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WebCode2M: A Real-World Dataset for Code Generation from
Webpage Designs

Abstract
Automatically generating webpage code from webpage designs

can significantly reduce the workload of front-end developers, and

recent Multimodal Large Language Models (MLLMs) have shown

promising potential in this area. However, our investigation re-

veals that most existing MLLMs are constrained by the absence of

high-quality, large-scale, real-word datasets, resulting in inadequate

performance in automated webpage code generation. To fill this gap,

this paper introduces WebCode2M, a new dataset comprising 2.56

million instances, each containing a design image along with the

corresponding webpage code and layout details. Sourced from real-

world web resources, WebCode2M offers a rich and valuable dataset

for webpage code generation across a variety of user scenarios. The

dataset quality is ensured by a highly accurate scoring model that

filters out instances with aesthetic deficiencies or other incomplete

elements. To validate the effectiveness of our proposed dataset, we

introduce a baseline model based on the Vision Transformer (ViT),
named WebCoder, and establish a benchmark for fair comparison.

Additionally, we introduce a new metric, TreeBLEU, to measure the

structural hierarchy recall. The benchmarking results demonstrate

that our dataset significantly improves the ability of MLLMs to gen-

erate code from webpage designs, confirming its effectiveness and

usability for future applications in front-end design tools. Finally,

we highlight several practical challenges introduced by our dataset,

calling for further research. We have hosted the WebCode2M on an

anonymous webpage: https://webcode2m-anonymous.github.io.

1 Introduction
Front-end software developers typically create webpages based on

Graphical User Interface (GUI) mockups designed by UI designers.

However, this process is often time-consuming and costly. To this

end, several neural models have been proposed to automate the pro-

cess of generating code from GUI design images, thereby alleviating

the burden on front-end developers. Among these, pix2code [14]

and sketch2code [48] are two exemplary works that translate im-

ages, whether simple-styled UI designs or hand-drawn sketches,

into front-end code. Recently, Multimodal Large Language Models
(MLLMs), such as GPT-4V [42], have also demonstrated impressive

potential in this area.

Despite its potential, we are still far from fully automating front-

end engineering to achieve true “screenshot in, code out” func-

tionality. In particular, as highlighted in a recent work [53], the
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complexity of code generation increases with the increase in the

total number of HyperText Markup Language (HTML) tags, the di-

versity of unique tags, and the depth of the Document Object Model

(DOM) tree. Proprietary MLLMs, such as GPT-4V, also exhibit a

notable decline in performance when confronted with real-world

webpage designs that feature complex structures and a larger vari-

ety of unique HTML tags [53].

One possible solution lies in fine-tuning pre-trained LLMs, with

the potential for improved performance as the amount of data

increases. However, this approach faces a significant limitation

because existing datasets are either too small to provide meaningful

generalization [21, 53] or consist of synthetic data that does not

fully capture the complexity and variability of real-world webpage

designs [28, 62]. For instance, Design2Code [53] contains only 484

real-world samples, intended solely for testing and insufficient for

effective fine-tuning. WebSight [28] is another dataset comprising

approximately 0.8 million synthesized samples generated by LLMs.

However, a significant disparity exists between these samples and

real-world data [53]. Specifically, WebSight samples average 647

tokens, 19 tags, and a DOM depth of 5, whereas our study reveals

that real-world samples can involve up to 50 times more tokens, six

times as many tags, and double the DOM depth (See Fig. 2). This

substantial gap between synthetic and real-world data can limit the

practical effectiveness of fine-tuned MLLMs when applied to more

complex, real-world scenarios.

Our Work. To fill this gap, this paper introduces a large-scale

real-world dataset for webpage generation, named WebCode2M,

which includes 2.56 million instances. Each instance features a

high-quality webpage design image paired with its corresponding

HTML and Cascading Style Sheets (CSS) code. This dataset over-
comes the limitations of existing datasets by offering a diverse and

comprehensive collection of real-world webpage designs and their

associated code. On average, the samples contain 31,216 tokens,

158 tags, and a DOM depth of 13. WebCode2M is poised to be an

invaluable resource for advancing the development of webpage

code generation models.

To construct our dataset, we first collect approximately 0.5 bil-

lion real-world webpages from the Common Crawl dataset [2],

which includes a diverse array of web domains and styles. For each

webpage, we extract the associated CSS code and image elements,

remove noise and irrelevant code, and generate screenshots. To en-

sure data quality, we develop a scoring model to filter out instances

with incomplete elements or suboptimal aesthetic quality, such as

disorganized layouts or excessive blank spaces, as illustrated in Fig-

ure 9 (See Appendix). This scoring model is trained on a manually

annotated subset of 10,000 entries, curated by six annotators using

consensus-based annotation, achieving a validation accuracy of

90% in distinguishing high- from low-quality instances.

To demonstrate the potential of our dataset for improving auto-

matic webpage generation, we fine-tune a ViT model [17] as a new

baseline for translating webpage design images into HTML/CSS

1
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<!DOCTYPE 
html>
<html>

  <body>

    <div>

      …
    <style>
      …
    </style>
  </body>
</html>

<!DOCTYPE html>
<html>
 <meta xxx />
  <link src=“xxx.css” />
  <body>
    <div style=“display:hidden” />
    <div style=“xxx” class=“xx”>
      // some comment
      …
   <style>
      …
    </style>
  </body>
</html>
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<!DOCTYPE html>
<html>
 <meta xxx />
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    <div style=“display:hidden” />
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      …
    <style>
      …
    </style>
  </body>
</html>

<!DOCTYPE html>
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    <div>
      
      …
    <style>
      …
    </style>
  </body>
</html>

<meta>: remove

<link>: remove & transfer style
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    style=“display: none/hidden”: remove
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     style=“xxx”: remove & transfer style
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Figure 1: The pipeline of constructing the WebCode2M dataset.

code and establish a benchmark for fair comparison. Compared to

the two fine-tuned baselines, Design2Code-18B [53] and WebSight

VLM-8B [28], our model, fine-tuned from the smaller Pix2Struct-

1.3B, outperforms both across all evaluationmetrics, including CLIP-

based visual similarity [44], low-level appearance accuracy [53],

and our proposed TreeBLEU to measure the structural hierarchy re-

call. We also benchmark a broad array of general-purpose MLLMs,

including the LlaVa family [34], CogAgent-Chat-18B [25], GPT-4V,

GPT-4o [41], Gemini [13], and Claude [1]. Experimental results

show that WebCoder outperforms these models across most evalu-

ation metrics. The only exception is GPT-4o, which achieves higher

similarity in CLIP and visual appearance but has a lower substruc-

ture recall rate.

Contributions. The primary contributions of our work are sum-

marized as follows:

• New Dataset. To the best of our knowledge, WebCode2M is

the first real-world and large-scale dataset tailored to empower

MLLMs in the domain of generating webpage code from high-

fidelity images.

• Comprehensive Benchmark. We fine-tune an MLLM, named

WebCoder, on our WebCode2M dataset and evaluate it through

a comprehensive set of experiments alongside other fine-tuned

baselines. Experimental results demonstrate the effectiveness of

the dataset in enabling MLLMs to automatically generate code

from webpage designs. Additionally, we introduce a novel metric,

TreeBLEU, to measure the structural hierarchy recall.

• Open-Source Resources. We open-source the code base, the

dataset, and the new benchmark model, making them freely

available to the research and developer communities, for further

innovation in automating front-end engineering. The resources

are available at https://webcode2m-anonymous.github.io.

2 WebCode2M: The Dataset
This section details the construction process of the WebCode2M

dataset, outlines its ethical compliance, describes the dataset parti-

tioning, and highlights its key characteristics.

2.1 Dataset Construction
The aim of this study is to curate a dataset that facilitates train-

ing neural models to generate code from webpage designs. As

large-scale human-designed screenshots are hard to collect manu-

ally, we opt to reversely generate screenshot image from a curated

open-source web dataset via rendering the webpage code. Figure 1

illustrates the pipeline for constructingWebCode2M, encompassing

steps such as code purification, HTML rendering, filtering with a

neural scorer, and layout tree extraction.

RawData Collection. We build our dataset on top of the Common

Crawl dataset [2], a comprehensive collection of global webpage

data spanning from 2013 to the present, updated monthly through

web crawling. Previously, the Common Crawl dataset is primarily

used for pre-training models on text-based tasks. Due to our com-

putational resource and download speed constraints, we randomly

sample approximately 0.5 billion webpages from the first segment

of the CC-MAIN-2023-50 version, which contains about 3.35 billion

webpages, as our initial data. We then download the external CSS

code for each HTML file and integrate it into the HTML text.

2
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Figure 2: Representative screenshots of webpages in WebCode2M and other datasets. From left to right are Pix2code, WebSight,
and our WebCode2M dataset. Compared to the first two artificially synthesized datasets, ours is derived from real-world online
websites, showcasing significantly greater diversity in elements, content, colors, and structural layouts.

Code Purification. Our investigation reveals that webpage code

from online websites is often lengthy and includes redundant ele-

ments, which significantly impairs the model’s ability to accurately

learn the correlation between webpage code and screenshots [28].

To ensure data quality, we meticulously clean the combined HTML

and CSS text adhering to the following steps.

• Quick length filtering. Furthermore, we filter out samples that

are either excessively long or too short. This is because parsing

errors or other issues often lead to excessively short HTML or

CSS code, while excessively long input contexts significantly

slow down our training and inference procedures. Specifically,

we employ a rapid filtering method based on code length, mea-

sured by the number of characters. Assuming that one word is

approximately five characters long, we establish length ranges

for HTML and CSS code between [128 × 5, 2048 × 5] characters
and [128 × 5, 4096 × 5] characters, respectively. Webpages that

fall outside these ranges are filtered out.

• Redundant code elements cleansing. The code samples in the

raw dataset may include redundant elements, such as comments

and hidden elements, as well as components that do not directly

affect the rendering of static HTML pages. To address this, we pro-

pose removing the following contents from both HTML and CSS

code: comments, <meta> and <script> tags, hidden elements

(hidden, zero-sized, or outside the display range), attributes not

in (class, id, width, height, style, src) of all HTML elements,

and CSS styles that are not effective in the HTML code.

HTML Rendering for Screenshot Generation. After cleansing
the data, we generate webpage screenshots from the combined

HTML and CSS code. This process is implemented using Play-

wright [4], a headless browser automation tool that allows us to

render webpages and capture high-fidelity screenshots. By simu-

lating a real browser environment, Playwright ensures that the

rendered webpage accurately reflects the appearance of the HTML

and CSS code. This process is highly time-consuming, accounting

for roughly 80% of the total processing time, which spans approxi-

mately one month.

Filtering with a Neural Scorer. In our empirical data analysis,

we observe that a considerable proportion of the generated screen-

shots exhibit deficiencies in aesthetics, as shown in Figure 9 (See

Appendix). These low-quality screenshots are generally attributed

to incompletely loaded pages resulted from various factors, for in-

stance, invalid image links, and cases where the content is mainly

composed of textual content. The presence of flawed screenshots

can compromise the overall quality of the dataset, necessitating a

rigorous filtering of the acquired data. Given the large volume of

our dataset, manually screening all the data is impractical. There-

fore, we train a classification model to serve as a neural scorer,

assessing the screenshots and subsequently eliminating samples

that fall below a specified score threshold.

In practice, we devise an annotating tool (See Figure 10 in Appen-

dix) and manually annotate a subset of the generated screenshots.

The scoring criteria are thoughtfully crafted, and each criterion

satisfied will be awarded one point: (1) Normal webpage layout

(human-designed layout, not simple auto single-column arrange-

ment); (2) Normal webpage styling (elements like lists and blocks

are styled, not using default styles); (3) No excessive blank areas;

(4) Rich color combinations; and (5) Good aesthetic appearance.

During the manual annotation process, we invite six annotators

who hold a Bachelor’s degree in Computer Science and have at

least three years of web development experience. We then divide

them into two groups to perform consensus annotation, where

annotators within each group evaluate the same data. This annota-

tion strategy minimizes the influence of subjective factors on the

scoring results. The annotation process takes approximately two

weeks for all the participants, ultimately yielding 10,000 manually

scored data entries. The detailed annotation procedure is presented

in Appendix C.

The score distribution of the manually labeled subset is depicted

in Figure 4 (inner circle). The statistics reveal that 80% of the data
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Figure 3: Score distributions of annotators in two groups.
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Figure 4: Score distribution of the manually annotated subset
(inner ring) and the entire dataset (outer ring) before score-
based filtering.

fell within the low-quality category, scoring between 0 and 1. Con-

versely, only 20% of the entries, exhibiting scores of 2 or higher,

demonstrate a commendable level of structural integrity and aes-

thetic appeal. We also conduct a consistency analysis of all the data

from the annotators (See Figure 3). Although certain differences

exist among annotators within the same group, the overall trend

remains similar. By averaging scores within the same group, the

impact of subjectivity is significantly reduced. Utilizing the rated

data, we train a ResNet-50 [23] model to serve as a scorer, predicting

the score of input screenshots. This scorer achieves 75% accuracy

on the test portion of the manually scored subset and nearly 90%

accuracy in binary classification, determining whether the score is

greater than or equal to two. Using this scorer, we remove samples

with scores less than two, which accounted for 52.5% of the entire

raw dataset (as shown in the outer circle of Figure 4).

Layout Tree Extraction. Considering that the webpage’s layout

defines the spatial arrangement and relationships between UI com-

ponents, it can serve as a critical source of information. If available,

the layout can act as a training target for the model, facilitating

code generation by guiding the model to understand not only the

structure of the webpage but also the precise positioning of ele-

ments. Thus, each data instance in our dataset is upgraded to a

triplet: (webpage code, design image, layout). The layout, repre-

sented by the bounding boxes (BBox) of HTML elements, includes

key information such as the size, location, and hierarchy of page

components. This additional layout data will aid the model in learn-

ing to generate the webpage DOM tree structure more accurately.
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Figure 5: Length density of the WebCode2M dataset.

2.2 Ethical Compliance
Since our dataset is sourced from online webpages, it may contain

content that is inappropriate for public release, such as explicit

material or violent content. To mitigate ethical concerns regarding

potential negative impacts, such as the misuse of models trained

on this dataset, we perform additional filtering steps. Specifically,

we apply an image filter to the screenshots and a profanity filter

to the web text. Only samples that passed both filters are retained.

Detailed filtering procedures are provided in Appendix F.

Table 1: Dataset Partition.

Subset Purpose Size Length (Tokens)

WebCode2M Training 2,563,905 [368,16668]

WebCode2M-Short Testing 256 [551, 2045]

WebCode2M-Mid Testing 256 [2052, 4085]

WebCode2M-Long Testing 256 [4098, 10990]

2.3 Dataset De-Duplication and Partition
To support the use of our dataset in both fine-tuning models for

webpage code generation and evaluating their performance, we or-

ganize the data into well-structured partitions. After using the hash

codes of the screenshots to quickly de-duplicate the refined dataset,

which comprises millions of entries, we sample approximately two

thousand entries with a score above 4 as our candidate test dataset.

The remaining 2.56 million entries serve as the training dataset.

For the candidate test dataset, we further remove duplicates using

CLIP [44] similarity and conduct a manual inspection on each entry.

Furthermore, we partition the test subsets based on code length

to assess the model’s code generation capability across varying

levels of difficulty. As illustrated in Figure 5, the dataset shows a

wide range of data length variations. Specifically, we use two length

thresholds (i.e., 2048 and 4096), to select 256 entries from within

three length ranges, thus creating three test subsets. We refer to

them as WebCode2M-Short, WebCode2M-Mid, and WebCode2M-

Long. Table 1 summarizes the overall statistics and provides detailed

length statistics of WebCode2M for both training and testing.

2.4 Dataset Characteristics
Upon acquiring the final dataset WebCode2M, we conduct an anal-

ysis to identify several key characteristics. To quantitatively assess

4
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Table 2: A statistical comparison between our dataset and all the publicly available datasets. The statistical data of WebSight
and Design2Code is referred to [53].

Dataset Pix2code WebSight Design2Code WebCode2M WebCode2M_Short WebCode2M_Mid WebCode2M_Long

Purpose Training&Testing Training Testing Training Testing Testing Testing

Source Synthetic Synthetic Real-World Real-World Real-World Real-World Real-World

Size (#samples) 1742 0.8M 484 2.5M 256 256 256

Avg. Len (#tokens) 1316±177 647±216 31216±23902 5366±2393 2025±514 3750±765 7940±1853

Avg. Tags 52±8 19±8 158±100 184±77 81±34 144±61 222±81

Avg. DOM Depth 8±0 5±1 13±5 15±5 10±4 13±7 16±4

Avg. Unique Tags 17±0 10±3 22±6 24±6 18±4 21±5 26±5

the diversity and quality of our dataset, we employ the same statis-

tical metrics used in Design2Code, facilitating a comparison with

other datasets. The results are presented in Table 2. Specifically,

Avg. Len represents the token length as determined by the GPT-2

tokenizer [3]; Avg. Tags indicates the total number of tags in the

HTML code; Avg. Unique Tags denotes the count of distinct tags

in the HTML code; and Avg. DOM Depth signifies the maximum

depth of the HTML’s DOM Tree.

Superior Diversity. From Table 2, it is apparent to see that our

dataset contains a significantly greater number and diversity of

HTML tags and exhibits a more intricate DOM tree structure com-

pared to the pix2code and WebSight datasets. This suggests that

our dataset, sourced from real-world webpages, offers a remarkable

diversity advantage over synthetic datasets generated by LLMs

like WebSight. Design2Code, which also utilizes real-world data

through the C4 dataset [45] from the Common Crawl corpus, ex-

hibits a comparable distribution across these metrics, underscoring

the benefits of real-world data in capturing the complexity of ac-

tual webpages. Moreover, this comparison highlights significant

deviations in data attribute distributions between LLM-generated

datasets and real webpages.

Figure 2 presents several representative screenshots from the

datasets (excluding Design2Code). The pix2code dataset comprises

basic block elements and text-based UI elements, suitable for both

Android and iOS UIs. In contrast, WebSight consists of structurally

simple webpages. Our dataset, on the other hand, closely mirrors

typical real webpages, featuring a variety of layout structures and

rich elements such as images. Additionally, our dataset captures

webpages in a diverse range of languages (See Figure 12 in the

Appendix).

Large Scale and High Quality. Compared to pix2code and De-

sign2Code, which contain only a few thousand or fewer data sam-

ples, and WebSight, which includes 0.8 million samples, our dataset

is significantly larger, comprising 2.56 million samples. This dataset

includes both a comprehensive training dataset and a high-quality

test dataset, making it much larger in scale. Notably, compared to

Design2Code, our WebCode2M significantly reduces the average

code length to about one-tenth of its original size, while maintain-

ing the diversity and quantity of HTML tags, thereby preserving

the high quality of the dataset.

3 Benchmarking
We introduce a baseline model based on the ViT, named WebCoder,

and establish a benchmark for fair comparison.

3.1 WebCoder: A Reference Baseline
To demonstrate the potential of our dataset in enhancing automatic

webpage code generation, we fine-tune a ViT model to establish a

new baseline for translating design images into HTML/CSS code.

Specifically, we select Google’s Pix2Struct-1.3B [29] as our base

model. This model, based on the ViT architecture, has been pre-

trained on webpage code derived from URLs in the C4 dataset [45].

Pix2Struct-1.3B is notable for its robustness to extreme aspect ratios

and ability to adapt dynamically to changes in sequence length

and resolution. Furthermore, it rescales images by distorting the

aspect ratio to preserve original image information, facilitating the

processing of variable resolutions. We conduct a full fine-tuning of

the pre-trained Pix2Struct on our training dataset, resulting in our

model, WebCoder.

3.2 Setup and Baselines
Our evaluation experiments focus on two primary Research Ques-

tions (RQs):

RQ1: The effectiveness of the training dataset. To investigate

the ability of our training dataset to empower MLLMs in webpage

generation, we compare WebCoder with several state-of-art models

which are also fine-tuned specifically for the webpage generation

task:

• WebSight VLM-8B [28]. Hugginface’s WebSight utilized its

training dataset and the DoRA [35] mechanism to fine-tune a

base VLM, which has been pre-trained on image/text pairs.

• Design2Code-18B [53]. Stanford’s Design2Code is also fine-

tuned on the WebSight dataset. It adopts CogAgent [25] as its

base model and utilizes LoRA [26] as the finetuning method to

accelerate the training process.

• WebCoder*. Another Pix2Struct model in the same setting but

trained on the WebSight dataset for comparative experiments.

RQ2: Benchmarking on the test datasets. We also introduce

a broad array of the latest and most powerful general-purpose

pre-trained MLLMs for benchmarking:

• LLaVA Family [34]. The LLaVA family consists of various MLLMs

that connect a vision encoder and an LLM for general-purpose

visual and language understanding. In our work, we introduce

LLaVA-v1.5-7B,LLaVA-onevision-0.5B, andLLaVA-onevision-
7B as the baselines. The prompt used for these models follows [8]

and is detailed in Appendix A.

• CogAgent-Chat-18B [25]. CogAgent-Chat-18B is a general

MLLM that supports both low- and high-resolution images and

performs quite well on webpage navigation. We also input the

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

screenshot and a simple promptWrite an HTML code to generate
the webpage as Design2Code does.

• Commercial Models. Some general commercial models have

demonstrated impressive performance across various fields, pro-

ficient in both code generation and web understanding. There-

fore, we introduce OpenAI’s GPT-4V and GPT-4o [41], Google

DeepMind’s Gemini [13], and Anthropic’s Claude [1] as base-
lines. The prompt for these models also follows [8], detailed in

Appendix A.

Although previous work [53] suggests that multi-round generation

methods (e.g., self-correction) may outperform one-pass generation,

baseline models such as Design2Code-18B and WebSight VLM-8B

are fine-tuned with one-pass dataset and only support one-pass

generation. Therefore, to ensure a fair comparison, all baselines

will employ the one-pass generation strategy.

3.3 Evaluation Metrics
This section presents the evaluation metrics used in our work, in-

cluding measurements for visual similarity and structural similarity,

as well as several classic metrics.

Visual Similarity Measurement. We adopt CLIP [44] similarity

and Visual Score [53] as two major metrics to assess visual sim-

ilarities between the generated webpage page and ground truth.

CLIP similarity is derived from calculating the cosine value of two

images’ latent vectors encoded by CLIP, which measures the overall

visual similarity of two images. Visual Score is utilized to measure

the matching degree of low-level elements in terms of appearance,

calculating the average scores of the matching ratio between the

reference and candidate blocks, as well as the similarity at four

block levels in terms of color, text, CLIP, and position.

Structure Similarity Measurement. Skeletons of webpage code

that determines the layout and appearance of the page, also known

as the HTML DOMTree, can also serve as a metric to evaluate struc-

tural similarity that compares ground truth (for instance, during the

training phase or when the target code is provided in the inference

stage) and the DOMTree of the generated code. Inspired by [47], we

propose a new metric TreeBLEU to evaluate the matching degree

of the generated HTMLs’ DOM tree (without terminal nodes that

contain tags’ attributes, e.g., content and style) compared to the

ground truth.

TreeBLEU is defined as the proportion of all 1-height subtrees (See

Algorithm 1) in a given tree that can be matched with that of a

reference tree. Let 𝑆 (.) be the set of 1-height subtrees, then it can

be formulated as:

TreeBLEU =
|𝑆 (𝑡) ∩ 𝑆 (𝑡𝑟 ) |

|𝑆 (𝑡𝑟 ) |
,

where 𝑡 and 𝑡𝑟 denote the given tree and the reference tree, respec-

tively. Different from htmlBLEU [54], a hybrid metric composed

of four scores (the detailed definition of which is not available),

our TreeBLEU focuses on the similarity of HTML DOM Tree in an

integrated manner, as detailed in Appendix B.

Classic Metrics. We also assess the experimental results with

several traditional metrics. Although these indicators primarily

originate from Natural Language Processing (NLP) and some Com-

puter Vision (CV) tasks, making them potentially less applicable to

Algorithm 1 Get All 1-height Subtrees of DOM tree.

Require: A multiway tree node 𝑟𝑜𝑜𝑡 (𝑐ℎ𝑖𝑙𝑑𝑠, 𝑛𝑎𝑚𝑒)
Ensure: A set 𝑆 of all 1-height subtrees

1: Initialize an empty set 𝑆

2: function Traverse(𝑛𝑜𝑑𝑒, 𝑆)

3: if number of children of 𝑛𝑜𝑑𝑒 ≠ 0 then
4: Initialize an empty string 𝑠𝑢𝑏𝑡𝑟𝑒𝑒

5: Append 𝑛𝑜𝑑𝑒.𝑛𝑎𝑚𝑒 to 𝑠𝑢𝑏𝑡𝑟𝑒𝑒

6: for each child 𝑐 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑠 do
7: Append 𝑐.𝑛𝑎𝑚𝑒 to 𝑠𝑢𝑏𝑡𝑟𝑒𝑒

8: end for
9: Add 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 to 𝑆

10: end if
11: for each child 𝑐 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑠 do
12: Traverse(𝑐, 𝑆)

13: end for
14: end function
15: Traverse(𝑟𝑜𝑜𝑡, 𝑆)

our context, they still provide valuable insights into specific perfor-

mance aspects. The conventional metrics we utilize include widely

accepted evaluation indicators such as BLEU, ROUGE-I, MSE, and

SSIM [59]. Detailed results can be found in Table 8 (See Appendix).

3.4 Implementation Details
We configure the model to process a maximum of 1,024 patches,

representing the upper limit of image segments it can handle and

set the maximum sequence length to 2,048 tokens. These settings

are selected to balance training and inference speed with task accu-

racy. Due to GPU memory limitations, we set the batch size as 1

during training. In the initial phase of training, we fine-tune the

model on a subset of our WebCode2M dataset, with a sequence

length capped at 2,048 tokens. This phase consisted of three training

epochs, totaling 90,000 iterations, with a maximum learning rate of

5e-5 and a cosine learning rate scheduler. The primary objective

was to equip the model with the ability to generate code from vi-

sual inputs. Subsequently, we refine our approach by decreasing

the maximum learning rate to 1e-5 and performing an additional

three epochs of fine-tuning on a subset of the dataset, featuring a

reduced sequence length of 1,024 tokens and consisting of 10,000

iterations. All the experiments are run on a Linux server equipped

with 4 NVIDIA A100 80G GPUs.

3.5 Effectiveness of the Training Dataset (RQ1)
Table 3 presents the performance of WebCoder both on the Web-

Sight and WebCode2M datasets, compared to other benchmark

models on the WebSight dataset. From this figure, we can observe

that our method consistently outperforms all specialized baselines

across all three metrics on the real-world test dataset, noting that

these specialized models were fine-tuned on the WebSight dataset.

Comparative experiments also demonstrate that the base model,

Pix2Struct, achieves a significant performance boost when fine-

tuned on our training dataset compared to WebSight. For Tree-

BLEU—a metric measuring the recall of 1-height subtrees in the

target DOM tree—our approach surpasses both specialized and
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Table 3: The performance comparison among the specialized models (the best is marked in bold).

Model Training Dataset WebCode2M-Short WebCode2M-Mid WebCode2M-Long
Visual CLIP TreeBLEU Visual CLIP TreeBLEU Visual CLIP TreeBLEU

WebSight VLM-7B WebSight .57±.24 .69±.12 .03±.04 .52±.23 .67±.11 .03±.04 .48±.27 .64±.11 .03±.03
Design2Code-18B WebSight .75±.14 .68±.10 .04±.05 .69±.23 .70±.10 .05±.05 .61±.28 .68±.10 .06±.03
WebCoder *-1.3B WebSight .42±.32 .68±.11 .06±.06 .36±.30 .67±.11 .04±.04 .38±.29 .65±.11 .04±.04
WebCoder-1.3B WebCode2M .78±.25 .73±.13 .35±.17 .69±.19 .71±.10 .22±.11 .65±.21 .69±.12 .15±.07

Table 4: Benchmarking performance of several general-purpose MLLMs using the WebCode2M. (the best is marked in bold).

Model WebCode2M-Short WebCode2M-Mid WebCode2M-Long
Visual CLIP TreeBLEU Visual CLIP TreeBLEU Visual CLIP TreeBLEU

LLaVA-v1.5-7B .43±.27 .60±.33 .07±.05 .21±.28 .29±.38 .05±.04 .19±.27 .28±.37 .04±.03
LLaVA-onevision-0.5B .24±.31 .62±.11 .06±.03 .28±.31 .61±.10 .05±.03 .22±.29 .59±.11 .03±.02
LLaVA-onevision-7B .34±.32 .63±.10 .08±.07 .30±.30 .64±.09 .06±.06 .30±.30 .61±.10 .04±.04
CogAgent-Chat-18B .46±.31 .68±.11 .01±.03 .40±.31 .66±.10 .01±.02 .39±.30 .65±.10 .01±.01
Gemini .35±.41 .75±.10 .16±.10 .38±.40 .74±.11 .15±.08 .34±.41 .73±.10 .14±.06
Claude .52±.43 .77±.10 .13±.08 .35±.42 .76±.09 .14±.08 .37±.43 .74±.09 .13±.06
GPT-4V .68±.32 .74±.10 .12±.07 .65±.33 .71±.10 .11±.06 .62±.35 .67±.10 .10±.05
GPT-4o .85±.16 .77±.10 .15±.09 .81±.20 .77±.09 .13±.08 .82±.18 .74±.09 .11±.05

general-purpose models, indicating that our model better reflects

real-world node types and substructures. Additionally, on the two

visual similarity metrics—visual score and CLIP similarity—our

model exceeds most general-purpose models and either matches or

outperforms GPT-4V. Collectively, these results demonstrate that

our dataset offers greater practical potential than synthetically gen-

erated datasets and suggest that our proposed training dataset can

effectively unleash the potential of MLLMs in webpage generation.

3.6 Benchmarking on the Test Datasets (RQ2)
Table 4 benchmarks the performance of several general-purpose

MLLMs using the WebCode2M test dataset. From this figure, we

can observe several interesting findings: (1) Generating lengthy
code is challenging. Almost all metrics for nearly all models drop

significantly as the target code length increases. For example, as the

dataset transitions from WebCode2M-short to WebCode2M-mid

and finally to WebCode2M-long, the highest TreeBLEU score for

specialized models drops from 0.35 to 0.15, the highest CLIP similar-

ity decreases from 0.73 to 0.69, and the highest Visual Score declines

from 0.78 to 0.65. (2) Model size matters. In LLaVA family, several

models show a significant improvement across all metrics as model

parameters increase, with LLaVA-v1.5-7B and LLaVA-onevision-

7B achieving the best performance, while LLaVA-onevision-0.5B

performs poorly across all metrics, indicating that MLLMs require

more parameters to achieve better results in webpage generation

tasks. (3)Most general-purposeMLLMs strugglewithwebpage
code generation. Among these models, only GPT-4V matches the

performance of our model trained onWebCode2M, while GPT-4o

significantly outperforms all other models. All remaining general-

purpose models generally underperform compared to specialized

models, with consistently low scores across all metrics.

Notably, GPT-4o significantly outperforms all specialized and

other general-purpose MLLMs across all metrics. Moreover, its per-

formance remains highly stable as the complexity increases, with-

out showing significant degradation. For instance, as the dataset

transitions fromWebCode2M-short to WebCode2M-mid and finally

to WebCode2M-long, its visual score, from 0.85 to 0.81 and then

to 0.82. However, our goal is not to propose a dataset that allows

small specialized models to surpass super MLLMs with hundreds

of billions of parameters, as that would be unrealistic. Instead, our
aim is to assist MLLMs in the webpage generation task and
enable smaller models to achieve competitive performance.

4 Related Work
Generating code from webpage designs is essentially an image-

to-code task, which primarily consists of two key components:

image representation and code generation. We review the related

works from the perspectives of image representation learning, code

generation, and image-to-code.

Image Representation Learning. To obtain more suitable rep-

resentations of images, early works proposed using Variational

Autoencoders (VAEs) to generate latent vectors for images [27, 56].

Other researchers have explored employing contrastive learning to

derive image encoders from large-scale training datasets [16]. The

ViT was introduced to break down an image into sequences of fixed-

size patches, applying a transformer to process them and accommo-

dating variable resolutions [9]. In recent years, Diffusion Models

(DM) [24] have achieved significant success in image representa-

tion learning, understanding, and generation tasks. To alleviate the

computational burden of operating in pixel space, researchers pro-

posed training DMs within the latent space of advanced pre-trained

autoencoders [49]. Recently, SDXL[43] was developed, leveraging

a three-times larger UNet [50] backbone and introducing a refine-

ment model.

Code Generation. The development of code models has advanced

significantly with the increasing availability of computational re-

sources, evolving from small models with only a few million param-

eters to medium-sized models with billions of parameters, and ulti-

mately to ultra-large models exceeding hundreds of billions. Early
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works typically employed simple network architectures trained

on small datasets for code generation tasks. For instance, some

work [12, 20, 22] use RNNs [60] to treat code as token sequences,

while others explored tree-structured neural networks [33, 37, 39]

or graph neural networks [10, 11, 15] to capture the structural in-

formation of code. With the rise of transformer models, researchers

began to explore supervised and unsupervised methods for training

transformer-based models on large-scale codebases, such as GitHub.

Notable works in this area include CodeBERT [18], CodeT5 [57],

StarCoder [30], and AlphaCode [32], with AlphaCode even achiev-

ing an average ranking in the top 54.3% in simulated program-

ming competitions on the Codeforces platform. More recently, the

landscape of code generation has been significantly influenced by

large language models (LLMs) such as CodeGen [38], CodeT5+[58],

InCoder[19], GPT-3.5 [40], StarCoder [31], Code Llama [51], and

WizardCoder [36].

Image to Code. Several early works have made pioneering contri-

butions by focusing on generating code from simple images. For

example, to reverse engineer program code from Graphical User

Interfaces, [14] introduced pix2code, which is trained on a synthetic

dataset of GUI screenshots and corresponding source code, includ-

ing iOS, Android, or web-based GUI, to generate Domain-Specific

Language code. Sketch2code [48] generates website code from wire-

frame sketches exploring two approaches: a computer vision-based

method that detects elements and structures, and a deep learning-

basedmethod.With advances in computational power, some studies

have explored using larger models to advance the image-to-code

task. [61] addressed the challenge of screen parsing by predicting UI
hierarchy graphs from screenshots, by using Faster-RCNN [46] to

encode the screenshot images and employing an LSTM-based atten-

tionmechanism to construct graph nodes and edges. Pix2Struct [29],

pre-trained by learning to generate simplified HTML from masked

website screenshots, demonstrated substantial improvements in

visual language understanding across nine tasks in four different

domains. To address the challenges of rendering inefficiencies and

non-differentiability inwebsite generation, [55] employed reinforce-

ment learning to fine-tune a vision-code transformer to minimize

the visual differences between the original and generated HTML.

While recent efforts have aimed at improving code generation from

high-definition images, the results are still far from being ready for

practical application.

Nowadays, several powerful commercial models have emerged,

such as OpenAI’s GPT-4V and GPT-4o [41], Google DeepMind’s

Gemini [13], and Anthropic’s Claude [1]. These models have shown

impressive performance across various tasks, including image un-

derstanding and code generation with the advantage of allowing

continuous adjustment and optimization via chat. However, their

performance in generating webpages from high-resolution images

remains suboptimal.

5 Discussion
In this section, we discuss several practical challenges associated

with our dataset when applied to webpage code generation and

highlight several limitations that warrant further study.

5.1 Practical Challenges to Study
In the course of our research, we identify three practical challenges

that need to be addressed to achieve the ideal generation of web-

page code from design images. These challenges are presented here

to guide future research: (1) Lengthy code generation. As shown
in Table 2, despite our efforts to clean up noise in the webpage code,

such as invisible elements, the HTML text remains lengthy, reflect-

ing its complexity to some extent. This presents significant chal-

lenges to both the training effectiveness and efficiency of MLLMs.

(2) Capturing structural information of UI visions. Given the

potential overlap of sub-elements in images and the lack of distinct

borders for some elements, extracting structured or hierarchical

information from images presents a significant challenge. Our em-

pirical study of GPT-4V reveals that, while it excels in capturing text

and color from images when generating webpage code, it struggles

with capturing the hierarchy of UI elements. Therefore, design-

ing a model that is more proficient in generating the hierarchical

structure for translating design diagrams into webpage code is a

promising avenue. (3) Generation of image elements. All exist-
ing webpage code generation models fail to accurately reproduce

image elements in the design visions, severely hindering their prac-

tical application. There is an urgent need for a framework capable

of generating or extracting image elements from the original design

and assembling them into the final webpage code.

5.2 Limitations and Future Directions
Firstly, although we employ a meticulously designed neural scorer

to enhance data quality, this scoring method inherently contains a

degree of subjectivity and achieves an accuracy of approximately

90%. Consequently, some low-quality data remain in the final dataset.

However, we consider this acceptable given the trade-off between

efficiency and quality, as manual screening of millions of data is

impractical. Secondly, the results presented in Table 3 and Table 4

indicate that all models exhibit significant variance on certain met-

rics. This suggests that the model’s generation capability is insuffi-

ciently stable and performs poorly on some test data, underscoring

the need for a more robust framework to accomplish this task. Fi-

nally, because our dataset is sourced from crawled online data, it

inevitably contains a minimal amount of inappropriate content,

such as violent material, despite our extensive filtering efforts.

6 Conclusion
In this paper, we have proposed WebCode2M, the first real-world

and large-scale dataset with layout information for generating web-

page code from designs. This dataset consists of over 2.56 million

samples for both training and testing. We have presented the de-

tailed pipeline of dataset construction and conducted analysis on

the curated dataset. The analysis results demonstrate the diversity

of our dataset. We fine-tune an MLLM, named WebCoder, on our

training dataset. Along with two visual measures and a structure

metric, we evaluate our WebCoder with other baselines on the pro-

posed dataset. The experiment results demonstrate that our dataset

can better empower MLLMs to generate code from webpage de-

signs. We believe that the dataset and benchmark proposed in this

work can further advance research in this field.
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A An Empirical Study
We conducted an empirical study by employing the state-of-the-

art MLLM, GPT-4V, to generate webpage code from images in a

one-pass manner. We refer to the prompt of a famous open-source

project screenshot-to-code [8] on the GitHub, making only minor

adjustments as shown in Figure 6.

We also investigated the capabilities of the pix2code and Pix2Struct

models. The pix2code dataset was first divided into training and

testing datasets with an 8:2 split. We then trained the pix2code

model from scratch on the training dataset while simultaneously

fine-tuning the Pix2Struct model. To quantitatively assess the per-

formance of pix2code, Pix2Struct, and GPT-4V on the pix2code test

dataset, we utilized two automated metrics.

Table 5 shows the comparison results of the performance of sev-

eral baselines on the pix2code test dataset. From this table, it can be

seen that ChatGPT-4V’s performance in one-pass generation mode

lags behind that of the pix2code model, and the model fine-tuned

from Struct2Code, even when applied to the simplest pix2code

dataset. This performance discrepancy is particularly evident in the

generation of the HTML DOM tree structure, which is represented

as TreeBLEU in Table 5.

To more vividly illustrate the shortcoming of GPT-4V in captur-

ing the structural information in original screenshots, we choose a

representative example (similar situations are often found in actual

test results), as shown in Figure 7. It can be clearly observed from

the figure that the webpage generated by GPT-4V does not reflect

the hierarchical structure of the referenced image, but rather ap-

pears as a simple auto-sorted list. This situation is also frequently

encountered during our experience with the screenshot-to-code. The
primary explanation for this disparity may lay in the fact that

both models have been fine-tuned on specific task datasets, while

ChatGPT-4V has not.

Table 5: The performance comparison on the pix2code test
dataset. The pix2code model and Pix2Struct model are both
fine-tuned on the pix2code training dataset. The GPT-4V is
prompted to generate webpage code in one-pass mode.

Model TreeBLEU

pix2code-Beam 0.98

pix2code-Gready 0.99

Pix2Struct-282M 0.79

Pix2Struct-1.3B 0.92

GPT-4V 0.09

B The Implementation of TreeBLEU
The core implementation of TreeBLEU includes two parts: the gen-

eration of a minimalist HTMLDOMTree and the Subtree Collection

Algorithm.

• Minimalist HTML DOM Tree. The original HTML DOM Tree

can be easily obtained by some tools such as the bs4 [6] package

in Python. After acquiring the HTML DOM Tree, the next step

is to remove the terminal nodes, the text nodes and image nodes,

etc. The resulting DOM Tree consists only of the type names of

HTML tags.

• Subtree Collection Algorithm, as shown in Algorithm 1.

Given that the subtree collections of the generated HTML DOM

Tree and the reference are represented as sets of strings, subtree

matching can be straightforwardly performed through string com-

parison. The TreeBLEU value can then be calculated using Equa-

tion 3.3. An example of subtree matching is illustrated in Figure 8.

C Details of Manual Annotation
C.1 Motivating Examples
After performing extensive data cleansing and formatting on our

large-scaleweb-crawled dataset—including length filtering, removal

of unnecessary tags and attributes, and style consolidation—we con-

ducted a manual sampling review. This review revealed that many

instances still exhibited structural and aesthetic flaws (Figure 9), as

evidenced by the rendered screenshots, often due to missing styles

or broken image links. To address these issues, we implemented a

web screenshot quality scoring system, trained on manually labeled

data, to further refine the dataset through an additional, meticulous

screening process.

C.2 Scoring Tool
To enhance the efficiency of manual data labeling, we developed

an image scoring tool using Gradio. As illustrated in Figure 10, the

tool features a screenshot display area on the left and a scoring

interface on the right. The right side includes selectable options for

evaluating image quality, along with buttons for navigating data

entries, labeling the current entry, and saving all annotations.

C.3 Scoring Procedure
To ensure consistency in our final labeled dataset and reduce sub-

jectivity among annotators, we developed a transparent grading

system with five hierarchical criteria, ranging from basic to ad-

vanced, integrated into our labeling interface. Annotators are in-

structed to select the relevant options for each data entry, with

the total number of selected options determining the score. The

grading scale spans from 0 to 5 points, making it straightforward

for annotators to apply and ensuring uniform data evaluation. The

scoring process involves six annotators divided into two groups.

Each group assesses a designated subset, and individual scores are

averaged and rounded to the nearest whole number to produce the

final score for each entry.

C.4 Consistency Validation
We conduct a statistical analysis of the score distribution within two

annotated cohorts, as shown in Figure 3. The graphical representa-

tion reveals noticeable disparities among the annotations, despite

the consistency of the dataset and a generally aligned distribution

across the three annotators within each group. This observation

highlights the subjective nature of screenshot scoring. Therefore,

adopting an averaging approach within each group proves to be an

effective strategy for reducing the impact of subjectivity on scoring

outcomes.

D More Statistics of Dataset
We perform a comprehensive statistical analysis on the textual

content of webpages, and the findings are illustrated in Figure 12.
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Prompt for using GPT-4V in webpage generation task

You are an expert Tailwind developer. You take screenshots of a reference webpage from the user, and then build single-page apps

using Tailwind, HTML and JS.

- Make sure the app looks exactly like the screenshot.

- Make sure the app has the same page layout like the screenshot, i.e., the gereated html elements should be at the same place

with the corresponding part in the screenshot and the generated html containers should have the same hierachy structure as the

screenshot.

- Pay close attention to background color, text color, font size, font family, padding, margin, border, etc. Match the colors and sizes

exactly.

- Use the exact text from the screenshot.

- Do not add comments in the code such as "<!– Add other navigation links as needed –>" and "<!– ... other news items ... –>" in

place of writing the full code. WRITE THE FULL CODE.

- Repeat elements as needed to match the screenshot. For example, if there are 15 items, the code should have 15 items. DO NOT

LEAVE comments like "<!– Repeat for each news item –>" or bad things will happen.

- For images, use placeholder images from https://placehold.co and include a detailed description of the image in the alt text so that

an image generation AI can generate the image later. In terms of libraries,

- Use this script to include Tailwind: <script src="https://cdn.tailwindcss.com"></script>

- You can use Google Fonts

- Font Awesome for icons: <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.15.3/css/all.min.css"></link> Return only the full code in <html></html> tags.

- Do not include markdown "”’" or "”’html" at the start or end.

Figure 6: Prompt for using GPT-4V in webpage generation task.

Table 6: Licenses of the datasets in this work.

Dataset License

pix2code Apache 2.0

Common Crawl LIMITED license

WebSight CC-BY-4.0

Design2Code MIT

WebCode2M CC-BY-4.0

English constitutes approximately 50% of the corpus, with other

languages such as Russian, German, Spanish, and French each

representing nearly 5% of the total corpus. We also present the

licenses of the datasets in our work in Table 6.

E More Experimental Results
The Visual Score used in Table 3 and Table 4 is actually a composite

metric, composed of five indicators: block, text, position, text color,

and CLIP match. We list these detailed indicators in Table 7 for

reference. Table 8 presents a detailed performance comparison

based on traditional metrics.

F Implementation of Filtering Inappropriate
Content

The main steps and details of the cleansing process are as follows:

Step 1: Filtering harmful images in screenshots. We employ a

widely used NSFW detector [7] from Hugging Face, which classifies

images as either "normal" or "NSFW" (Not Safe for Work) with high

accuracy. This detector is based on a Vision Transformer (ViT)

model fine-tuned on a dataset containing both "safe" and "explicit"

images. It predicts two scores: "normal" and "NSFW," with lower

NSFW scores indicating a lower probability of harmful content. A

conservative threshold of 0.04 was adopted, meaning only samples

with NSFW scores below this value were retained.

Step 2: Multi-language harmful keyword filtering. We ap-

ply harmful keyword filtering to the web text using two popular

GitHub repositories: bad words 1 [52] and bad words 2 [5]. The

first list contains dirty, naughty, obscene, and otherwise inappro-

priate words in multiple languages (e.g., ’fuck’, ’raping’), while the
second serves as a supplementary list with additional sensitive or

stop words. Samples with more than 20 occurrences of these bad

words are removed. While normal web pages may occasionally con-

tain a small number of inappropriate words, those with excessive

amounts of inappropriate content, such as adult websites, tend to

have significantly higher word counts.

The thresholds for both the NSFW score and the frequency of

bad words were determined through experiments on the first data

chunk 9. We selected thresholds that balanced maximizing sample

retention with minimizing the presence of harmful content. To

evaluate the effectiveness of the filters, we manually reviewed and

documented the filtering results for the first chunk under differ-

ent thresholds. The table below clearly indicates that an NSFW

threshold of 0.04 produced the best results.

G Page Samples Generated By WebCoder
In Figure 13, we present several sample pages generated by our

WebCoder model to demonstrate its capabilities. The left side shows

the original webpage screenshots from our WebCode2M dataset,

while the right side displays the outputs generated by our model

via end-to-end inference after being trained on this dataset. The

12
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Table 7: Experimental Breakdown on the Visual Scores.

Test Set Model Training Block Text Position Text Color CLIP

WebCode2M-Short

CogAgent-Chat-18B - 0.25 (±0.33) 0.54 (±0.45) 0.41 (±0.35) 0.45 (±0.42) 0.67 (±0.29)

WebSight VLM-8B WebSight 0.19 (±0.26) 0.65 (±0.33) 0.60 (±0.32) 0.63 (±0.36) 0.78 (±0.20)

Design2Code-18B WebSight 0.65 (±0.31) 0.92 (±0.16) 0.72 (±0.16) 0.68 (±0.24) 0.80 (±0.10)

LLaVA-v1.5-7B - 0.07 (±0.11) 0.53 (±0.38) 0.43 (±0.33) 0.50 (±0.41) 0.60 (±0.33)

LLaVA-onevision-0.5B - 0.07 (±0.18) 0.31 (±0.42) 0.25 (±0.35) 0.25 (±0.39) 0.33 (±0.38)

LLaVA-onevision-7B - 0.16 (±0.27) 0.40 (±0.44) 0.34 (±0.39) 0.29 (±0.36) 0.52 (±0.37)

Gemini - 0.32 (±0.44) 0.42 (±0.48) 0.36 (±0.42) 0.30 (±0.38) 0.35 (±0.40)

Claude - 0.51 (±0.47) 0.57 (±0.48) 0.52 (±0.44) 0.48 (±0.43) 0.50 (±0.41)

GPT-4V - 0.64 (±0.39) 0.79 (±0.37) 0.67 (±0.32) 0.59 (±0.34) 0.67 (±0.31)

GPT-4o - 0.84 (±0.28) 0.95 (±0.17) 0.85 (±0.16) 0.79 (±0.20) 0.81 (±0.15)

WebCoder * WebSight 0.17 (±0.26) 0.50 (±0.42) 0.44 (±0.38) 0.41 (±0.40) 0.57 (±0.36)

WebCoder WebCode2M 0.57 (±0.38) 0.81 (±0.31) 0.70 (±0.28) 0.66 (±0.32) 0.73 (±0.27)

WebCode2M-Mid

CogAgent-Chat-18B - 0.19 (±0.29) 0.45 (±0.46) 0.35 (±0.37) 0.36 (±0.41) 0.64 (±0.30)

WebSight VLM-8B WebSight 0.13 (±0.20) 0.61 (±0.32) 0.56 (±0.32) 0.59 (±0.35) 0.73 (±0.25)

Design2Code-18B WebSight 0.55 (±0.35) 0.84 (±0.28) 0.66 (±0.24) 0.62 (±0.28) 0.75 (±0.23)

LLaVA-v1.5-7B - 0.03 (±0.07) 0.26 (±0.37) 0.22 (±0.33) 0.23 (±0.36) 0.29 (±0.38)

LLaVA-onevision-0.5B - 0.06 (±0.16) 0.35 (±0.43) 0.28 (±0.36) 0.29 (±0.40) 0.41 (±0.39)

LLaVA-onevision-7B - 0.11 (±0.22) 0.34 (±0.42) 0.27 (±0.34) 0.28 (±0.36) 0.51 (±0.38)

Gemini - 0.39 (±0.45) 0.46 (±0.48) 0.38 (±0.41) 0.28 (±0.35) 0.39 (±0.41)

Claude - 0.35 (±0.45) 0.40 (±0.48) 0.35 (±0.42) 0.31 (±0.40) 0.35 (±0.41)

GPT-4V - 0.61 (±0.38) 0.78 (±0.38) 0.65 (±0.32) 0.58 (±0.33) 0.66 (±0.33)

GPT-4o - 0.79 (±0.30) 0.92 (±0.22) 0.79 (±0.21) 0.77 (±0.22) 0.78 (±0.19)

WebCoder * WebSight 0.10 (±0.18) 0.45 (±0.42) 0.40 (±0.38) 0.33 (±0.35) 0.51 (±0.38)

WebCoder WebCode2M 0.46 (±0.34) 0.83 (±0.22) 0.72 (±0.22) 0.70 (±0.26) 0.77 (±0.21)

WebCode2M-Long

CogAgent-Chat-18B - 0.22 (±0.32) 0.43 (±0.45) 0.33 (±0.36) 0.32 (±0.38) 0.66 (±0.26)

WebSight VLM-8B WebSight 0.13 (±0.22) 0.59 (±0.37) 0.50 (±0.33) 0.54 (±0.36) 0.65 (±0.30)

Design2Code-18B WebSight 0.49 (±0.36) 0.77 (±0.35) 0.58 (±0.28) 0.55 (±0.28) 0.66 (±0.29)

LLaVA-v1.5-7B - 0.04 (±0.11) 0.23 (±0.36) 0.19 (±0.30) 0.20 (±0.32) 0.28 (±0.37)

LLaVA-onevision-0.5B - 0.06 (±0.16) 0.27 (±0.40) 0.22 (±0.34) 0.22 (±0.35) 0.35 (±0.37)

LLaVA-onevision-7B - 0.11 (±0.22) 0.35 (±0.42) 0.28 (±0.35) 0.28 (±0.37) 0.47 (±0.37)

Gemini - 0.35 (±0.45) 0.40 (±0.48) 0.34 (±0.40) 0.28 (±0.34) 0.33 (±0.40)

Claude - 0.39 (±0.46) 0.42 (±0.48) 0.36 (±0.42) 0.33 (±0.39) 0.35 (±0.41)

GPT-4V - 0.60 (±0.40) 0.74 (±0.41) 0.62 (±0.36) 0.53 (±0.32) 0.60 (±0.34)

GPT-4o - 0.84 (±0.26) 0.93 (±0.20) 0.79 (±0.19) 0.75 (±0.19) 0.78 (±0.19)

WebCoder * WebSight 0.14 (±0.23) 0.47 (±0.42) 0.40 (±0.36) 0.32 (±0.32) 0.55 (±0.35)

WebCoder WebCode2M 0.46 (±0.34) 0.80 (±0.25) 0.66 (±0.23) 0.62 (±0.26) 0.73 (±0.22)

Table 8: The performance breakdown on classic metrics.

Model

WebCode2M-Short WebCode2M-Mid WebCode2M-Long

BLEU Rough-1 MSE SSIM BLEU Rough-1 MSE SSIM BLEU Rough-1 MSE SSIM

CogAgent-Chat .33±.33 .40±.33 .35±.38 .59±.15 .27±.31 .31±.30 .32±.30 .58±.14 .22±.28 .26±.28 .36±.30 .60±.13
WebSight VLM .17±.19 .20±.20 .32±.36 .62±.17 .10±.14 .11±.14 .37±.38 .59±.16 .11±.16 .13±.17 .39±.27 .61±.15
Design2Code .50±.32 .56±.29 .39±.36 .58±.15 .45±.31 .51±.28 .35±.28 .56±.14 .33±.29 .41±.26 .37±.28 .61±.11
LLaVA-v1.5-7B .04±.07 .06±.06 .35±.37 .65±.17 .03±.05 .04±.05 .33±.35 .65±.14 .03±.05 .05±.05 .34±.28 .66±.12
LLaVA-onevision-0.5B .11±.17 .17±.18 .38±.42 .53±.24 .07±.11 .12±.15 .35±.27 .49±.22 .08±.13 .13±.15 .37±.27 .55±.20
LLaVA-onevision-7B .13±.21 .20±.22 .31±.33 .63±.15 .06±.14 .12±.16 .30±.28 .60±.14 .05±.12 .11±.15 .33±.27 .63±.12
Gemini .64±.28 .75±.20 .32±.30 .62±.15 .68±.23 .74±.21 .33±.26 .60±.14 .63±.22 .69±.19 .39±.31 .61±.12
Claude .74±.27 .81±.22 .29±.29 .61±.14 .74±.23 .79±.20 .30±.23 .59±.12 .68±.22 .73±.18 .33±.28 .61±.12
GPT-4V .69±.28 .74±.24 .30±.25 .61±.14 .55±.32 .62±.28 .34±.29 .55±.12 .49±.29 .58±.23 .38±.28 .57±.11
GPT-4o .73±.26 .80±.21 .27±.19 .60±.13 .70±.25 .74±.23 .27±.20 .58±.12 .67±.23 .71±.20 .30±.21 .60±.11
WebCoder * .23±.23 .26±.22 .37±.33 .58±.17 .16±.17 .17±.18 .34±.28 .56±.16 .15±.17 .17±.17 .44±.33 .59±.15
WebCoder .58±.26 .61±.24 .41±.44 .59±.17 .46±.27 .47±.26 .39±.37 .56±.16 .40±.26 .41±.24 .47±.44 .58±.16
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Figure 7: A representative example on the pix2code test dataset.

Table 10: The filtering performance across different NSFW threshold values.

Threshold

Total

Num

Removed by nsfw filter Retained after nfsw filter Retained after nfsw filter bad word filter

total

num

good

num

miskill

ratio

total

num

bad

num

retention

ratio

toxic

ratio

total

num

bad

num
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0.03 324 318 20.70% 1212 2 78.91% 0.17% 1210 0 78.78% 0.00%

0.04 133 128 8.33% 1403 3 91.34% 0.21% 1400 0 91.15% 0.00%

0.05 70 66 4.30% 1466 4 95.44% 0.27% 1463 1 95.25% 0.07%

1.00 0 0 0.00% 1536 8 100.00% 0.52% 1530 2 100.00% 0.13%
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Figure 8: A subtree matching example in the metric of Tree-
BLEU.

images were processed using OCR, extracted from the original

screenshots, and embedded into the predicted HTML code. The

results indicate that our model effectively preserves both structural

and stylistic consistency while achieving high accuracy in text

content prediction.
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Figure 9: Low-quality samples.

Figure 10: The manual scoring tool.
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Figure 11: The distribution of manually scored results.
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Figure 12: Language distribution in the training dataset.

H Our Dataset on HuggingFace
We present a screenshot of our dataset uploaded to HuggingFace

in Figure 14 and Figure 15. Detailed data cards and specifications

for the dataset are available on HuggingFace.
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Figure 13: Comparison of an original webpage (input) on the left, and the rendering of the HTML generated by our model,
WebCoder, (output) on the right.
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Figure 14: Examples of WebCode2M dataset uploaded to HuggingFace (partial columns)

Figure 15: Examples of WebCode2M dataset uploaded to HuggingFace (partial columns)
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