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Abstract001

Since DeepSeek-R1 popularized, Group Rela-002
tive Policy Optimization (GRPO) has become003
the core part of training Reasoning LLMs.004
However, we find some deficiency that influ-005
ences RL stability and inference efficiency, like006
zero-variance in advantage estimation. Thus,007
we propose Adaptive Group Policy Optimiza-008
tion (AGPO) which contains a simple but effec-009
tive modification: a revised objective function010
to mitigate training fluctuation and zero advan-011
tage. The experiments demonstrate our method012
achieves more stable training and superior per-013
formance with significantly fewer tokens in rea-014
soning steps.015

1 Introduction016

Large Language Models (LLMs)(Bommasani et al.,017

2021; Wei et al., 2022; Zhao et al., 2023) have018

achieved impressive performance through exten-019

sive pre-training and post-training processes. How-020

ever, effectively generating desired model re-021

sponses often necessitates aligning outputs with022

specific downstream tasks and human prefer-023

ences(Wang et al., 2023; Wolf et al., 2023).024

For alignment challenges, reinforcement learn-025

ing from human feedback (RLHF)(Bai et al., 2022;026

Kaufmann et al., 2023) is introduced as a prominent027

post-training strategy, adopted by notable LLMs in-028

cluding GPT-4, Claude, Gemini, and DeepSeek.029

They have explored various optimization tech-030

niques such as Proximal Policy Optimization (PPO)031

(Schulman et al., 2017) and Direct Preference Op-032

timization (DPO) (Rafailov et al., 2023). Recently,033

to significantly reduce computational and memory034

overhead associated with PPO, DeepSeek elimi-035

nated the value model and proposed Group Rela-036

tive Policy Optimization (GRPO)(Guo et al., 2025),037

which achieved high computational efficiency and038

excellent reasoning performance, surpassing other039

open-source models ranging from 7B to 70B.040

Despite the demonstrated success of GRPO, it 041

introduces challenges that can affect stable training 042

and inference efficiency. 043

(1) Confusing Training Signal: Negative losses 044

happen in RL training, but in this scenario it is 045

not always beneficial. Higher group accuracy may 046

have lower advantage thus influencing loss estima- 047

tion. Besides, when all rewards within a group are 048

identical, the normalized advantage approaches 0, 049

causing the loss signal to vanish, which potentially 050

stalling training. 051

(2) Inefficient CoT Length: Since GRPO lacks 052

mechanisms to discourage excessively long chain- 053

of-thought (CoT), models tend to produce overly 054

verbose explanations. A refined approach that re- 055

wards concise and effective reasoning is essential 056

to improve token efficiency. 057

To address these issues, we propose an enhanced 058

GRPO training algorithm, Adaptive Group Policy 059

Optimization (AGPO). Our main contributions are 060

summarized as follows: 061

• Training Efficiency: By identifying the limi- 062

tations of GRPO’s advantage, we introduce an 063

adaptive loss function that addresses negative 064

loss and zero advantage scenarios, ensuring 065

continuous and effective learning. 066

• Token Efficiency: Our adaptive loss implic- 067

itly improves token efficiency. Compared with 068

GRPO baselines, our approach achieves better 069

performance with significantly fewer response 070

tokens. 071

2 Background 072

2.1 Policy Gradient 073

Policy gradient method is one of the most funda- 074

mental RL algorithm that directly model and opti- 075

mize the policy. For any differentiable policy, the 076
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policy gradient is :077

∇θJ(θ) = Eπθ

[
T∑
t=0

∇θ log πθ(at|st)At

]
(1)078

Where advantage At is the most crucial part for079

policy gradient method, which defines how much080

better a specific action at is, compared to average081

action given a state st.082

2.2 Proximal Policy Optimization (PPO)083

PPO (Schulman et al., 2017) is one of the policy084

gradient methods which uses clipped surrogate ob-085

jective for policy optimization. Specifically, it max-086

imize the following objective:087

JPPO(θ) = Eπθold
[min (rtAt, clip(rt, 1− ϵ, 1 + ϵ)At)]

(2)088

Where ϵ is a hyper-parameter used for tuning clip-089

ping range. At is the advantage, which generally090

will be computed by utilizing Generalized Advan-091

tage Estimation (GAE) (Schulman et al., 2015) in092

PPO. rt is the probability ratio of predicting token093

ot for a given question q before and after the policy094

update:095

rt(θ) =
πθ(ot|q, o<t)

πθold(ot|q, o<t)
(3)096

2.3 Group Relative Policy Optimization097

(GRPO)098

Compared to PPO, GRPO (Shao et al., 2024) signif-099

icantly saves the training cost through eliminating100

the critic model in PPO. This is achieved by ap-101

proximating the advantage Ai as group-normalized102

reward:103

Ai =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
(4)104

Where mean({r1, r2, . . . , rG}) and105

std({r1, r2, . . . , rG}) denotes the within-group106

mean and standard deviation respectively.107

With the estimated advantage and a KL diver-108

gence penalty term, GRPO generates a group of109

outputs {oi}Gi=1 based on πθold for each question q110

and update πθ with following objective:111

JGRPO(θ) = E(q)∼P (Q),{oi}Gi=1∼πθold (O|q)

[
1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai,

clip

(
πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL(πθ ∥ πref)

)]
(5)112

Where ϵ and β are hyper-parameters.113

3 Adaptive Group Policy Optimization 114

During RL training with the GRPO algorithm, we 115

find a useful modification to improve performance 116

and efficiency. 117

3.1 Adaptive Loss 118

It is easy to find that if the rewards of the group 119

are all equal, like all correct or all wrong, then 120

the advantages become all zero. Therefore, the 121

corresponding sample in the batch has no effect 122

in the training. As model training progresses, this 123

situation increases. We believe that it is helpful to 124

mask out these positions from the loss calculation. 125

Another issue is entropy collapse occurred in 126

GRPO training. We observed the same phe- 127

nomenon as in other works, like DAPO (Yu et al., 128

2025). The entropy drops quickly leading the pol- 129

icy model to give up exploring. However, we con- 130

sider it as the problem of objective design rather 131

than clip ratio. Current negative loss value tends 132

to be overconfident since a group with higher accu- 133

racy may have higher deviation of rewards which 134

may cause lower advantage compared to other 135

groups in batch. We propose an adaptive loss to 136

tackle these issues: 137

L(q)∼P (Q) =

{
masked, if {oi}Gi=1 all correct or wrong
max(0,−JGRPO(θ)), otherwise

(6) 138

Usually in RL training, the model is updated 139

through a mini batch size of training data. There- 140

fore, the loss mask in Equation 6 takes place in 141

the mean operation of losses of questions q in the 142

batch. Negative loss values are also clipped for the 143

mean loss of the batch in order to control fluctu- 144

ation and maintain a suitable training level. We 145

believe the clip avoids the model getting stuck in a 146

local optimum. 147

By replacing the original objective, our method 148

focuses on useful information in the batch and nor- 149

malizes the loss for stable training, which would 150

bring performance improvement and token effi- 151

ciency. 152

4 Experiment 153

We conduct a few experiments for evaluating how 154

our method affects the RL training of reasoning 155

models. 156

4.1 Implementation Details 157

We use Qwen2.5-7B and Qwen2.5-14B as the base 158

models. All experiments are conducted on our cu- 159
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Model MATH-500 (Pass@1)
Qwen2.5-7B 44.0
Qwen2.5-7B-GRPO 73.2
Qwen2.5-7B-AGPO (w/o loss mask) 73.4
Qwen2.5-7B-AGPO (w/o loss clip) 73.0
Qwen2.5-7B-AGPO 74.6
Qwen2.5-14B 59.8
Qwen2.5-14B-GRPO 75.4
Qwen2.5-14B-AGPO (w/o loss mask) 75.0
Qwen2.5-14B-AGPO (w/o loss clip) 75.2
Qwen2.5-14B-AGPO 77.2

Table 1: Performance of different RL techniques on
MATH-500.

Model Average Response Tokens
Qwen2.5-7B 571
Qwen2.5-7B-GRPO 699
Qwen2.5-7B-AGPO 533
Qwen2.5-14B 772
Qwen2.5-14B-GRPO 574
Qwen2.5-14B-AGPO 521

Table 2: Average response length of different RL tech-
niques on MATH-500.

rated dataset, which is constructed by mixing data160

from MATH train set (Hendrycks et al., 2021) and161

DAPO train set (Yu et al., 2025). For MATH train162

set, only data where difficulty levels are greater163

than or equal to 3 are selected. Similarly, for DAPO164

train set, data are retained only if solution rates165

achieved by Qwen3-32B model (Yang et al., 2025)166

are fall between 0.5 and 0.8 inclusively. These167

filtering techniques are to ensure the difficulty dis-168

tribution across the obtained dataset is balanced.169

VeRL (Sheng et al., 2024) is utilized to perform170

RL training with a train batch size of 32, a PPO171

mini batch size of 8 and a learning rate of 1e− 6.172

The number of group rollout is 8. Temperature173

for generation is set to 1. As for reward settings,174

the rcorrect and rwrong for accuracy reward are set175

to 0 and 1 respectively. Trained checkpoints that176

achieve best performance on MATH-500 (Light-177

man et al., 2023) with the metric of Pass@1 are178

selected for further evaluation with respect to token179

efficiency.180

It is worth noting that KL divergence penalty is181

not applied for all experiments. This is based on182

the observation that model distribution can vary183

significantly compared to reference model during184

long CoT training. Therefore, removing KL diver-185

gence has been adopted as common practice in the186

domain.187

4.2 Main Results 188

Table 1 shows the performance of different mod- 189

els on the benchmark. Both GRPO and AGPO 190

acquire huge performance gains compared with the 191

base models. As for Qwen2.5-7B experiments, we 192

observe a clear improvement on MATH-500 from 193

73.2 to 74.6 at the best checkpoint. Qwen2.5-14B 194

experiments also induce similar conclusion that 195

the adaptive loss further refines the model by 1.8 196

percentage. It is obvious that both loss clip and 197

loss mask are important for our method. If we 198

train without the mask, the performance drops even 199

lower than that of GRPO for all model sizes and it 200

is same for loss clip. 201

Table 2 illustrates the token efficiency of dif- 202

ferent models on the benchmark. Qwen2.5-7B- 203

AGPO only takes 533 tokens on average for solving 204

MATH-500 problems while Qwen2.5-7B-GRPO 205

consumes 699 tokens that is 31% higher. In terms 206

of 14B models, our AGPO also ranks first in token 207

efficiency which uses 521 tokens averagely. 208

4.3 Training Dynamics 209

Figure 1: Actor entropy curves of GRPO and AGPO for
Qwen-2.5-7B

Figure 2: Actor entropy curves of GRPO and AGPO for
Qwen-2.5-14B

We examine several variations of training met- 210

rics after applying AGPO. 211
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As shown in Figure 1 and Figure 2, a signifi-212

cant enhancement in entropy is observed for both213

Qwen2.5-7B and Qwen2.5-14B actor models af-214

ter the application of AGPO. This observation215

can be attributed to the lower loss clip operation216

in AGPO, where only positive training loss from217

below-average actions is maintained while nega-218

tive training loss is overconfident and controlled219

in the gradient update. Consequently, the probabil-220

ity distribution is drifted upward asymmetrically221

by adequate gradient without being drifted down-222

ward meanwhile, which manifests higher measured223

entropy during training. The higher entropy even-224

tually facilitates the generation of more diversified225

samples within the batch, which is essential for226

large-scale RL training.227

Figure 3: Response length curves of GRPO and AGPO
for Qwen2.5-7B

Figure 4: Response length curves of GRPO and AGPO
for Qwen2.5-14B

We also find substantial reductions in response228

length while the training steps increase, for both229

models with AGPO as Figure 3 and Figure 4 show.230

Meanwhile, comparable accuracy performance is231

maintained on training set as shown in Figure 5 and232

Figure 6. This phenomenon can be attributed to233

masking loss operation in AGPO, since the effect234

of loss mask on response length is clearly shown235

in Figure 3 and Figure 4. In this operation, the236

losses of all correct or wrong groups are masked,237

Figure 5: Reward score curves of GRPO and AGPO for
Qwen2.5-7B

Figure 6: Reward score curves of GRPO and AGPO for
Qwen2.5-14B

enhancing accurate estimation of average loss of 238

the batch. The correction consequently amplifies 239

gradient update towards correct direction. There- 240

fore, in combination with the empirical observa- 241

tion, we believe the loss mask implicitly serves as 242

length-based reward to constrain response length. 243

5 Conclusion 244

In this work, we propose a novel method, AGPO, 245

to train a more powerful reasoning model. Our 246

adaptive loss, including loss clip and mask, demon- 247

strates noticeable improvement on both model 248

performance and inference efficiency. Also, our 249

method helps to avoid entropy collapse while train- 250

ing. We want to do more designs about the adaptive 251

loss as future directions. For example, the current 252

loss can be normalized to non-negative values by 253

exponential equations. 254

Limitations 255

We will experiment on more kinds of base models 256

and datasets in future to validate universality of our 257

method. More ablation studies around modifica- 258

tions will be taken as well. It is also uncertain if our 259

approach can produce effects together with other 260

tricks proposed by different GRPO refinements. 261
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