
Under review as submission to TMLR

The Vertex-Attribute-Constrained Densest k-Subgraph
Problem

Anonymous authors
Paper under double-blind review

Abstract

Dense subgraph mining is a fundamental technique in graph mining, commonly applied in
fraud detection, community detection, product recommendation, and document summariza-
tion. In such applications, we are often interested in identifying communities, recommenda-
tions, or summaries that reflect different constituencies, styles or genres, and points of view.
For this task, we introduce a new variant of the Densest k-Subgraph (DkS) problem that
incorporates the attribute values of vertices. The proposed Vertex-Attribute-Constrained
Densest k-Subgraph (VAC-DkS) problem retains the NP-hardness and inapproximability
properties of the classical DkS. Nevertheless, we prove that a suitable continuous relaxation
of VAC-DkS is tight and can be efficiently tackled using a projection-free Frank–Wolfe al-
gorithm. We also present an insightful analysis of the optimization landscape of the relaxed
problem. Extensive experimental results demonstrate the effectiveness of our proposed for-
mulation and algorithm, and its ability to scale up to large graphs. We further elucidate
the properties of VAC-DkS versus classical DkS in a political network mining application,
where VAC-DkS identifies a balanced and more meaningful set of politicians representing
different ideological camps, in contrast to the classical DkS solution which is unbalanced
and rather mundane.

1 Introduction

Dense subgraph detection is a fundamental graph mining primitive that aims to identify highly connected
subsets of vertices in a given graph. It has found widespread applications, including fraud detection in
consumer reviews, product recommendation, and financial transaction networks (Hooi et al., 2016; Li et al.,
2020; Ji et al., 2022; Chen & Tsourakakis, 2022), as well as community detection in social networks, topic
mining (Angel et al., 2014), and gene association studies (Saha et al., 2010).

Many applications can benefit from incorporating vertex attribute values into the formulation (Adami et al.,
2011; Fazzone et al., 2022). Recently, several studies (Anagnostopoulos et al., 2020; 2024; Miyauchi et al.,
2023; Kariotakis et al., 2025) have proposed various vertex-attribute-aware dense subgraph mining formu-
lations and algorithms. In this work, we address limitations in the problem formulations and algorithms of
existing studies on attribute-constrained dense subgraph mining, which are discussed in detail in Section 1.1.

There exist multiple pertinent formulations of dense subgraph mining (see the survey (Lanciano et al., 2024)
and references therein). One of the more prominent is the Densest Subgraph (DSG) problem (Goldberg,
1984) which aims to extract the subgraph with the maximum average induced degree. DSG can be solved
exactly via maximum-flow, and linear time greedy algorithms backed by approximation guarantees are also
available (Charikar, 2000; Boob et al., 2020; Chekuri et al., 2022). In addition, recent work (Danisch et al.,
2017; Harb et al., 2022; Nguyen & Ene, 2024) has developed a suite of convex optimization algorithms for
solving the problem. An alternative is to seek a subgraph that maximizes the minimum (instead of the
average) induced degree, which is known as the k-core of a graph (Seidman, 1983).

A drawback of DSG and k-core is that they often yield large but loosely connected subgraphs (Tsourakakis
et al., 2013; Shin et al., 2016). A remedy that affords explicit control of subgraph size is the Densest k-
Subgraph (DkS) problem (Feige et al., 2001), which seeks a subset of k vertices with the maximum number

1

Under review as submission to TMLR

of edges between them. However, DkS is NP-hard and difficult to approximate in the worst case (Khot,
2006; Manurangsi, 2017). The best polynomial-time approximation algorithm for DkS offers an O(n1/4+ϵ)-
approximation at complexity O(n1/ϵ) for ϵ > 0 (Bhaskara et al., 2010). In light of the problem’s difficulty,
different convex relaxations of DkS have been considered. For example, the work of (Ames, 2015; Bombina &
Ames, 2020) considered relaxations based on Semidefinite Programming (SDP), but these are a heavy lift in
terms of computation. Various “lightweight” continuous relaxations of DkS have also been pursued, including
the gradient-based approaches in (Hager et al., 2016; Sotirov, 2020; Liu et al., 2024) and the more involved
Lovaśz-ADMM approach in (Konar & Sidiropoulos, 2021). However, the tightness of these relaxations has not
been investigated. Recently, Lu et al. (2025) proposed a provably tight continuous relaxation formulation. In
the extended version of (Lu et al., 2025), Lu et al. (2024) analyzed the optimization landscape to demonstrate
the advantages of this formulation. Furthermore, the Frank–Wolfe-based algorithm proposed in (Lu et al.,
2024; 2025) has shown strong performance in both solution quality and scalability.

A very different approximation approach to DkS relative to all the above, promoted by Papailiopoulos et al.
(2014), is to use a low-rank surrogate of the graph adjacency matrix to leverage the so-called Spannogram—a
low-rank “geometric” solver for certain bilinear quadratic optimization problems. In practice, using rank as
low as two entails complexity O(n3), which is a challenge for large-scale problems. This approach is therefore
essentially limited to using a rank-one approximation; interestingly, this performs quite well in many cases.
The approach of (Papailiopoulos et al., 2014) also provides for a simple upper bound on the optimal edge
density of DkS, which gives us a problem-instance-dependent approximation gap bound.

1.1 Related Work: Attribute-Constrained Dense Subgraph Mining

While dense subgraph discovery is a well-studied topic, only recently has the problem of extracting vertex-
attribute-constrained dense subgraphs gained attention (Anagnostopoulos et al., 2020; 2024; Miyauchi et al.,
2023; Kariotakis et al., 2025). These works are motivated by the fact that subgraphs extracted via DSG or
its variants may violate attribute-based requirements, as such formulations do not explicitly consider vertex
attributes. To address this limitation, (Anagnostopoulos et al., 2020; 2024; Miyauchi et al., 2023; Kariotakis
et al., 2025) have proposed formulations and algorithms that incorporate vertex-attribute constraints into
dense subgraph mining. These were among the first efforts to introduce vertex-attribute constraints into the
task. Nonetheless, the area remains largely underexplored, with many key challenges still open.

Anagnostopoulos et al. (2020; 2024) proposed a vertex-attribute-constrained variant of DSG, where each
vertex belongs to a group, and the objective is to identify a subgraph with maximum average induced degree
that includes an equal number of vertices from each group. The spectral relaxation algorithms introduced in
these works offer meaningful approximation guarantees, provided the degree distribution of the input graph
is approximately uniform. However, real-world graphs often exhibit highly skewed degree distributions
(Newman, 2003), and the theoretical guarantees apply only when the vertex attribute takes on exactly two
distinct values.

A subsequent formulation, introduced as Problem 1 in (Miyauchi et al., 2023), extends the setting of (Anag-
nostopoulos et al., 2020; 2024) by allowing a variable minimum representation level across groups within the
selected subgraph (i.e., a lower bound on the proportion of selected vertices belonging to each group). While
this formulation represents a meaningful generalization, it still has two notable limitations. First, it enforces
a uniform minimum representation level across all groups, which restricts the flexibility to specify different
representation requirements based on application needs. Second, as it is based on the DSG framework, the
extracted subgraphs tend to be large but loosely connected—a known drawback of DSG-based formulations
(Tsourakakis et al., 2013).

To solve the problem, Miyauchi et al. (2023) proposed a two-stage Ω(1/
√

n)-approximation algorithm for
this formulation. In the first stage, an initial solution is obtained using a Densest-at-least-k Subgraph
(DalkS) algorithm with a known approximation guarantee—either 1/3 or 1/2, depending on the specific
method (Andersen & Chellapilla, 2009; Khuller & Saha, 2009). This solution is then refined in the second
stage through a post-processing procedure that incrementally adds vertices until the attribute constraint is
satisfied. Since the attribute constraints enforced in the post-processing stage restrict the feasible solution
space, the optimal edge density under these constraints is already no greater than that of the DalkS problem

2

Under review as submission to TMLR

considered in the first stage. The fact that the approximation ratio further drops—from a constant factor
to Ω(1/

√
n)—suggests that the post-processing step may significantly compromise the edge density of the

resulting subgraph.

Miyauchi et al. (2023) also considered an alternative DSG-based formulation, introduced as Problem 2 in their
work, which models attribute constraints by allowing the number of selected vertices from each group to be
explicitly specified. While this formulation offers greater flexibility, the proposed approximation algorithm
suffers from poor scalability—reportedly requiring over 10,000 seconds to process a graph with only 126
vertices. In addition, this formulation also exhibits the same limitation as other DSG-based formulations,
namely the tendency to produce large but loosely connected subgraphs. Because the size of the subgraph
cannot be controlled, it is also not possible to ensure that the proportion of vertices selected from each group
exceeds a non-trivial threshold.

To circumvent the NP-hardness of the formulations in (Anagnostopoulos et al., 2020; 2024; Miyauchi et al.,
2023), Kariotakis et al. (2025) proposed two regularization-based formulations for incorporating vertex at-
tributes which are solvable in polynomial time. However, like other DSG-based methods, their approach
lacks explicit control over the size of the extracted subgraphs. Moreover, the approach only applies to the
case of binary vertex attributes and requires bisection search to determine the regularization parameter that
ensures that the extracted subgraph satisfies a desired representation level of the vertices.

We also note that a recent paper (Oettershagen et al., 2024) considered a variant of the DSG problem for
networks with multiple edge (as opposed to vertex) attributes that represent different kinds of relationships
between vertices. Oettershagen et al. (2024) proposed formulations for finding the densest subgraph that
contains exactly, at most, or at least a specified number of edges for each edge attribute. They showed
that the decision versions of these problems are NP-complete and developed a linear-time constant-factor
approximation algorithm, which, however, only applies to everywhere sparse graphs—a restrictive assumption
in the context of dense subgraph mining. To summarize, their formulation differs significantly from ours:
it focuses on edge-attribute rather than vertex-attribute constraints and is based on DSG instead of DkS.
Additionally, our theoretical analysis does not rely on the everywhere sparse assumption.

1.2 Our Contributions

The main contributions of this paper are fourfold:

• We propose a new variant of the Densest k-Subgraph problem, termed the Vertex-Attribute-
Constrained Densest k-Subgraph (VAC-DkS) problem, which explicitly incorporates vertex attribute
information into the subgraph selection process. Compared to existing approaches, our formulation
enables explicit control over the subgraph size, as well as lower bounds on the number of selected
vertices from each group. This prevents the extraction of large but loosely connected subgraphs and
enables independent control over each group’s selection, guaranteeing that its representation exceeds
a non-trivial proportion.

• Although the VAC-DkS problem is NP-hard, we prove that a natural relaxation is tight and analyze
the optimization landscape of the relaxed problem. Both results build upon, but constitute non-
trivial generalizations of an analogous relaxation of the classical unweighted DkS problem studied
in (Lu et al., 2024). The main challenge is that the constraints of the relaxation of VAC-DkS are
more involved, owing to the need to ensure that the representation level of each vertex group meets
its target. Our key technical contribution is a more sophisticated rounding technique that is used to
characterize the local and global maximizers of the relaxed problem in order to establish tightness
and analyze the optimization landscape.

• To ensure scalability to large datasets, we seek efficient gradient-based methods to find high-quality
solutions of the VAC-DkS relaxation. However, a key computational bottleneck is the cost of com-
puting projections onto the constraint set during each iteration, which requires using general-purpose
convex optimization solvers owing to the complex structure of the constraint set. To circumvent this
bottleneck, we demonstrate that the projection-free Frank–Wolfe algorithm (Frank & Wolfe, 1956;

3

Under review as submission to TMLR

Jaggi, 2013; Lacoste-Julien, 2016) is well-suited for the problem. It enables the computation of
feasible ascent directions in closed form, which significantly reduces the computational cost of each
iteration. We showcase its effectiveness in obtaining high-quality solutions and scalability across
various scenarios.

• We demonstrate that our algorithm effectively uncovers more meaningful subgraphs with balanced
political representation while simultaneously picking tone-setting politicians on a real-world Greek
political network. Such an outcome is not attained by the classical DkS formulation, which tends
to select ideologically skewed, less meaningful subsets that miss much of the political action.

1.3 Notation

In this paper, lowercase roman type letters, lowercase bold type letters, uppercase bold type letters, and
uppercase calligraphic type letters denote scalars, vectors, matrices, and sets or pairs of sets, respectively.
[n] denotes the set {1, 2, . . . , n}. | · | denotes the cardinality of a set. xi denotes the i-th entry of the vector
x. aij denotes the entry in the i-th row and j-th column of matrix A. x(t) denotes the vector x at the t-th
iteration. xT denotes the transpose of x. topk(x, C) denotes the index set of the top k entries corresponding
to the set index C in x. x[C]← i denotes assigning the value i to the entries corresponding to the index set
C in x.

2 Problem Statement

Consider a weighted, undirected, and simple graph G = (V, E , w) with at least one positive weight1, where V is
the set of n = |V| vertices and E is the set of m = |E| edges with weights defined by w. Let C = {c1, c2, . . . , cr}
be a set of r different attribute values and ℓ : V → C be a mapping from a vertex to the corresponding
attribute value. Each vertex in the graph G is assigned an attribute value from the set C by the mapping ℓ.
Let Ci = {j ∈ V | ℓ(j) = ci} denote the set of vertices whose attribute is ci for every i ∈ [r]. Formally, the
Vertex-Attribute-Constrained Densest k-Subgraph (VAC-DkS) Problem can be defined as follows.
Definition 1 (Vertex-Attribute-Constrained Densest k-Subgraph (VAC-DkS) Problem). Given a weighted,
undirected, and simple graph G = (V, E , w) with at least one positive weight, a partition of V into r subsets
C1, C2, . . . , Cr based on vertex attribute values,2 and non-negative integers k, k1, k2, . . . , kr. VAC-DkS seeks a
subset of k vertices that includes at least ki vertices from each group Ci for every i ∈ [r], and which maximizes
the total edge weight (or the number of edges in the case of unweighted graphs) in the induced subgraph of G.
Without loss of generality, 1 ≤ k ≤ n, 1 ≤ r ≤ n, 0 ≤ ki ≤ |Ci|, ∀i ∈ [r], and

∑
i∈[r] ki ≤ k.

Let x ∈ {0, 1}n be an indicator vector of a subset of V. VAC-DkS can be formulated as

max
x∈Rn

f(x) = xTAx

s.t. x ∈ Bn
k ∩ F ,

(1)

where A ∈ Rn×n is the weighted adjacency matrix of G, Bn
k = {x ∈ Rn | x ∈ {0, 1}n,

∑
i∈[n] xi = k}, and

F = {x ∈ Rn |
∑

i∈Cj
xi ≥ kj ,∀j ∈ [r]}.

Compared with the existing formulations in (Anagnostopoulos et al., 2020; 2024; Miyauchi et al., 2023;
Kariotakis et al., 2025), our formulation offers the following advantages:

• The formulations in (Anagnostopoulos et al., 2020; 2024; Miyauchi et al., 2023; Kariotakis et al.,
2025) do not allow explicit control of the subgraph size, with the result that they can extract large
but loosely connected subgraphs.

1The assumption of at least one positive weight is required only for the counterexample constructed in Subsection 3.1.
Consequently, only Corollary 2 relies on this constraint. The other theorems, lemmas, and Corollary 1 presented in Section 3
hold without this constraint.

2Throughout this paper, the term group refers to one of these subsets, i.e., the collection of vertices having the same attribute
value.

4

Under review as submission to TMLR

• Compared with (Anagnostopoulos et al., 2020; 2024) and Problem 1 in (Miyauchi et al., 2023),
which impose a common upper bound on the proportion of each vertex group in the solution, our
formulation allows more flexible control over group composition tailored to end-user requirements
by appropriate variation of the size parameters {ki}r

i=1 and k.

• Problem 2 in (Miyauchi et al., 2023) allows setting a lower bound on the number of vertices from
each group in the solution, but without controlling the subgraph size, it cannot ensure a meaningful
lower bound on group proportions. Our formulation addresses this by jointly constraining subgraph
size and group representation.

• The formulations in (Kariotakis et al., 2025) adjust group composition through regularization and
support only a single attribute constraint. Furthermore, ensuring that the extracted subgraph
satisfies a target group proportion requires tuning the regularization parameter via bisection-search,
thereby increasing complexity and limiting applicability. In contrast, our formulation requires no
parameter tuning (the size parameters are directly specified as problem input) and naturally handles
multiple attribute constraints.

When considering ways to constrain subgraph size, at-least-k and at-most-k are two alternatives. However,
both present notable drawbacks in our setting. At-least-k constraints, similar to DSG-based formulations,
tend to select large but loosely connected subgraphs, which cannot guarantee meaningful lower bounds on
group proportions. Meanwhile, at-most-k constraints may result in much smaller solutions, limiting their
practical significance. Therefore, we focus on the exact-k constraint, which allows us to precisely control the
subgraph size and ensure meaningful group proportions.

3 Main Theoretical Results

Theorem 1. VAC-DkS is NP-hard, and at least as difficult to approximate as DkS.

Proof. DkS is a special case of VAC-DkS when ki = 0, ∀i ∈ [r].

Considering that DkS is provably difficult to approximate (Khot, 2006; Manurangsi, 2017) and the best
known polynomial-time approximation algorithm for DkS can only achieve an O(n1/4+ϵ)-approximation
(Bhaskara et al., 2010), relaxing the combinatorial constraint in (1) to its convex hull and solving it through
numerical optimization algorithms is a natural choice. Hence, we need to first find the convex hull of Bn

k ∩F .
Theorem 2. The convex hull of Bn

k ∩ F is Dn
k ∩ F , where Dn

k = {x ∈ Rn|x ∈ [0, 1]n,
∑

i∈[n] xi = k}.

Proof. Please refer to Appendix A.

Since Dn
k ∩ F is the convex hull of Bn

k ∩ F , we relax (1) to the following continuous optimization problem

max
x∈Rn

f(x) = xTAx

s.t. x ∈ Dn
k ∩ F .

(2)

However, Corollary 2 in (Lu et al., 2024) shows that arg maxx∈Bn
k

f(x) ⊆ arg maxx∈Dn
k

f(x) does not hold
in general for unweighted DkS. Since unweighted DkS is a special case of VAC-DkS, the relaxation from
(1) to (2) is also not tight for VAC-DkS in general. In this paper, we adopt the definition of tightness of a
relaxation from (Lu et al., 2024), i.e., a relaxation is tight if every optimal solution to the original problem
remains optimal for the relaxed problem.

A technique known as Diagonal Loading has been used in (Yuan & Zhang, 2013; Barman, 2018; Hager et al.,
2016; Liu et al., 2024; Lu et al., 2024) to either guarantee the tightness of DkS relaxation or improve the
solution quality. The starting point is that for DkS, we may equivalently reformulate

max
x∈Rn

f(x) = xTAx

s.t. x ∈ Bn
k ,

(3)

5

Under review as submission to TMLR

as
max
x∈Rn

g(x) = xT(A + λI)x

s.t. x ∈ Bn
k ,

(4)

where λ is a non-negative diagonal loading parameter. Relaxing (4) yields

max
x∈Rn

g(x) = xT(A + λI)x

s.t. x ∈ Dn
k .

(5)

Recently, Lu et al. (2024) proved that arg maxx∈Bn
k

g(x) ⊆ arg maxx∈Dn
k

g(x) holds for every unweighted,
undirected, and simple graph G and every k if and only if the diagonal loading parameter λ ≥ 1. Lu et al.
(2024) further showed the impact of λ on the optimization landscape of (5), suggesting that a larger λ can
make the optimization landscape more challenging.

The motivation for adopting this diagonal loading technique is twofold: adding the λ∥x∥2
2 not only ensures

the equivalence between the discrete problems (3) and (4), but also drives the continuous relaxation (5)
towards integral solutions.

Similarly, (1) can be equivalently reformulated as

max
x∈Rn

g(x) = xT(A + λI)x

s.t. x ∈ Bn
k ∩ F .

(6)

By relaxing (6), we obtain
max
x∈Rn

g(x) = xT(A + λI)x

s.t. x ∈ Dn
k ∩ F .

(7)

To achieve higher-quality results in solving problem (7) using numerical optimization algorithms, we need
to analyze the impact of the diagonal loading parameter λ on the tightness of the relaxation from (6) to (7)
and the optimization landscape of (7).

Note that if the relaxation from (6) to (7) is tight when λ = λ∗, where λ∗ represents the minimum value of
the diagonal loading parameter to guarantee the tightness from (6) to (7), then the sets of optimal solutions
of (6) and (7) are the same when λ > λ∗ because ∥x∥2

2 = k if and only if x ∈ Bn
k ∩ F , within the domain

Dn
k ∩F . Therefore, we only need to derive the minimum value of the diagonal loading parameter to guarantee

the tightness from (6) to (7).

3.1 Tightness of the Relaxation

Corollary 2 in (Lu et al., 2024) constructs counterexamples to establish that λ = 1 is a lower bound for
the minimum value of the diagonal loading parameter to ensure the relaxation from (4) to (5) is tight for
unweighted graphs. For weighted graphs, consider a graph in which all edge weights are identical. In this
case, since the structure is equivalent (up to a scaling) to an unweighted graph, we can apply the same
construction to show that λ = wmax serves as a lower bound on the diagonal loading parameter to ensure
tightness of the relaxation from (4) to (5), where wmax denotes the maximum edge weight in G. Since DkS
is a special case of VAC-DkS, this also implies that λ = wmax serves as a lower bound for the tightness of
the relaxation from (6) to (7).

We next consider an upper bound on the minimum value of the diagonal loading parameter. There are two
key challenges in deriving this upper bound: handling the attribute constraints introduced in VAC-DkS, and
managing the complication introduced by edge weights.
Theorem 3. Given any λ ≥ wmax and a non-integral feasible x of (7), we can always find an integral
feasible x′ of (7) such that g(x′) ≥ g(x).

6

Under review as submission to TMLR

Proof. Please refer to Appendix B.

Corollary 1. If λ ≥ wmax, then there always exists an integral global maximizer of (7), which implies that
the relaxation from (6) to (7) is tight when λ ≥ wmax.

Corollary 1 shows that λ = wmax is an upper bound for the minimum value of the diagonal loading to ensure
the tightness. Combining the previously obtained lower bound with this upper bound, we can derive the
following corollary.
Corollary 2. λ = wmax is the minimum value of the diagonal loading parameter to guarantee the tightness
from (6) to (7).

3.2 Landscape Analysis of the Relaxation

Having characterized the role of the diagonal loading parameter in ensuring tightness, we now examine its
influence on the optimization landscape of (7).
Lemma 1. There does not exist a non-integral local maximizer of (7) when λ > wmax.

Proof. Please refer to Appendix C.

Theorem 4. Given λ2 > λ1 > wmax, if x is a local maximizer of (7) with the diagonal loading parameter
λ1, then x is also a local maximizer of (7) with the diagonal loading parameter λ2.

Proof. Please refer to Appendix D.

In conclusion, Corollary 2 shows that λ = wmax is the minimum value of λ to ensure the tightness from
(6) to (7), while Theorem 4 shows that a larger λ can make the optimization landscape more challenging.
Through a more sophisticated rounding technique, Corollary 2 and Theorem 4 offer a significant and non-
trivial extension of the results from the unweighted DkS problem to the more general weighted VAC-DkS
problem, addressing both relaxation tightness and optimization landscape analysis.

4 Algorithms for VAC-DkS

Considering that VAC-DkS generalizes DkS, it is natural to attempt to generalize state-of-the-art algorithms
developed for DkS to handle the more general VAC-DkS problem. In particular, L-ADMM (Konar &
Sidiropoulos, 2021), Extreme Point Pursuit (EXPP) (Liu et al., 2024), the Frank–Wolfe algorithm (Lu et al.,
2024), and the parameterization approach (Lu et al., 2024) have demonstrated strong performance on DkS
in terms of solution quality and computational efficiency.

Projection-based algorithms are commonly employed for solving DkS (Hager et al., 2016; Liu et al., 2024).
However, the projection onto the feasible set Dn

k ∩ F lacks a closed-form solution in VAC-DkS. The main
culprit is the introduction of r attribute constraints in VAC-DkS which complicates the computation of the
projection operator, rendering it computationally expensive and inefficient. Similarly, L-ADMM (Konar &
Sidiropoulos, 2021) faces challenges when extended to VAC-DkS due to the additional r variables introduced
by attribute constraints, making the subproblems difficult to solve. Moreover, these constraints impede
the straightforward generalization of the DkS parameterization approach (Lu et al., 2024) to VAC-DkS.
Consequently, we advocate for the Frank–Wolfe algorithm, a first-order, projection-free method, to efficiently
tackle problem (7).

4.1 The Frank–Wolfe Algorithm

Initialization: Since problem (7) is non-convex, the choice of initialization can significantly affect the
quality of the final solution. To this end, we use the procedure described in Algorithm 1, which constructs
an initial feasible solution that satisfies the attribute constraints while distributing values as uniformly as
possible. We empirically observed in our experiments that this is a good choice of initialization for problem
(7).

7

Under review as submission to TMLR

Algorithm: The pseudo-code for the Frank–Wolfe algorithm is presented in Algorithm 2. Line 4 in Algo-
rithm 2 computes the gradient. Lines 5 to 9 solve the linear maximization problem

s(t) ∈ arg max
s∈Dn

k
∩F

sTg(t). (8)

While projection onto the constraint set Dn
k ∩ F is challenging, problem (8) admits a closed-form solution,

making the Frank–Wolfe algorithm a natural and efficient choice for solving (7). Line 10 calculates the
update direction, and Line 11 determines the step size. This step size rule guarantees convergence of the
Frank–Wolfe algorithm to a stationary point of (7) (Bertsekas, 2016, p. 268), and experiments in (Lu et al.,
2024) demonstrate that it converges faster than the scheme proposed by Lacoste-Julien (2016).

Algorithm 1: The initialization for Algorithm 2
Input: The subgraph size k, the sets of vertex attributes C1, C2, . . . , Cr, and the parameters for the

attribute constraints k1, k2, . . . , kr.
Initialization: x is a zero vector of length n.

1 for i = 1, 2, . . . , r do
2 x[Ci]← ki

|Ci| ;
3 residual← k −

∑
i∈[r] ki;

4 while residual > 0 do
5 M← {j ∈ [n] | xj < 1};
6 share← residual

|M| ;
7 for j ∈M do
8 update← min{share, 1− xj};
9 xj ← xj + update;

10 residual← residual − update;

11 return x

Algorithm 2: The Frank–Wolfe algorithm for (7)
Input: The weighted adjacency matrix A, the subgraph size k, the sets of vertex attributes

C1, C2, . . . , Cr, the parameters for the attribute constraints k1, k2, . . . , kr, and the diagonal
loading parameter λ.

Initialization: x(1) is a feasible point initialized by Algorithm 1, s(1), s(2), . . . are zero vectors of
dimension n, and H(1),H(2), . . . are empty sets.

1 L← ∥A + λI∥2;
2 k′ ←

∑
i∈[r] ki;

3 while the convergence criterion is not met do
4 g(t) ← (A + λI)x(t);
5 for i = 1, 2, . . . , r do
6 s(t)[topki

(g(t), Ci)]← 1;
7 H(t) ← H(t) ∪ topki

(g(t), Ci)
8 if k > k′ then
9 s(t)[topk−k′(g(t), [n]\H(t))]← 1;

10 d(t) ← s(t) − x(t);
11 γ(t) ← min

{
1, (g(t))Td(t)

L∥d(t)∥2
2

}
;

12 x(t+1) ← x(t) + γ(t)d(t);
13 t← t + 1;

Complexity Analysis: To highlight the efficiency of our approach, we analyze the time complexity of the
initialization step (Algorithm 1) and the per-iteration cost of the Frank–Wolfe algorithm (Algorithm 2).

8

Under review as submission to TMLR

For the initialization step, the for-loop in Lines 1 and 2 takes O(n) time. Line 3 takes O(r) time. For the
while-loop in Lines 4 to 10, each iteration takes O(n) time. Note that the entries corresponding to each
group of vertices remain equal after each iteration, and the residual is greater than zero only if at least
one entry reaches 1 in that iteration. Hence, if the residual is still positive after an iteration, at least one
group’s entries become 1, implying that the total number of iterations is at most r. Therefore, the total time
complexity of Algorithm 1 is O(rn). Note that in practice, the number of groups r is usually much smaller
than n, so the initialization step is typically efficient.

For the Frank–Wolfe algorithm, if the Lipschitz constant is calculated by the Power method and treat the
number of iterations for the Power method as a constant, then it takes O(m + n) time to calculate the
constant because there are O(m + n) non-zeros elements in A + λI. Similarly, Line 4 takes O(m + n)
time to calculate the gradient because A + λI has O(m + n) non-zeros elements. For Lines 5 to 7, each
inner iteration can be implemented by first building a max-heap in O(|Ci|) time using Floyd’s algorithm,
and then extracting the top-ki elements in O(ki log |Ci|) time. Summing over all i ∈ [r], the total worst-
case time complexity is O(n + k log n). Alternatively, if quickselect is used to find the top-ki elements in
each group, the average time complexity per group reduces to O(|Ci|), resulting in an overall average-case
complexity of O(n). Similarly, for Lines 8 and 9, using a max-heap requires O(n + k log n) time in the worst
case. Alternatively, using quickselect leads to an average-case complexity of O(n). For Lines 10 to 13, it
takes O(n) time. Therefore, the per-iteration time complexity of Algorithm 2 is O(m + n + k log n) when
using a heap-based implementation. Alternatively, an average-case complexity of O(m + n) is achievable via
quickselect.

The per-iteration complexity of Algorithm 2 matches that of its counterpart for the classical DkS problem,
and is independent of the number of attribute constraints r, highlighting the efficiency and scalability of the
Frank–Wolfe approach for solving the more general VAC-DkS problem.

4.2 Baseline Algorithms and Upper Bound for VAC-DkS

VAC-DkS is a new problem introduced in this paper, and there is no existing baseline in the literature
to evaluate the effectiveness of the proposed Frank–Wolfe algorithm for solving (7). To address this, we
draw inspiration from the Greedy Peeling algorithm (Asahiro et al., 2000; Charikar, 2000) and the low-rank
bilinear optimization (LRBO) algorithm (Papailiopoulos et al., 2014), and generalize them to the VAC-DkS
setting. Additionally, we derive an upper bound on the optimal edge weight to further assess solution quality.

4.2.1 The Greedy Peeling Algorithm

We first adapt the classical Greedy Peeling algorithm (Asahiro et al., 2000; Charikar, 2000) as a baseline
for VAC-DkS. The original algorithm iteratively removes the vertex with the minimum (weighted) degree,
breaking ties arbitrarily, until k vertices remain. To satisfy the attribute constraints in VAC-DkS, we modify
the peeling criterion to ensure that the number of vertices from each attribute group remains above its
respective threshold during the peeling process.

The time complexity of the Greedy Peeling algorithm depends on the data structure used to maintain node
degrees. For unweighted graphs, a bucket queue can be used to achieve O(m + n) time complexity. For
weighted graphs, bucket-based methods no longer apply. Using Fibonacci heaps yields a total amortized
time complexity of O(m + n log n).

4.2.2 The Low-Rank Bilinear Optimization (LRBO) Algorithm

The second algorithm is based on the LRBO approach proposed by Papailiopoulos et al. (2014). The LRBO
approach with rank-d approximation for DkS has a time complexity of O(nd+1), making only the rank-1
approximation practically tractable for moderate-size problems. Therefore, we focus solely on the rank-1
case in this paper.

9

Under review as submission to TMLR

Let λ1 and v1 be the largest eigenvalue (in magnitude) of A and the corresponding eigenvector of the largest
eigenvalue, respectively. Let A1 = v1uT

1 , where u1 = λ1v1. The rank-1 case solves the following problem:

max
x,y∈Bn

k
∩F

xTv1uT
1 y = max

y∈Bn
k

∩F

[
max

x∈Bn
k

∩F
xTvy

]
, (9)

where vy = c1v1 and c1 = uT
1 y.

For the subproblem maxx∈Bn
k

∩F xTvy, we only need to consider the following two linear maximization
problems maxx∈Bn

k
∩F xTv1 and maxx∈Bn

k
∩F −xTv1. After solving these two problems, y can be obtained

by solving two other corresponding linear maximization problems.

LRBO requires computing the largest eigenvalue and corresponding eigenvector of A, which takes O(m + n)
time. Besides that, LRBO also requires solving linear maximization subproblems similar to those in the
Frank–Wolfe algorithm. As analyzed previously, the total time complexity of LRBO is O(m + n + k log n)
when using a binary heap in the worst case, or O(m+n) on average when using a quickselect-based approach.

4.2.3 An Upper Bound on the Edge Weight

To better interpret the quality of a solution, we define the normalized edge weight of a solution as

Normalized Edge Weight = Total Edge Weight
wmax

(
k
2
) . (10)

We now generalize the upper bound on normalized edge density for the unweighted DkS problem proposed
by Papailiopoulos et al. (2014) to an upper bound on the normalized edge weight for the weighted VAC-DkS
problem in the following theorem.
Theorem 5. The optimal normalized edge weight (or the normalized edge density in the case of unweighted
graphs) of VAC-DkS can be bounded by

min
{

1,
x∗TA1y∗

wmaxk(k − 1) + σ2(A)
wmax(k − 1) ,

σ1(A)
wmax(k − 1)

}
, (11)

where (x∗, y∗) are an optimal solution to (9) and σi(A) denotes the i-th largest singular value of A.

Proof. Please refer to Appendix E.

5 Experimental Results

5.1 Datasets

We evaluate our method on both real-world attributed graphs and synthetic graphs. The real-world bench-
marks include the following commonly used datasets:

• Political Books (Books): In this network, vertices represent books on United States politics, and
edges represent co-purchasing relationships. Each vertex has an attribute indicating its political lean-
ing. The network was downloaded from https://github.com/SotirisTsioutsiouliklis/FairLaR
and the original network is also available at https://websites.umich.edu/~mejn/netdata/.

• Political Blogs (Blogs) (Adamic & Glance, 2005): In this network, vertices represent blogs
on United States politics, and edges represent hyperlinks between them. Each vertex has an at-
tribute indicating its political leaning. The network was downloaded from https://github.com/
SotirisTsioutsiouliklis/FairLaR.

• Wikipedia Crocodile (Wikipedia) (Rozemberczki et al., 2021): In this network, vertices rep-
resent Wikipedia pages related to crocodiles, and edges represent mutual links between them.
Each vertex has an attribute indicating whether it is popular. The network was downloaded from
https://github.com/benedekrozemberczki/FEATHER.

10

https://github.com/SotirisTsioutsiouliklis/FairLaR
https://websites.umich.edu/~mejn/netdata/
https://github.com/SotirisTsioutsiouliklis/FairLaR
https://github.com/SotirisTsioutsiouliklis/FairLaR
https://github.com/benedekrozemberczki/FEATHER

Under review as submission to TMLR

Table 1: Statistics of real-world datasets (n is the number of vertices, m is the number of edges, and r is the
number of groups).

Name n m r

Books 92 374 2
Blogs 1,222 16,714 2

Wikipedia 11,631 170,773 2
Twitter 18,470 48,053 2
GitHub 37,700 289,003 2
LastFM 7,624 27,806 18

• Political Retweet (Twitter) (Rossi & Ahmed, 2015): In this network, vertices represent Twit-
ter users, and edges represent retweet relationships between them. Each vertex has an attribute
indicating the user’s political leaning. The network was downloaded from https://github.com/
SotirisTsioutsiouliklis/FairLaR.

• GitHub Developer (GitHub) (Rozemberczki et al., 2021): In this network, vertices represent
GitHub developers, and edges represent mutual follow relationships between them. Each vertex has
an attribute indicating the developer’s specialization in either machine learning or web development.
The network was downloaded from https://snap.stanford.edu/data/github-social.html.

• LastFM Asia (LastFM) (Rozemberczki & Sarkar, 2020): In this network, vertices represent
LastFM users in Asian countries, and edges represent mutual follow relationships between them.
Each vertex has an attribute indicating the user’s country. The network was downloaded from
https://github.com/benedekrozemberczki/FEATHER.

Table 1 summarizes key statistics of the real-world datasets, including the number of vertices, edges, and
attribute groups.

While the real-world datasets commonly used in prior work serve as useful benchmarks, they have certain
limitations. In particular, most are relatively small in scale, contain only unweighted edges, and involve
binary group attributes. To enable evaluation on larger datasets, some approaches assign random attribute
values to existing real-world graphs. However, this practice may weaken the natural correlation between
attributes and graph structure, potentially reducing the effectiveness of the evaluation.

To address these limitations, we design a series of synthetic graphs based on the planted clique model.
Specifically, we generate an Erdős–Rényi random graph G(n, p) with n vertices, where each edge is included
independently with probability p. Each vertex is randomly assigned to one of r groups with equal probability.
We then plant a clique of size k by selecting exactly k/r vertices from each group, where k is chosen to be
divisible by r to ensure equal allocation. This planted clique serves as the ground-truth dense community
for evaluating algorithm performance under multi-group settings. In the experimental results presented on
these synthetic graphs, “success count” refers to the number of trials where an algorithm exactly recovers
this planted ground-truth subgraph.

For unweighted graphs, edges are either present or absent according to this process. For weighted graphs,
we assign edge weights differently: each edge in the initial Erdős–Rényi graph is given a weight sampled
uniformly from the interval [0.8, 1], and edges within the planted clique are set to 1.

This setup enables systematic evaluation of algorithm performance on weighted or unweighted graphs of
various scales, with multiple groups and controlled attribute and structural properties.

5.2 Baselines and Implementation Details

We evaluate our method against the two baselines that we derived by generalizing their DkS version in
Section 4.2: the (generalized) Greedy Peeling algorithm and the LRBO approach. In addition, we include

11

https://github.com/SotirisTsioutsiouliklis/FairLaR
https://github.com/SotirisTsioutsiouliklis/FairLaR
https://snap.stanford.edu/data/github-social.html
https://github.com/benedekrozemberczki/FEATHER

Under review as submission to TMLR

a hybrid variant that initializes Algorithm 2 with the output of Greedy Peeling. We include this variant
to test whether initializing with a high-quality heuristic output allows our method to achieve better results
than starting from scratch.

All experiments were conducted on a workstation with an AMD Ryzen Threadripper 3970X CPU, 256 GB
RAM, running Ubuntu 20.04. The implementation was done in Python 3.11.

For Frank–Wolfe, based on the tightness analysis in Corollary 2 and the landscape analysis in Theorem 4,
we set the diagonal loading parameter to wmax (or 1 for unweighted graphs). The maximum iteration count
is set to 500, which suffices for convergence in most real-world cases.

For Greedy Peeling, we use different implementations depending on the graph type. For unweighted graphs,
we adopt a bucket queue for efficiency. For weighted graphs, we use a Fibonacci heap to maintain the peeling
order. The Fibonacci heap is implemented via the fibonacci-heap-mod Python package.

For synthetic datasets, to ensure reproducibility, we fix the random seed for each of the t repeated trials to
values from 0 to t−1. This guarantees that all experiments are deterministic and results can be consistently
reproduced.

We measure execution time by running each algorithm in a separate process to ensure memory isolation.
Within each process, we perform a warm-up run using the same configuration and input graph to eliminate
one-time initialization effects. The warm-up run is not timed; it is followed by a separate execution for
measurement.

5.3 Binary-Attribute Graphs with Attribute-Constrained Groups

We consider multiple binary-attribute real-world graphs in Table 1, where each graph contains exactly one
attribute-constrained group. We designate group 1 as the attribute-constrained group following the attribute
convention used in https://github.com/SotirisTsioutsiouliklis/FairLaR. For each graph, at least
⌈k ·α⌉ vertices are selected from the attribute-constrained group, where α denotes the attribute-constrained
group ratio.

Figure 1 and Figures 3 to 6 in Appendix F demonstrate that Frank–Wolfe with uniform initialization typically
produces subgraphs with the highest density in most cases. Using the Greedy Peeling result as initialization
for Frank–Wolfe yields density values higher than Greedy Peeling alone, and in some cases even achieves the
highest subgraph density overall.

This strong empirical performance of Frank–Wolfe can be attributed to the theoretically grounded nature
of our formulation. Section 3 establishes a relatively benign optimization landscape for our formulation (7)
with appropriate diagonal loading, which makes it easier for our algorithm to find a high-quality solution.

Notably, Frank–Wolfe with uniform initialization exhibits a distinctive ability to discover subgraphs with
imbalanced attribute composition but exceptionally high edge density. This property is particularly valuable
in community discovery, as it helps uncover hidden, tightly connected attribute-constrained groups.

5.4 Multi-Attribute-Value Graphs with Group Representation Constraints

We first evaluate our methods on the LastFM real-world dataset, which contains 18 attribute groups. We
impose group representation constraints by requiring at least 5 or 10 vertices from each group in the extracted
subgraphs. Figure 2 shows that all algorithms perform similarly, with the exception of LRBO, which exhibits
worse results.

To further challenge these algorithms, we generate unweighted synthetic planted clique graphs with 3 at-
tribute groups and significant background noise. All graphs share the same parameters—number of nodes
n = 10, 000, edge probability p = 0.05, and planted clique size k = 30—while varying only in random seeds
to ensure reproducibility. We impose group representation constraints by requiring at least 5 vertices from
each group in the extracted subgraphs.

12

https://github.com/SotirisTsioutsiouliklis/FairLaR

Under review as submission to TMLR

(a) α = 0.25 (b) α = 0.25

(c) α = 0.5 (d) α = 0.5

Figure 1: Normalized edge density and attribute-constrained group proportion on the Twitter dataset under
different α. Result: our Frank–Wolfe with uniform initialization (blue) outperforms other methods in terms
of density for small k and all methods have similar performance for large k.

Table 2 presents the performance of different algorithms on synthetic planted clique graphs with significant
background noise and three attribute groups. Both Greedy Peeling and LRBO failed to recover the planted
subgraph in any of the 20 runs. While Greedy Peeling achieved relatively high and stable normalized edge
density (0.823 ± 0.109), it consistently selected dense regions formed by noisy connections, suggesting that
the background noise effectively masked the true clique. In this sense, Greedy Peeling often found near-
optimal solutions in terms of density but lacked the resolution to distinguish the planted structure from
spurious dense subgraphs. Frank–Wolfe with uniform initialization recovered the planted subgraph in 13
out of 20 runs, reflecting its capacity to escape poor local optima, albeit with high variance (0.741± 0.362).
LRBO performed only marginally better than random, with very low density and no successful recoveries,
demonstrating the poor performance of the spectral-based approach in noisy settings. When initialized with
Greedy Peeling, Frank–Wolfe succeeded in all runs and achieved perfect density, further highlighting that a
good heuristic starting point, though insufficient on its own, can be effectively refined by optimization. This
result underscores the effectiveness of our proposed problem reformulation, which enables Frank–Wolfe to
meaningfully navigate the solution space and recover meaningful structures even under significant noise.

5.5 Scalability on Large Unweighted and Weighted Graphs

To evaluate scalability in large-scale settings, we generate unweighted and weighted synthetic planted clique
graphs with 3 attribute groups. All graphs share the same parameters—number of nodes n = 200, 000, edge

13

Under review as submission to TMLR

(a) ki = 5, ∀i ∈ [r] (b) ki = 10, ∀i ∈ [r]

Figure 2: Normalized edge density on the LastFM dataset with 18 groups under different ki. Result: LRBO
(red) is outperformed by other methods in terms of density.

Table 2: Normalized edge density and success count for different algorithms on unweighted synthetic planted
clique graphs (n = 10, 000, p = 0.05, and k = 30) with 3 attribute groups. Normalized edge density values
are reported as mean ± sample standard deviation over 20 runs.

Algorithm Normalized Edge Density Success Count
LRBO 0.074± 0.011 0 / 20
Greedy Peeling 0.823± 0.109 0 / 20
Frank–Wolfe 0.741± 0.362 13 / 20
Frank–Wolfe + Greedy Peeling 1.000± 0.000 20 / 20

probability p = 0.0025, and planted clique size k = 60. We impose group representation constraints by
requiring at least 10 vertices from each group in the extracted subgraphs.

Tables 3 and 4 show the results on large-scale unweighted and weighted planted clique graphs, respectively.
While both Frank–Wolfe and Greedy Peeling successfully identify the planted structure in all runs, LRBO
fails consistently across both settings. In terms of execution time, Frank–Wolfe outperforms Greedy Peeling,
especially in the weighted setting where Greedy Peeling requires a Fibonacci heap to maintain correct peeling
order, resulting in over 5× longer runtimes. This speedup may be attributed to Frank–Wolfe’s better cache
locality and its algorithmic structure, which is more amenable to vectorization and parallelization. Our
Frank–Wolfe implementation relies on scipy’s single-threaded sparse matrix-vector multiplication; employ-
ing parallelized libraries could yield further performance improvements, particularly for larger graphs.

5.6 Case Study: Greek Politics

We next conduct a case study on a dataset related to Greek politics (Stamatelatos et al., 2020), which was
previously used by Fazzone et al. (2022) to analyze political divisions. The raw data is a weighted undirected
graph consisting of 186 vertices and 17,185 edges, where the vertices represent Twitter accounts of Greek MPs
(Members of Parliament) and Greek media outlets, and the edge weights indicate the audience similarity
between two Twitter accounts. The network was downloaded from https://github.com/tlancian/dith.
We manually labeled each vertex with a political orientation, where 0 denotes left-wing leaning and 1 denotes
right-wing leaning. The final distribution consists of 95 vertices labeled 0 and 91 vertices labeled 1.

We set k = 20 and compared two cases: k1 = k2 = 0, which corresponds to the DkS problem, and
k1 = k2 = 10, which corresponds to the perfectly balanced VAC-DkS problem. We used Algorithm 2 to
solve these two problems.

14

https://github.com/tlancian/dith

Under review as submission to TMLR

Table 3: Normalized edge density, success count, and execution time for different algorithms on unweighted
synthetic planted clique graphs (n = 200, 000, p = 0.0025, and k = 60) with 3 attribute groups. Normalized
edge density values and execution times are reported as mean ± sample standard deviation over 5 runs.

Algorithm Normalized Edge Density Success Count Execution Time (s)
LRBO 0.094± 0.036 0 / 5 171.3± 1.3
Greedy Peeling 1.000± 0.000 5 / 5 226.1± 0.5
Frank–Wolfe 1.000± 0.000 5 / 5 185.6± 0.8

Table 4: Normalized edge weight, success count, and execution time for different algorithms on weighted
synthetic planted clique graphs (n = 200, 000, p = 0.0025, and k = 60) with 3 attribute groups. Normalized
edge weight values and execution times are reported as mean ± sample standard deviation over 5 runs.

Algorithm Normalized Edge Weight Success Count Execution Time (s)
LRBO 0.162± 0.032 0 / 5 173.6± 3.9
Greedy Peeling 1.000± 0.000 5 / 5 973.6± 7.5
Frank–Wolfe 1.000± 0.000 5 / 5 185.6± 3.3

Table 5 presents the subgraphs identified by the classical DkS algorithm and the proposed perfectly balanced
VAC-DkS variant on the Greek Politics dataset. Interestingly, despite the added attribute constraints, the
perfectly balanced VAC-DkS achieved a slightly higher normalized edge weight (0.391 vs. 0.376). This
improvement can be attributed to the enhanced initialization provided by the attribute constraints, which
help guide the algorithm away from suboptimal local solutions. In contrast to the perfectly balanced VAC-
DkS, the classical DkS result is notably imbalanced: 80% of the selected vertices belong to the right-wing
group, indicating a skewed extraction. It is also worth noting that both algorithms exclusively selected
politicians and no media accounts. This is likely due to the broader and more mixed audience base of media
outlets, which implies sparser audience connections with other accounts and thus lower pairwise similarity
scores.

The classical DkS formulation tends to select center-right politicians with relatively cohesive and moderate
ideological positions. The few left-wing politicians drawn in the mix are center-left, known for their relatively
moderate demeanor.

The perfectly balanced VAC-DkS, on the other hand, pulls in a more politically heterogeneous mix that
includes several individuals advocating less moderate views which are often prominently featured in public
media and political discourse. Makis Voridis is a prominent representative of very right-wing views (Smith,
2011)3; Andreas Loverdos is known for his strong public stances on various policy issues; and Nikos Dendias
is likewise known for his firm stance on defense and national priorities, including security. Interestingly, the
VAC-DkS solution also includes several prominent figures that have toned down and moderated the political
discourse—such as socialist leader Fofi Genimata, and George Katrougalos who helped forge a treaty that
was politically sensitive and contentious. Overall, the VAC-DkS solution is much more interesting than the
DkS one. These results suggest that the vertex-attribute-constrained formulation is not only more balanced
in representation but also more effective at highlighting structurally dense, cross-cutting subgraphs that
reflect real-world political salience.

To further demonstrate the advantages of our DkS-based approach, we compare VAC-DkS with approaches
based on alternative frameworks.

First, we apply the DFSG algorithm (using Greedy Peeling for the initial densest subgraph step), which is
a DSG-based method proposed by Anagnostopoulos et al. (2020), to the 186-vertex Greek Politics dataset,
which yields a subgraph containing 150 vertices—over 80% of the entire graph—with a normalized edge
weight of only 0.112. This outcome empirically confirms the limitations of DSG-based formulations for tasks

3See also https://en.wikipedia.org/wiki/Makis_Voridis.

15

https://en.wikipedia.org/wiki/Makis_Voridis

Under review as submission to TMLR

Table 5: Greek MPs and subgraph normalized edge weight extracted from the Greek Politics dataset by
Algorithm 2. Labels indicate political leanings ((0): left leaning, (1): right leaning).

DkS Perfectly Balanced VAC-DkS
Fotini Arampatzi (1) Vassilis Kikilias (1)

Evi Christofilopoulou (0) Spyros Lykoudis (0)
Simos Kedikoglou (1) Evi Christofilopoulou (0)

Odysseas Konstantinopoulos (0) Odysseas Konstantinopoulos (0)
Kostas Skandalidis (0) Kostas Skandalidis (0)

Gerasimos Giakoumatos (1) Nikos Dendias (1)
Niki Kerameus (1) Andreas Loverdos (0)

Giannis Kefalogiannis (1) Varvitsiotis Miltiadis (1)
Varvitsiotis Miltiadis (1) Notis Mitarachi (1)

Notis Mitarachi (1) Makis Voridis (1)
Kostas Skrekas (1) Giorgos Koumoutsakos (1)

Giorgos Koumoutsakos (1) Christos Staikouras (1)
Christos Staikouras (1) Olga Kefalogianni (1)
Giannis Plakiotakis (1) George Katrougalos (0)

Theodoros Karaoglou (1) Anna Asimakopoulou (1)
Anna Karamanli (1) Markos Bolaris (0)
Stavros Kalafatis (1) Elena Kountoura (0)

Anna Asimakopoulou (1) Fofi Gennimata (0)
Nikitas Kaklamanis (1) Nikitas Kaklamanis (1)

Yannis Maniatis (0) Yannis Maniatis (0)
Normalized Edge Weight: 0.376 Normalized Edge Weight: 0.391

requiring the identification of specific, cohesive core communities: they lack effective size control and tend
to produce large but loosely connected subgraph. This highlights the necessity of our DkS-based VAC-DkS
framework.

Next, we apply the LFPRN algorithm with the allocation parameter ϕ = 0.5, which is a centrality-based
method proposed by Tsioutsiouliklis et al. (2021), to the Greek Politics dataset. Since LFPRN is designed for
unweighted graphs, we first converted our weighted graph to an unweighted one using a threshold of 0.2. The
output of LFPRN is shown in Table 6 in Appendix F. The LFPRN Top-20 ranking includes 6 media outlets,
whereas our VAC-DkS identified a cohesive subgraph consisting exclusively of politicians. This difference
highlights the fundamental difference between centrality-based methods (identifying influential entities) and
our density-based approach (finding cohesive communities). Furthermore, the subset of politicians with the
highest ranks identified by LFPRN is highly imbalanced: the 7 highest-ranked politicians are all from the
PASOK party, unlike our VAC-DkS which can guarantee perfect balance when appropriately parameterized
(k1 = k2 = k/2) due to its hard constraints.

6 Conclusion

In this paper, we introduced the Vertex-Attribute-Constrained Densest k-Subgraph (VAC-DkS) problem, a
generalization of the classical DkS that incorporates vertex-attribute constraints. We showed that VAC-DkS
is NP-hard, as it subsumes DkS as a special case. To address this challenge, we proposed an equivalent
reformulation of VAC-DkS using diagonal loading, followed by a relaxation of the combinatorial constraint
to its convex hull. Crucially, we proved that the relaxation is tight in general if and only if the diagonal
loading parameter λ ≥ wmax, and provided landscape analysis to illustrate how λ affects solution quality.
We then designed a projection-free Frank–Wolfe algorithm to solve the relaxed problem efficiently. Extensive
experiments demonstrate that our method achieves high-quality solutions across various settings and scales
well to large graphs. Additionally, we illustrate an application of our method to a real-world political network

16

Under review as submission to TMLR

in Greece. Our algorithm identifies a subgraph with balanced representation from both political camps, while
still capturing individuals with strong ideological identities—an effect not observed with the classical DkS
formulation. This case study highlights the practical relevance of attribute constraints in uncovering more
representative and interpretable structures in real networks.

References
Christoph Adami, Jifeng Qian, Matthew Rupp, and Arend Hintze. Information content of colored motifs in

complex networks. Artificial Life, 17(4):375–390, 2011.

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they blog.
In Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43, 2005.

Brendan PW Ames. Guaranteed recovery of planted cliques and dense subgraphs by convex relaxation.
Journal of Optimization Theory and Applications, 167:653–675, 2015.

Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Cristina Menghini, and Chris Schwiegelshohn.
Spectral relaxations and fair densest subgraphs. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, pp. 35–44, 2020.

Aris Anagnostopoulos, Luca Becchetti, Matteo Böhm, Adriano Fazzone, Stefano Leonardi, Cristina Mengh-
ini, and Chris Schwiegelshohn. Fair projections as a means toward balanced recommendations. ACM
Transactions on Intelligent Systems and Technology, 16(1):1–32, 2024.

Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In International Workshop
on Algorithms and Models for the Web-Graph, pp. 25–37. Springer, 2009.

Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen, and Srikanta Tirthapura.
Dense subgraph maintenance under streaming edge weight updates for real-time story identification. The
VLDB Journal, 23:175–199, 2014.

Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a dense subgraph.
Journal of Algorithms, 34(2):203–221, 2000.

Siddharth Barman. Approximating Nash equilibria and dense subgraphs via an approximate version of
Carathéodory’s theorem. SIAM Journal on Computing, 47(3):960–981, 2018.

Dimitri Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 3rd edition, 2016.

Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan. Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings of the Forty-Second
ACM Symposium on Theory of Computing, pp. 201–210. ACM, 2010.

Polina Bombina and Brendan Ames. Convex optimization for the densest subgraph and densest submatrix
problems. In SN Operations Research Forum, volume 1, pp. 1–24. Springer, 2020.

Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang, and Junxing
Wang. Flowless: Extracting densest subgraphs without flow computations. In Proceedings of The Web
Conference 2020, pp. 573–583. ACM, 2020.

Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In International
Workshop on Approximation Algorithms for Combinatorial Optimization, pp. 84–95. Springer, 2000.

Chandra Chekuri, Kent Quanrud, and Manuel R Torres. Densest subgraph: Supermodularity, iterative
peeling, and flow. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1531–1555. SIAM, 2022.

Tianyi Chen and Charalampos Tsourakakis. Antibenford subgraphs: Unsupervised anomaly detection in
financial networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 2762–2770. ACM, 2022.

17

Under review as submission to TMLR

Maximilien Danisch, T-H Hubert Chan, and Mauro Sozio. Large scale density-friendly graph decomposition
via convex programming. In Proceedings of the 26th International Conference on World Wide Web, pp.
233–242, 2017.

Adriano Fazzone, Tommaso Lanciano, Riccardo Denni, Charalampos E Tsourakakis, and Francesco Bonchi.
Discovering polarization niches via dense subgraphs with attractors and repulsers. Proceedings of the
VLDB Endowment, 15(13):3883–3896, 2022.

Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica, 29:410–421,
2001.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1–2):95–110, 1956.

Andrew V Goldberg. Finding a maximum density subgraph. Technical report, 1984.

William W Hager, Dzung T Phan, and Jiajie Zhu. Projection algorithms for nonconvex minimization with
application to sparse principal component analysis. Journal of Global Optimization, 65:657–676, 2016.

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Faster and scalable algorithms for densest subgraph
and decomposition. Advances in Neural Information Processing Systems, 35:26966–26979, 2022.

Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. Fraudar: Bounding
graph fraud in the face of camouflage. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 895–904. ACM, 2016.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th
International Conference on Machine Learning, pp. 427–435. PMLR, 2013.

Yingsheng Ji, Zheng Zhang, Xinlei Tang, Jiachen Shen, Xi Zhang, and Guangwen Yang. Detecting cash-out
users via dense subgraphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 687–697. ACM, 2022.

Emmanouil Kariotakis, Nicholas D Sidiropoulos, and Aritra Konar. Fairness-aware dense subgraph discovery.
Transactions on Machine Learning Research, 2025.

Subhash Khot. Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and Bipartite Clique. SIAM
Journal on Computing, 36(4):1025–1071, 2006.

Samir Khuller and Barna Saha. On finding dense subgraphs. In International Colloquium on Automata,
Languages, and Programming, pp. 597–608. Springer, 2009.

Aritra Konar and Nicholas D. Sidiropoulos. Exploring the subgraph density-size trade-off via the Lovaśz
extension. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining,
pp. 743––751. ACM, 2021.

Simon Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv preprint
arXiv:1607.00345, 2016.

Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey on the densest
subgraph problem and its variants. ACM Computing Surveys, 56(8):1–40, 2024.

Xiangfen Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and Xueqi Cheng.
Flowscope: Spotting money laundering based on graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 4731–4738, 2020.

Ya Liu, Junbin Liu, and Wing-Kin Ma. Cardinality-constrained binary quadratic optimization via extreme
point pursuit, with application to the densest k-subgraph problem. In 2024 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 9631–9635. IEEE, 2024.

18

Under review as submission to TMLR

Qiheng Lu, Nicholas D. Sidiropoulos, and Aritra Konar. On densest k-subgraph mining and diagonal loading.
arXiv preprint arXiv:2410.07388, 2024.

Qiheng Lu, Nicholas D Sidiropoulos, and Aritra Konar. Densest k-subgraph mining via a provably tight
relaxation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 12291–12299,
2025.

Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 954–961. ACM,
2017.

Atsushi Miyauchi, Tianyi Chen, Konstantinos Sotiropoulos, and Charalampos E. Tsourakakis. Densest
diverse subgraphs: How to plan a successful cocktail party with diversity. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1710––1721. ACM, 2023.

M. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003.

Ta Duy Nguyen and Alina Ene. Multiplicative weights update, area convexity and random coordinate descent
for densest subgraph problems. In Proceedings of the 41st International Conference on Machine Learning,
volume 235, pp. 37683–37706. PMLR, 2024.

Lutz Oettershagen, Honglian Wang, and Aristides Gionis. Finding densest subgraphs with edge-color con-
straints. In Proceedings of the ACM Web Conference 2024, pp. 936–947. ACM, 2024. ISBN 9798400701719.

Dimitris Papailiopoulos, Ioannis Mitliagkas, Alexandros Dimakis, and Constantine Caramanis. Finding
dense subgraphs via low-rank bilinear optimization. In Proceedings of the 31st International Conference
on Machine Learning, pp. 1890–1898. PMLR, 2014.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and visual-
ization. Proceedings of the AAAI Conference on Artificial Intelligence, 29, 2015.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather, from statistical
descriptors to parametric models. In Proceedings of the 29th ACM international conference on information
& knowledge management, pp. 1325–1334, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale Attributed Node Embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

Walter Rudin. Functional Analysis. McGraw-Hill, New York, NY, 3rd edition, 1991.

Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang. Dense subgraphs with
restrictions and applications to gene annotation graphs. In 14th International Conference on Research in
Computational Molecular Biology, pp. 456–472. Springer, 2010.

Stephen B Seidman. Network structure and minimum degree. Social Networks, 5(3):269–287, 1983.

Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining using k-core analysis
— patterns, anomalies and algorithms. In 2016 IEEE 16th International Conference on Data Mining
(ICDM), pp. 469–478. IEEE, 2016.

Helena Smith. Rise of the greek far right raises fears of further turmoil. The Guardian, 2011. URL
https://www.theguardian.com/world/2011/dec/16/rise-greek-far-right-turmoil.

Renata Sotirov. On solving the densest k-subgraph problem on large graphs. Optimization Methods and
Software, 35(6):1160–1178, 2020.

Giorgos Stamatelatos, Sotirios Gyftopoulos, George Drosatos, and Pavlos S Efraimidis. Revealing the polit-
ical affinity of online entities through their twitter followers. Information Processing & Management, 57
(2):102172, 2020.

19

https://www.theguardian.com/world/2011/dec/16/rise-greek-far-right-turmoil

Under review as submission to TMLR

Sotiris Tsioutsiouliklis, Evaggelia Pitoura, Panayiotis Tsaparas, Ilias Kleftakis, and Nikos Mamoulis.
Fairness-aware pagerank. In Proceedings of the Web Conference 2021, pp. 3815–3826. ACM, 2021.

Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria Tsiarli. Denser
than the densest subgraph: Extracting optimal quasi-cliques with quality guarantees. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 104–112.
ACM, 2013.

Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems. Journal of
Machine Learning Research, 14(28):899–925, 2013.

A Proof of Theorem 2

Proof. The Krein-Milman theorem (Rudin, 1991, Theorem 3.23) states that a non-empty, compact convex
set is the closed convex hull of the set of its extreme points. Similar to (Liu et al., 2024), we need to prove
that a point is an extreme point of Dn

k ∩ F if and only if it is a point in Bn
k ∩ F .

We first prove that a point is an extreme point of Dn
k ∩ F if it is a point in Bn

k ∩ F . For any x ∈ Bn
k ∩ F ,

we have ∥x∥2
2 = k. If x is not an extreme point of Dn

k ∩ F , then there exists y, z ∈ Dn
k ∩ F and θ ∈ (0, 1),

such that x = θy + (1− θ)z. Since ∥ · ∥2
2 is strictly convex, we can use the Jensen’s inequality to derive the

following contradiction:
k = ∥x∥2

2 < θ∥y∥2
2 + (1− θ)∥z∥2

2 ≤ k. (12)

Therefore, if a point is in Bn
k ∩ F , then it is an extreme point of Dn

k ∩ F .

Next, we prove that a point is an extreme point of Dn
k ∩ F only if it is a point in Bn

k ∩ F . Suppose that
x ∈ (Dn

k ∩ F)\(Bn
k ∩ F). Let M(x) = {i ∈ [n] | 0 < xi < 1} and Mi(x) = {j ∈ Ci | 0 < xj < 1}, ∀i ∈ [r].

Since x ∈ (Dn
k ∩ F)\(Bn

k ∩ F), we know that |M(x)| ≥ 2. We consider the following two cases:

• If there exists i ∈ [r], such that |Mi(x)| ≥ 2, then we can find two distinct vertices j, l ∈Mi(x). Let
δ = min{xj , xl, 1−xj , 1−xl}, then we have y = x+δ(ej−el) ∈ Dn

k∩F and z = x+δ(el−ej) ∈ Dn
k∩F ,

where ej is the j-th vector of the canonical basis for Rn. Since x = 1
2 y + 1

2 z, we know that x is not
an extreme point of Dn

k ∩ F .

• If there does not exist i ∈ [r], such that |Mi(x)| ≥ 2, then we can find two distinct set Mi(x) and
Mj(x), such that |Mi(x)| = |Mj(x)| = 1. Since x ∈ [0, 1]n and |Mi(x)| ≤ 1, ∀i ∈ [r], we have∑

l∈Ci\Mi(x) xl ≥ ki and
∑

l∈Cj\Mj(x) xl ≥ kj . Suppose that l ∈ Mi(x) and q ∈ Mj(x). Let δ =
min{xl, xq, 1−xl, 1−xq}, then we have y = x+δ(el−eq) ∈ Dn

k ∩F and z = x+δ(eq−el) ∈ Dn
k ∩F .

Since x = 1
2 y + 1

2 z, we know that x is not an extreme point of Dn
k ∩ F .

Therefore, we can conclude that a point is an extreme point of Dn
k ∩ F only if it is a point in Bn

k ∩ F .

B Proof of Theorem 3

Proof. Let M(x) = {i ∈ [n] | 0 < xi < 1} and Mi(x) = {j ∈ Ci | 0 < xj < 1}, ∀i ∈ [r]. Since x is
non-integral, we have |M(x)| =

∑
i∈[r] |Mi(x)| ≥ 2.

If there exists i ∈ [r], such that |Mi(x)| ≥ 2, then we can always find two distinct vertices j, l ∈Mi(x) such
that λxj + sj ≥ λxl + sl, where sj =

∑
q∈[n] ajqxq, ∀j ∈ [n]. Let δ = min{xl, 1− xj}, d = ej − el, where ej

is the j-th vector of the canonical basis for Rn, and x̂ = x + δd. x̂ is still a feasible point of (7). To analyze
the effect of the update on the objective function g, we consider the difference:

20

Under review as submission to TMLR

g(x̂)− g(x)
=2(xj + δ)(sj − ajlxl) + λ(xj + δ)2 + 2(xl − δ)(sl − ajlxj) + λ(xl − δ)2 + 2ajl(xj + δ)(xl − δ)
− 2xj(sj − ajlxl)− λx2

j − 2xl(sl − ajlxj)− λx2
l − 2ajlxjxl

=2δ(λxj + sj − λxl − sl) + 2(λ− ajl)δ2

≥0.

(13)

Hence, after the above update, the objective value g(x̂) is greater than or equal to the objective value g(x)
and the cardinality |Mi(x̂)| is strictly smaller than the cardinality |Mi(x)|. Repeat this update until the
cardinality |Mi(x̂)| is either 0 or 1.

After the aforementioned iteration, there is at most one non-integral entry in the indicator vector x̂ corre-
sponding to the i-th group. Apply the same iteration to other groups until |Mi(x̂)| ≤ 1, ∀i ∈ [r].

After these iterations, if |M(x̂)| = 0, then we already have an integral feasible x̂ of (7) such that g(x̂) ≥ g(x).
If x̂ is non-integral, then |M(x̂)| ≥ 2, which implies that we can always find two distinct vertices j, l ∈M(x̂)
such that λx̂j + ŝj ≥ λx̂l + ŝl, where ŝj =

∑
q∈[n] ajqx̂q, ∀j ∈ [n]. Let δ̂ = min{x̂l, 1− x̂j} and d̂ = ej − el.

Since x̂ ∈ [0, 1]n and |Mi(x̂)| ≤ 1, ∀i ∈ [r], we have
∑

l∈Ci\Mi(x̂) x̂l ≥ ki, ∀i ∈ [r], which implies that
x̂ + δ̂d̂ is feasible of (7). Similar to (13), we have the objective value g(x̂ + δ̂d̂) is greater than or equal
to the objective value g(x̂) and the cardinality |M(x̂ + δ̂d̂)| is strictly smaller than the cardinality |M(x̂)|.
Repeat this update until the cardinality |M(x̂)| is 0, then we obtain an integral feasible x̂ of (7) such that
g(x̂) ≥ g(x).

C Proof of Lemma 1

Proof. Let M(x) = {i ∈ [n] | 0 < xi < 1} and Mi(x) = {j ∈ Ci | 0 < xj < 1}, ∀i ∈ [r]. Since x is
non-integral, we have |M(x)| =

∑
i∈[r] |Mi(x)| ≥ 2. Considering the following two cases:

• If there exists i ∈ [r], such that |Mi(x)| ≥ 2, then we can always find two distinct vertices j, l ∈
Mi(x) such that λxj + sj ≥ λxl + sl, where sj =

∑
q∈[n] ajqxq, ∀j ∈ [n]. Let δ̂ = min{xl, 1 − xj},

d = ej − el, where ej is the j-th vector of the canonical basis for Rn. For every δ ∈ (0, δ̂], since
x + δd is still feasible of (7) and

g(x + δd)− g(x)
=2(xj + δ)(sj − ajlxl) + λ(xj + δ)2 + 2(xl − δ)(sl − ajlxj) + λ(xl − δ)2 + 2ajl(xj + δ)(xl − δ)
− 2xj(sj − ajlxl)− λx2

j − 2xl(sl − ajlxj)− λx2
l − 2ajlxjxl

=2δ(λxj + sj − λxl − sl) + 2(λ− ajl)δ2

>0,
(14)

we know that d is an ascent direction at x.

• If there does not exist i ∈ [r], such that |Mi(x)| ≥ 2, we can always find two distinct vertices
j, l ∈M(x) such that λxj +sj ≥ λxl +sl. Let δ̂ = min{xl, 1−xj} and d = ej−el. Since x ∈ [0, 1]n
and |Mi(x)| ≤ 1, ∀i ∈ [r], we have

∑
l∈Ci\Mi(x) xl ≥ ki, ∀i ∈ [r], which implies that x + δd, for

every δ ∈ (0, δ̂], is still feasible of (7). Similar to (14), we can obtain g(x + δd)− g(x) > 0, for every
δ ∈ (0, δ̂], which implies that d is an ascent direction at x.

Therefore, there always exists an ascent direction at x, which implies that x is not a local maximizer of
(7).

21

Under review as submission to TMLR

D Proof of Theorem 4

Proof. The proof follows the same argument as Theorem 5 in (Lu et al., 2024), with only minor differences
in notation and the extension from the feasible set of DkS to that of VAC-DkS. As the underlying structure
is preserved, the original proof applies directly. We include the adapted version here for completeness.

Since x is a local maximizer of (7) with the diagonal loading parameter λ1, there exists ϵ > 0 such that

xT(A + λ1I)x ≥ yT(A + λ1I)y, (15)

for every y ∈ Dϵ, where Dϵ = {y ∈ Dn
k ∩ F | ∥x− y∥2 ≤ ϵ}.

We aim to show that the same inequality holds when the diagonal loading parameter is increased to λ2 > λ1.
From Lemma 1, we know that x is integral. Then for any y ∈ Dϵ, we have

xT(A + λ2I)x− yT(A + λ2I)y
=xT(A + λ1I)x + (λ2 − λ1)∥x∥2

2 − yT(A + λ1I)y − (λ2 − λ1)∥y∥2
2

≥(λ2 − λ1)(∥x∥2
2 − ∥y∥2

2)
≥0,

(16)

where the first inequality follows from the local optimality of x under λ1 and the last inequality holds because
∥z∥2

2 is maximized over Dn
k ∩ F when z is integral.

Therefore, x remains a local maximizer of (7) with the diagonal loading parameter λ2.

E Proof of Theorem 5

Proof. The first term in (11) is due to the fact that there are at most k(k−1)
2 edges in the graph and the edge

weight is at most wmax.

The second term in (11) can be derived from

x∗T
Q Ax∗

Q

wmaxk(k − 1) ≤
x∗T

B Ay∗
B

wmaxk(k − 1) = x∗T
B A1y∗

B

wmaxk(k − 1) + x∗T
B (A−A1)y∗

B

wmaxk(k − 1)

≤ x∗TA1y∗

wmaxk(k − 1) + x∗T
B (A−A1)y∗

B

wmaxk(k − 1) ≤ x∗TA1y∗

wmaxk(k − 1) + σ2(A)
wmax(k − 1) ,

(17)

where x∗
Q is an optimal solution to the quadratic optimization problem (1) and (x∗

B , y∗
B) is an optimal

solution to the following bilinear optimization problem

max
x,y∈Bn

k
∩F

xTAy. (18)

The third term in (11) can be derived from

x∗T
Q Ax∗

Q

wmaxk(k − 1) ≤
σ1(A)

wmax(k − 1) , (19)

where x∗
Q is an optimal solution to the quadratic optimization problem (1).

F Additional Experimental Results

22

Under review as submission to TMLR

(a) α = 0.25 (b) α = 0.25

(c) α = 0.5 (d) α = 0.5

Figure 3: Normalized edge density and attribute-constrained group proportion on the Books dataset under
different α. Result: Frank–Wolfe variants (blue and orange) outperform other methods in terms of density
for small k and all methods have similar performance for large k.

23

Under review as submission to TMLR

(a) α = 0.25 (b) α = 0.25

(c) α = 0.5 (d) α = 0.5

Figure 4: Normalized edge density and attribute-constrained group proportion on the Blogs dataset under
different α. Result: Frank–Wolfe variants (blue and orange) outperform other methods in terms of density
for small k and all methods have similar performance for large k.

24

Under review as submission to TMLR

(a) α = 0.25 (b) α = 0.25

(c) α = 0.5 (d) α = 0.5

Figure 5: Normalized edge density and attribute-constrained group proportion on the GitHub dataset under
different α. Result: Frank–Wolfe variants (blue and orange) outperform other methods in terms of density
for small k and all methods have similar performance for large k.

25

Under review as submission to TMLR

(a) α = 0.25 (b) α = 0.25

(c) α = 0.5 (d) α = 0.5

Figure 6: Normalized edge density and attribute-constrained group proportion on the Wikipedia dataset
under different α. Result: Frank–Wolfe variants (blue and orange) outperform other methods in terms of
density across most of k.

26

Under review as submission to TMLR

Table 6: Greek MPs and media outlets identified by LFPRN from the Greek Politics dataset. Labels indicate
political leanings ((0): left leaning, (1): right leaning).

Rank Name
1. Andreas Loverdos (0)
2. Ta Nea (0)
3. Kostas Skandalidis (0)
4. Fofi Gennimata (0)
5. Evi Christofilopoulou (0)
6. Giannis Maniatis (0)
7. Odysseas Konstantinopoulos (0)
8. LiFO (0)
9. Evangelos Venizelos (0)
10. Notis Mitarachi (1)
11. Theodoros Karaoglou (1)
12. News 24/7 (0)
13. Nikitas Kaklamanis (1)
14. Efimerida Empros (0)
15. Giorgos Koumoutsakos (1)
16. Dora Bakoyannis (1)
17. Spyros Lykoudis (0)
18. Real News (1)
19. Proto Thema (1)
20. Kostis Hatzidakis (1)

27

	Introduction
	Related Work: Attribute-Constrained Dense Subgraph Mining
	Our Contributions
	Notation

	Problem Statement
	Main Theoretical Results
	Tightness of the Relaxation
	Landscape Analysis of the Relaxation

	Algorithms for VAC-DkS
	The Frank–Wolfe Algorithm
	Baseline Algorithms and Upper Bound for VAC-DkS
	The Greedy Peeling Algorithm
	The Low-Rank Bilinear Optimization (LRBO) Algorithm
	An Upper Bound on the Edge Weight

	Experimental Results
	Datasets
	Baselines and Implementation Details
	Binary-Attribute Graphs with Attribute-Constrained Groups
	Multi-Attribute-Value Graphs with Group Representation Constraints
	Scalability on Large Unweighted and Weighted Graphs
	Case Study: Greek Politics

	Conclusion
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 1
	Proof of Theorem 4
	Proof of Theorem 5
	Additional Experimental Results

