
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARITHMETIC-BENCH: EVALUATING MULTI-STEP
REASONING IN LLMS WITH BASIC ARITHMETIC

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Arithmetic-Bench, a benchmark designed to evaluate the multi-step
reasoning ability of large language models (LLMs) through basic arithmetic op-
erations. The benchmark covers fundamental mathematical operations such as
addition, subtraction, multiplication, and division, while also incorporating sub-
tasks like copying, reversing, counting, and base conversion. Experimental results
show that the accuracy of current LLMs drops sharply when performing arithmetic
operations involving more than 10 digits, implying a failure of generalization in
multi-step reasoning. We further analyze the root causes of these failures. While
LLMs can achieve a certain degree of arithmetic generalization through training
on limited-length sequences, they fail to generalize to arbitrary lengths. This is due
to the inherent complexity of arithmetic tasks: achieving true arithmetic general-
ization cannot rely on memorization alone but requires the acquisition of genuine
reasoning mechanisms. Compared to other math benchmarks, Arithmetic-Bench
provides a simple and fair framework. Because the tasks are purely synthetic, they
are easy to generate and largely free from human biases. We believe that arith-
metic tasks are both fundamental and necessary for advancing reasoning models,
and Arithmetic-Bench offers a principled way to evaluate them.

1 INTRODUCTION

The rapid development of large language models (LLMs) has led to significant progress in natural
language understanding and generation. However, despite their strong performance on existing
reasoning benchmarks such as AIME Veeraboina (2023), GSM8K Cobbe et al. (2021), and MATH
Hendrycks et al. (2021), these models often struggle with basic arithmetic tasks. This inconsistency
raises critical questions about the nature of reasoning in LLMs: do they truly possess multi-step
reasoning capabilities, or are they merely performing pattern matching based on training data?

1.1 DISADVANTAGES OF MATH BENCHMARKS

There are a lot of existing math-related datasets and benchmarks. However, in practical applications
involving reasoning models, we have observed several limitations in these math benchmarks.

Hard to Collect. Although a large number of math problems are available online, their difficulty
levels and coverage are difficult to control precisely, often resulting in datasets with uneven qual-
ity and distribution. Manually creating problems is costly and labor-intensive, while the reliability
of model-generated problems remains uncertain. In addition, manually collected problems are in-
evitably subject to human biases.

Hard to Decontaminate (Easy to Cheat). Given the vast amount of data on the internet, it is
almost inevitable that identical or highly similar problems already exist. Furthermore, it is difficult
to prevent individuals or organizations from intentionally training models on benchmark data to
inflate performance.

Hard to Evaluate. Evaluation poses significant challenges. For open-ended problems, such as
proofs, relying on models for evaluation is unreliable and vulnerable to hacking. For problems with
definitive answers, such as computational tasks, formatting problems necessitate complex pattern-
matching methods to verify correctness, which are error-prone and cause fluctuations in evaluation
results. This makes it difficult to determine whether a model’s reasoning ability has truly improved.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Hard to Scale. Constructing a smooth difficulty progression is highly challenging. Some problems
are difficult due to reliance on obscure knowledge, while others require multi-step reasoning. Con-
sequently, certain problems primarily test memory rather than reasoning. Since these two types of
difficulty differ in nature, they cannot be directly compared or quantified.

1.2 ADVANTAGES OF ARITHMETIC BENCHMARKS

In contrast to complex mathematical operations, arithmetic operations serve as a natural testbed for
reasoning because they are deterministic, require structured multi-step execution, and have clear
correctness criteria.

Easy to Collect. Generating arithmetic expressions is very straightforward, and results obtained
through a calculator are guaranteed to be correct, ensuring the quality of the problems. More impor-
tantly, these problems are purely synthetic, which greatly reduces human bias.

Easy to Decontaminate (Hard to Cheat). Thanks to the nature of large numbers, no special filter-
ing is required. Memorizing answers provides no advantage in large-number arithmetic: even if one
memorizes all two-digit multiplications, they would cover only 1% of three-digit multiplications.
Moreover, brute-force memorization inevitably leads to forgetting.

Easy to Evaluate. There is no ambiguity: evaluation can be performed directly with a simple
check (e.g., a in b), without additional prompts, since all mainstream models already know basic
arithmetic and the numbers do not suffer from formatting issues.

Easy to Scale. Arithmetic tasks can be scaled to arbitrary digit lengths and varying levels of com-
plexity, which creates a continuous difficulty curve. This makes it possible to evaluate a model’s
true reasoning ability, going beyond mere memorization.

1.3 MEMORIZATION VS GENERALIZATION

We further raise the following two key questions and address them using Arithmetic-Bench.

How can we verify whether the improvements of existing LLMs on reasoning benchmarks
may come from memorizing the answers?

It is possible to train a model on a finite math benchmark dataset and then achieve very high scores
on that benchmark. However, even if we train on a multiplication benchmark dataset, the model still
cannot achieve high scores on the multiplication benchmark, because the multiplication benchmark
is randomly generated from a space that far exceeds the model’s capacity limit.

How can we construct tasks that cannot be solved by memorizing the answers?

The information required to fully memorize long multiplication numbers is infinite, whereas the
information needed to memorize the rules of multiplication is finite. The space of multiplication is
so large that, unlike Olympiad math problems which are finite, it cannot be completely memorized;
only by understanding the rules of multiplication can true generalization be achieved.

1.4 PROXY METRIC

In the field of image generation, text rendering seems like a minor skill, but the Nano Banana Google
(2025) team treated it as an important metric. Text is highly structured, and even small stroke errors
are obvious, making it a strict test of precision. Mastering text forces the model to control structure
and detail at the pixel level, which then improves general quality. By using text rendering as a proxy
metric, the team showed how optimizing for a highly demanding, low-tolerance subtask can push
models to develop transferable skills that enhance broader performance.

Arithmetic-Bench is also this type of task, requiring models to have stable and precise reasoning
abilities, which are necessary for solving truly complex problems, such as Fermat’s Last Theorem.
The formal proof of Fermat’s Last Theorem contains tens of thousands of lines of Lean code Buzzard
& contributors (2025); de Moura & Ullrich (2021), and even without considering the details of each
step, it still represents an extremely long chain of reasoning. Therefore, we believe that Arithmetic-
Bench is suitable as a proxy metric for mathematical reasoning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Whether a model truly has reasoning ability is a rather vague question, but if it can handle large-
number arithmetic well, it can then be considered to possess a certain level of reasoning ability.

The contributions of this paper are as follows:

• We introduce Arithmetic-Bench, a benchmark consisting of basic arithmetic tasks de-
signed to evaluate models’ multi-step reasoning and computational skills.

• We provide a theoretical analysis of the connection between arithmetic tasks and reasoning
ability, and empirically demonstrate their correlation.

• We benchmark multiple mainstream models, showing that current models perform poorly
on these tasks, underscoring the need to improve multi-step reasoning capabilities.

2 RELATED WORK

2.1 MATH BENCHMARK

AIME Veeraboina (2023) (American Invitational Mathematics Examination) consists of
competition-level math problems, covering advanced algebra, number theory, combinatorics, and
geometry. It includes 15 problems per year before 2000 and 30 problems per year thereafter.

MATH Hendrycks et al. (2021) contains high-school level math problems spanning algebra, cal-
culus, number theory, and more, totaling 12,500 problems. Large language models (LLMs) still
struggle on some of these problems, particularly those requiring multi-step reasoning, achieving
only moderate accuracy.

CMATH Wei et al. (2023) is a dataset of Chinese elementary school math word problems, compris-
ing 1.7k problems with detailed annotations sourced from real workbooks and exams.

GSM8K Cobbe et al. (2021) (Grade School Math 8K) is a set of 8,000 elementary-level math prob-
lems. Current LLMs can perform well on this benchmark, achieving over 97% accuracy through
prompt engineering Zhong et al. (2024).

GSM-Symbolic Mirzadeh et al. (2024) is a variant of GSM8K in which numbers are replaced with
random values. The resulting performance drop indicates that models may rely on memorized num-
bers and patterns.

These benchmarks cover a broad spectrum from elementary arithmetic to advanced competition-
level mathematics.

2.2 ARITHMETIC BENCHMARK

Benchmarks focusing specifically on arithmetic, such as Math401 Yuan et al. (2023) and the arith-
metic subset of BIG-Bench Srivastava et al. (2023), evaluate basic operations but have two key
limitations: (i) potential memorization due to fixed datasets, and (ii) limited length generalization,
since most problems involve numbers with fewer than ten digits. To address these issues, some ap-
proaches use synthetic math games Kurtic et al. (2024), though these often require complex rules and
careful prompt design. In contrast, Arithmetic-Bench provides a simpler framework for evaluating
arithmetic reasoning with controlled difficulty and sequence length.

2.3 ARITHMETIC REASONING BASED ON DEEP LEARNING

Early works, including Neural GPU Łukasz Kaiser & Sutskever (2016) and Neural Turing Machine
Graves et al. (2014), improved algorithm execution by designing specialized architectures such as
recursive convolutional networks and memory modules. More recent methods, such as Goat Liu
& Low (2023) and MathGLM Yang et al. (2023), train LLMs on carefully constructed arithmetic
datasets, while other approaches, like Scratchpad Nye et al. (2021), leverage techniques such as
chain-of-thought (CoT) reasoning Wei et al. (2022) and curriculum learning Bengio et al. (2009).
These methods enhance arithmetic performance for numbers within certain digit lengths, but they
generally fail to generalize to longer sequences, highlighting the challenge of length extrapolation
in arithmetic reasoning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 ARITHMETIC-BENCH

3.1 CAPACITY

Mathematical reasoning is based on axioms and deductive rules. Here, axioms provide fundamental
assumptions, and deductive rules specify how to derive new facts from existing ones. A proposition
is considered correct if it can be derived from the axioms. The key difference between reasoning and
common sense lies in the number of inference steps: common sense typically requires only a single
step, whereas reasoning involves multiple iterative steps. Following Zhou (2025), reasoning models
are characterized by producing intermediate reasoning tokens before generating the final output.

From these observations, we propose the following definitions:

Definition 1. Reasoning is the iterative application of operations on finite information, where each
operation transforms known information into new information.

Definition 2. Arithmetic is a special case of reasoning, where the operations are derived from a
finite lookup table of number operations.

Clearly, arithmetic over natural numbers satisfies Definition 1 and is therefore a form of reasoning.

A task with finite information can be fully learned by memorizing all cases, provided the model has
sufficient capacity. Here, capacity refers to the total amount of information that a model can store
or represent in its parameters. More concretely, if a model has N parameters and each parameter
can store approximately c bits of information independently, then the model capacity is roughly
C = N · c bits. When the information content of a task exceeds the model’s capacity, the task
becomes unlearnable due to inevitable forgetting. This is formalized by the following principle:

Theorem 1. A container with capacity a cannot hold information exceeding a.

For example, a model with 400 parameters can store the 9 × 9 multiplication table; a model with
20,000 parameters can fully memorize the first 10,000 digits of π. In contrast, a model with 10,000
parameters can memorize only about 70% of these digits, regardless of training duration. This is
coincidence with the fact that current language models can and only can store 2 bits of knowledge
per parameter Allen-Zhu & Li (2024).

Next, we relate arithmetic performance to general reasoning ability.

Theorem 2. If a model cannot learn an arithmetic problem, it cannot learn a reasoning problem of
equivalent complexity.

Proof. Any reasoning task can be encoded as an equivalent arithmetic problem by mapping basic
operations to numbers. If a model can solve this arithmetic problem, it can solve the corresponding
reasoning task. By Theorem 1, if the model cannot solve the arithmetic problem, it lacks sufficient
capacity to represent the necessary information, and therefore cannot learn any reasoning problem
of equal or greater complexity.

Computational stability can be analyzed similarly. Suppose each operation introduces a small error
ϵ, and the task can tolerate an expected error δ. Then, only a limited number of operations can be
performed before the accumulated error exceeds δ, defining the model’s computational capacity.

A model can reliably complete a reasoning task only if both its information capacity and compu-
tational capacity are sufficient. Notably, increasing the number of digits in arithmetic primarily
challenges computational capacity rather than information capacity. Therefore, benchmarks like
Arithmetic-Bench can probe reasoning ability beyond the limits of information storage by evaluat-
ing tasks that require extensive computation.

3.2 ERROR ACCUMULATION

Assuming the model has sufficient information capacity and fully understands the reasoning rules,
errors may still occur due to probabilistic predictions. To mitigate accumulated errors during itera-
tive reasoning, verification strategies can be employed. Let the probability of making a mistake in a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

single computation be p, assuming independent computations. Without verification, the probability
of submitting an incorrect result is

Perror, no verification = p.

If one additional independent verification is performed, an undetected error occurs only if the first
computation is wrong, the verification is also wrong, and the two errors coincide exactly. Let q
denote the conditional probability that two independent errors yield the same incorrect result (0 <
q < 1). Then, the probability of an undetected error under verification is

Perror, verification = p2q.

Since 0 < p < 1 and 0 < q < 1, it follows that

Perror, verification = p2q < p = Perror, no verification.

Therefore, verification reduces the probability of undetected errors.

For instance, if p = 0.1 and q = 0.1, the error probability without verification is 10%, while
with verification it decreases to 0.1%, representing a reduction by two orders of magnitude. This
illustrates that, for reasoning tasks, implementing verification can be more effective than merely
increasing the number of reasoning steps or output tokens.

3.3 DESIGN

Arithmetic-Bench is a dynamic benchmark that generates arithmetic problems of varying lengths
and complexities. It includes binary and unary operations as shown in Table 1 and Table 2:

Each problem is randomly generated to ensure that tasks cannot be memorized, and all require
multi-step iterative operations. The benchmark only requires the model to have basic mathematical
knowledge, without relying on any advanced theorems to eliminate the influence of memorized
knowledge on problem difficulty. Prompts are kept as simple as possible to minimize the influence
of prompt- or instruction-following abilities on the results. Evaluation is performed directly using
‘a in b‘, which is simple and accurate. Different models may format their outputs differently; for
example, DeepSeek outputs answers in ‘\boxed{}‘ and GPT prefers bold answers using ‘**‘,
but ‘a in b‘ can match any similar format. If a model produces the correct intermediate result
during the process, it indicates that the model’s reasoning can reach the final answer. Since the
probability of guessing large-number results correctly in the middle of the process is extremely
low, this does not compromise fairness. Some models, such as DeepSeek, may output answers
separated by symbols like ‘”,//!”.‘ We remove all such symbols from the results before matching the
answers. The steps for decimal addition and multiplication are basically the same as for integers,
differing only in the decimal point shift. Therefore, only integer operations are considered. To ensure
comparable computational complexity between division and multiplication and to avoid results that
are too small, we perform division of 2n-digit numbers by n-digit numbers. Modular operations
(mod) and division steps are essentially the same, so only division is considered. Exponentiation
(pow) is too computationally expensive and is therefore not considered. We primarily evaluate the
model’s arithmetic performance from the following two dimensions:

Accuracy
Full-match accuracy is used, without considering digit-wise accuracy, since in large-number opera-
tions models often produce outputs with incorrect digit lengths, making alignment with the correct
answer difficult.
Length Generalization Curve
This curve illustrates the relationship between model accuracy and the number of digits in the in-
put. It provides insight into how well the model can generalize to longer sequences, indicating its
computational capacity.

3.4 PROMPT

The prompts for different tasks are shown in Table 3. They are designed to be as simple as possible
to enhance readability for both humans and models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main tasks: standard arithmetic tasks.

Task Description
Add, Sub, Mul, Div Integer addition, subtraction, multiplication, and division of 2

numbers, where both operands are n-digit integers. These tasks
evaluate the model’s ability to perform standard arithmetic oper-
ations and its accuracy and consistency across multiple digits.

Add 1, Sub 1, Mul 1, Div 1 Integer addition, subtraction, multiplication, and division of 2
numbers, where one operand is an n-digit integer and the other
is a single-digit integer. Since n × n multiplication can be de-
composed into multiple n × 1 multiplications, this task is used
for evaluation.

Table 2: Sub tasks: basic operations related to arithmetic.

Task Description
Copy In multi-step reasoning, the model often needs to repeat operands multiple

times. This task evaluates the model’s ability to correctly copy values within a
reasoning chain.

Rev, Space Data representation significantly affects performance Lee et al. (2023). For
instance, columnar (vertical) arithmetic is written from right to left, which can
hinder next-token prediction. Reversal and splitting operations, such as little-
endian storage or separating numbers into individual characters, are evaluated
to test the model’s adaptability to different representations.

Count, Len Models sometimes produce outputs of incorrect length. These tasks test the
model’s counting ability. Since the answers are small numbers, parentheses are
used to prevent models from accidentally guessing the correct answer during
generation.

Box Some operations, like count and len, require formatted output. This task
evaluates the model’s ability to correctly insert parentheses as a formatting
symbols.

B2D, D2B Neural GPU Łukasz Kaiser & Sutskever (2016) has shown better performance
in binary than decimal. These tasks evaluate the model’s ability to convert
between binary and decimal representations.

3.5 GENERATION

The generation of Arithmetic-Bench is very straightforward: two numbers are randomly generated
and then concatenated using prompt templates for different tasks. The pseudocode is as follows.

Algorithm 1 Generate Arithmetic Dataset (gen 2)

1: procedure GEN 2(fun, n, d)
2: for digits← 1 to d do
3: for i← 1 to n do
4: if fun = div then
5: a ∼ Uniform(102·digits−1, 102·digits − 1)
6: b ∼ Uniform(10digits−1, 10digits − 1)
7: else
8: a ∼ Uniform(10digits−1, 10digits − 1)
9: b ∼ Uniform(10digits−1, 10digits − 1)

10: end if
11: c← fun(a, b)
12: Output sample (digits, a, b, c)
13: end for
14: end for
15: end procedure

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Arithmetic Prompts

Task Prompt
Add a+ b =?
Sub a− b =?
Mul a ∗ b =?
Div Perform integer division: a/b =?
Copy Copy the following number: a
Rev Reverse the following number: a
Box Put the following number in parentheses only: a, example: (number)
Space Insert a space between every digit in the following number: a
Len How many digits are in the following number: a, put answer in parentheses only, exam-

ple: (number)
Count How many 0 are in the following number: a, put answer in parentheses only, example:

(number)
B2d Convert the following binary number to decimal: a
D2b Convert the following decimal number to binary: a

4 EXPERIMENTAL RESULTS

4.1 SETUP

We compared several state-of-the-art models:

LLaMA series Dubey et al. (2024), Qwen series Yang et al. (2024; 2025); Team (2025), DeepSeek
series Guo et al. (2025), GPT series OpenAI (2023); Hurst et al. (2024)

Both open-source and closed-source models were used to ensure a comprehensive evaluation.

All tasks were tested with problems randomly generated for each digit length from 1 to 100. For
Qwen and LLaMA, n = 10 problems were generated per digit length. For DeepSeek and GPT, due
to resource limitations and slower inference speed, n = 1 problem per digit length was used.

Table 4: Model performance on Arithmetic-Bench (Main tasks)

Model add sub mul div add 1 sub 1 mul 1 div 1

Llama-3-8B-Instruct 11.7% 10.0% 1.9% 1.8% 93.4% 93.5% 20.3% 18.4%
Llama-3-70B-Instruct 20.5% 16.3% 2.2% 2.2% 93.4% 91.9% 27.2% 26.4%
Qwen2.5-0.5B-Instruct 8.1% 7.3% 1.6% 1.4% 23.1% 19.1% 17.0% 18.1%
Qwen2.5-1.5B-Instruct 12.6% 11.6% 2.0% 1.7% 69.4% 67.8% 27.3% 21.5%
Qwen2.5-3B-Instruct 11.7% 14.1% 1.9% 1.7% 77.6% 71.1% 30.7% 31.5%
Qwen2.5-7B-Instruct 25.7% 20.3% 2.2% 2.9% 89.2% 86.5% 45.2% 45.2%
Qwen2.5-14B-Instruct 28.9% 32.3% 2.3% 3.2% 98.0% 97.7% 66.2% 77.9%
Qwen2.5-32B-Instruct 50.2% 31.3% 2.5% 4.2% 96.9% 97.5% 79.1% 79.0%
Qwen2.5-72B-Instruct 31.5% 30.8% 2.5% 4.3% 98.0% 96.9% 51.5% 48.5%
DeepSeek-R1-Distill-Llama-8B 9.0% 8.0% 3.0% 2.0% 75.0% 65.0% 19.0% 18.0%
DeepSeek-R1-Distill-Llama-70B 14.0% 14.0% 3.0% 5.0% 93.0% 91.0% 27.0% 25.0%
DeepSeek-R1-Distill-Qwen-1.5B 10.0% 12.0% 4.0% 3.0% 44.0% 64.0% 23.0% 21.0%
DeepSeek-R1-Distill-Qwen-7B 14.0% 11.0% 4.0% 3.0% 77.0% 77.0% 32.0% 32.0%
DeepSeek-R1-Distill-Qwen-14B 13.0% 18.0% 4.0% 4.0% 78.0% 77.0% 27.0% 23.0%
DeepSeek-R1-Distill-Qwen-32B 21.0% 26.0% 4.0% 7.0% 83.0% 75.0% 42.0% 43.0%
DeepSeek-R1-671B 46.0% 58.0% 10.0% 10.0% 100.0%99.0% 56.0% 69.0%
QwQ-32B 26.0% 26.0% 11.0% 10.0% 99.0% 96.0% 41.0% 69.0%
Qwen3-235B-A22B 41.0% 40.0% 10.0% 11.0% 100.0%100.0%58.0% 78.0%
gpt-4 51.0% 38.0% 3.0% 4.0% 100.0%99.0% 61.0% 74.0%
gpt-4o 68.0% 84.0% 3.0% 3.0% 100.0%100.0%85.0% 79.0%
gpt-3.5 15.0% 21.0% 3.0% 3.0% 97.0% 89.0% 29.0% 48.0%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 ANALYSIS

Main results are shown in Table 4. The accuracy of addition and subtraction is comparable, as is
that of multiplication and division. Multiplication is significantly more challenging than addition,
with accuracy roughly proportional to the maximum number of digits the model can handle. On
multiplication tasks, the best models, Deepseek-R1, QwQ and Qwen3, can correctly solve numbers
with up to 10 digits.

Tasks involving n× 1-digit numbers are relatively easier, yet most models still fail to achieve 100%
accuracy. Tasks where models perform relatively well include add 1, sub 1, copy, box, and space,
with some models reaching perfect accuracy. These tasks share a common feature: they do not
require complex reasoning, and the input-output structures are largely similar. For example, in
add 1 and sub 1, changes mostly occur in the last digits.

Limitations of Reasoning. Reasoning models, such as Deepseek-R1, QwQ and Qwen3, outper-
form non-reasoning models on tasks like multiplication and base conversion, but underperform on
simpler tasks, such as addition and single-digit multiplication. This phenomenon is consistent with
the observations reported in Shojaee et al. (2025): on low-complexity tasks, non-reasoning mod-
els outperform reasoning models; on medium-complexity tasks, reasoning models demonstrate an
advantage; and on high-complexity tasks, both types of models experience complete failure.

Influence of Scaling. Within the same model series, larger models generally perform better on
arithmetic tasks. However, Qwen-72B does not outperform Qwen-32B, suggesting that merely in-
creasing model size does not necessarily resolve arithmetic challenges.

Influence of Distillation. The DeepSeek distilled models perform worse than their corresponding
Qwen counterparts on simple arithmetic tasks, like addition and subtraction, and only marginally
outperform Qwen on multiplication and counting. This indicates limitations in their reasoning abil-
ity, suggesting that the full reasoning capability of a large model may not have been successfully
distilled into these smaller models.

GPT-4’s average performance falls between Qwen2.5 and Qwen3, indicating that closed-source
models do not necessarily demonstrate stronger arithmetic capabilities. Overall, the accuracy of
all models remains relatively low, and true generalization in arithmetic has yet to be achieved.

4.3 LENGTH GENERALIZATION

As shown in Figure 1, accuracy decreases significantly as the number of digits increases. For multi-
plication, once the number of digits exceeds a certain threshold, models consistently fail to produce
correct results. Therefore, the overall accuracy is approximately equal to the maximum number of
digits in multiplication that the model can handle.

Even the largest and most advanced models, including Qwen3, DeepSeek, and GPT-4, continue to
struggle with arithmetic tasks at scale. Specifically, they are unable to reliably solve 10-digit mul-
tiplication and often fail at 100-digit addition, despite their strong performance on a wide range
of natural language tasks. This indicates that scaling alone does not resolve the fundamental chal-
lenges of arithmetic reasoning, and that current architectures still lack robust mechanisms for exact,
length-generalizable computation.

4.4 MEMORIZATION OF FINITE DATASETS

As shown in Figure 2, training on AIME test set can push accuracy to 100%. We also observed sim-
ilar phenomena on other finite datasets, demonstrating that finite benchmarks are prone to cheating.
Notably, it requires around 100 epochs to memorize well, rather than remembering it after a single
pass. Even after reaching 100% accuracy, fluctuations may still occur.

4.5 CORRELATION BETWEEN REASONING AND ARITHMETIC

As shown in Figure 5, The model’s performance on mathematical benchmarks such as AIME is
positively correlated with its performance on large-number multiplication. Reasoning models ex-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

hibit stronger multiplication ability compared to non-reasoning models, but perform worse than
non-reasoning models on simple tasks such as addition.

5 10 15 20 25 30
0.0

0.5

1.0
qwen2.5 72b
qwen3 235b (no think)
deepseek r1 671b
gpt4o

Figure 1: Length Generalization Curve of Multiplication, x axis is length from 1 to 30, y axis is
accuracy.

0 20 40 60 80 100

0.4

0.6

0.8

1.0

Figure 2: Results of training on AIME 2024,
x axis is epoch, y asix is accuracy.

Table 5: Comparison of performance on Multipli-
cation and AIME 2024

Model Mul Acc (%) AIME Acc (%)
Qwen2.5 72b 2 13.5
Qwen3 235b (no think) 4 40.1
Qwen3 235b (think) 10 85.7
QwQ 11 79.5
Deepseek r1 671b 10 79.8
gpt4o 3 11.1

4.6 USE OF EXTERNAL TOOL

While it is certainly possible to solve these problems using a calculator Schick et al. (2023)—and,
in fact, the web version of ChatGPT often does so, Arithmetic-Bench is fundamentally different.
It is designed to use arithmetic as a proxy for abstract reasoning, providing a controlled setting to
evaluate a model’s ability to perform multi-step reasoning rather than relying on external tools.

On the other hand, the results of Arithmetic-Bench can be interpreted in two possible ways:

1. In principle, the model’s probabilistic predictions are capable of stable multi-step reason-
ing, but current models have not realized this ability.

2. The model’s probabilistic predictions cannot guarantee stable multi-step reasoning. If this
is the case, it indicates that using external tools for verification is necessary.

4.7 REPRODUCIBILITY

The results from two independently randomly generated sets of problems show little difference, with
average fluctuations below 1%. We will make our code publicly available to ensure reproducibility.

5 CONCLUSION

Arithmetic-Bench provides a rigorous, dynamic, and scalable evaluation of LLMs’ multi-step rea-
soning abilities. Our theoretical analysis shows that the inability to generalize in arithmetic implies
broader limitations in general reasoning. Empirical results demonstrate that even state-of-the-art
models still struggle with large-number multiplication, highlighting the necessity of improving rea-
soning mechanisms. We believe that arithmetic-based tasks form the foundation for advancing rea-
soning in LLMs. Future work should focus on improving data representation, training strategies,
verifying, and memory mechanisms. Only by addressing these limitations can LLMs truly perform
multi-step reasoning tasks and move beyond shallow inference based on pattern matching.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. arXiv preprint arXiv:2404.05405, 2024.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th International Conference on Machine Learning (ICML), pp. 41–48, 2009.

Kevin Buzzard and contributors. Ongoing lean formalisation of the proof of fermat’s last theo-
rem. https://github.com/ImperialCollegeLondon/FLT, 2025. Funded by EP-
SRC grant EP/Y022904/1 until September 2029.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Proceedings of the 28th International Conference on Automated Deduction (CADE-28), pp.
378–388. Springer, 2021. doi: 10.1007/978-3-030-79876-5 37. URL https://doi.org/
10.1007/978-3-030-79876-5_37.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Google. Nano banana (gemini 2.5 flash image) model. Google AI / Gemini Developer API, 2025.
URL https://developers.google.com/. Image generation / editing model, publicly
documented.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. In International
Conference on Learning Representations (ICLR), 2021.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Eldar Kurtic, Amir Moeini, and Dan Alistarh. Mathador-lm: A dynamic benchmark for mathemati-
cal reasoning on large language models. arXiv preprint arXiv:2406.12572, 2024.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Tiedong Liu and Bryan Kian Hsiang Low. Goat: Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201, 2023.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, Charles Sutton, and Augustus Odena.
Show your work: Scratchpads for intermediate computation with language models. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

10

https://github.com/ImperialCollegeLondon/FLT
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://developers.google.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023. URL https://arxiv.org/abs/2302.
04761.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, et al. Beyond the imitation game: Quantify-
ing and extrapolating the capabilities of language models. Transactions on Machine Learning
Research, 2023. URL https://openreview.net/forum?id=uyTL5Bvosj.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime-problem-set-1983-2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and Bin Wang. Cmath: Can your language model
pass chinese elementary school math test? arXiv preprint arXiv:2306.16636, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang.
Gpt can solve mathematical problems without a calculator. arXiv preprint arXiv:2309.03241,
2023.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large
language models perform in arithmetic tasks?, 2023.

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, and Bo Du. Achieving¿ 97% on
gsm8k: Deeply understanding the problems makes llms better solvers for math word problems.
arXiv preprint arXiv:2404.14963, 2024.

Denny Zhou. Llm reasoning (stanford cs-25 lecture). Lecture notes, available at https://
dennyzhou.github.io/LLM-Reasoning-Stanford-CS-25.pdf, 2025. Accessed:
2025-09-22.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In International Conference on
Learning Representations (ICLR), 2016.

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://openreview.net/forum?id=uyTL5Bvosj
https://qwenlm.github.io/blog/qwq-32b/
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://dennyzhou.github.io/LLM-Reasoning-Stanford-CS-25.pdf
https://dennyzhou.github.io/LLM-Reasoning-Stanford-CS-25.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We conducted experiments using 1–2 machines equipped with 8×A100 GPUs and deployed our
models based on vLLM. The number of GPUs required varies depending on the model size. To
improve efficiency, we employ parallel inference acceleration for smaller models. Each model was
evaluated using the officially recommended decoding parameters. Ablation studies show that the
decoding parameters have little effect on the results.

For reasoning models, context length has a significant impact: if the maximum length is insufficient
to generate the complete output, performance will decrease a lot. Therefore, it is ultimately set to
16,384. For non-reasoning models, since their responses are naturally short. A maximum length of
2,048 or 4,096 is sufficient.

A.2 PROOF

Proof of Theorem 1

Theorem 1. A container with capacity a cannot hold information larger than a.

Proof. Suppose a container with capacity a1 can hold information of size a0, where a1 < a0. Then
there exists a container with capacity a2 < a1 that can hold the a1-capacity container. Repeating
this operation, we can construct a decreasing sequence of capacities an < · · · < a2 < a1 < a0.

Since capacities are non-negative, by the monotone bounded sequence theorem, this sequence must
have a limit.

Case 1: The limit is 0. Then an empty container could hold information of any size, which is
obviously a contradiction.

Case 2: The limit is greater than 0. Then for each capacity a, there exists a corresponding lower
bound b < a such that a container of capacity b can hold the container of capacity a. Similarly, for
b, there exists a lower bound c < b such that c can hold b, and thus c can hold a. This contradicts
the assumption that b is the lower bound of the sequence of capacities.

Therefore, the proposition is proved.

A.3 SUB TASKS

In addition to standard arithmetic operations, we also evaluated several sub-tasks as a complement
to the main tasks. As shown in Table 6. The positive correlation between subtask performance and
the main task indicates that proficiency on subtasks reflects or contributes to overall performance on
the main task.

Most models struggle with sub-tasks such as reversing and counting. Small models (0.5B and 1.5B)
exhibit clear flaws in instruction-following, showing low accuracy on tasks like copy, box, and
space.

A.4 EXPERIMENTS OF MEMORIZATION

We constructed a dataset using the first 10,000 digits of π, where the input is the index (the n-th
digit) and the output is the corresponding digit represented as a one-hot vector. Models with varying
parameter sizes were trained to memorize the π data up to their capacity limit, defined as the point
where the accuracy converges. The learning rate was optimized via grid search to maximize the
converged accuracy. We conducted dozens of experiments, and the result of one representative run
is shown in Figure 3. The curves from the other experiments exhibit similar shapes.

For different model, we calculated the ratio of the information content of the correctly memorized
digits to the total number of model parameters. Our experiments show that this ratio is quite stable,
regardless of model size or the number of digits, and is approximately 2.2 bits per parameter.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: Model performance on Arithmetic-Bench (Sub tasks)

Model copy rev box space length count b2d d2b

Llama-3-8B-Instruct 100.0%3.7% 99.8% 30.2% 8.6% 14.4% 5.5% 1.9%
Llama-3-70B-Instruct 100.0%7.1% 99.9% 80.7% 11.7% 6.5% 10.1% 3.1%
Qwen2.5-0.5B-Instruct 69.2% 2.8% 93.1% 20.3% 0.2% 7.8% 5.0% 1.3%
Qwen2.5-1.5B-Instruct 69.1% 9.3% 99.9% 82.5% 6.7% 6.2% 2.1% 3.1%
Qwen2.5-3B-Instruct 99.9% 13.4% 99.5% 86.5% 9.6% 4.3% 8.1% 2.2%
Qwen2.5-7B-Instruct 99.9% 13.4% 99.9% 99.9% 13.0% 24.7% 12.7% 3.5%
Qwen2.5-14B-Instruct 99.9% 17.1% 100.0%100.0%15.1% 24.7% 12.7% 3.5%
Qwen2.5-32B-Instruct 100.0%23.9% 100.0%99.9% 16.6% 42.9% 15.4% 4.6%
Qwen2.5-72B-Instruct 99.9% 14.2% 99.7% 100.0%23.3% 32.6% 15.6% 5.0%
DeepSeek-R1-Distill-Llama-8B 99.0% 6.6% 94.0% 37.0% 31.0% 47.0% 9.0% 1.0%
DeepSeek-R1-Distill-Llama-70B 100.0%9.0% 100.0%74.0% 33.0% 35.0% 10.0% 3.0%
DeepSeek-R1-Distill-Qwen-1.5B 96.0% 10.0% 77.0% 17.0% 34.0% 13.0% 3.0% 2.0%
DeepSeek-R1-Distill-Qwen-7B 100.0%14.0% 91.0% 93.0% 36.0% 44.0% 20.0% 5.0%
DeepSeek-R1-Distill-Qwen-14B 100.0%24.0% 100.0%100.0%38.0% 59.0% 11.0% 2.0%
DeepSeek-R1-Distill-Qwen-32B 100.0%23.0% 100.0%100.0%25.0% 42.0% 13.0% 4.0%
QwQ-32B 100.0%70.0% 99.0% 100.0%98.0% 99.0% 31.0% 14.0%
Qwen3-235B-A22B 100.0%78.0% 100.0%100.0%100.0%100.0%59.0% 20.2%
deepseek r1 671b 100.0%82.0% 100.0%100.0%96.0% 100.0%55.0% 16.0%
gpt4 100.0%15.0% 100.0%100.0%54.0% 22.0% 11.0% 3.0%
gpt4o 100.0%27.0% 100.0%100.0%68.0% 11.0% 11.0% 4.0%
gpt3.5 100.0%20.0% 90.0% 51.0% 17.0% 10.0% 3.0% 2.0%

0 2000 4000 6000 8000 10000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Figure 3: Memorization of π, different colors represent different learning rates.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.5 EXPERIMENTS OF FORGETTING

We constructed datasets using the first 10,000 digits of π and e. The model was first trained to
memorize the π dataset up to its capacity limit, and then trained on the e dataset. In the input
vectors, the indices of π digits were placed on the left, while the indices of e digits were placed on
the right, ensuring that the inputs did not overlap.

Despite the absence of input conflicts, the model completely forgot the π data after learning e. This
demonstrates that once a model reaches its capacity limit, adding new information inevitably causes
it to forget previously memorized information.

A.6 USE OF AI ASSISTANTS

To reduce the cost of manual revisions, we used ChatGPT Ouyang et al. (2022) to revise the language
of the paper. The revisions were made solely to enhance the clarity and readability of the text and
not for any other purpose.

14

	introduction
	disadvantages of math benchmarks
	advantages of arithmetic benchmarks
	Memorization VS Generalization
	Proxy Metric

	Related Work
	Math Benchmark
	Arithmetic Benchmark
	Arithmetic Reasoning Based on Deep Learning

	Arithmetic-Bench
	Capacity
	Error Accumulation
	Design
	Prompt
	Generation

	Experimental Results
	Setup
	analysis
	Length Generalization
	Memorization of finite datasets
	correlation between reasoning and arithmetic
	Use of External Tool
	Reproducibility

	Conclusion
	Appendix
	Implementation Details
	Proof
	Sub Tasks
	Experiments of Memorization
	Experiments of Forgetting
	Use of AI assistants

