 ′𝑎 = 𝐹 (𝑃𝑎) (8)

Here, 𝑃 ′𝑣 ∈ R𝐿𝐼 ×𝑑𝑎 and 𝑃 ′𝑎 ∈ R𝐿𝐼 ×𝑑𝑎 . The mapping function 𝐹 is
defined as 𝐹 = Linear(ReLU(Linear(·))). It is worth noting that
we utilize an efficient bottleneck network as the mapping layer 𝐹 ,
which notably reduces the number of trainable parameters while
effectively transferring information between modalities.

Lastly, we concatenate 𝑃𝑣 with 𝑃 ′𝑎 to generate 𝐼𝑣 , and 𝑃𝑎 with 𝑃 ′𝑣
to generate 𝐼𝑎 , expressed as:

𝐼𝑣 =
[
𝑃𝑣, 𝑃

′
𝑎

]
𝐼𝑎 =

[
𝑃𝑎, 𝑃

′
𝑣

]
(9)

Note that the length of 𝐼𝑣 and 𝐼𝑎 are 2𝐿𝐼 . Previousmethods rely on
attention mechanisms to integrate audio-visual features, leading to
a considerable increase in trainable parameters [5]. Utilizing shared
prompts for all samples ignores instance-level feature extraction.
Our prompt bank-based mutual coupling design optimally utilizes
the pretrained multi-head attention mechanism to fuse multi-modal
information. Furthermore, by extending the vanilla prompts to the
prompt bank, we achieve simultaneous task-level and instance-
level fine-tuning, significantly enhancing the model’s expressive
capability. During the training phase, the visual and audio encoders
𝑇𝑣 and 𝑇𝑎 are frozen, with only the extra prompts and the mapping
layer 𝐹 undergoing training. This approach ensures the efficiency
of the model.

3.4 Consistency Constraint for Prompting
Despite the utilize of prompts to fine-tune pretrained models for
multi-modal tasks, the persistent challenge of feature misalignment

between audio and visual persists. To address this issue, we intro-
duce a simple yet effective consistency constraint aimed at enhanc-
ing the consistency of representations across different modalities in
the feature space. Specifically, we employ the Mean Squared Error
(MSE) loss to align the embeddings 𝑍𝐿

𝑎 and 𝑍𝐿
𝑣 from the final layer

of audio and visual encoders.

𝐿𝑐𝑜𝑛 = ∥𝑍𝐿
𝑣 , 𝑍

𝐿
𝑎 ∥

2
2 (10)

The consistency constraint facilitates the feature alignment between
visual and audio, while enabling prompts to adapt pretrainedmodels
to new downstream tasks.

In various audio-visual downstream tasks, the employed training
loss functions are diverse. Assuming the downstream task 𝑇 , we
define the training loss function as 𝐿𝑇 . The constraint term, 𝐿𝑐𝑜𝑛 ,
is appended with the 𝐿𝑇 with a hyperparameter 𝜆. The final loss
𝐿𝐹 is defined as:

𝐿𝐹 = 𝐿𝑇 + 𝜆𝐿𝑐𝑜𝑛 (11)

4 Experiments
4.1 Downstream Tasks
Audio Visual Event Localization (AVE) task aims to detect the
audio-visual event that is both visible and audible throughout mul-
tiple segments in a video. We evaluate the model on AVE dataset,
which contains 4143 videos, and each video last 10 seconds [39].
Following [29], we extract audio and visual features with prompt-
base backbone, then we concatenate the audio and visual features
and attach a linear layer to obtain the final audio-visual event pre-
diction. The fraction of correctly predicted segments is regarded as
the evaluation metric.

Audio-Visual Segmentation (AVS) aims to output a pixel-level
map of the objects that produce sound in the image frame. The
AVSBench-S4 dataset [52] is used for evaluation, which contains
4932 videos with manually annotated pixel-wise annotations of
audible objects. We combine our prompt-based feature extractor
with the original AVS model. The mean Intersection-over-Union
(mIoU) of the predicted segmentation and the ground truth masks
is used as evaluation protocol.

Audio-Visual Question Answering (AVQA) is an emerging
task that aims to provide answers by integrating visual content,
audio streams, and their associations within given videos. The
MUSIC-AVQA dataset [24] comprises 9288 videos across 22 differ-
ent musical instruments while covering various question types,
including visual, audio, and audio-visual questions. We employ the
pretrained text encoder for extracting features of questions. The
accuracy calculated by comparing the predictions with the ground
truth is used for evaluation.

4.2 Implementation Details
For a fair comparison, we process the input video in a similar way
with LAVISH and DG-SCT. For all downstream tasks, we extract one
frame per second, and the accompanying audio is converted into a
2D spectrogram. The 𝜆 in Eqn.(11) is set to 0.005 for all experiments,
and the length of the prompt bank 𝑞 is set to 10. Various values of
𝜆 and 𝑞 are compared in ablation study. Modal-interaction prompts
are expanded to the last 4 encoder layers for ViT and appended
to the last 2 layers for SwinTransformerV2. We employ the Adam
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Table 1: Results onAudio-Visual Events Localization.We only consider the additional trainable parameters added to the backbone
for comparison purposes. Employing the same downstream network for all methods ensures consistency in parameters in the
downstream part. †indicates reproduction using same downstream network for a fair comparison. Our approach achieves
optimal results, whether employing shared or unshared encoders.

Method Visual Encoder Audio Encoder Additional Params (M) Total Params (M) Acc

AVEL ResNet-152 VGGish N/A 136.0 74.0
AVSDN ResNet-152 VGGish N/A 140.3 75.4
CMRAN ResNet-152 VGGish N/A 148.2 78.3
CMBS ResNet-152 VGGish N/A 216.7 79.7

LAVISH Swin-V2-L HTS-AT 6.5 270.2 78.6
DG-SCT† Swin-V2-L HTS-AT 187.1 448.4 78.3
Ours Swin-V2-L HTS-AT 0.7 263.3 79.6

LAVISH ViT-L-16 (shared) 13.5 340.7 78.1
LAVISH Swin-V2-L (shared) 8.5 238.8 81.1
Ours ViT-L-16 (shared) 5.0 332.8 79.2
Ours Swin-V2-L (shared) 1.7 232.3 81.9

Table 2: Results on Audio-Visual Segmentation. Comparisons on AVSBench-S4 dataset with the mean intersection over union
(mIoU) as metric. Our method achieves comparable results with minimal trainable parameters.

Method Visual Encoder Audio Encoder Additional Params (M) Total Params (M) mIoU

AVS PVT-V2 VGGish 82.3 174.5 78.7

LAVISH Swin-V2-L HTS-AT 17.1 297.1 78.0
DG-SCT Swin-V2-L HTS-AT 196.6 521.4 80.9
Ours Swin-V2-L HTS-AT 1.8 283.2 80.1

LAVISH ViT-L-16 (shared) 27.1 375.5 74.1
LAVISH Swin-V2-L (shared) 18.3 266.4 80.1
Ours ViT-L-16 (shared) 4.7 353.4 76.6
Ours Swin-V2-L (shared) 2.8 253.0 80.7

optimizer in experiments, setting the learning rate for additional
prompt-based trainable parameters in the backbone to 1e-3, while
setting trainable parameters in downstream network to 1e-5, 5e-
5, and 1e-4 for the AVE, AVS, and AVQA tasks, respectively. All
experiments are conducted on NVIDIA 4090Ti GPUs.

4.3 Results and Analysis
Audio-Visual Event Localization. The compared methods in-
cludemodels that solely train downstreamnetworks (e.g., AVEL [39],
AVSDN [28], CMRAN [50] CMBS [46]) and fine-tuning paradigms
based on pretrained transformers (e.g., LAVISH [29] andDG-SCT [5]).
For a fair comparison, we maintain downstream network as a clas-
sification layer in all fine-tuning paradigms. Results in Table 1
show that our proposed method achieves optimal performance,
whether using shared or unshared encoders. With unshared en-
coders, CoLP achieves a 1.3 improvement compared to DG-SCT,
while with shared encoders, our model outperforms LAVISH by 0.8.
Employing a shared encoder performs better compared to unshared
encoders, primarily due to the larger-scale Swin-Transformer ex-
tracting more robust features than HTS-AT. Notably, LAVISH re-
quires 8.5M additional parameters, while DG-SCT has 187M. In

contrast, our method requires only 1.7M additional parameters
with shared encoder, while 0.7M additional parameters with un-
shared encoder, effectively reducing the demand for computational
resources.

Audio-Visual Segmentation. The evaluation results for the
Audio-Visual Segmentation (AVS) task are presented in Table 2.
Compared to the AVS approach [52], which primarily focuses on
training downstream networks, our method achieves a notable
improvement in performance by 2.0 while significantly reducing
the number of additional parameters required (2.8M vs. 82.3M).
In contrast to fine-tuning paradigms, our approach achieves com-
petitive performance levels comparable to those of LAVISH [29]
and DG-SCT [5], despite requiring substantially fewer additional
parameters. Specifically, LAVISH necessitates an additional 18.3M
parameters, and DG-SCT requires 196.6M additional parameters.
In contrast, our method achieves comparable performance with
only 2.8M additional parameters when using a shared encoder and
1.8M additional parameters for unshared encoders. These empirical
findings affirm comprehensively that our model achieves competi-
tive results compared to state-of-the-art models, leveraging fewer
training parameters. Notably, there is a margin when utilizing ViT
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Table 3: Results on Audio-Visual Question Answering. All models are evaluated on on MUSIC-AVQA dataset. We report the
accuracy of audio question (AQ), visual question (VQ), and audio-visual question (AVQ) respectively.

Method Visual Encoder Audio Encoder Additional Params (M) Total Params (M) AQ VQ AVQ Avg

AVSD VGG-19 VGGish N/A N/A 68.5 70.8 65.5 67.4
AVST ResNet-18 VGGish 18.5 94.4 74.1 74.0 69.5 71.5
PSTP CLIP- ViT-B/32 VGGish 4.3 N/A 70.9 77.3 72.6 73.5

LAVISH Swin-V2-L HTS-AT 12.9 290.5 75.4 79.6 70.1 73.6
DG-SCT Swin-V2-L HTS-AT 186.3 513.3 77.4 81.9 70.7 74.8
Ours Swin-V2-L HTS-AT 0.7 271.1 76.8 77.1 75.2 75.9

LAVISH ViT-L-16 (shared) 27.1 362.5 74.1 73.6 74.7 74.4
LAVISH Swin-V2-L (shared) 17.1 255.3 75.7 80.4 70.4 74.0
Ours ViT-L-16 (shared) 5.0 340.7 75.1 77.2 75.0 75.6
Ours Swin-V2-L (shared) 1.8 240.2 77.3 77.6 76.3 76.7
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Figure 4: Impact of prompts length

as a shared encoder compared to Swin-V2. This disparity is pri-
marily attributed to the standard ViT model’s lack of multi-scale
information capabilities, which are crucial for the AVS task.

Audio-Visual Question Answering. On the MUSIC-AVQA
dataset, we conducted a comparative analysis, the results are pre-
sented in Table 3. Compared to PSTP [23] which only train down-
stream network, our model exhibits a significant performance im-
provement (76.7 compared to 73.5). Although they employ powerful
CLIP to extract visual features, our approach achieves middle fusion
in feature extraction which result in better performance. In com-
parison to fine-tuning paradigms, our model still achieves the best
results whether using shared or unshared encoder, accompanied by
a substantial reduction in the number of parameters used (1.8M vs.
17.1M vs. 186.3M). On the most challenging audio-visual questions
type, the proposed CoPL achieves significant improvement, which
proves that our model effectively fuse multi-modal.

The comprehensive experimental results on audio-visual down-
stream tasks indicate that our model achieves both modal-specific
and modal-interaction tuning, efficiently transferring from pre-
trained unimodal models to audio-visual downstream tasks.

4.4 Ablation Studies
4.4.1 Analysis of Shared and Unshared Encoder. The flexibility of
our framework facilitates the straightforward replacement of the
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Figure 5: Impact of 𝜆

backbone with different encoders. We assess different pretrained
models as audio encoders, including HTS-AT pretrained on Au-
dioSet and SwinTransformerV2 pretrained on ImageNet, with re-
sults presented in Table 1-3. Despite HTS-AT pretrained on Au-
dioSet being capable of extracting exclusive audio features, the
results indicate that using shared SwinTransformerV2 for both
audio and visual encoders yields superior performance. This is at-
tributed to the significantly higher capacity of SwinTransformerV2,
which incorporates 24 Transformer blocks, while HTS-AT only
includes 12 blocks. It is noteworthy that the shallow backbone (12
transformer blocks in HTS-AT) further reduces the trainable pa-
rameters (0.7M vs. 1.7M on AVE, 1.8M vs. 2.8M on AVS, and 0.7M
vs. 1.8M on AVQA), with only a slight degradation in performance.

4.4.2 Analyzing Each Proposed Module. In this section, we conduct
ablation experiments to investigate the effect of each proposed
module on the AVE dataset. We utilize SwinTransformerV2 as the
shared encoder for both visual and audio modalities in all ablation
experiments. The results, depicted in Table 4, utilize𝑀 to denote
modal-specific prompts, which encompass video clip level𝑀𝑔 and
frame level 𝑀 𝑓 , while 𝑃𝑀𝐶 denotes the prompt bank-based mu-
tual coupling, which includes modal-interaction prompts 𝐼 and
prompt bank. The 𝐿𝑐𝑜𝑛 corresponds to the consistency constraint
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Table 4: Ablation Study. We assess the effectiveness of each
module in the proposed model on AVE task. 𝑀 indicates
modal-specific prompts, while 𝑃𝑀𝐶 represents the prompt
bank-based mutual coupling module, which consists of
modal-interaction prompts 𝐼 and prompt bank.

𝑀 𝑃𝑀𝐶
𝐿𝑐𝑜𝑛 Acc

𝑀𝑔 𝑀 𝑓 𝐼 Prompt Bank

77.6
✓ 78.7
✓ ✓ 79.2
✓ ✓ ✓ 80.5
✓ ✓ ✓ ✓ 81.4
✓ ✓ ✓ ✓ ✓ 81.9

in Eqn.(10). The results substantiate that all proposed modules
significantly enhance the model’s performance. Specifically, incor-
porating modal-specific prompts and modal-interaction prompts
separately into the backbone increases the accuracy by 1.6 and 1.3,
respectively. For modal-specific prompts, composed of𝑀 𝑓 and𝑀𝑔

compared to only𝑀𝑔 , yields an additional 0.5 improvement. Intro-
ducing a prompt bank to extract instance-level features results in
an improvement of 0.9. Lastly, the appended consistency constraint
leads to a further 0.6 increase in the model’s performance. It is
noteworthy that all introduced modules contribute less than 1%
additional parameters, considerably fewer than in previous models,
thus demonstrating the efficiency and effectiveness of our proposed
method.

4.4.3 Impact of Prompt Length. This section investigates how the
length of prompt tokens affects the performance. We have devised
two distinct types of prompts: modal-specific prompts𝑀 andmodal-
interaction prompts 𝐼 . The local prompts 𝑀 𝑓 of modal-specific
prompts aim to explore frame-level details, so we align its length
with the input video sequence. For AVE and AVQA tasks, this length
is set to 10, while for AVS tasks, it is set to 5. Experiments are con-
ducted with lengths of 10, 15, 20, 25, 30, and 35 for both 𝑀𝑔 and
𝐼 , with the same length set for these two prompts. The results,
illustrated in Fig.4, demonstrate that setting the lengths of 𝑀𝑔

and 𝐼 to 20 for AVE and 30 for AVS and AVQA achieves optimal
model performance. It is noteworthy that, performance tends to
degrade when the length is too short. This limitation arises from the
prompts having an extremely limited number of trainable parame-
ters, making it easy for the model to approach the generalization
limit. Conversely, too many prompts may harm the performance
due to over-fitting. Therefore, selecting the appropriate prompt
length for various downstream tasks is essential.

4.4.4 Effect of Consistency Constraint. We introduce consistency
constraints for aligning audio and visual features. The loss in Eqn.10
is employed as an additional constraint for multi-modal down-
stream tasks. In this section, we investigate the effect of consistency
constraint loss on the model. Specifically, 𝜆 in Eqn.11 is employed to
append the consistency constraint to task-specific loss. We conduct
ablation study on coefficient 𝜆, the results are shown in Fig.5 It can
be seen that proper consistency constraint loss is crucial. Large

Table 5: Comparison of trainable parameters and training
memory usage on AVE task.

Method Trainable
Params (M)

Training
Memory (GB) Acc

LAVISH 8.5 18.9 81.1
DG-SCT 187.1 19.9 78.3
Ours 1.7 15.4 81.9
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Figure 6: Impact of prompt bank length

constraints would lead the model to pay attention to alignment
during training, while small constraint has limited effect. The model
achieves optimal performance when 𝜆 is set to 0.005.

4.4.5 Analysis of Prompt Bank. In this section, we evaluate the
length 𝑞 of the prompt bank. The experiments are conducted on
the AVE task, and the length 𝑞 varies from 6 to 20. The results in
Fig.6 show that setting the 𝑞 to 10 achieves optimal performance.
The model performance improves with an increase in 𝑞, but when
𝑞 is too large, performance will decline due to reaching saturation.

4.4.6 Efficiency Analysis. We analyze the additional trainable pa-
rameters and training memory to evaluate the efficiency of the
model. Both LAVISH and our model utilize the Shared SwinTrans-
formerV2 as the backbone, while DG-SCT utilizes SwinTransformerV2
for visual encoding and HT-SAT for audio encoding. Experiments
are conducted on the AVE task, and the results are presented in
Table 5. Our model reduces the trainable parameters by more than
4× times compared to LAVISH, with minimal training memory
requirements. This demonstrates the efficiency of the proposed
model.

5 Conclusion
This paper introduce parameter-efficient Collaborative Prompt
Learning (CoPL) that transfer large-scale pretrained uni-modal mod-
els to audio-visual downstream tasks. Our model divided vanilla
prompts to modal-specific and modal-interaction prompts. The
modal-specific prompts enable to tuning each modality for specific
tasks, while modal-interaction prompts efficiently transfer informa-
tion between modalities for multi-modal fusion. The prompt bank-
based mutual coupling assists in extracting fine-grained instance-
level features. Extensive experiments across various tasks demon-
strate the effectiveness and efficiency of our method.
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