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Abstract

When observers glance at a natural scene, which aspects of that scene ultimately1

reach perceptual awareness? To answer this question, we showed observers images2

of scenes that had been altered in numerous ways in the periphery (e.g., scrambling,3

rotating, filtering, etc.) and measured how often these different alterations were4

noticed in an inattentional blindness paradigm. Then, we screened a wide range5

of deep convolutional neural network architectures and asked which layers and6

features best predict the rates at which observers noticed these alterations. We found7

that features in the higher (but not earlier) layers predicted how often observers8

noticed different alterations with extremely high accuracy (at the estimated noise9

ceiling). Surprisingly, the model prediction accuracy was driven by a very small10

fraction of features that were both necessary and sufficient to predict the observed11

behavior, which we could easily visualize. Together these results indicate that12

human perceptual awareness is limited by high-level visual features that we can13

estimate using computational methods.14

1 Introduction15

How much information do humans perceive when looking at a natural scene? Is our experience of16

the world rich and detailed (Lamme (2003); Block (2011), or is it sparse and limited ( Dehaene &17

Changeux (2011); Cohen et al. (2012))? What aspects of the visual world are observers aware of at18

any given moment? To try and answer these questions, researchers use paradigms like change and19

inattentional blindness to examine the limits of perceptual experience ( Jensen et al. (2011). In typical20

versions of these experiments, individual items change or appear in some unexpected manner and21

researchers measure how often observers notice these events.22

However, there are limits as to what can be gleaned about perceptual experience using this approach23

for two main reasons. First, changes in these experiments typically involve alterations that are24

confined to individual objects/people within complex scenes: a shadow that appears and disappears25

( Rensink et al. (1997)), a rail in the background that moves up and down ( O’Regan et al. (1999)),26

an individual in a gorilla costume walking amongst a group of people ( Simons & Chabris (1999)),27

etc. Therefore, it is difficult to extrapolate from these findings to broad generalizations about the28

overall bandwidth of perceptual experience. Second, stimuli in these paradigms change along many29

dimensions, making it difficult to synthesize them into a coherent whole. For example, the critical30

manipulations in these experiments involve a wide array of stimuli ranging from lower-level items like31

colors and simple shapes ( Mack & Rock (1997); Most et al. (2005)), to complex objects ( Simons32

et al. (2000)) or even entire scenes ( Cohen et al. (2011)). Therefore, creating general principles about33

perceptual experience from this diverse set of studies is difficult since the manipulated variables fall34

along numerous different perceptual dimensions.35
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Here, we propose an algorithmic approach to examining the limits of perceptual awareness using36

computational models. We started by altering images of natural scenes in numerous ways and37

quantified how often observers noticed those alterations in an inattentional blindness blindness38

paradigm using Amazon’s Mechanical Turk (N=1,260 observers). Finally, we sought to unify these39

behavioral results by building deep convolutional neural networks (dCNNs) based computational40

models that could predict the behavioral inattentional blindness rates. The idea behind this approach41

is that by building models that predict observers’ behavior, we could then probe the specific internal42

features of these computational models to infer the critical features that best predicted human behavior.43

2 Methods44

2.1 Inattentional blindness behavioral paradigm45

Note: All of the methods and analyses in this study were pre-registered to remove all experimenter46

bias (osf.io/zr3ed). Participants: 1,260 participants were recruited on Amazon’s Mechanical47

Turk. Every subject gave informed consent. All procedures were approved by the MIT Institutional48

Review Board and the Committee on the Use of Humans as Experimental Subjects.49

Overall, we created 21 experimental conditions with each condition corresponding to a different way50

of altering the periphery (Figure 1a). Participants were unaware of the experiment’s true nature and51

were instructed to perform a simple face detection task at fixation. On each trial, participants were52

shown 7-30 images of natural scenes and reported whether the last image in the stream contained53

a face in the middle of it (Figure 1b). Each image was shown for 288ms, which approximately54

corresponds to the duration of one fixation in naturalistic viewing conditions ( Rayner (1998);55

Henderson (2003)). For the first 10 trials, half of the trials had a face target present at the end and56

half did not. At the end of each trial, a screen appeared that prompted the observer to say whether or57

not the last image had a human face in the middle.58

On the critical trial, the last image in the stream was a target stimulus (Figure 1a). As soon as the59

critical stimulus disappeared, rather than be asked about if a face was in the middle, observers were60

instead asked another series of questions. Specifically: 1) “Did you notice anything different about61

that last trial?” 2) “If we were to tell you there was something different about that last trial, could you62

say what it was?” 3) “If we were to tell you there was something different about the very last image63

on that last trial, could you say what it was?” Only those participants who responded “no” to all of64

these questions were classified as having been inattentionally blind. If an observer responded “yes”65

to any of these questions, they were classified as having noticed the alterations.66

3 Results67

3.1 Inattentional blindness behavioral results68

The results from these behavioral experiments are plotted in Figure 1c. Overall, there is substantial69

variance in the inattentional blindness rates between conditions. For example, virtually no observers70

noticed when the periphery was altered in the medium “metamer” conditions (92.5% inattentional71

blindness rate), while many observers noticed when the periphery was abstract and desaturated (72

35% inattentional blindness rate). The participants were also highly consistent in their responses73

(Spearman-Brown corrected, split-half reliability (r=0.82, P<0.00001). However, before attempting74

to model these results, we examined the reliability of this data by directly comparing the inattentional75

blindness rates of a subset of the conditions when using MTurk to those obtained when testing those76

exact conditions in a laboratory setting. Specifically, we took 6 conditions from our prior study that77

used the same experimental procedures and compared the behavioral results with the data obtained78

in the present MTurk study ( Cohen et al. (2021); (1) “Metamers” (small), 2) “Metamers” (large),79

3) Texture-synthesis, 4) Inconsistent periphery, 5) Abstract periphery, and 6) Grey periphery) . The80

correlation between the laboratory and MTurk was remarkably high (r=0.98, P<0.0001). The fact that81

the laboratory and MTurk data is almost perfectly correlated is critical, as it implies that our methods82

for examining inattentional blindness online are both valid and reliable.83

2

osf.io/zr3ed


Figure 1: a) Stimuli. Examples from each experimental condition. An original image is shown on the
top left, with an example of that image then being altered in each of the 21 different experimental
condition. b) Visualization of the trial procedures for the behavioral experiment. Participants
performed 10 trials where they simply said if the last image in the stream did or did not contain a
human face in the middle. Then, on trial 11, an unexpected critical stimulus was presented at the
end of the trial and participants were immediately probed to determine whether or not they noticed
the critical stimulus. b) Inattentional blindness rates for each condition in the behavioral experiment.
The percentage of participants who failed to notice the critical stimulus is plotted on the vertical axis.
Each bar corresponds to a different experimental condition. The error bars represent bootstrapped
standard errors.

3.2 Modeling behavior with deep convolutional neural networks (dCNNs)84

How can we unify the behavioral results from these drastically different experimental conditions to85

form an overall understanding of perceptual awareness? To answer this question, we built predictive86

models of these behavioral findings, which we could then probe to identify the specific visual features87

that determine the bandwidth of perceptual experience. We screened several dCNN architectures to88

predict the observed behavioral data. This modeling approach is comprised of two parts: First, we89

measured the similarity between the features extracted for the original images and the altered images90

for each dCNN layer of a given network architecture. Then, we computed a linear mapping function91

between these similarity values and the behavioral measures (Figure 2a).92

Which layers and features within a given network best predict the behavioral data? To answer this93

question, we calculated the correlations between the inattentional blindness rates and the cross-94

validated predicted inattentional blindness rates made by a given layer in each network architecture.95

This procedure was done with every layer of 7 architectures: AlexNet, VGG-16, VGG-19, ResNet-18,96

SqueezeNet, DarkNet19, and MobileNet. These architectures were chosen because they are somewhat97

similar in their depth relative to other networks (e.g., ResNet-50, GoogleNet, etc.), making it easier98
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Figure 2: a) To create a predictive model, we computed a direct linear mapping between the behavioral
data obtained on MTurk (Fig. 1c) and the similarity measurements between the original and altered
images. b) With this model, we then calculated the cross-validated predicted inattentional blindness
rates and correlated them with the observed inattentional blindness rates. c) The vertical axis
represents the correlation between the observed behavioral results and a model’s prediction on held
out data (i.e., cross-validated). The grey bar represents the behavioral noise ceiling (see Methods).
The horizontal axis represents the specific layer of a given network architecture. Each colored line
corresponds to a given network.

to directly compare these networks to one another. The results from this analysis are plotted in99

Figure 2b. Across each network, we found that earlier layers could not predict the behavioral data.100

However, the later layers were able to predict the behavioral data, with many of these layers reaching101

the behavioral noise ceiling. Since numerous studies have shown that dCNNs such as these gradually102

build up abstractions across layers (i.e., from simple edges to textures to patterns to object parts, etc.),103

these results suggest that the extent to which an observer will notice the alterations to the periphery104

is directly related to the extent to which higher-level elements of a scene are preserved. As those105

higher-level elements are themselves altered, it increases the likelihood that a particular alteration106

will be noticed. Meanwhile, lower-level features can be altered without observers noticing, so long as107

these higher-level elements are aspects of an image are preserved.108

An advantage of using computational models like dCNNs is that we can directly probe them to109

investigate the specific features that are linked with perceptual awareness. Here, we identified the110

specific features that drive the model’s ability to predict behavior and visualized those features to get111

an intuitive understanding of what they represent. To identify the features with the most predictive112

power, we examined the regression model weights between the model features and the behavioral data.113

Then, we selected the 10 features with the highest weights and found that restricting the analyses to114

just these 10 features could predict the behavioral data to the noise ceiling (correlation with behavior115

r=0.83, P<0.00001).116

What do these 10 features represent? To answer this question, we used a version of feature visual-117

ization to determine what attributes of scenes the top 10 features are representing. Here, we chose118

to directly observe the strength of the gradients. The advantage of this method is that it provides119
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maps that show the specific pixels that drive a given unit in a neural network the most. Specifically,120

we used a gradient attribution method called Guided Backpropagation ( Springenberg et al. (2015)).121

The results from this analysis results in what we call ‘Attribution maps’ and can be visualized for a122

few example stimuli in Figure 3. Overall, the attribution maps clearly focus on the outer contours of123

objects and scenes. For example, with an image of a canoe on a lake, the attribution maps highlight124

the outer contours of the canoe itself but do not focus on the texture properties of the water, which125

has no strong outer contour. Conversely, with a picture of a beach, in which the horizon and shoreline126

serve as clear contours, the attribution maps highlight both of these aspects of the scene. Indeed, after127

examining several examples, it becomes clear that the critical elements are the contours of a scene. In128

other words, the extent to which observers will notice alterations to an image appears to be linked to129

the extent to which those outer contours are preserved.130

Figure 3: On the top row are six example original images. On the bottom row are visualizations from
the Guided Backpropogation procedures. The gradient strength is plotted from blue to yellow

4 Conclusion131

Here, we examined the bandwidth of visual awareness using an inattentional blindness paradigm with132

natural scenes. Specifically, we altered the periphery of natural images in a wide variety of manners133

and measured how often observers noticed those alterations. To gain insight as to which aspects134

of natural scenes drive these results, we screened several dCNN architectures to create a series of135

predictive models. Within each of these architectures, we found that later layers and higher-level136

features, but not earlier layers or lower-level features, could predict the behavioral results extremely137

well, reaching the noise ceiling in many cases. In addition, we used feature visualization techniques138

to directly examine the features that had the most predictive power. Overall, this analysis revealed that139

these particular features represented the contours of higher-level elements of a scene, such as those140

of complex objects (e.g., chairs, couches, people, etc.) and the largest contours of a scene (e.g., the141

horizon, the shoreline, etc.). Taken together, these results suggest that the extent to which observers142

will notice alterations in the periphery is dictated by the extent to which higher-level features are143

preserved in a given condition and suggest that perceptual awareness is limited by higher level aspects144

of a scene.145

Overall, this set of results helps elucidate the contents of perceptual awareness by building predictive146

models of inattentional blindness in natural scenes. Moreover, this study also demonstrates how using147

deep learning techniques can help understand the bandwidth of perceptual awareness. Going forward,148

it will be important for researchers to continue developing these tools in order to fully explain the149

contents of human visual consciousness.150
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