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ABSTRACT

Social Media Popularity Prediction (SMPP) is the task of forecasting the level
of engagement a social media post will receive. It is crucial for understand-
ing audience engagement and enabling targeted marketing strategies. However,
the inherent imbalance in real-world social media data, where certain popular-
ity levels are underrepresented, poses a significant challenge. In this study, we
leveraged the recent success of contrastive learning and its integration into regres-
sion tasks by introducing a Weighted-Rank CR loss to address the data imbalance
challenges. Experiments on the Social Media Prediction Dataset demonstrated
that our method outperformed the vanilla approach and the current state-of-the-art
contrastive regression approach Rank-N-Contrast (Zha et al., 2024).

1 INTRODUCTION

Social media platforms have become deeply integrated into our daily lives, influencing how we
communicate, access information, and consume content. For businesses and brands, social media
represents a vast landscape of potential customers and a powerful tool for advertising and engage-
ment. A crucial aspect of influencer marketing is Social Media Popularity Prediction (SMPP), which
is the task of forecasting the level of engagement a social media post will receive. This prediction of-
fers invaluable insights for content creators and businesses, guiding content strategies and marketing
decisions

A significant challenge in SMPP is the inherent data imbalance. Popularity metrics, such as likes,
often exhibit a skewed distribution, with a few posts becoming viral and most receiving mid-to-
low engagement. This imbalance hinders traditional machine learning models’ ability to accurately
predict popularity across the entire spectrum, as some parts of the spectrum may lack sufficient data
for effective model training.

While traditional approaches for handling imbalanced data primarily concentrate on categorical tar-
gets (He and Ma, 2013; Chawla et al., 2002; Yen and Lee, 2006), many real-world applications
involve continuous target variables, often with skewed distributions. For instance, in computer vi-
sion, predicting age from facial images involves a continuous target variable that exhibits inherent
imbalances. Similar challenges arise in medical applications where health metrics like heart rate and
blood pressure, being continuous variables, frequently display skewed distributions across patients.

Yang et al. (2021) identified these challenges as Deep Imbalanced Regression (DIR) and proposed a
smoothing approach to harmonize feature and label space distributions, facilitating robust represen-
tation learning. Zha et al. (2024) subsequently refined this approach by formulating the ranking loss
as a contrastive regression (CR) loss, thereby enhancing feature-label alignment and mitigating the
adverse effects of data imbalance.

Building upon Zha et al. (2024)’s work on applying contrastive learning to feature-label alignment,
we introduce Weighted-Rank CR loss as a regularizer to further mitigate the data imbalance problem
in social media popularity prediction. Our experiment results demonstrate that by incorporating a
weighted mechanism into the state-of-the-art model, we can further enhance popularity prediction
accuracy. Subsequently, we propose a straightforward end-to-end contrastive regression learning
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framework for multi-modal representation learning, a framework that can be readily adapted to
more complex architectures.

2 LITERATURE REVIEW

2.1 SOCIAL MEDIA POPULARITY PREDICTION

Previous approaches to SMPP have employed two primary methods for feature extraction: manually
preprocessed features and the utilization of pre-trained models.

Manually Processed Features: Earlier studies in social media popularity prediction mostly relied
on manually processed features. Jin et al. (2010) employed upload frequency, upload time, and tags
to predict image popularity on Flickr. McParlane et al. (2014) incorporated features from visual con-
text (device type, size, orientation), visual content (scene type, number of faces, dominant color),
user profile (gender, account type, number of uploads), and tags represented using TF-IDF vectors.
Gelli et al. (2015) employed Name-Entity Recognition (NER) on image descriptions, identifying
and counting entities like Location, Organization, and Person. These manually processed features
have proven valuable and continue to be widely adopted in recent approaches. Ding et al. (2019)
and Lai et al. (2020) also incorporated text features like caption length and tag length. While pro-
viding valuable insights, these manually processed features required domain expertise and need to
be carefully chosen to avoid bias.

Pre-trained Models: In recent years, pre-trained deep learning models have emerged as power-
ful tools for automatically extracting features from multimodal data such as text and images. No-
tably, Ding et al. (2019) and Xu et al. (2020) employed a ResNet backbone pre-trained on Ima-
geNet for visual features and Word2Vec for textual features. Alternatively, Wu et al. (2022) utilized
BERT (Bidirectional Encoder Representations from Transformers) for text and CLIP (Contrastive
Language-Image Pre-training) for joint text-image features. These approaches effectively capture in-
tricate patterns that are challenging for manual feature engineering. Figure 1 illustrates a multimodal
post encoder proposed by (Kim et al., 2020), which effectively summarizes the feature extraction
process for social media posts. The integration of extracted pre-trained multimodal features allows
SMPP models to attain enhanced accuracy and robustness, leading to their widespread adoption in
recent approaches.

Figure 1: A typical feature extraction framework of social media posts (Kim et al., 2020).

2.2 OVERCOME THE IMBALANCE REGRESSION

Despite significant progress in SMPP, a critical challenge remains largely unaddressed: the inherent
imbalance within social media data. The popularity distributions of real-world social media data
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often exhibits a long-tail pattern, with a small portion of posts having high popularity, while a large
number of posts having mid-to-low popularity.

Re-sampling and Re-weighting: Traditional re-sampling methods primarily target classification
tasks. However, some adaptations have been tailored for imbalanced regression. Random under-
sampling (Torgo et al., 2013; 2015) grouped lables in bins and randomly removes samples from
majority bins to balance with minority bins. SMOTER (Torgo et al., 2013), a regression adaptation
of SMOTE (Chawla et al., 2002), combines undersampling with synthetic minority sample gener-
ation to balance the data distribution. SMOGN (Branco et al., 2017) further improves SMOTER
by adding gaussian noise to increase sample diversity. Cui et al. (2019) introduced a re-weighting
scheme based on the effective number of samples per class to achieve a class-balanced loss. Cao
et al. (2019) proposed a label-distribution-aware margin (LDAM) loss to minimize a margin-based
generalization bound, which improved generalization on less frequent classes.

Despite their simplicity, re-sampling and re-weighting techniques have limitations in the context of
imbalanced regression. First, they fail to fully account for the density of neighboring target values,
a critical factor in determining the representativeness of a data point. Yang (2021) emphasized the
significance of neighborhood density in imbalance regression. Specifically, a low-frequency point
within a dense neighborhood may be adequately represented, while one in a sparse neighborhood
remains underrepresented. Secondly, linear interpolation techniques like SMOTE can be ineffec-
tive and may degrade performance when generating synthetic samples for high-dimensional data, a
common scenario with modern large pre-trained models. Third, the absence of distinct class bound-
aries in regression tasks poses challenges for the direct application of these methods to regression
scenarios.

These limitations highlighted the need for innovative solutions to learn robust representations in
imbalanced regression tasks, moving beyond traditional re-sampling or re-weighting techniques.

Deep Imbalance Regression:

Deep Imbalanced Regression (DIR), a concept introduced by Yang et al. (2021), addresses the in-
herent imbalance that are often found in real-world regression tasks. Such challenges of imbalanced
data is more intense in deep learning models due to their tendency to produce overconfident predic-
tions that may further amplify the impact of skewed distributions. The goal of DIR is to learn robust
representations from imbalanced and skewed data, ensuring that these representations generalize
effectively across the entire spectrum of target values.

Yang et al. (2021) proposed feature distribution smoothing (FDS), a technique that smooths feature
distributions by transferring statistics between neighboring target bins. This aims to correct poten-
tially biased feature distribution estimates, particularly for underrepresented targets. Based on this
insight, recent research has explored achieving this alignment through specialized loss functions.
Gong et al. (2022) introduced RankSim, incorporating a ranking loss as a regularizer to effectively
capture both local and distant relationships. Zha et al. (2024) proposed Rank-N-Contrast (RNC),
which models the ranking loss within a contrastive learning framework to tackle data imbalance.
Notably, Rank-N-Contrast has achieved state-of-the-art performance on the Deep Imbalanced Re-
gression (DIR) benchmark established byYang et al. (2021).

In RNC, samples are ranked according to their target distances, and then contrasted against each
other based on their relative rankings. Each data sample is sequentially assigned as an anchor point.
The distance between this anchor point and every other data sample within the batch is calculated.
Based on these distances, data samples are grouped into positive pairs (similar to the anchor) or
negative pairs (dissimilar to the anchor). Given an anchor i, the similarity in feature space of any
other data sample j is measured using the cosine similarity sim(vi, vj) where vi, vj denote the
feature vectors of sample i and j, respectively. The set Si,j := {k|k ̸= i, d(i, k) ≥ d(i, j)} denotes
the set of samples with larger label distance than j w.r.t. i, where d(i, j) is the label distance between
two samples i, j. The per-sample RNC loss is defined as:

L(i)
RNC = − 1

N − 1

∑
j ̸=i

log
exp(sim(vi, vj)/τ)∑

k∈Si,j
exp(sim(vi, vk)/τ)

Despite the success of Rank-N-Contrast, it had a significant limitation: it did not consider varying
label distances in negative samples, disregarding the impact of negative samples further from the
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anchor in the label space, which should ideally provided a stronger contrastive signal than closer
ones. Figure 2 illustrated this issue. The top image presented positive and negative pairs within a
batch containing posts with popularity scores {1, 3, 4, 8}. The bottom image showed another batch
containing scores {1, 3, 4, 15}. In this scenario, for the positive pair {3, 4}, the top batch had
negative samples {3, 1} and {3, 8}, and the bottom batch had negative samples {3, 1} and {3, 15}.
Similarly, for the positive pair {3, 1}, the top batch had one negative sample {3,8} the bottom batch
had negative sample {3, 15}. Under Rank-N-Contrast, both negative samples {3, 8} and {3, 15}
contributed equally to the overall loss, overlooking the impact of the more popular post with score
15.

Figure 2: RNC loss treats negative pairs {3, 8} and {3, 15} equally in both batches, neglecting the
impact of the larger label distance posed by the higher popularity score of 15.

2.3 OUR CONTRIBUTION

In this paper we refined Rank-N-Contrast (Zha et al., 2024) to overcome its limitation of not distin-
guishing between negative samples based on their label distances. We introduce a weighting mech-
anism that incorporates label distance information into the contrastive regression loss. Experimental
results demonstrated that our approach fostered a more uniform feature space and significantly im-
proved robustness on extremely rare and even unseen labels. As for our framework, we followed the
multi-modal feature extraction framework proposed by Kim et al. (2020) as illustrated in Figure 1
for its simplicity.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a new post v by user u, our objective is to predict its popularity s, defined as the expected
number of attentions it would received if published at time t on social media. Popularity can be
quantified using various dynamic indicators (e.g., views, likes, clicks) across different social media
platforms. In our dataset, the “view count” serves as a fundamental indicator of post popularity.
To mitigate the wide variations in view counts among photos (ranging from zero to millions), a
log-normalization function is applied:

s = log2
r

d
+ 1 (1)

where s is the normalized popularity, r is the view count, and d is the number of days since posting.
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Figure 3: Overview of our proposed framework

3.2 PROPOSED FRAMEWORK

We leveraged pre-trained visual and textual models as feature encoders to extract multi-modal fea-
tures. These features were then concatenated with additional dense features to create a compre-
hensive input for downstream prediction. The concatenated features were fed into a Multi-Layer
Perceptron (MLP) to predict the popularity score. We also incorporated our proposed Weighted-
Rank CR loss as a regularizer and calculated the contrastive regression loss alongside the L1 loss,
these two losses were combined in a multi-task learning approach, with equal weighting assigned
to each loss. This joint optimization process encouraged the feature encoders to learn more robust
representations while simultaneously improving the prediction objective during training. Figure 3
illustrates an overview of our framework.

3.3 POST REPRESENTATION EXTRACTION

Following the approach of (Kim et al., 2020), we utilized pre-trained models to extract features from
both the visual and textual components of the posts. For the visual features, the image preprocessing
involved the following steps: (1) conversion to RGB color space, (2) resizing to a 224x224 pixel
resolution, (3) subsequent normalization. After preprocessing, we employed the Vision Transformer
(VIT) (Dosovitskiy et al., 2021)) to extract the visual features fi. As for textual features, we utilized
the hashtags within the social media posts, represented as a list of keywords. By concatenating these
keywords, we then leveraged the Sentence Transformer (Reimers and Gurevych, 2019) to extract
the textual features ft. Finally, we concatenated fi and ft to obtain the comprehensive post features
fp.

3.4 DENSE FEATURES

Besides the visual and textual inputs, we also used the following dense features provided by the
dataset: userIsPro: whether the user belong to pro member. postCount: The number of posted
photo by the user. photoFirstDateTaken: The date of the first photo taken by the user. postDate: the
publish timestamp of the post.

3.5 WEIGHTED-RANK CR

We proposed Weighted-Rank CR loss that contrasts negative samples based on their relative label
distance with respect to anchor. Following the notation in Rank-N-Contrast (Zha et al., 2024), for
an anchor vector vi and another sample vj in the batch, we define Si,j as the set of samples whose
label distance from vi are greater than that of vj . In our Weighted-Rank CR loss, we incorporate
a weighting mechanism for negative sample pairs such that their contrastive signal is weighted by
the relative label distance with respect to anchor. The weight for a negative pair {vi, vk} is denoted
as wi,k. We simplified exp(sim(vi, vj)/τ) to eτ (vi, vj), where sim denotes the cosine similarity,
and τ is the temperature hyperparameter in contrastive learning that controls the sensitivity of the
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relationship between embedding similarity and the contrastive loss. The per sample Weighted-Rank
CR loss can be defined as:

1

N − 1

N∑
j=1,j ̸=i

− log

(
eτ (vi, vj)∑

vk∈Si,j
wik · eτ (vi, vk)

)
(2)

eτ (vi, vj) = exp(sim(vi, vj)/τ) (3)

To validate the effectiveness of our weighting mechanism, we conducted experiments on a curated
dataset derived from the SMPD (see Section 4) with a skewed distribution for the training phase,
and a balanced, uniform distribution for the testing phase (Zha et al., 2024). We evaluated various
weighting strategies including logarithmic, linear, quadratic, and exponential weighting on the uni-
form distributed test set. The results, presented in Table 1, support our hypothesis that a stronger
emphasis on contrastive signals based on label distance leads to improved performance. Notably,
the exponential weighting strategy, represented by (1 + α)d, where d is the label distance, achieved
the best performance. The quadratic weighting strategy, d2 + 1, is closely behind. In contrast, lin-
ear weighting (d + 1) and logarithmic weighting log(d + 1) + 1 did not outperform the baseline
Rank-N-Contrast method. These findings reinforced our hypothesis that prioritizing distant negative
samples in the contrastive loss can enhance the effectiveness of contrastive regression.

Table 1: Performance metrics of different weighting strategies.

metrics

Weighting Strategy MAE SRC
RNC (baseline) 2.198 0.838
log(d+ 1) + 1 2.715 0.510

d+ 1 2.642 0.579
d2 + 1 2.175 0.838
(1 + α)d 2.142 0.841

As a result, we incorporated an exponential weighting on label distance in our proposed Weighted-
Rank CR loss to amplify the feature space distance for more distant negative pairs. Let wi,k denote
the weight assigned to the negative sample pair {i, k} and d denote the absolute label difference
between sample i and k. Then, wi,k is calculated as in (4), where α is a hyperparamter that controls
the slope of wi,k. In our experiment, we chose α = 0.4 so that wi,k is bounded within the range of
our label value.

wi,k = (1 + α)d(i,k) (4)

For example in Figure 2, with Weighted-Rank CR loss, the negative pairs {3, 15} and pair {3, 8}
will now be assigned weights of (1 + α)|3−15| = 1.412 and (1 + α)|3−8| = 1.45, respectively.
Consequently, the post with the higher popularity score of 15 is mapped farther away from the
anchor post 3 in the feature space under this weighted scenario. This weighting scheme ensures
that negative samples with larger label distances from the anchor have a stronger influence on the
contrastive loss, leading to more effective learning of feature representations, especially for rare and
extreme labels.

We used a CR projection head to perform contrastive learning on the extracted post features fp. After
feature extraction, fp were passed through the CR projection head. Here we denoted the output of
CR projection head as f cr

p . The Weighted-Rank CR loss was then computed on f cr
p , enforcing the

feature encoders to align the feature space with the corresponding label distances. In parallel, fp
was also fed into a Multi-Layer Perceptron (MLP) to generate a predicted popularity score. We
calculated the L1 loss between this predicted score and the actual popularity score. Finally, we
combined the Weighted-Rank CR loss and the L1 loss in a multi-task learning framework. Both
losses were given equal weight, without emphasizing one over the other. This approach ensures
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that the model learns robust feature representations while simultaneously optimizing its predictive
performance.

4 EXPERIMENT SETTING

We utilized the Social Media Prediction Dataset (SMPD) proposed in (Wu et al., 2019), which was
collected from Flickr, a major photo-sharing platform. SMPD comprises 486K social multimedia
posts from 70K users, and incorporates diverse social media information such as anonymized photo-
sharing records, user profiles, web images, text, timestamps, location data, and categories. Table 2
provides a detailed overview of the dataset statistics.

Table 2: Dataset statistics for SMPD.

Dataset #Post #User #Categories Temporal Range (Months) Avg. Title Length #Customize Tags
SMPD 486k 70k 756 16 29 250k

We combined the Spearman Ranking Correlation (SRC) and Mean Absolute Error (MAE) to assess
model performance. SRC quantifies the ordinal association between predicted and actual popularity
rankings, while MAE measures the average prediction error.

SRC is calculated as follows:

SRC =
1

k − 1

k∑
i=1

(
Pi − P̄

σP

)(
P̂ i− P̃

σP̂

)
(5)

where k is the number of samples, Pi is the actual popularity, P̂ i is the predicted popularity, P̄
and σP are the mean and standard deviation of actual popularity, and P̃ and σP̂ are the mean and
standard deviation of predicted popularity, respectively.

MAE is calculated as follows:

MAE =
1

k

n∑
i=1

∣∣∣P̂i − Pi

∣∣∣ (6)

The goal of SMPP is to enhance both ranking accuracy and prediction accuracy by minimizing the
MAE and maximizing the SRC.

The model architecture and hyperparameters are detailed in the Appendix.

5 EVALUATION RESULTS

5.1 EXPERIMENT ON SOCIAL MEDIA PREDICTION DATASET (SMPD)

To evaluate our proposed framework, we utilized the test API provided by the SMP Challenge (Wu
et al., 2019). This API allows us to upload our prediction results and obtain the corresponding per-
formance metrics through an online interface. Our experiments included three different modalities:
text only, image only, and multi-modal inputs. The evaluation results are presented in Table 3. The
numbers in parentheses represent the relative differences compared to the Vanilla baseline. Green
values indicate a decrease in Mean Absolute Error (MAE) or an increase in Spearman Rank Corre-
lation (SRC), signifying an improvement. Conversely, red values indicate a decline in performance.
As can be seen, Weighted-Rank CR outperforms both the vanilla approach (direct L1 loss fitting)
and Rank-N-Contrast in terms of MAE and SRC across all three modalities: Tags, Image, and Tags
+ Image. While Rank-N-Contrast shows improvements in MAE and SRC for the Tag-only and
Image-only settings, its performance deteriorates with higher MAE when considering the Tags +
Image modality. This decline can be attributed to the inherent complexity of multi-modal data,
where integrating text and image information demands a more sophisticated approach to capture
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effective representations across different modalities. Our Weighted-Rank CR loss, by addressing
data imbalance, is better equipped to handle the challenges presented by the Tags + Image input and
consequently, generates more generalized representations.

Table 3: Performance metrics for different training objectives and input types.

Input
Vanilla (L1) Rank-N-Contrast Weighted-Rank CR

MAE SRC MAE↓ SRC↑ MAE↓ SRC↑

Tags 2.040 0.468 1.995 (+0.045) 0.483 (+0.015) 1.925 (+0.115) 0.499 (+0.031)

Image 2.262 0.301 2.214 (+0.048) 0.303 (+0.002) 2.183 (+0.079) 0.310 (+0.009)

Tags + Image 1.955 0.473 2.001 (-0.045) 0.501 (+0.028) 1.901 (+0.054) 0.504 (+0.031)

5.2 EXPERIMENT ON CURATED DATASETS

We curated two datasets with more imbalance distribution to test the robustness of Weighted-Rank
CR. First, we sampled a subset from SMPD training dataset with only few data points at both ends.
Figure 4 illustrates the distribution of this sampled dataset.

Figure 4: The distribution of the sampled dataset, with very few data points on both ends.

We visualized the MAE improvement across different label bins in Figure 5. The x-axis represents
the label ranges, with the top portion of the figure depicting the data distribution (y-axis showing the
number of posts), and the bottom portion displaying the MAE improvement (y-axis indicating the
MAE difference). Positive values (in green) signify a lower MAE for that label bin, while negative
values (in red) signify a higher MAE. The results demonstrate that contrastive regression substan-
tially reduces the MAE for rarely seen data points, particularly at both extremes of the distribution.
Furthermore, we visualized the MAE improvement of Weighted-Rank CR over Rank-N-Contrast in
Figure 6. The results demonstrate that Weighted-Rank CR surpasses Rank-N-Contrast in terms of
MAE for the less frequent label bins within the skewed-sampled dataset.

We also curated another more imbalanced dataset by removing data points with popularity scores be-
low 4.0 and above 13.0. Figure 7 illustrated the distribution of this dataset. The MAE improvement
across different label bins for this dataset is illustrated in Figure 8. Figure 9 visually represents the
MAE improvement of Weighted-Rank CR compared to Rank-N-Contrast on this more imbalanced
dataset. The results again demonstrate that Weighted-Rank CR consistently achieves lower MAE
than Rank-N-Contrast on most label bins, even in this more challenging scenario.

6 CONCLUSION

In this paper, we delved into the challenges of imbalanced regression in social media popularity pre-
diction, highlighting the limitations of existing contrastive learning methods like Rank-N-Contrast.
We proposed Weighted-Rank CR loss, a contrastive learning loss that incorporates label distance
information into the Rank-N-contrast loss function, thereby enhancing the model’s ability to learn
effective representations for rare and extreme labels.

Our experiments on the Social Media Prediction Dataset (SMPD) showed that Weighted-Rank CR
outperforms the baseline methods (including the current state-of-the-art contrastive regression ap-
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(a) The MAE improvement of Rank-N-Contrast over
the Vanilla approach.

(b) The MAE improvement of Weighted-Rank-CR
over the Vanilla approach.

Figure 5: The MAE improvement of both Rank-N-Contrast and Weighted-Rank-CR compared to
the Vanilla approach. Positive values (in green) signify a lower MAE on the label bin, and negative
values (in red) signify a higher MAE on the label bin.

Figure 6: The MAE improvement of Weighted-Rank-CR over Rank-N-Contrast.

proach Rank-N-Contrast) in both ranking and prediction accuracy. Our approach is particularly
effective in handling imbalanced datasets, where rare labels are often underrepresented. In conclu-
sion, our research contributes to the growing body of work addressing the challenges of imbalanced
learning in Social Media Popularity Prediction (SMPP). The proposed Weighted-Rank CR method
offers a promising avenue for future research, with potential applications in various domains where
data imbalance poses a significant challenge.

Future work may explore more sophisticated weighting mechanisms could potentially lead to further
performance improvements in contrastive regression. Additionally, conducting experiments on a
wider range of datasets and downstream tasks would help validate the effectiveness of Weighted-
Rank CR in various settings.
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Figure 7: The distribution of the sampled dataset, with no data points on both ends.

(a) The MAE improvement of Rank-N-Contrast over
the Vanilla approach.

(b) The MAE improvement of Weighted-Rank-CR
over the Vanilla approach.

Figure 8: The MAE improvement of both Rank-N-Contrast and Weighted-Rank-CR compared to
the Vanilla approach on a dataset that data points at both extremes are removed.

Figure 9: The MAE improvement of Weighted-Rank-CR over Rank-N-Contrast on a dataset where
data points at both extremes are removed.
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A APPENDIX

Table 4 outlines the training configuration including hardware specifications and hyperparameters.
We fixed these settings in the main experiments discussed in Section 5. Specifically, we chose the
largest batch size we can afford under the hardware limitation, and τ represents the temperature
which controls the sensitivity of the feature similarity during contrastive learning.

Table 4: Training configuration.

hardware RTX 4080
number of epochs 10
learning rate 3e-4
random seed 3407
batch size 128
τ 0.05

The model architecture of our framework is as below:

• Backbone Model: We used a pre-trained VIT model for visual encoder, and a pre-trained
sentence-transformers for textual encoder.

• Encoder Projection Head: Both the visual and textual projection heads adhere to the ar-
chitecture outlined in Figure 10a. The input feature tensors, initially of dimension 384, are
first expanded to 1536 dimensions and then subjected to a non-linear transformation using
LeakyReLU activation. Finally, a linear layer projects the output tensor to 128 dimensions.

• CR Projection Head: As illustrated in Figure 10b, the input size of 256 represents the
concatenated visual and textual features. We then apply a ReLU non-linear transformation,
and finally a linear layer to reduce the output tensor to 64 dimensions.
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Input (384)

Linear (384 → 1536)

LeakyReLU

Linear (1536 → 128)

Output (128)

(a) Encoder projection heads.

Input (256)

Linear (256 → 128)

ReLU

Linear(128 → 64)

Output (64)

(b) CR projection head.

Figure 10: Projection heads.
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