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Abstract

Meta Learning automates the search for learn-
ing algorithms. At the same time, it creates a
dependency on human engineering on the meta-
level, where meta learning algorithms need to
be designed. In this paper, we investigate self-
referential meta learning systems that modify
themselves without the need for explicit meta op-
timization. We discuss the relationship of such
systems to memory-based meta learning and show
that self-referential neural networks require func-
tionality to be reused in the form of parameter
sharing. Finally, we propose Fitness Monotonic
Execution (FME), a simple approach to avoid ex-
plicit meta optimization. A neural network self-
modifies to solve bandit and classic control tasks,
improves its self-modifications, and learns how
to learn, purely by assigning more computational
resources to better performing solutions.

1. Introduction
Machine learning is the process of deriving models and
behavior from data or environment interaction using human-
engineered learning algorithms. Meta learning takes this
process to the meta-level: Its goal is to derive the learning
algorithms themselves automatically as well (Schmidhuber,
1987; Hochreiter et al., 2001; Wang et al., 2016; Duan et al.,
2016; Finn et al., 2017; Flennerhag et al., 2019; Kirsch et al.,
2019; Kirsch & Schmidhuber, 2020). Unfortunately, this
creates a dependency on human engineering on the meta-
level, where researchers now have to design meta learn-
ing algorithms. In this paper, we investigate methods for
neural self-referential meta learning (Schmidhuber, 1993b;
Schmidhuber et al., 1997). In particular, we seek a process
of self-improvement that reduces our reliance on human
engineering to the largest extent possible.
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A central piece in the discussion of self-referential meta
learning is the self-referential neural architecture (Schmid-
huber, 1993b). Such an architecture allows the modification
not just of some memory to improve future behavior, but
also to modify all its own neural weights. This enables
self-modification and self-improvement allowing the archi-
tecture to learn, meta-learn, meta-meta-learn, etc. We show
that (1) in order to construct systems that can change all
their parameters (or variables more generally), parts of the
computational graph need to be reused. This is done in
the form of parameter (variable) sharing. (2) We discover
that memory-based architectures are capable of similar self-
improvement. There is a representational equivalence be-
tween neural networks with memory and self-referential
architectures. Despite this, we show that self-referential
architectures are useful in the absence of meta optimization.

Finally, we propose Fitness Monotonic Execution (FME), a
simple approach to avoid explicit meta optimization. Instead
of proposing changes to the model or learning algorithm
explicitly, all changes to the model are self-modifications
and the resulting solutions are selected for execution more
frequently the better their performance. We empirically
demonstrate FME with a neural network that self-modifies
to solve bandit and classic control tasks, improves its self-
modifications, and learns how to learn.

2. Background
2.1. Self-referential Architectures

A key requirement for a self-improving system is that it can
make self-modifications such that it can change its behavior
and learning arbitrarily. One previously suggested way of
achieving this is to bring all variables in a neural network
under control of the network itself (Schmidhuber, 1993b).
This is referred to as a self-referential neural architecture.
Compare this to a conventional neural network where there
is a subset of variables (called the weights or parameters)
that are only updated by a fixed learning algorithm (such
as backpropagation). This entails that part of the (meta-
)learning behavior is fixed and needs to be defined by the
researcher.

In contrast, self-referential architectures control all variables.
This includes activations (conventionally updated by the
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neural network itself), weights (conventionally updated by
a learning algorithm), meta weights, etc. In this section,
we discuss necessary conditions on such a self-referential
architecture and possible implementations.

Notation In the remainder of this paper, we denote ex-
ternal inputs to the neural network as x ∈ RNx (such as
observations and rewards in Reinforcement Learning, or er-
ror signals in supervised learning), outputs as y ∈ RNy (e.g.
actions in Reinforcement Learning), and the parameters of
the neural network as θ. Further, we denote time-varying
variables (memory) as h ∈ RNh (such as the hidden state of
an RNN). We summarize all variables in a neural network
as ϕ = {θ, h, y}.

Necessary Conditions A self-referential architecture
ϕ ← gϕ(x) is described by a connected computational
graph for the function g that has variables ϕ = {θ, h, y}
(one node per scalar). The network controls all of its vari-
ables in the sense that any element(s) of ϕ can be changed
through network actions at every iteration. This blurs the
distinction between activations (memory) h and weights θ.
Computational graphs that fulfill this definition are required
to have a certain structure. At every iteration at least some
variables need to be reused in multiple operations (node
out-degree > 1). We refer to this as variable sharing, a gen-
eralization of weight sharing (Fukushima, 1979) extending
beyond classical weights.

Consider a square dense weight matrix. It consists of N2

weights and N activations. While the activations are time-
varying, the weights are source nodes in the computational
graph and cannot be directly updated by actions of the net-
work itself. To change that, we need to derive N2 variables
from N time-varying variables. This can only be done by
reusing some of the same N time-varying variables in mul-
tiple operations generating the N2 variables.
Observation 2.1. Variable sharing in self-referential systems.
Assuming a connected computational graph, an architecture
that updates all its variables ϕ ∈ RNϕ in iteration t needs
to reuse elements of ϕ multiple times in the computational
graph to generate ϕt+1 ∈ RNϕ from ϕt ∈ RNϕ .

Proof. As there are no more elements in ϕt than there are
in ϕt+1, any operation generating an element in ϕt+1 that
makes use of more than one element in ϕt needs to reuse an
element already in use by a different operation.

Implementations Under the previous constraints, vari-
ous implementations for self-referential neural architectures
are conceivable. Schmidhuber (1993b) assigns an address
to each weight such that the network outputs can be used
to attend to weights and both read and write their values.
Instead of updating one weight at a time, the fast weight

programmers of 1992-93 (Schmidhuber, 1992; 1993a) are
networks that learn to generate key and value patterns to
rapidly change many fast weights simultaneously. Outer
products between activations (a type of sharing) are used to
derive M ∗N variables, M,N ∈ N, from M +N variables.
This allows updating all the weights of a neural network
layer by its own activations (Irie et al., 2021). Alternatively,
a coordinate-wise mechanism may generate all updates con-
tinuously as a function of the weight address (D’Ambrosio
& Stanley, 2007). Other works have used multiple RNNs
with shared weights and messaging passing between those to
increase the number of time-varying variables h arbitrarily
while keeping the number of parameters θ constant (Rosa
et al., 2019; Kirsch & Schmidhuber, 2020). This can be
made self-referential by using a subset of h to update pa-
rameters θ.

2.2. Expressivity of Memory and Self-referential
Architectures

In this section, we show that self-referential architectures
do not have a representational advantage over memory-
based architectures when the free (initial) variables are meta-
optimized using a human engineered learning algorithm.

We defined self-referential architectures ϕ, y ← gϕ(x) as
those that can update all their variables ϕ in the computa-
tional graph. Compare this to a memory architecture such
as a recurrent neural network h, y ← fθ(h, x) parameter-
ized by θ where h corresponds to its hidden state (memory).
Can the self-referential architecture represent any functions
that the memory architecture can not? A commonly used
intuition (Schmidhuber, 1993b) is that self-referential ar-
chitectures are self-modifying, in that they change their
own weights, affecting not only their outputs and current
weights but also future weight changes through gϕ. These
architectures can thus not only learn, but also meta-learn,
meta-meta-learn, etc. While memory architectures do not
update their weights, they are also self-modifying. Changes
in memory h affect the output directly, but also the effective
function fθ by modifying its input h, in turn determining
future changes to h.

Observation 2.2. For any self-referential architecture
ϕ, y ← gϕ(x) and some initial ϕ0 we can find a memory
architecture h, y ← fθ(h, x), θ, and initial h0 such that for
any sequence of x1:T we have f̂(x1:T ) = ĝ(x1:T ) where f̂
and ĝ are the unrolls returning y1:T of f and g respectively.

Proof. We construct an emulator fθ (a sufficiently large
neural network parameterized by θ) that stores ϕ in h and
set θ, h0 such that at each step t ∈ N it performs the same
computation as gϕ by taking ϕt from ht, computing ϕt+1,
and storing it in ht+1.
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Furthermore, any memory-based architecture can be repre-
sented by a self-referential architecture where a subset of
variables is updated by the identity function. In conclusion,
the function class that can be represented by self-referential
architectures is equivalent to memory architectures, given
sufficiently rich parameterizations. For both memory archi-
tectures and self-referential architectures the same question
arises: How do we set the free variables θ, h0, or ϕ0? If
these free variables are directly optimized (eg by follow-
ing the gradient of some objective), from a representability
perspective there is no advantage of self-referential architec-
tures. Orthogonal to this, the chosen architecture (whether
memory or self-referential) may have varying optimizability
or regularizing benefits due to e.g. sparsity in the computa-
tional graph, multiplicative interactions, or variable sharing.
In the following, we discuss how self-referential architec-
tures are relevant in the absence of direct meta-optimization.

3. Method: Fitness Monotonic Execution
Both in the case of self-referential and memory architec-
tures the free (initial) variables need to be found. Here we
propose a method, Fitness Monotonic Execution (FME),
that avoids explicit meta optimization of these free variables.
Instead of modifying ϕ directly using a human-engineered
learning algorithm, we simply select between different con-
figurations of ϕ that are generated using self-modifications.
In particular, through interactions with the environment we
continuously add new solutions to a set of Φ = {ϕi}. Com-
putation time is distributed across solutions monotonic in
their performance, i.e. better performing solutions are exe-
cuted longer (or are selected for execution more frequently).
This can be formalized as a pmf p(ϕ) that assigns each so-
lution ϕ ∈ Φ a probability for being executed at any given
time-step based on its average reward R(ϕ)

∆t relative to other
solutions (where ∆t is the solution’s total lifetime). As
a special case, p may put all probability mass on the cur-
rent best solution, greedily selecting for improvement. See
Algorithm 1 for a full description.

Note that in this scheme, memory architectures are now
inadequate. If there were any variables that are not mod-
ifiable, their value could not be determined through self-
modifications. As we do not use any human-engineered
optimization process, their value would be undefined. Thus,
self-referential architectures are required.

Algorithm 1 Fitness monotonic execution
Require: Initial solution(s) Φ = {ϕi}, self-referential ar-

chitecture gϕ, probability p(ϕ), an RL environment E
while forever do

ϕ ∼ p(ϕ) where ϕ ∈ Φ ▷ Sample next solution to
execute, monotonic in its
performance

ϕ, y1:L ← gLϕ (x1:L) ▷ Execute g for L steps with
x1:L from the environmentE
including a feedback signal

Φ← Φ ∪ {ϕ} ▷ Add new ϕ to Φ

Least-recently-used Buffer To limit the number of solu-
tions we need to store, we implement Fitness Monotonic
Execution with a least-recently-used (LRU) buffer. It con-
sists of m buckets where each bucket holds recent solutions
in a specific performance range. Solutions from buckets
with higher performance are sampled exponentially more
frequently.

Outer-product-based Architecture For the self-
referential neural network architecture, we chose
an outer-product mechanism adapted from prior
work (Irie et al., 2021). By applying a weight ma-
trix Wt−1 ∈ RNx×(Ny+2Nx+4) to some input xt ∈ RNx

we generate the output yt ∈ RNy , key kt ∈ RNx , query
qt ∈ RNx , and a learning rate βt ∈ R4. Using an
outer-product, the key and query generate an update to the
weight matrix Wt−1, obtaining Wt:

yt, kt, qt, βt =Wt−1ψ(xt) (1)
v̄t =Wt−1ψ(kt) (2)
vt =Wt−1ψ(qt) (3)
Wt =Wt−1 + σ(βt)(ψ(vt)− ψ(v̄t))⊗ ψ(kt)

(4)

where ψ is the tanh activation, σ is the sigmoid function, and
⊗ is the outer product. The learning rate βt ∈ R4 controls
the rate of update to the four parts generating y, k, q, β. We
stack multiple such self-referential layers.

4. Experiments
We empirically investigate several questions: Firstly, start-
ing with a randomly initialized solution, can the network
modify itself to solve a bandit task? We compare this to a
hill climbing strategy. Secondly, how do self-modifications
compare when solving a markov decision process? Thirdly,
given a bandit task that is non-stationary, can the network
learn to modify itself based on the reward it receives as
input?
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Figure 1. A randomly initialized self-referential architecture makes
modifications to itself to solve a two-armed bandit problem (left).
On a Cartpole task (right) the self-modifications not only directly
improve the policy, but also improve future improvements, result-
ing in faster learning compared to hill climbing. The found policy
balances the pole for about 100 steps. Standard deviations are
shown for 5 seeds.
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Figure 2. Given the reward as input, self-modifications enable
adaptation to swapping of the good arm in a two-armed bandit.

Learning a Bandit Policy The first question we investi-
gate is whether a randomly initialized self-referential archi-
tecture is capable of making self-modifications that lead to
a useful policy for a given task. We test this on a simple
2-armed bandit where one arm gives payouts (rewards) of 1
and the other 0. From Figure 1 (left) we observe that after
around 40 self-modifications and selections a solution is
found that always selects the arm with a higher payoff. We
compare this to hill climbing with a variance-tuned Gaus-
sian noise on the network parameters. We observe that in
this simple environment, Fitness Monotonic Execution is as
effective as hill climbing to find an optimal solution to this
bandit problem.

Cartpole Next, we increase the difficulty of the policy
to be found by running a self-referential network on the
Cartpole task (Figure 1, right). We observe that reach-
ing a good performing policy takes significantly more self-
modifications and selections. At the same time, a simple
hill climbing strategy (with tuned noise) fails at improving
the policy at the same rate as the self-modifying architec-
ture. This suggests that we are not only selecting for good
policies but also strategies for self-modification that lead to
policy improvement in the future.

Meta Learning a Bandit Learning Algorithm Given a
non-stationary task, a good policy can not exhibit a fixed
behavior but must adapt to changing rewards (learn). We
test the capabilities of Fitness Monotonic Execution to adapt
to a changing bandit task. In Figure 2 we swap the good and
bad arm at random intervals. We further feed the reward
as an input to the policy such that it can adapt its behavior
based on the reward. We observe that Fitness Monotonic
Execution leads to self-modifying policies that change their
action (learn) in response to the reward they previously
received. In contrast, if this reward is not fed as an input,
the policy fails to adapt.

5. Discussion
Limitations This paper represents an initial discussion
of self-referential systems that do not rely on fixed human-
engineered meta-optimization. The empirical evaluation is
still minimalistic at this time but should be a good starting
point for larger experiments and improvements. Our inten-
tion is to incite further interest in this research direction.
Semantically, it is an open question whether FME should
be called a (minimalistic) meta optimizer after all. Usually,
optimizers define how solutions are modified based on a
feedback signal. In the case of FME, these modifications
are self-generated.

Broader impact This paper is not directly concerned with
applications of machine learning. Nevertheless, meta learn-
ing methods may pose additional challenges in the future.
For instance, learning algorithms are now also subject to
learning which means that learning itself becomes more
difficult to interpret and to monitor for biases extracted from
data.

Self-modifying architecture We described a meta learner
that can self-modify all its variables including those that
define the self-modifications, but its architecture is still
hard-coded. In fitness monotonic execution, the self-
modifications do not require differentiability. Thus, self-
modifications can be extended to include architecture mod-
ifications ϕ, y, g ← gϕ(x), such as adding or removing
neurons and weights, changing operations, and (un-)sharing
variables.

6. Conclusion
In this paper, we discussed self-referential systems that
exhibit self-improvement while reducing the reliance on hu-
man engineering to the largest extent possible. In particular
this means avoiding the use of human engineered learning
algorithms on the meta level. We showed that in order to
construct systems that can change all their parameters (or
variables more generally), functionality needs to be reused.
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This is done in the form of parameter (variable) sharing. We
further demonstrated the representational equivalence be-
tween neural networks with memory and self-referential ar-
chitectures while highlighting the benefit of self-referential
architectures in the absence of meta optimization. Finally,
we proposed Fitness Monotonic Execution (FME), a sim-
ple approach to avoid explicit meta optimization. A neural
network self-modifies to solve bandit and classic control
tasks, improves its self-modifications, and learns how to
learn, purely by assigning more computational resources to
better performing solutions.
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A. Implementation Details
Least-recently-used Buffer We initialize a least-recently-used (LRU) buffer with a single randomly initialized neural
network. The m = 100 buckets evenly cover the entire current performance range and each hold the 100 most recent
solutions. Solutions from buckets with higher performance are sampled exponentially more frequently. We use an exponential
base of e20. All layers are initialized from a truncated normal with a standard deviation of σ = 1√

Nx
.

Architecture We stack three self-referential layers with 32 hidden units.

Sources of Randomness To create a temporal tree of self-modifying solutions, randomness must be injected into the
system. This randomness originates from the policy action sampling, non-deterministic environment steps, and potential
external noise injection as an input to the policy. We found external noise injection not to improve the agent’s performance
when sufficient randomness originates from the policy and environment.


