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Abstract

Various acceleration approaches for Policy Gra-
dient (PG) have been analyzed within the realm
of Reinforcement Learning (RL). However, the
theoretical understanding of the widely used
momentum-based acceleration method on PG re-
mains largely open. In response to this gap, we
adapt the celebrated Nesterov’s accelerated gradi-
ent (NAG) method to policy optimization in RL,
termed Accelerated Policy Gradient (APG). To
demonstrate the potential of APG in achieving
fast convergence, we formally prove that with
the true gradient and under the softmax policy
parametrization, APG converges to an optimal
policy at rates: (i) Õ(1/t2) with nearly constant
step sizes; (ii) O(e−ct) with time-varying step
sizes. To the best of our knowledge, this is the
first characterization of the convergence rates of
NAG in the context of RL. Notably, our analysis
relies on one interesting finding: Regardless of
the parameter initialization, APG ends up entering
a locally nearly-concave regime, where APG can
significantly benefit from the momentum, within
finite iterations. Through numerical validation
and experiments on the Atari 2600 benchmarks,
we confirm that APG exhibits a Õ(1/t2) rate with
nearly constant step sizes and a linear conver-
gence rate with time-varying step sizes, signifi-
cantly improving convergence over the standard
PG.
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1. Introduction
Policy gradient (PG) is a fundamental technique utilized
in the field of reinforcement learning (RL) for policy op-
timization. It operates by directly optimizing the RL ob-
jectives to determine the optimal policy, employing first-
order derivatives similar to the gradient descent algorithm
in conventional optimization problems. Notably, PG has
demonstrated empirical success (Mnih et al., 2016; Wang
et al., 2016; Silver et al., 2014; Lillicrap et al., 2016; Schul-
man et al., 2017; Espeholt et al., 2018) and is supported by
strong theoretical guarantees (Agarwal et al., 2021; Fazel
et al., 2018; Liu et al., 2020; Bhandari & Russo, 2019; Mei
et al., 2020; Wang et al., 2021; Mei et al., 2021a; 2022; Xiao,
2022; Chen & Maguluri, 2022; Lan, 2023). In a recent study,
Mei et al. (2020) characterize the O(1/t) convergence rate
of PG in the non-regularized tabular softmax setting. This
convergence behavior aligns with that of the gradient de-
scent algorithm for convex minimization problems, despite
that the RL objectives lack concave characteristics for maxi-
mization. Additionally, advancements in RL literature have
introduced theories on improving the O(1/t) convergence
rate through various acceleration techniques. Khodadadian
et al. (2021); Xiao (2022) offer sharp analyses of Natural
Policy Gradient (NPG) with time-varying step sizes, demon-
strating a notable linear convergence rate. On the other
hand, Mei et al. (2021b) utilize the normalized gradient to
accelerate the PG, also achieving a linear convergence rate.

In addition to the above-mentioned acceleration techniques,
momentum, which is another popular acceleration method
in the optimization literature, emerges as a widely adopted
strategy for accelerating policy optimization in RL in prac-
tice due to its simplicity (Vieillard et al., 2020; Huang
et al., 2020). Classic momentum methods, such as Nesterov
momentum (Nesterov, 1983) and the heavy-ball method
(Polyak, 1964), have been seamlessly integrated into opti-
mization solvers and deep learning frameworks like PyTorch
(Paszke et al., 2019). These approaches consistently outper-
form standard PG methods under A2C (Konda & Tsitsiklis,
1999) and PPO (Schulman et al., 2017), as evidenced by em-
pirical studies (Henderson et al., 2018; Andrychowicz et al.,
2021). Nesterov’s Accelerated Gradient (NAG) method,
introduced by Nesterov (1983), is a first-order approach
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originally designed for convex minimization to improve the
convergence rate to O(1/t2) from the O(1/t) rate of gradi-
ent descent. Despite its wide applicability in various types
of optimization problems over the past decades, to the best
of our knowledge, NAG has never been theoretically ana-
lyzed in the context of RL for its convergence rate, mainly
due to the non-concavity of RL objectives. Therefore, there
exists one important and yet unexplored research question:
Could the Nesterov momentum achieve convergence rates
better than or comparable to the existing PG and other
acceleration methods in the context of RL?

To answer this question, this paper introduces Accelerated
Policy Gradient (APG), which utilizes Nesterov acceleration
to address the policy optimization problem of RL. Despite
the existing knowledge about the NAG methods from previ-
ous research (Beck & Teboulle, 2009a;b; Ghadimi & Lan,
2016; Li & Lin, 2015; Su et al., 2014; Carmon et al., 2018),
there remain several fundamental challenges in establishing
convergence rates within the realm of RL: (i) NAG conver-
gence results under nonconvex problems: Although there is
a plethora of theoretical works studying the convergence of
NAG under general nonconvex problems, these results only
establish convergence of first-order optimality measures.
It is infeasible to characterize the convergence rate based
solely on these results. (ii) Inherent characteristics of the
momentum term: From an analytical perspective, the mo-
mentum term demonstrates intricate interactions with previ-
ous updates. As a result, accurately quantifying the specific
impact of momentum during the execution of APG poses a
considerable challenge. (iii) The nature of the unbounded
optimal parameter under softmax parameterization: A cru-
cial factor in characterizing the sub-optimality gap in the
theory of optimization is the norm of the distance between
the initial parameter and the optimal parameter (Beck &
Teboulle, 2009a;b; Ghadimi & Lan, 2016). However, in the
case of softmax parameterization in RL, the parameter of the
optimal action of each state tends to approach infinity. As a
result, the norm involved in the sub-optimality gap becomes
infinite, thereby hindering characterization of convergence
rates using existing results.

Our Contributions. Despite the above challenges, we
present an affirmative answer to the research question de-
scribed above and provide the first characterization of the
convergence rate of NAG in the context of RL. Specifically,
we present useful insights and novel techniques to tackle
the above technical challenges: Regarding (i), we discover
a fundamental property of the RL objective called local
near-concavity, which indicates that the RL objective is
nearly concave in the proximity of the optimal policy, de-
spite its non-concave global landscape. For (ii), we show
that the locally nearly-concave region is absorbing in the
sense that even with the effect of the momentum term, the
policy parameter could stay in the nearly-concave region in-

definitely once entered. This result is obtained by carefully
quantifying the cumulative effect of each momentum term.
Towards (iii), we introduce surrogate optimal parameters,
which have bounded norms and induce nearly-optimal poli-
cies, and thereby characterize the convergence rate of APG.
We summarize the contributions of this paper as follows:

• We introduce APG, which leverages the Nesterov momen-
tum scheme to accelerate the convergence performance of
PG for RL. To the best of our knowledge, this is the first
formal attempt at understanding the convergence of the
Nesterov momentum in the context of RL.

• To demonstrate the potential of APG in achieving fast
convergence, we formally establish that APG enjoys a
Õ(1/t2) convergence rate under softmax policy parame-
terization with nearly constant step sizes.1 Furthermore,
we offer that APG also achieves a linear convergence rate
of O(e−ct) if time-varying step sizes are allowed. These
deliver better or comparable results in both constant step
size and time-varying step size regimes. For ease of ref-
erence, a summarized comparison can be found in Table
1. To achieve this, we present several novel insights into
RL and APG, including the local near-concavity property
as well as the absorbing behavior of APG. Moreover, we
show that these properties can also be applied to establish
a Õ(1/t) convergence rate of PG, which is of independent
interest.

• Through numerical validation on MDP problems, we con-
firm that APG exhibits a Õ(1/t2) rate with nearly con-
stant step sizes and a linear convergence rate with time-
varying step sizes, thereby substantially improving the
convergence behavior over the standard PG. Furthermore,
we validate our APG algorithm on the benchmark Atari
games and demonstrate the significant benefit provided
by the Nesterov momentum.

2. Related Work
Policy Gradient. Policy gradient (Sutton et al., 1999) is
a popular RL technique that directly optimizes the objec-
tive function by computing and using the gradient of the
expected return with respect to the policy parameters. It
has several popular variants, such as the REINFORCE al-
gorithm (Williams, 1992), actor-critic methods (Konda &
Tsitsiklis, 1999), trust region policy optimization (TRPO)
(Schulman et al., 2015a), and proximal policy optimization
(PPO) (Schulman et al., 2017). Recently, policy gradient
methods have been shown to converge to the global optimal
policy. Convergence properties of standard policy gradi-
ent methods under various settings have been proven by

1Note that this result does not contradict the Ω(1/t) lower
bound of the sub-optimality gap of PG in (Mei et al., 2020). Please
refer to Remark 10 for a detailed discussion.
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Table 1. A summary of the convergence rates under tabular softmax policies under PG and various acceleration methods. Here NPG refers
to Natural Policy Gradient (Kakade, 2001), and GNPG refers to Geometry-aware Normalized Policy Gradient (Mei et al., 2021b). For the
sake of clarity, we use ηi’s to denote the pre-constants in the step sizes of each algorithm.

Algorithm Step Sizes Gradient Update Conv. Rate Reference

APG Nearly Constant2 ω(t) + η1 · t
t+1 · ∇θV

π(t)
ω (µ) Õ(1/t2) Theorem 2

PG Constant θ(t) + η2 · ∇θV
πθ (µ) O(1/t) (Mei et al., 2020)

APG Time-Varying ω(t) +
[
η3 · βt · ∇θV

π(t)
ω (µ)

]+K
O(e−ct) Theorem 3

NPG Time-Varying θ(t) + η5 ·Qπ
(t)
θ O(e−ct) (Khodadadian et al., 2021; Mei et al., 2021a)

NPG Time-Varying θ(t) + (η6 + log(1
/
π
(t)
θ )) ·Qπ

(t)
θ O(e−ct) (Khodadadian et al., 2021)

NPG 3 Time-Varying θ(t) + η7 · βt ·Qπ
(t)
θ O(e−ct) (Xiao, 2022)

GNPG Time-Varying θ(t) + η8 ·
∣∣∣∣∣∣∇θV

π
(t)
θ (µ)

∣∣∣∣∣∣−1

2
· ∇θV

π
(t)
θ (µ) O(e−ct) (Mei et al., 2021b)

Agarwal et al. (2021). Furthermore, Mei et al. (2020) char-
acterize a O(1/t) convergence rate of policy gradient under
non-regularized tabular softmax parameterization.

Acceleration Methods for RL. Numerous approaches aim
to accelerate PG methods in RL. One notable approach is
the Natural Policy Gradient (NPG), inspired by the natural
gradient concept. NPG has been demonstrated to have: (i) a
O(1/t) rate with constant step sizes (Agarwal et al., 2021;
Xiao, 2022); (ii) linear convergence with adaptively increas-
ing step sizes (Khodadadian et al., 2021) or non-adaptive
exponentially growing step sizes (Xiao, 2022). Gradient
normalization is another effective method for accelerating
PG. This approach involves normalizing the true policy gra-
dient by its Euclidean norm. Mei et al. (2021b) propose
Geometry-aware Normalized PG (GNPG) and demonstrate
its linear convergence under softmax policies. For more
details, please refer to Appendix J. To the best of our knowl-
edge, the effects of momentum in the context of RL remain
unclear. In this work, we utilize the Nesterov momentum
to achieve substantial acceleration for PG. Please refer to
Table 1 for a detailed comparison.

Nesterov’s Accelerated Gradient. Accelerated gradient
methods (Nesterov, 1983; Beck & Teboulle, 2009b; Su et al.,
2014; Attouch & Peypouquet, 2016; Carmon et al., 2017;
Jin et al., 2018) play a pivotal role in the optimization lit-
erature due to their ability to achieve convergence rates
faster than that of the conventional gradient descent algo-
rithm. Notably, in the convex minimization regime, accel-
erated gradient methods enjoy a convergence rate as fast as
O(1/t2), surpassing the limited O(1/t) rate offered by gra-
dient descent. In order to further enhance the performance
of accelerated gradient methods, several variants have been
proposed. For instance, Beck & Teboulle (2009a) propose
a variant of the accelerated gradient method with restart to
achieve monotonicity in the objective value. Ghadimi & Lan
(2016) present a unified analytical framework for a family
of accelerated gradient methods that can be applied to solve

convex, non-convex, and stochastic optimization problems.
Moreover, Li & Lin (2015) extend the restart approach of
Beck & Teboulle (2009a) with monotonic objective values
to further ensure sufficient objective improvement, in order
to provide convergence guarantees on stationarity measures
for non-convex problems. Other restart mechanisms have
also been applied in multiple recent accelerated gradient
methods (O’donoghue & Candes, 2015; Li & Lin, 2022).
The above list of works is by no means exhaustive and is
only meant to provide a brief overview of accelerated gradi-
ent methods. Our paper introduces APG, which combines
Nesterov’s accelerated gradient and PG methods for RL.
This integration enables a substantial acceleration of the
convergence rate compared to the standard PG method. It
is essential to note that in RL problems, we are maximizing
the objective function, which in general is neither convex
nor concave. To connect with the literature about convex
minimization, searching for properties akin to concavity
becomes pivotal.

3. Preliminaries
Markov Decision Processes. For a finite set X , we use
∆(X ) to denote the probability simplex over X . We con-
sider that a finite Markov decision process (MDP)M =
(S,A,P, r, γ, ρ) is determined by: (i) a finite state space
S, (ii) a finite action space A4, (iii) a transition kernel
P : S × A → ∆(S), determining the transition proba-
bility P(s′|s, a) from each state-action pair (s, a) to the

2As t/(t + 1) is nearly constant for large t, we regard this
design as constant step sizes, with a slight abuse of terminology.

3While (Xiao, 2022) examine the policy mirror descent (PMD),
a generalized version of PG, under direct parameterization instead
of softmax policies, it is known that by opting for KL-divergence
as the Bregman divergence, the update rule of PMD can be re-
formulated in a manner akin to Natural Policy Gradient (NPG)
expressed in the policy space.

4We consider the non-trivial case where |A| ≥ 2.
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next state s′, (iv) a reward function r : S × A → R, (v) a
discount factor γ ∈ [0, 1), and (vi) an initial state distribu-
tion ρ ∈ ∆(S). Without loss of generality, we presume the
one-step reward to lie in the [0, 1] interval. Given a policy
π : S → ∆(A), the value of state s under π is defined as

V π(s) := E
[ ∞∑

t=0

γtr(st, at)

∣∣∣∣π, s0 = s

]
. (1)

We use V π to denote the vector of V π(s) of all the states
s ∈ S. The goal of the learner (or agent) is to search for a
policy that maximizes the following objective function as
V π(ρ) := Es∼ρ[V

π(s)]. The Q-value (or action-value) and
the advantage function of π at (s, a) ∈ S ×A are defined as

Qπ(s, a) := r(s, a) + γ
∑
s′

P(s′|s, a)V π(s′),

Aπ(s, a) := Qπ(s, a)− V π(s),

(2)

where the advantage function reflects the relative benefit
of taking the action a at state s under policy π. The (dis-
counted) state visitation distribution of π is defined as

dπs0(s) := (1− γ)

∞∑
t=0

γtPr(st = s|s0, π,P),

which reflects how frequently the learner would visit the
state s under policy π, and we let dπρ (s) := Es0∼ρ

[
dπs0(s)

]
be the expected state visitation distribution under the initial
state distribution ρ. Given ρ, there exists an optimal policy
π∗ such that5

V π∗
(ρ) = max

π:S→∆(A)
V π(ρ). (3)

We denote V ∗(ρ) := V π∗
(ρ) and Q∗(s, a) := Qπ∗

(s, a).
Additionally, we make the following assumption:

Assumption 1 (Unique Optimal Action). There is a unique
optimal action a∗(s) for each state s ∈ S.

Surrogate Initial State Distribution. While obtaining the
true initial state distribution ρ can be challenging in practice,
it is fortunate that this issue can be addressed by considering
other surrogate initial state distribution µ. Notably, we
will show in the following theoretical proofs that even in
the absence of knowledge about ρ, convergence guarantees
of APG for V ∗(ρ) can still be obtained for almost every
µ ∈ ∆(S). This type of result bears high-level resemblance
to those of gradient-based methods for general non-convex
optimization (Lee et al., 2019; O’Neill & Wright, 2019). In
this paper, we consider that µ is drawn uniformly at random
from the |S|-dimensional probability simplex.

5See, for example, Theorem 1.7 in (Agarwal et al., 2019) for
the existence of such an optimal policy.

Softmax Parameterization. For unconstrained θ ∈ R|S||A|,
the tabular softmax policy parameterization is defined as

πθ(·|s) :=
exp(θs,·)∑

a′∈A exp(θs,a′ )
. (4)

The term “tabular” means that we store a parameter table
θ ∈ R| S ||A | for each state-action pairs, and sometimes we
would omit it and call (4) softmax parameterization.

Smoothness. As shown in prior works (Agarwal et al., 2021;
Mei et al., 2020), the RL objective function V πθ (ρ) enjoys
smoothness under softmax parameterization. Specifically,
the objective function θ → V πθ (ρ) is 8

(1−γ)3 -smooth.

Policy Gradient. In policy gradient methods, the param-
eters are updated by the gradient of V πθ (µ) with respect
to θ under a surrogate initial state distribution µ ∈ ∆(S).
Algorithm 1 presents the pseudo code of PG provided by
(Mei et al., 2020).

Algorithm 1 Policy Gradient (PG) in (Mei et al., 2020)
Input: Step size η = 1

L , where L is the Lipschitz constant
of the gradient of the objective function V πθ (µ).
Initialize: θ(1)(s, a) for all (s, a).
for t = 1 to T do

θ(t+1) ← θ(t) + η∇θV
πθ (µ)

∣∣∣
θ=θ(t)

(5)

end for

Nesterov’s Accelerated Gradient (NAG). Nesterov’s Ac-
celerated Gradient (NAG) (Nesterov, 1983) is an optimiza-
tion algorithm that utilizes a variant of momentum known
as Nesterov’s momentum to expedite the convergence rate.
Specifically, it computes an intermediate ”lookahead” esti-
mate of the gradient by evaluating the objective function at a
point slightly ahead of the current estimate. We provide the
pseudo code of NAG method as Algorithm 4 in Appendix A.
Remark 1 (Step-Size Regimes). Please note that the step-
size regimes are categorized in Table 1 based on the gradient
update presented in (5). Under the softmax parameterization,
the update θ(t) + η5 ·Qπ

(t)
θ is equivalent to θ(t) + η5 ·Aπ

(t)
θ ,

as Aπ
(t)
θ is derived by adding an action-independent value

V π
(t)
θ to Qπ

(t)
θ . According to Lemma 11, it is evident that the

step size is implicitly related to 1/π(t)
θ when being compared

with (5). Therefore, we consider the NPG with the update
θ(t)+η5 ·Qπ

(t)
θ as an algorithm with time-varying step sizes.

Notations. Throughout the paper, we use ∥x∥ to denote the
L2 norm of a real vector x.

4. Methodology
In this section, we present our proposed algorithm, Accel-
erated Policy Gradient (APG), which integrates Nesterov

4



Accelerated Policy Gradient: On the Convergence Rates of the Nesterov Momentum for Reinforcement Learning

acceleration with gradient-based reinforcement learning al-
gorithms. In Section 4.1, we introduce our central algorithm,
APG. Subsequently, in Section 4.2, we provide a motivating
example in the bandit setting to illustrate the convergence
behavior of APG.

Algorithm 2 Accelerated Policy Gradient (APG)

Input: Step size η(t) > 0.
Initialize: θ(0) ∈ R|S||A|, ω(0) = θ(0).
for t = 1 to T do

θ(t) ← ω(t−1) + η(t)∇θV
πθ (µ)

∣∣∣
θ=ω(t−1)

(6)

φ(t) ← θ(t) +
t− 1

t+ 2
(θ(t) − θ(t−1)) (7)

ω(t) ←

{
φ(t), if V π(t)

φ (µ) ≥ V π
(t)
θ (µ),

θ(t), otherwise.
(8)

end for

4.1. Accelerated Policy Gradient

We propose Accelerated Policy Gradient (APG) and present
the pseudo code of our algorithm in Algorithm 2. Through-
out this paper, we adopt the notation π

(t)
θ := πθ(t) , consis-

tently applying this convention to denote various parameters
including ω and φ. Our algorithm design draws inspiration
from the monotone version of NAG, which was originally
proposed in the seminal work (Beck & Teboulle, 2009a)
with a restart mechanism and has been widely adopted by
variants of NAG, e.g., (Li & Lin, 2015; O’donoghue & Can-
des, 2015; Li & Lin, 2022). We adapt these updates to
the RL objective, specifically V πθ (µ). It is important to
note that we will specify the step sizes η(t) in Lemma 2, as
presented in Section 5.

In Algorithm 2, the gradient update is performed in (6).
Following this, (7) calculates the momentum for our param-
eters, which represents a fundamental technique employed
in accelerated gradient methods. It is worth noting that in
(6), the gradient is computed with respect to ω(t−1), which
is the parameter that the momentum brings us to, rather than
θ(t) itself. This distinction sets APG apart from the standard
policy gradient updates (Algorithm 1). Moreover, (8) serves
as the restart mechanism, playing the role of affirming our
updates to improve the objective value.

Remark 2. One could also directly apply Nesterov’s ac-
celerated gradient (cf. Algorithm 4) to the PG setting. We
provide the pseudo code as Algorithm 6 in Appendix H.
However, in the absence of monotonicity, we must address
the intertwined effects between the gradient and the mo-
mentum to achieve convergence results. Specifically, we
empirically demonstrate that the non-monotonicity could
occur during the updates of Algorithm 6. For more detailed

information, please refer to Appendix H.

4.2. A Motivating Example of APG

Prior to the exposition of convergence analysis, we aim to
provide some insights into why APG has the potential to
attain a fast convergence rate, especially under the intricate
non-concave objectives in reinforcement learning.

Figure 1. The value function
V (s) versus the policy parame-
ter θa∗ and θa2 under a 2-armed
bandit problem.

Consider a simple two-
action bandit with ac-
tions a∗, a2 and the re-
ward function r(a∗) =
1, r(a2) = 0. Accord-
ingly, the objective func-
tion we aim to optimize is
Ea∼πθ

[r(a)] = πθ(a
∗) =

1/(1+e−(θa∗−θa2 )) under
softmax parameterization.
This can be expressed as a
sigmoid function with the
parameter (θa∗−θa2

), as illustrated in Figure 1. By deriving
the Hessian matrix with respect to our policy parameters θa∗

and θa2
, we could characterize the curvature of the objective

function around the current policy parameters, which pro-
vides useful insights into its local concavity. Upon analyzing
the Hessian matrix, we observe that it exhibits concavity
when πθ(a

∗) > 0.5. The detailed derivation is provided in
Appendix F. The aforementioned observation implies that
the objective function demonstrates local concavity when
πθ(a

∗) > 0.5. Since π∗(a∗) = 1, it follows that the objec-
tive function exhibits local concavity in the proximity of the
optimal policy π∗. As a result, if one initializes the policy
with a high probability assigned to the optimal action a∗,
then the policy would directly fall in the locally concave
part of the objective function. This allows us to apply the
theoretical findings from the existing convergence rate of
NAG in (Nesterov, 1983), which has demonstrated conver-
gence rates of O(1/t2) for convex problems. Based on this
insight, we establish the convergence rate of APG in the
more general MDP setting in Section 5.

5. Convergence Analysis
In this section, we take an important first step towards un-
derstanding the convergence behavior of APG and discuss
the theoretical results of APG in the general MDP setting.
Due to the space limit, we defer the proofs of the following
theorems to Appendices C and D.

5.1. Asymptotic Convergence of APG

In this subsection, we will formally present the asymptotic
convergence result of APG. This necessitates addressing
several key challenges outlined in the introduction. We high-
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light the challenges tackled in our analysis as follows: (C1)
The existing convergence results for non-convex problems
under NAG are not directly applicable: Note that the asymp-
totic convergence of standard PG is built on the standard
convergence result of gradient descent for non-convex prob-
lems (i.e., convergence of stationarity measures), as shown
in (Agarwal et al., 2021). While it appears natural to follow
the same approach for APG, two fundamental challenges are
that the existing results of NAG for non-convex problems
typically show best-iterate convergence (e.g., (Ghadimi &
Lan, 2016)) rather than last-iterate convergence, and more-
over these results hold under the assumption of a bounded
domain (e.g., see Theorem 2 of (Ghadimi & Lan, 2016)),
which does not hold under the softmax parameterization
in RL as the domain of the policy parameters and the opti-
mal θ could be unbounded. These are yet additional salient
differences between APG and PG. (C2) Characterization
of the cumulative effect of each momentum term: Based
on (C1), even if the limiting value functions exist, another
crucial obstacle is to precisely quantify the memory effect
of the momentum term on the policy’s overall evolution. To
address this challenge, we thoroughly examine the accumu-
lation of the gradient and momentum terms, as well as the
APG updates, to offer an accurate characterization of the
momentum’s memory effect on the policy.

Despite the above, we are still able to tackle these challenges
and establish the asymptotic convergence to the global opti-
mal policy of APG as follows. Recall the definition of the
optimal objective in (3).

Theorem 1 (Asymptotic Convergence Under Softmax
Parameterization). Consider a tabular softmax parame-
terized policy πθ. For APG with η(t) = t

t+1
(1−γ)3

16 and µ
initialized uniformly at random, the following holds almost
surely:

lim
t→∞

V π
(t)
θ (s) = V ∗(s),∀s ∈ S .

The complete proof is provided in Appendix C.

Remark 3. Note that Theorem 1 suggests the use of step
size η(t) that depends on t/(t + 1). This choice is related
to one inherent issue of NAG: the choices of step sizes are
typically different for the convex and the non-convex prob-
lems (e.g., (Ghadimi & Lan, 2016)). Recall from Section
4.2 that the RL objective function could be locally concave
around the optimal policy despite its non-concavity of the
global landscape. To enable the use of the same step size
scheme throughout the whole training process, we find that
incorporating the ratio t/(t+ 1) could achieve the best of
both concave and nonconcave cases.

Remark 4. In Theorem 1, the almost-sure statement comes
from the random initialization of the surrogate initial state
distribution µ. This condition resembles those of the con-
vergence results of gradient-based methods for non-convex

problems (e.g., (Lee et al., 2019; O’Neill & Wright, 2019)).

5.2. Convergence Rate of APG

In this subsection, we leverage the asymptotic conver-
gence of APG and proceed to characterize the conver-
gence rate of APG under softmax parameterization. We
assume that Assumption 1 holds for the subsequent re-
sults. For ease of notation, we denote the actions for each
state s ∈ S as a∗(s), a2(s), . . . , a| A |(s), ordered such that
Q∗(s, a∗(s)) > Q∗(s, a2(s)) ≥ · · · ≥ Q∗(s, a| A |(s)). We
will begin by introducing the two most fundamental con-
cepts throughout this paper: the C-nearly concave property
and the feasible update domain, as follows:

Definition 1 (C-Near Concavity). For C > 1, a function
f is said to be C-nearly concave at θ relative to a convex
set X ∋ θ if for any θ′ ∈ X , we have

f(θ′) ≤ f(θ) + C ·
〈
∇f(θ), θ′ − θ

〉
.

Definition 2. We define the feasible update domain U as

U := {d ∈ R| S ||A | : ds,a∗(s) > max
a̸=a∗(s)

ds,a,∀s ∈ S},

where ds,a ∈ R is the update with respect to the parameter
θs,a.

In other words, a vector d in the feasible update domain
U possesses the property that the update magnitude with
respect to θs,a∗(s) is the greatest among the actions in each
state s ∈ S. We use U to help us characterize the locally
nearly-concave regime as shown below, and subsequently
show that the updates of APG would all fall into U after
some finite time.

Lemma 1 (Locally C-Near Concavity; Informal). Given
any C > 1 and any d ∈ U . Let θ be a policy parame-
ter satisfying the following conditions for all s ∈ S: (i)
V πθ (s) > Q∗(s, a2(s)); (ii) For some MC,d > 0 (depends
on C and d), θs,a∗(s) − θs,a > MC,d, for all a ̸= a∗(s).
Then, the objective function θ 7→ V πθ (µ) is C-nearly con-
cave at θ along the direction d.

The formal information regarding the constant MC,d men-
tioned in Lemma 1 is provided in Appendix D.

Remark 5. Notably, the optimal parameter under the soft-
max parameterization is unbounded. Consequently, it is
challenging to determine whether a “neighborhood” exists
near the optimal parameter such that the structure of the
objective function exhibits desirable properties, such as con-
cavity or near concavity. Lemma 1 delineates the suffi-
cient conditions under which the objective function V πθ (µ)
achieves C-near concavity.

Remark 6. Note that the notion of weak-quasi-convexity,
as defined in (Guminov et al., 2017; Hardt et al., 2018; Bu
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& Mesbahi, 2020), shares similarities to our own definition
in Definition 1. While their definition encompasses the di-
rection from any to the optimal parameter, ours in Lemma 1
is more relaxed. Despite that the optimal parameter θ∗ in
our problem does not exist due to its unbounded nature,
according to the definition of the feasible update domain U ,
the direction toward the optimal policy π∗ in the parameter
space is always contained in U .

With Lemma 1, our goal is to investigate whether APG up-
dates can move along the local C-nearly concavity direction
after some finite number of time steps. To address this, we
establish Lemma 2, which guarantees the existence of a
finite time T such that our policy will indeed achieve the
condition stated in Lemma 1 through the APG updates and
remain in this region.

Lemma 2. Consider a tabular softmax parameterized pol-
icy. Under Assumption 1 and the setting of Theorem 1, the
following holds almost surely: Given any M > 0, there
exists a finite time T such that for all t ≥ T , s ∈ S, and
a ̸= a∗(s), we have (i) θ(t)s,a∗(s)−θ

(t)
s,a > M , (ii) V π

(t)
θ (s) >

Q∗(s, a2(s)), (iii) ∂V πθ (µ)
∂θs,a∗(s)

∣∣∣
θ=ω(t)

> 0 > ∂V πθ (µ)
∂θs,a

∣∣∣
θ=ω(t)

,

(iv) ω(t)
s,a∗(s) − θ

(t)
s,a∗(s) ≥ ω

(t)
s,a − θ

(t)
s,a.

Remark 7. Conditions (i) and (ii) are formulated to estab-
lish the local C-nearly concave conditions within a finite
number of time steps. On the other hand, conditions (iii) and
(iv) describe two essential properties for verifying that, after
a finite time, all the update directions of APG fall within
the feasible update domain U . Consequently, the updates
executed by APG are aligned with the nearly-concave struc-
ture. For a detailed proof regarding the examination of the
feasible directions, please refer to Appendix D.

With the results of Lemmas 1 and 2, we are able to establish
the main result for APG under softmax parameterization,
which is a Õ(1/t2) convergence rate.

Theorem 2 (Convergence Rate of APG; Informal). Con-
sider a tabular softmax parameterized policy πθ. Under
APG with η(t) = t

t+1 ·
(1−γ)3

16 and µ is initialized uniformly
at random, the following holds almost surely: There exists a
finite time T such that for all t ≥ T , we have

V ∗(ρ)− V π
(t)
θ (ρ)

≤ 1

(1− γ)3

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

(
2| S |(| A | − 1)

t2 + | A | − 1
+

512| S | ln2(t) + 32
∥∥2θ(T ) − (2 + T )

(
ω(T ) − θ(T )

)∥∥2
(1− γ)(t+ 1)t

)
.

Remark 8. Notably, the intriguing local C-near concavity
property is not specific to APG. Specifically, we can also
establish that PG enters the local C-nearly concave regime

within finite time steps. Moreover, its updates align with the
directions in U , allowing us to view it as an optimization
problem under the C-nearly concave objective. Accordingly,
we can demonstrate that PG under softmax parameteriza-
tion also enjoys C-near concavity and thereby achieves a
convergence rate of Õ(1/t). For more details, please refer
to Appendix G.

Remark 9. It is important to note that the logarithmic factor
in the sub-optimality gap is a consequence of the unbounded
nature of the optimal parameter in softmax parameterization.

Remark 10. Regarding the fundamental capability of PG,
Mei et al. (2020) has presented a lower bound on the sub-
optimality gap for PG in their Theorem 10. This theorem
asserts that the O(1/t) convergence rate achievable by PG
cannot be further improved. Despite the lower bound pre-
sented by Mei et al. (2020), our results for APG do not
contradict theirs. Specifically, while both APG and PG are
first-order methods relying solely on first-order derivatives
for updates, it is crucial to highlight that APG encompasses
a broader class of policy updates with the help of the mo-
mentum term in Nesterov acceleration. This allows APG
to utilize the gradients with respect to parameters that PG
cannot attain, thereby improving the convergence rate and
overall performance of APG.

In addition to Theorem 2, we also demonstrate that APG
exhibits a linear convergence when the time-varying step
sizes are allowed. Specifically, we establish results similar
to Theorem 2 and Lemma 2 with exponentially-growing
step sizes under element-wise clipping updates, leading to
the following theorem. For additional details, please refer
to Appendix E.

Definition 3. Given a vector x = [x1, x2, · · · ], we define
the element-wise clipping operator by:

[x]+y = [clip(x1,−y, y), clip(x2,−y, y), · · · ],

where

clip(x, a, b) :=


a, if x < a,

x, if a ≤ x ≤ b,

b, if x > b.

(9)

Theorem 3 (Convergence Rate of APG with Time-Vary-
ing Step Sizes). Consider a tabular softmax parameterized
policy πθ. Under APG with (6) modified as

θ(t) ← ω(t−1) +
[
η(t)∇θV

πθ (µ)
∣∣∣
θ=ω(t−1)

]+K

,

where η(t) = βt · (1−γ)3

8 for any exp( 1

8
√

| A || S |
·

1−γ
4C∞−(1−γ) ) > β > 1, µ initialized uniformly at ran-

dom, and K = 1

4
√

| A || S |
· 1−γ

4C∞−(1−γ) + 2 lnβ where

7
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(a) (b) (c) (d)

Figure 2. A comparison between the performance of APG, PG, and HBPG under an MDP with 5 states, 5 actions, with the uniform and
hard policy initialization: (a)-(b) show the sub-optimality gaps under the uniform and the hard initialization, respectively; (c)-(d) show the

one-step improvements of APG from the momentum (i.e., V π
(t)
ω (ρ)− V π

(t)
θ (ρ)) and the gradient (i.e., V π

(t+1)
θ (ρ)− V π

(t)
ω (ρ)), under

the uniform and the hard initialization, respectively.

(a) (b) (c) (d)

Figure 3. A comparison of the performance of APG and the benchmark algorithms in four Atari 2600 games. All the results are averaged
over 5 random seeds (with the shaded area showing the range of mean ± std).

C∞ := maxπ∥
dπ
µ

µ ∥∞, the following holds almost surely:
There exists a finite time T such that for all t ≥ T , we have

V ∗(ρ)− V π
(t)
θ (ρ) = O(e−ct),

for some constant c > 0.

Remark 11. It is worth noticing that the finite constant time
T from Theorem 2 and Theorem 3 is problem-dependent.
Specifically, this constant T shall depend on multiple fac-
tors, such as the initial state distribution ρ, the initial policy
parameter θ0, the cardinalities of the state space |S| and the
action space |A|, and the discount factor γ, among other
factors. Despite this problem-dependent constant, the rates
of convergence in Theorem 2 and Theorem 3 are Õ(1/t2)
and O(e−ct), under any problem instance.

6. Experiments
6.1. Numerical Validation of the Convergence Rates

In this subsection, we empirically validate the convergence
rate of APG by conducting experiments on an MDP with 5
states and 5 actions. We validate the convergence behavior
of APG and two popular methods, namely standard PG and

the algorithm that directly applies heavy-ball momentum
(Polyak, 1964) to PG, which we refer to as Heavy-Ball PG
(HBPG). Detailed configurations and the pseudo code of
HBPG are provided in Appendix F. In the subsequent numer-
ical validations, we focus on APG with nearly constant step
sizes. The numerical validation for APG with time-varying
step sizes is provided in Appendix E due to space limita-
tions. Our code for the experiments is available at https:
//github.com/NYCU-RL-Bandits-Lab/APG.

We validate the convergence rate of APG, HBPG, and PG
on an MDP with 5 states and 5 actions in two settings: (i)
Uniform initialization (i.e., all actions have equal initial
probability): The training curves of sub-optimality gap for
PG, HBPG, and APG are depicted in Figure 2. Upon plot-
ting the sub-optimality gaps of PG, HBPG, and APG under
uniform initialization on a log-log graph in Figure 2(a), we
observe that both PG and HBPG exhibit a slope of approx-
imately 1, while APG demonstrates a slope of 2. These
slopes match the respective convergence rates of O(1/t)
for PG and HBPG and Õ(1/t2) convergence rate for APG,
as shown in Theorem 2. Figure 2(c) further confirms that
the momentum term in APG contributes substantially in
terms of policy improvement in the MDP case. (ii) Hard
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initialization (i.e., the optimal action has the smallest initial
probability): Figure 2(b) and Figure 2(d) show that APG
could escape from sub-optimality much faster than PG and
HBPG in the MDP case. This further showcases APG’s
superiority over PG and HBPG.

6.2. APG on Atari Games

In this subsection, we empirically evaluate the performance
of APG on four Atari 2600 games from the Arcade Learn-
ing Environment (ALE) (Bellemare et al., 2013), including
Pong, Carnival, Riverraid, and Seaquest. Each environment
is associated with a 210×160×3 binary state representation,
which corresponds to the 210 × 160 grid and 3 channels.
The detailed configuration is provided in Appendix F. In
Figure 3, we observe that APG exhibits faster or comparable
convergence compared to both HBPG and PG across all four
environments. This further demonstrates the potential of
APG in practice.

7. Concluding Remarks
Nesterov’s Accelerated Gradient method, proposed almost
four decades ago, provides a powerful first-order scheme
for fast convergence under a broad class of optimization
problems. However, since its introduction, NAG has never
been formally analyzed or evaluated within the realm of RL,
mainly due to the non-concavity of the RL objective. In this
paper, we propose APG and take an important first step to-
wards understanding NAG in RL. We rigorously present that
APG can converge to a globally optimal policy at a Õ(1/t2)
rate in the general MDP setting under softmax policies with
nearly constant step sizes. Moreover, we showcase the linear
convergence rate of O(e−ct) with time-varying step sizes.
This demonstrates the potential of APG in attaining fast
convergence in RL.

On the other hand, our work also leaves open interesting
research questions about NAG in RL. For example, as our
paper mainly focuses on the exact gradient setting, another
promising research direction is to extend our results of APG
to the stochastic gradient setting, where the advantage func-
tion as well as the gradient are estimated from sampled
transitions.
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aries of the Machine Learning field. There are many poten-
tial societal consequences of our work, none which we feel
must be specifically highlighted here.
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A. Supporting Algorithms
For ease of exposition, we state the accelerated gradient algorithm of Ghadimi & Lan (2016) in Algorithm 3. We have
made the following notational changes from the version in (Ghadimi & Lan, 2016) so that one could easily compare it
with Algorithm 2: (i) The positions of the superscript and subscript are exchanged. (ii) The original gradient symbol is
replaced with the gradient of our objective (i.e., ∇θV

πθ (µ)). (iii) The iteration counter is changed from k to t. (iv) The
original descent algorithm is now made an ascent algorithm (i.e., the sign in (11) and (12) is plus instead of minus). (v) We
introduced a momentum variable m̄init in (10) in order to consider a non-zero initial momentum when the algorithm enters
the concave regime, which will be clarified in the subsequent discussion.

Algorithm 3 The Accelerated Policy Gradient (APG) Algorithm Revised From (Ghadimi & Lan, 2016)

Input: θ̂(0), m̄init ∈ Rn, {α(t)} with α(t) ∈ (0, 1] for all t ≥ 1, {β(t) > 0}, and {λ(t) > 0}.
0. Set the initial points θ(0)ag = θ̂(0) + m̄init and t = 1.
1. Set

θ
(t)
md = (1− α(t))θ(t−1)

ag + α(t)θ̂(t−1) (10)

2. Compute ∇V πθ (µ) and set

θ̂(t) = θ̂(t−1) + λ(t)∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

, (11)

θ(t)ag = θ
(t)
md + β(t)∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

. (12)

3. Set t← t+ 1 and go to step 1.

Lemma 3 (Equivalence between Algorithm 2 and Algorithm 3). Suppose that from the Tshift-th iteration on, the restart
mechanism of Algorithm 2 remains inactive, i.e., ω(t) = φ(t) for all t ≥ Tshift. Then, starting at the Tshift-th iteration,
Algorithm 2 is equivalent to initializing Algorithm 3 at θ(Tshift) , with α(t) = 2

t+Tshift+1 , β(t) = η(t+Tshift), λ(t) = β(t)/α(t),

m̄init = −ω(Tshift)−θ(Tshift)

α(1) , and θ̂(0) = θ(Tshift) − m̄init, in the sense that ω(t) = θ
(t−Tshift+1)
md , θ(t) = θ

(t−Tshift)
ag .

Remark 12. Lemma 3 shows that our Algorithm 2 is equivalent to Algorithm 3 under some proper conditions, so we could
leverage the results of Ghadimi & Lan (2016).

Proof of Lemma 3. Since α(t)λ(t) = β(t), by subtracting (12) from (11) times α(t), for all t ≥ 1, we have

α(t)θ̂(t) − θ(t)ag = α(t)θ̂(t−1) − θ
(t)
md. (13)

Then, substituting θ
(t)
md in (13) by (10) leads to

θ̂(t) =
θ
(t)
ag − (1− α(t))θ

(t−1)
ag

α(t)
. (14)

Plugging (14) back into (10), for t ≥ 2, we get

θ
(t)
md = (1− α(t))θ(t−1)

ag + α(t)θ̂(t−1)

= (1− α(t))θ(t−1)
ag + α(t) θ

(t−1)
ag − (1− α(t−1))θ

(t−2)
ag

α(t−1)

= θ(t−1)
ag +

α(t)(1− α(t−1))

α(t−1)
(θ(t−1)

ag − θ(t−2)
ag ). (15)

For t = 1, since θ
(0)
ag = θ̂(0) + m̄init, we get

θ
(1)
md = (1− α(1))θ(0)ag + α(1)θ̂(0)

14
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= θ(0)ag − α(1)m̄init. (16)

By (12), (15) and (16), we could simplify Algorithm 3 into a two-variable update form:

θ
(t)
md =

{
θ
(0)
ag −α(1)m̄init if t = 1,

θ
(t−1)
ag + α(t)(1−α(t−1))

α(t−1) (θ
(t−1)
ag − θ

(t−2)
ag ) if t > 1.

θ(t)ag = θ
(t)
md + β(t)∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

for all t ≥ 1.

Finally, given Tshift ∈ N, by applying α(t) = 2
t+1+Tshift

, β(t) = η(t), and m̄init = −ω(Tshift)−θ(Tshift)

α(1) in the update form above,
we reach our desired result:

1. First, initialize θ
(1)
md = θ

(0)
ag − α(1)m̄init = θ

(0)
ag + (ω(Tshift) − θ(Tshift)).

2. Then, run the following updates recursively:

θ(t)ag = θ
(t)
md + η(t)∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

(17)

θ
(t+1)
md = θ(t)ag +

t− 1 + Tshift

t+ 2 + Tshift
(θ(t)ag − θ(t−1)

ag ). (18)

Note that ω(Tshift) − θ(Tshift) is the momentum at time Tshift − 1, so we select m̄init as −ω(Tshift)−θ(Tshift)

α(1) . Furthermore, if

Tshift = 0, it is exactly equivalent to the form shown in Algorithm 2. In summary, θ(t+1)
md , θ

(t)
ag in (17) and (18) corresponds

to ω(t), θ(t) in Algorithm 2, respectively.

Below, we present the pseudo code of Nesterov’s Accelerated Gradient (NAG) algorithm discussed in Section 3.

Algorithm 4 Nesterov’s Accelerated Gradient (NAG) algorithm in (Su et al., 2014)
Input: Step size η = 1

L , where L is the Lipschitz constant of the gradient of the objective function f .
Initialize: θ(0) and ω(0) = θ(0).
for t = 1 to T do

θ(t) = ω(t−1) − η∇f(ω(t−1))

ω(t) = θ(t) +
t− 1

t+ 2
(θ(t) − θ(t−1))

end for

15
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B. Supporting Lemmas
In this section, we provide useful properties of policy optimization, softmax parameterization, and Accelerated Policy
Gradient (APG). Additionally, we also demonstrate the convergence rate of accelerated gradient (not necessarily restricted
to reinforcement learning) for nearly concave objective functions.

B.1. Useful Properties of Policy Optimization

We first present properties related to general policy optimization that are not restricted to softmax parameterization.

Lemma 4 (Performance Difference Lemma in (Kakade & Langford, 2002; Agarwal et al., 2021)). For any initial state
distribution µ ∈ ∆(S), the difference in the value under µ between two policies π and π′ can be characterized as

V π (µ)− V π′
(µ) =

1

1− γ
Es∼dπ

µ
Ea∼π(·|s)

[
Aπ′

(s, a)
]
.

In particular, by specifying µ as a one-hot distribution (i.e., µ(s0) = 1 for some s0 ∈ S and µ(s′) = 0 for all s′ ̸= s0), we
have

V π (s0)− V π′
(s0) =

1

1− γ
Es∼dπ

s0
Ea∼π(·|s)

[
Aπ′

(s, a)
]
.

Lemma 5. dπµ(s) ≥ (1− γ) · µ(s), ∀π,∀s ∈ S, where µ(s) is any starting state distribution of the MDP.

Proof of Lemma 5. Since γ ∈ [0, 1), we have

dπµ(s) = E
s0∼µ

[
dπµ(s)

]
= E

s0∼µ

[
(1− γ) ·

∞∑
t=0

γt · P(st = s | s0, π)

]
≥ E

s0∼µ
[(1− γ) · P(s0 = s | s0, π)]

= (1− γ) · µ(s).

Lemma 6. V ∗(ρ)− V π(ρ) ≤ 1
1−γ ·

∥∥∥dπ∗
ρ

µ

∥∥∥
∞
· (V ∗(µ)− V π(µ)) for any probability distributions ρ, µ and any policy π.

Proof of Lemma 6.

V ∗(ρ)− V π(ρ) =
1

1− γ
·
∑
s∈S

dπ
∗

ρ (s)
∑
a∈A

π∗(a|s) ·Aπ(s, a) (19)

=
1

1− γ
·
∑
s∈S

dπ
∗

µ (s) ·
dπ

∗

ρ (s)

dπ∗
µ (s)

∑
a′∈A

π∗(a|s) ·Aπ(s, a)

≤ 1

1− γ
·

∥∥∥∥∥dπ
∗

ρ

dπ∗
µ

∥∥∥∥∥
∞

·
∑
s∈S

dπ
∗

µ (s)
∑
a′∈A

π∗(a|s) ·Aπ(s, a)

≤ 1

(1− γ)2
·

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

·
∑
s∈S

dπ
∗

µ (s)
∑
a′∈A

π∗(a|s) ·Aπ(s, a) (20)

=
1

1− γ
·

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

· (V ∗(µ)− V π(µ)) , (21)

where (19) and (21) hold by Lemma 4 and (20) holds due to Lemma 5.

Lemma 7. For any policy π, we have
∑

a∈A π(a|s)Aπ(s, a) = 0, ∀s ∈ S.
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Proof of Lemma 7. ∑
a∈A

π(a|s)Aπ(s, a) =
∑
a∈A

π(a|s)
(
Qπ(s, a)− V π(s)

)
=
∑
a∈A

π(a|s)Qπ(s, a)−
∑
a∈A

π(a|s)V π(s)

= V π(s)− V π(s), (22)
= 0,

where (22) leverages the Bellman consistency equation in Lemma 1.4 of (Agarwal et al., 2019).

Lemma 8. Assume assumption 1 holds. Given any s ∈ S, let a∗(s) be the optimal action at the state s, and ai(s), where
2 ≤ i ≤ |A |, be such that Q∗(s, a∗(s)) ≥ Q∗(s, a2(s)) ≥ · · · ≥ Q∗(s, a| A |(s)). Then, for any policy π and any ai(s)
with 2 ≤ i ≤ |A |, we have Q∗(s, a2(s)) ≥ Qπ(s, ai(s)). Furthermore, we also have V ∗(s) = Q∗(s, a∗(s)) for all s ∈ S .

Proof of Lemma 8. Theorem 1.7 of (Agarwal et al., 2019) gives that

Q∗(s, a) = sup
π̄

Qπ̄(s, a), ∀(s, a) ∈ S ×A . (23)

Therefore, for any policy π and ai(s) for 2 ≤ i ≤ |A |, we have

Qπ(s, ai(s)) ≤ sup
π′

Qπ′
(s, ai(s))

= Q∗(s, ai(s)) (24)
≤ Q∗(s, a2(s)), (25)

where (24) holds by (23), and (25) is from the definition of a2(s). Furthermore, by page 14 of (Szepesvári, 2022) and the
definition of a∗(s), we have V ∗(s) = argmaxa∈A Q∗(s, a) = Q∗(s, a∗(s)) for all s ∈ S.

Lemma 9. For any fixed state s ∈ S, any fixed action a ∈ A, and any policies π1, π2, we have∥∥∥π1(·|s)− π2(·|s)
∥∥∥
∞
≤ 1−min{π1(a|s), π2(a|s)}.

Proof of Lemma 9. For any a′ ∈ A, we have∣∣∣π1(a
′|s)− π2(a

′|s)
∣∣∣ ≤ max{π1(a

′|s), π2(a
′|s)}, (26)

where (26) holds because both terms are nonnegative. In addition,∣∣∣π1(a
′|s)− π2(a

′|s)
∣∣∣ ≤ max{π1(a

′|s), π2(a
′|s)} −min{π1(a

′|s), π2(a
′|s)}

≤ 1−min{π1(a
′|s), π2(a

′|s)}. (27)

Now, we fix a ∈ A and show that for any a′ ∈ A we have∣∣∣π1(a
′|s)− π2(a

′|s)
∣∣∣ ≤ 1−min{π1(a|s), π2(a|s)}. (28)

When a′ = a, (28) holds by (27). When a′ ̸= a, we note that the maximum of π1(a
′|s) and π2(a

′|s) can be at most
1− π1(a|s) and 1− π2(a|s), respectively. Thus, by (26), we have∣∣∣π1(a

′|s)− π2(a
′|s)
∣∣∣ ≤ max{π1(a

′|s), π2(a
′|s)}

≤ max{1− π1(a|s), 1− π2(a|s)}
= 1−min{π1(a|s), π2(a|s)}.

The desired result is then obtained by taking the maximum over all a′ ∈ A.
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Lemma 10. Given an infinite horizon discount MDPM as defined in Section 3. Suppose that for all (s, a) ∈ S ×A, the
reward function r(s, a) of the MDPM lies in [0, Rmax] for some Rmax ≥ 0. Then, we have V π(s) ∈ [0, Rmax/(1 − γ)]
for any s ∈ S and any policy π. Furthermore, Qπ(s, a) ∈ [0, Rmax/(1 − γ)] and |Aπ(s, a)| ∈ [0, Rmax/(1 − γ)] for any
(s, a) ∈ S ×A and any policy π.

Proof of Lemma 10. By the definition in (1) and that r(s, a) ∈ [0, Rmax], for any policy π and any state s ∈ S, we have

V π(s) = E
[ ∞∑

t=0

γtr(st, at)

∣∣∣∣π, s0 = s

]
≤ E

[ ∞∑
t=0

γtRmax

∣∣∣∣π, s0 = s

]
=

∞∑
t=0

γtRmax =
Rmax

1− γ
.

For the Q-value, by (2), given any (s, a) ∈ S ×A and any policy π,

Qπ(s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)V π(s′) ≤ Rmax + γ · Rmax

1− γ
=

Rmax

1− γ
.

For the advantage function, by (2), we combine the above results of V π(s) and Qπ(s, a) and obtain that |Aπ(s, a)| ∈
[0, Rmax/(1− γ)] for any (s, a) ∈ S ×A and any policy π.

B.2. Useful Properties of Softmax Parameterization

This section provides results specific for softmax parameterization.

Lemma 11 (Lemma 1. in (Mei et al., 2020)). The softmax policy gradient with respect to θ is

∂V πθ (µ)

∂θs,a
=

1

1− γ
· dπθ

µ (s) · πθ(a|s) ·Aπθ (s, a), for each (s, a) ∈ S ×A .

Lemma 12 (Equation in (Agarwal et al., 2021), page 18). The softmax policy gradient with respect to πθ is

∂V πθ (µ)

∂πθ(a|s)
=

1

1− γ
· dπθ

µ (s) ·Aπθ (s, a), for each (s, a) ∈ S ×A .

Lemma 13 (Lemma 2. in (Mei et al., 2020)). Under softmax policy parameterization, θ → π⊤
θ r is 5/2-smooth for any

r ∈ [0, 1]| A |.

Lemma 14 (Lemma 7. in (Mei et al., 2020)). Under softmax policy parameterization, θ → V πθ (ρ) is 8
(1−γ)3 -smooth for

any γ ∈ [0, 1).

Lemma 15 (Lemma 8. in (Mei et al., 2020)). For all θ ∈ R| S |×|A |, we have,∥∥∥∇θV
πθ |θ=θ(t)

∥∥∥
2
≥ mins πθ(a

∗(s)|S))√
| S | · ∥dπ∗

ρ /dπ∗
µ ∥∞

· (V ∗(ρ)− V πθ (ρ)).

Definition 4 (Definition 3. in (Mei et al., 2021b)). The function f : Θ→ R satisfies β(ω) non-uniform smoothness if f is
differentiable and for all ω, θ ∈ Θ,∣∣∣f(θ)− f(ω)− ⟨df(ω)

dω
, θ − ω⟩

∣∣∣ ≤ β(ω)

2
· ∥θ − ω∥22, (29)

where β is a positive valued function: β : Θ→ (0,∞).

Lemma 16. If a function satisfies (29) in Definition 4, then f satisfies∥∥∥∥df(θ)dθ
− df(ω)

dω

∥∥∥∥
2

≤ β(ω) · ∥θ − ω∥2.

Proof of Lemma 16. Let ω, θ ∈ Θ and let p ∈ Θ be chosen later. By (29), we have the upper bound,

D := f(θ + p)− f(ω) + f(ω − p)− f(θ)
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≤
〈df(ω)

dω
, θ + p− ω

〉
+

β(ω)

2
∥θ + p− ω∥22 +

〈df(θ)
dθ

, ω − p− θ
〉
+

β(ω)

2
∥ω − p− θ∥22

= −
〈df(ω)

dω
− df(θ)

dθ
, ω − θ − p

〉
+ β(ω)∥ω − θ − p∥22

and the lower bound

D = f(θ + p)− f(θ) + f(ω − p)− f(ω)

≥
〈df(θ)

dθ
, p
〉
− β(ω)

2
∥p∥22 +

〈df(ω)
dω

,−p
〉
− β(ω)

2
∥p∥22

= −
〈df(ω)

dω
− df(θ)

dθ
, p
〉
− β(ω)∥p∥22.

By combining the above upper and lower bounds, we obtain

−
〈df(ω)

dω
− df(θ)

dθ
, ω − θ − 2p

〉
≤ β(ω)∥ω − θ − p∥22 + β(ω)∥p∥22.

Taking p = 1
2 [ω − θ − 1

β(ω) (
df(ω)
dω − df(θ)

dθ )] implies that

1

β(ω)

∥∥∥∥df(ω)dω
− df(θ)

dθ

∥∥∥∥2
2

≤ β(ω)

4

∥∥∥∥ω − θ +
1

β(ω)
(
df(ω)

dω
− df(θ)

dθ
)

∥∥∥∥2
2

+
β(ω)

4

∥∥∥∥ω − θ − 1

β(ω)
(
df(ω)

dω
− df(θ)

dθ
)

∥∥∥∥2
2

=
β(ω)

2
∥ω − θ∥22 +

1

2β(ω)

∥∥∥∥df(ω)dω
− df(θ)

dθ

∥∥∥∥2
2

.

By rearraging the terms, we have ∥∥∥∥df(θ)dθ
− df(ω)

dω

∥∥∥∥2
2

≤ β(ω) · ∥θ − ω∥22.

By taking square root on each side, we obtain the desired result.

Lemma 17 (Lemma 6. in (Mei et al., 2021b)). Denote ωζ := ω + ζ · (θ − ω) with some ζ ∈ [0, 1]. θ → V πω (µ) satisfies
β(θζ) non-uniform smoothness with

β(θζ) =
[
3 +

4 · (C∞ − (1− γ))

1− γ

]
·
√
| S | · ∥∇θV

πθ |θ=ωζ
∥2,

where C∞ := maxπ∥
dπ
µ

µ ∥∞ ≤
1

mins µ(s) <∞.

Lemma 18 (Lemma 7. in (Mei et al., 2021b)). Let η = 1−γ
6·(1−γ)+8·(C∞−(1−γ)) ·

1√
| S |

and

θ ← ω + η · ∇θV
πθ |θ=ω/∥∇θV

πθ |θ=ω∥2.

Denote ωζ := ω + ζ · (θ − ω) with some ζ ∈ [0, 1]. We have,

∥∇θV
πθ |θ=ωζ

∥2 ≤ 2∥∇θV
πθ |θ=ω∥2.

Lemma 19. Consider softmax parameterization. Given C > 1 and a probability distribution µ over the state space S , we
let

MC := ln
[ | S ||A |2

(C − 1)(1− γ)2 mins∈S µ(s)

]
.

For any two parameters θ, θ′ ∈ R| S ||A |, if

min{θ′s,a∗(s) − θ′s,a, θs,a∗(s) − θs,a} > MC , ∀s ∈ S, ∀a ̸= a∗(s), (30)

then we have ∥∥∥∥dπθ′
µ

dπθ
µ

∥∥∥∥
∞

< C.
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Remark 13. Lemma 19 is a general property of RL under softmax policies, regardless of the algorithm applied. In our
subsequent proof of Theorem 2, we will let θ and θ′ respectively represent the parameters before and after an APG update.
Moreover, we also establish in Lemma 1 that the condition (30) is indeed achievavable for APG.

Proof of Lemma 19. Using Lemma 9 and (30), we have∥∥∥πθ′ − πθ

∥∥∥
∞
≤ max

s∈S

{
1−min{πθ(a

∗(s)|s), πθ′(a∗(s)|s)}
}

≤ max
s∈S

{
1−min{ eθs,a∗(s)

eθs,a∗(s) + (| A | − 1)eθs,a∗(s)−MC
,

eθ
′
s,a∗(s)

e
θ′
s,a∗(s) + (| A | − 1)e

θ′
s,a∗(s)

−MC
}
}

<
| A |e−MC

1 + | A |e−MC

<
(C − 1)(1− γ)2 mins∈S µ(s)

| S ||A |
. (31)

Next, we characterize the ratio d
πθ′
µ (s)/dπθ

µ (s) for a fixed s. We can regard dπµ(s) as the value function of a specific MDP.
Specifically, we construct this MDP, denoted asM(s), as follows. We letM(s) share identical parameters withM defined
in Section 3. The only distinction lies in its reward function rM(s), which we define as rM(s)(s

′, a′) = (1− γ)I{s′ = s},
where I{s′ = s} is the indicator function whose value is 1 if s′ = s and 0 otherwise. We can observe that

E
[ ∞∑

t

γt(1− γ)I{st = s}
∣∣∣π, s0 ∼ µ

]
= (1− γ)

∞∑
t

γtPr(st = s|π, s0 ∼ µ). (32)

We denote V π
M(s)(µ) as the value function of π calculated under the MDP M(s). Moreover, we define Aπ

M(s) as the
advantage function and dπM(s),µ as the state visitation distribution of π inM(s), respectively. By the definition of the state
visitation distribution and the value function, together with (32), we obtain dπµ(s) = V π

M(s)(µ) for any π. Consequently, we
have ∣∣∣dπθ′

µ (s)− dπθ
µ (s)

∣∣∣ = ∣∣∣V πθ′
M(s)(µ)− V πθ

M(s)(µ)
∣∣∣

=
∣∣∣∑
s′,a′

d
πθ′
M(s),µ(s

′)πθ′(a′|s′)Aπθ

M(s)(s
′, a′)

∣∣∣ (33)

=
∣∣∣∑
s′,a′

d
πθ′
M(s),µ(s

′)(πθ′(a′|s′)− πθ(a
′|s′))Aπθ

M(s)(s
′, a′)

∣∣∣ (34)

≤
∑
s′,a′

∣∣∣ dπθ′
M(s),µ(s

′)︸ ︷︷ ︸
≤1

(πθ′(a′|s′)− πθ(a
′|s′))Aπθ

M(s)(s
′, a′)︸ ︷︷ ︸

≤1 by Lemma 10

∣∣∣
≤ 1

1− γ

∑
s′,a′

∣∣∣πθ′(a′|s′)− πθ(a
′|s′)

∣∣∣
≤ |S ||A |

1− γ
·
∥∥∥πθ′ − πθ

∥∥∥
∞

< (C − 1)(1− γ) min
s′∈S

µ(s′) (35)

≤ (C − 1)(1− γ)µ(s), (36)

where (33) holds by leveraging Lemma 4 in the MDPM(s), (34) is from Lemma 7, and we used (31) to obtain (35). Finally,
(36) leads to

d
πθ′
µ (s)

dπθ
µ (s)

<
dπθ
µ (s) + (C − 1)(1− γ)µ(s)

dπθ
µ (s)

= 1 +
(C − 1)(1− γ)µ(s)

dπθ
µ (s)
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≤ 1 +
(C − 1)(1− γ)µ(s)

(1− γ)µ(s)
(37)

= C,

where (37) used the fact that dπθ
µ (s) ≥ (1− γ)µ(s) for all s ∈ S . Since s is arbitrary, the desired result is obtained by taking

the maximum over all s ∈ S.

According to Definition 2, U is a set consisting of vectors in the high-dimensional space of R| S |×|A |. Fortunately, by
focusing at one state s at a time, we can greatly simplify the analysis. We first define the following notations and then prove
a critical lemma for our analysis.

Definition 5. Consider any θ ∈ R| S ||A | and d ∈ R| S ||A |. For all s ∈ S , we define θsi,· ∈ R| A | and dsi,· ∈ R| A | to be
respectively the subvectors of θ and d along the state si as follows:

θsi,· := [θsi,a∗(si), θsi,a2(si), · · · , θsi,a| A |(si)], dsi,· := [dsi,a∗(si), dsi,a2(si), · · · , dsi,a| A |(si)].

Lemma 20. Assume that | A | ≥ 2. Consider any vector d in the feasible update domain U such that ds,· is a unit vector
for all s ∈ S. Let

Md := 2 max
s∈S,i>1

{
ln
[
2(|A| − 1)

]
− ln[ds,a∗(s) − ds,ai(s)]

}
. (38)

Let θ ∈ R| S ||A | be a vector such that θs,a∗(s) − θs,a > Md for all s ∈ S and a ̸= a∗(s). Then, under softmax
parameterization, we have the following

• The function θ 7→ πθ(a|s) is convex along the direction d for all s ∈ S and a ̸= a∗(s).

• The function θ 7→ πθ(a
∗(s)|s) is concave along the direction d for all s ∈ S.

Proof of Lemma 20. Given that the function θ → πθ(a|s) is independent of any s′ ̸= s, for the first item it suffices to
establish the convexity of the function θs,· → πθ(a|s) alone ds,· for all a ̸= a∗(s) for any given s ∈ S. Following that,
since πθ(a

∗(s)|s) = 1−
∑

a̸=a∗ πθ(a|s) can be viewed as a finite summation of concave functions along d with respect to
θ, θ → πθ(a

∗(s)|s) is a concave along ds,·, and the second item ensues.

We first note that ln[2(| A |−1)] > 0 because | A | ≥ 2, and ln[ds,a∗(s)−ds,ai(s)] ≤ 0 because ds,a∗(s)−ds,ai(s) ∈ (0, 1] for
all i by the definition of U and the fact that ∥ds,·∥ ≤ 1. Therefore, we see that Md > 0. Given an action ai(s) ̸= a∗(s), since
the convexity of a function is determined by its behavior along arbitrary lines in its domain (the domain U is clearly convex),
it suffices to show that the following twice-differentiable function is concave (i.e., the second derivative is non-positive)
along the unit vector ds,· when k → 0:

f(k) :=
eθs,ai(s)

+k·ds,ai(s)

eθs,a∗(s)+k·ds,a∗(s) + eθs,a2(s)+k·ds,a2(s) + · · ·+ e
θs,a|A|(s)+k·ds,a| A |(s)

=
1

e(θs,a∗(s)−θs,ai(s)
)+k·(ds,a∗(s)−ds,ai(s)

) +
∑|A|

j=2 e
(θs,aj(s)

−θs,ai(s)
)+k·(ds,aj(s)

−ds,ai(s)
)
.

By defining g(k) := 1/f(k) and taking the second derivative of f(k), we have

f
′′
(k) =

2(g
′
(k))2

g(k)3
− g

′′
(k)

g(k)2
.

Let k → 0, we then get

f
′′
(0) =

1

g(0)2

(
2(g

′
(0))2

g(0)
− g

′′
(0)

)
.

Since g(k) ≥ 0 for any k ∈ R, f
′′
(0) ≥ 0 if and only if

2(g
′
(0))2 − g

′′
(0) · g(0) ≥ 0. (39)
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By direct calculation, we have m′(0) =
∑

j ̸=i(dj−di) exp(θs,aj(s)−θs,ai(s)) and m′′(0) =
∑

j ̸=i(dj−di)2 exp(θs,aj(s)−
θs,ai(s)). Therefore, (39) leads to

2(g′(0))2 − g
′′
(0) · g(0)

= 2
∑
j ̸=i

(ds,aj(s) − ds,ai(s))
2 exp(2θs,aj(s) − 2θs,ai(s)) (40)

+ 2
∑

u,v ̸=i,u<v

2(ds,au(s) − ds,ai(s))(ds,av(s) − ds,ai(s)) exp(θs,au(s) + θs,av(s) − 2θs,ai(s))

−
∑
j ̸=i

(ds,aj(s) − ds,ai(s))
2 exp(2θs,aj(s) − 2θs,ai(s))−

∑
j ̸=i

(ds,aj(s) − ds,ai(s))
2 exp(θs,aj(s) − θs,ai(s))

−
∑

u,v ̸=i,u<v

(
(ds,au(s) − ds,ai(s))

2 + (ds,av(s) − ds,ai(s))
2
)
exp(θs,au(s) + θs,av(s) − 2θs.ai(s))

=
∑
j ̸=i

(ds,aj(s) − ds,ai(s))
2
(
exp(2θs,aj(s) − 2θs,ai(s))− exp(θs,aj(s) − θs,ai(s))

)
+

∑
u,v ̸=i,u<v

2(ds,au(s) − ds,ai(s))(ds,av(s) − ds,ai(s)) exp(θs,au(s) + θs,av(s) − 2θs,ai(s))

−
∑

u,v ̸=i,u<v

(ds,au(s) − ds,av(s))
2 exp(θs,au(s) + θs,av(s) − 2θs,ai(s))

≥ (ds,a∗(s) − ds,ai(s))
2
(
exp(2θs,a∗(s) − 2θs,ai(s))− exp(θs,a∗(s) − θs,ai(s))

)
−

∑
j ̸=i,aj ̸=a∗

(ds,aj(s) − ds,ai(s))
2 exp(θs,aj(s) − θs,ai(s))

+
∑

u,v ̸=i,u<v

2(ds,au(s) − ds,ai(s))(ds,av(s) − ds,ai(s)) exp(θs,au(s) + θs,av(s) − 2θs,ai(s))

−
∑

u,v ̸=i,u<v

(ds,au(s) − ds,av(s))
2 exp(θs,au(s) + θs,av(s) − 2θs,ai(s))

≥ (ds,a∗(s) − ds,ai(s))
2
(
exp(2θs,a∗(s) − 2θs,ai(s))− exp(θs,a∗(s) − θs,ai(s))

)
−

∑
j ̸=i,aj ̸=a∗

2 exp(θs,aj(s) − θs,ai(s))

−
∑

u,v ̸=i,u<v

2 exp(θs,au(s) + θs,av(s) − 2θs,ai(s))−
∑

u,v ̸=i,u<v

2 exp(θs,au(s) + θs,av(s) − 2θs,ai(s)) (41)

≥ (ds,a∗(s) − ds,ai(s))
2 exp(θs,a∗(s) − θs,ai(s))

(
exp(θs,a∗(s) − θs,ai(s))− 1

)
− 2(| A | − 1) max

j ̸=i,aj ̸=a∗
exp(θs,aj(s) − θs,ai(s))− 4

(
| A | − 1

2

)
max

u,v ̸=i,u<v
exp(θs,au(s) + θs,av(s) − 2θs,ai(s))

≥ (ds,a∗(s) − ds,ai(s))
2 exp(θs,a∗(s) − θs,ai(s))

(
exp(θs,a∗(s) − θs,ai(s))− 1

)
− 2(| A | − 1) exp(θs,a∗(s) − θs,ai(s) −Md)− 4

(
| A | − 1

2

)
exp(2θs,a∗(s) − 2θs,ai(s) −Md), (42)

≥ exp(θs,a∗(s) − θs,ai(s))
[
(ds,a∗(s) − ds,ai(s))

2(exp(θs,a∗(s) − θs,ai(s))− 1)

− 2(| A | − 1)2 exp(θs,a∗(s) − θs,ai(s) −Md)
]
, (43)

where (41) holds by using the bounds (ds,au(s)−ds,ai(s))(ds,av(s)−ds,ai(s)) ≥ −1 and (ds,au(s)−ds,av(s))
2 ≤ 2 (both from

the Cauchy-Schwarz inequality and that ∥ds,·∥ = 1), and (42) and (43) is from our hypothesis of θs,a∗(s) − θs,a > Md > 0
for all a ̸= a∗(s).

Since exp(θs,a∗(s) − θs,ai(s)) > 0, to make (43) non-negative, we simply need to verify that

(ds,a∗(s) − ds,ai(s))
2(exp(θs,a∗(s) − θs,ai(s))− 1) ≥ 2(|A| − 1)2 exp(θs,a∗(s) − θs,ai(s) −Md),
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which is equivalent to

exp(−Md) ≤
(ds,a∗(s) − ds,ai(s))

2(exp(θs,a∗(s) − θs,ai(s))− 1)

2(|A| − 1)2 exp(θs,a∗(s) − θs,ai(s))

=
(ds,a∗(s) − ds,ai(s))

2

2(|A| − 1)2
·
(
1− 1

exp(θs,a∗(s) − θs,ai(s))

)
.

From (38), since 2(| A | − 1) >
√
2 and − ln[ds,a∗(s) − ds,ai(s)] ≥ 0 for all i > 1 (as argued before), we get Md ≥ ln(2).

Therefore, if θs,a∗(s) − θs,ai(s) > Md for all s ∈ S and all i > 1, we indeed obtain

exp(−Md) ≤
(ds,a∗(s) − ds,ai(s))

2

4(|A| − 1)2

=
(ds,a∗(s) − ds,ai(s))

2

2(|A| − 1)2

(
1− 1

2

)
≤

(ds,a∗(s) − ds,ai(s))
2

2(|A| − 1)2

(
1− 1

exp(Md)

)
(44)

≤
(ds,a∗(s) − ds,ai(s))

2

2(|A| − 1)2

(
1− 1

exp(θs,a∗(s) − θs,ai(s))

)
, (45)

where (44) and (45) hold by θs,a∗(s) − θs,ai(s) > Md ≥ ln(2) for all i > 1.

Lemma 21. Under softmax parameterization, let θ ∈ R|S||A| be a parameter such that V πθ (s) > Q∗(s, a2(s)) for all
s ∈ S. Then, for any s ∈ S and any θ′ := θ + d with d ∈ U , we have∑

a∈A

(
πθ′(a|s)− πθ(a|s)

)
Aπθ (s, a) ≥ 0.

Proof of Lemma 21. By Lemma 8 and our assumption on V πθ (s), we see that V πθ (s) > Q∗(s, a2(s)) ≥ Qπθ (s, ai(s)) for
all i ≥ 2. From (2), this means

Aπθ (s, a) ≤ 0, ∀a ̸= a∗(s). (46)

Combining (46) with Lemma 7 then gives
Aπθ (s, a∗(s)) ≥ 0. (47)

Since d ∈ U , we have ds,a∗(s) > ds,a for all s ∈ S and all a ̸= a∗(s). Therefore,∑
a∈A

(πθ′(a|s)− πθ(a|s))Aπθ (s, a)

=
∑
a∈A

πθ′(a|s)Aπθ (s, a) (48)

=
∑
a∈A

exp (θ′s,a)∑
a′ exp (θ′s,a′)

Aπθ (s, a)

=

∑
a′ exp (θs,a′)∑
a′ exp (θ′s,a′)

∑
a∈A

exp (θs,a + ds,a)∑
a′ exp (θs,a′)

Aπθ (s, a)

=

∑
a′ exp (θs,a′)∑

a′ exp (θ′s,a′ −maxa̸=a∗(s) ds,a)

∑
a∈A

exp (θs,a + (ds,a −maxa̸=a∗(s) ds,a))∑
a′ exp (θs,a′)

Aπθ (s, a)

=

∑
a′ exp (θs,a′)∑

a′ exp (θ′s,a′ −maxa̸=a∗(s) ds,a)

(exp (θs,a∗(s) + (ds,a∗(s) −maxa ̸=a∗(s) ds,a))∑
a′ exp (θs,a′)

Aπθ (s, a∗(s))

+
∑

a̸=a∗(s)

exp (θs,a + (ds,a −maxa̸=a∗(s) ds,a))∑
a′ exp (θs,a′)

Aπθ (s, a)
)
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≥
∑

a′ exp (θs,a′)∑
a′ exp (θ′s,a′ −maxa̸=a∗(s) ds,a)

( exp (θs,a∗(s))∑
a′ exp (θs,a′)

Aπθ (s, a∗(s)) +
∑

a̸=a∗(s)

exp (θs,a)∑
a′ exp (θs,a′)

Aπθ (s, a)
)

(49)

=

∑
a′ exp (θs,a′)∑

a′ exp (θ′s,a′ −maxa̸=a∗(s) ds,a)

∑
a∈A

πθ(a|s)Aπθ (s, a) = 0, (50)

where (48) and (50) hold due to Lemma 7, and (49) holds by the definition of U that ds,a∗(s) > maxa ̸=a∗(s) ds,a ≥ ds,a(s)
for all s ∈ S and all a ̸= a∗ and (46) and (47).

Lemma 22. Under softmax parameterization, for APG, we have V π
(t+1)
θ (s) ≥ V π(t)

ω (s) for any s ∈ S and any t ≥ 0 as
long as η(t > 0.

Proof of Lemma 22. By Lemma 4, it suffices to show that
∑

a∈A π
(t+1)
θ (a|s)Aπ(t)

ω (s, a) ≥ 0 for all s ∈ S. Indeed, by
defining

Z
(t)
θ (s) :=

∑
a∈A

exp(θ(t)s,a), Z(t)
ω (s) :=

∑
a∈A

exp(ω(t)
s,a), ∂(t)

s,a :=
∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t)

,

we have that for any s ∈ S,

∑
a∈A

π
(t+1)
θ (a|s)Aπ(t)

ω (s, a) =
∑
a∈A

exp(θ
(t+1)
s,a )

Z
(t+1)
θ (s)

Aπ(t)
ω (s, a)

=
Z

(t)
ω (s)

Z
(t+1)
θ (s)

∑
a∈A

exp(θ
(t+1)
s,a )

Z
(t)
ω (s)

Aπ(t)
ω (s, a)

=
Z

(t)
ω (s)

Z
(t+1)
θ (s)

∑
a∈A

exp(ω
(t)
s,a + η(t+1)∂

(t)
s,a)

Z
(t)
ω (s)

Aπ(t)
ω (s, a)

≥ Z
(t)
ω (s)

Z
(t+1)
θ (s)

∑
a∈A

exp(ω
(t)
s,a)

Z
(t)
ω (s)

Aπ(t)
ω (s, a) (51)

=
Z

(t)
ω (s)

Z
(t+1)
θ (s)

∑
a∈A

π(t)
ω (a|s)Aπ(t)

ω (s, a) = 0, (52)

where (51) holds by the fact that the sign of η(t+1)∂
(t)
s,a is the same as Aπ(t)

ω (s, a) by Lemma 11, and (52) is true due to
Lemma 7.
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B.3. Useful Properties of Accelerated Policy Gradient

Throughout the appendices, We use ∇(t)
s,a as the shorthand for ∂V πθ (µ)

∂θs,a

∣∣
θ=ω(t) . By L-smooth, we mean a function is

differentiable with its gradient L-Lipschitz continuous. For any pair of positive integers (j, t), we define

G(j, t) :=



1 , if t = j or j = 0,

1 + I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for h = 1

}
j

j+3 , if t = j + 1,

1 + I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for h = 1

}
j

j+3

+I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for all h = 1, 2

}
(j+1)j

(j+4)(j+3) , if t = j + 2,

1 + I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for h = 1

}
j

j+3

+I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for all h = 1, 2

}
(j+1)j

(j+4)(j+3)

+I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for all h = 1, 2, 3

}
(j+2)(j+1)j

(j+5)(j+4)(j+3) , if t = j + 3,

1 + I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for h = 1

}
j

j+3

+I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for all h = 1, 2

}
(j+1)j

(j+4)(j+3)

+I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for all h = 1, 2, 3

}
(j+2)(j+1)j

(j+5)(j+4)(j+3)

+
∑t−j

k=4 I
{
V π(j+h)

φ (µ) ≥ V π
(j+h)
θ (µ) for all h = 1, 2, . . . , k

}
(j+2)(j+1)j

(j+k+2)(j+k+1)(j+k) , if t ≥ j + 4

0 , otherwise.
(53)

Lemma 23. Under APG, we could express the policy parameter as follows:

a) For t ∈ {1, 2, 3, 4}, we have

θ(1)s,a =η(1)∇(0)
s,a + θ(0)s,a, (54)

θ(2)s,a =η(2)∇(1)
s,a + η(1)∇(0)

s,a + θ(0)s,a (55)

θ(3)s,a =η(3)∇(2)
s,a + η(2)(1 + I

{
V π(2)

φ (µ) ≥ V π
(2)
θ (µ)

}
· 1
4
)∇(1)

s,a + η(1)∇(0)
s,a + θ(0)s,a (56)

θ(4)s,a =η(4)∇(3)
s,a

+η(3)
(
1 + I

{
V π(3)

φ (µ) ≥ V π
(3)
θ (µ)

}
· 2
5

)
∇(2)

s,a

+η(2)
(
1 + I

{
V π(2)

φ (µ) ≥ V π
(2)
θ (µ)

}(1
4
+ I
{
V π(3)

φ (µ) ≥ V π
(3)
θ (µ)

}
· 2 · 1
5 · 4

))
∇(1)

s,a

+η(1)∇(0)
s,a

+θ(0)s,a (57)

b) For t ≥ 4, we have

θ(t+1)
s,a =η(t+1)∇(t)

s,a

+η(t)
(
1 + I

{
V π(t)

φ (µ) ≥ V π
(t)
θ (µ)

}
· t− 1

t+ 2

)
∇(t−1)

s,a

+η(t−1)
(
1 + I

{
V π(t−1)

φ (µ) ≥ V π
(t−1)
θ (µ)

}
·( t− 2

t+ 1
+ I
{
V π(t)

φ (µ) ≥ V π
(t)
θ (µ)

}
· (t− 1)(t− 2)

(t+ 2)(t+ 1)

))
∇(t−2)

s,a

+

t−3∑
j=1

η(j+1)
(
1 + I

{
V π(j+1)

φ (µ) ≥ V π
(j+1)
θ (µ)

}
·

( j

j + 3
+ I
{
V π(j+2)

φ (µ) ≥ V π
(j+2)
θ (µ)

}
·
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(j + 4)(j + 3)
+ I
{
V π(j+3)

φ (µ) ≥ V π
(j+3)
θ (µ)

}
·

( (j + 2)(j + 1)j

(j + 5)(j + 4)(j + 3)
+

t−j∑
k=4

I
{
V π(j+k)

φ (µ) ≥ V π
(j+k)
θ (µ)

}
·

(j + 2)(j + 1)j

(j + k + 2)(j + k + 1)(j + k)

))))
∇(j)

s,a

+η(1)∇(0)
s,a

+θ(0)s,a. (58)

Therefore, in summary, we have

θ(t+1)
s,a =

t∑
j=0

G(j, t) · η(j+1)∇(j)
s,a + θ(0)s,a, ∀t ≥ 0. (59)

Proof of Lemma 23. Regarding a), one could verify (54)-(57) by directly using the APG update in Algorithm 2.

For b), we prove this by induction. Specifically, suppose (58) holds for all iterations up to t. By the APG update, we know

θ(t+1)
s,a = θ(t)s,a + η(t+1)∇(t)

s,a + I
{
V π(t)

φ (µ) ≥ V π
(t)
θ (µ)

} t− 1

t+ 2
(θ(t)s,a − θ(t−1)

s,a ). (60)

By plugging into (60) the expressions of θ(t)s,a and θ
(t−1)
s,a from (58), we could see that (58) continues to hold at the (t+ 1)-th

iteration.

Lemma 24. Under APG for softmax parameterization, for any iteration k and any state-action pair (s, a), we have∑
a∈A

θ(k)s,a =
∑
a∈A

θ(0)s,a.

Proof of Lemma 24. We prove this by induction through the following two claims.

Claim (a).
∑

a∈A θ
(1)
s,a =

∑
a∈A θ

(0)
s,a and

∑
a∈A θ

(2)
s,a =

∑
a∈A θ

(0)
s,a.

Note that under APG, we have

θ(1)s,a = ω(0)
s,a + η(1)

∂V πθ (µ)

∂θs,a

∣∣∣
θ=ω(0)

= θ(0)s,a + η(1) · 1

1− γ
dπ

(0)
θ (s)π

(0)
θ (a|s)Aπ

(0)
θ (s, a), (61)

where the second equality holds by the initial condition of APG (i.e., ω(0) = θ(0)) as well as the softmax policy gradient in
Lemma 11. By summing (61) over all the actions, we have

∑
a∈A θ

(1)
s,a =

∑
a∈A θ

(0)
s,a from Lemma 7. Similarly, we have

θ(2)s,a = ω(1)
s,a + η(2) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(1)

= θ(1)s,a + I
{
V π(1)

φ (µ) ≥ V π
(1)
θ (µ)

}
· 0
3
· (θ(1)s,a − θ(0)s,a) + η(2) · 1

1− γ
dπ

(1)
ω (s)π(1)

ω (a|s)Aπ(1)
ω (s, a). (62)

By taking the sum of (62) over all the actions, we have
∑

a∈A θ
(2)
s,a =

∑
a∈A θ

(0)
s,a by

∑
a∈A θ

(1)
s,a =

∑
a∈A θ

(0)
s,a and

Lemma 7.

Claim (b). If
∑

a∈A θ
(k)
s,a =

∑
a∈A θ

(0)
s,a for all k ∈ {1, · · · ,M}, then

∑
a∈A θ

(M+1)
s,a =

∑
a∈A θ

(0)
s,a.

We use an argument similar to (62) as follows.

θ(M+1)
s,a = ω(M)

s,a + η(M+1) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(M)
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=θ(M)
s,a + I

{
V π(M)

φ (µ) ≥ V π
(M)
θ (µ)

}
· M − 1

M + 2
· (θ(M)

s,a − θ(M−1)
s,a )

+ η(M+1) · 1

1− γ
dπ

(M)
ω (s)π(M)

ω (a|s)Aπ(M)
ω (s, a).

(63)

By taking the sum of (63) over a ∈ A, we see that
∑

a∈A θ
(M+1)
s,a =

∑
a∈A θ

(0)
s,a.

B.4. O(1/t2) Convergence Rate Under Nearly Concave Objectives

We present several theoretical results adapted from (Ghadimi & Lan, 2016) to our nearly concave regime in this subsection.

Theorem 4 (Theorem 1(b) in (Ghadimi & Lan, 2016) with a slight modification). Let
{
θ
(t)
md, θ

(t)
ag

}
t≥1

be computed by

Algorithm 3 for softmax parameterization and Γt be defined as:

Γ(t) :=

{
1, if t = 1,

(1− α(t))Γ(t−1), if t ≥ 2.
(64)

Assume that the objective function V πθ (µ) is C-nearly concave at θ(t)md along the direction θ
(t)
ag − θ

(t)
md with a constant

C ∈ (1, 3
2 ] for every t ≥ 1. Suppose θ

(t)
ag − θ

(t)
md ∈ U for every t ≥ 1. If α(t), β(t), λ(t) are chosen such that

0 < α(t)λ(t) ≤ β(t) <
2− C

L
,

α(1)

λ(1)Γ(1)
≥ α(2)

λ(2)Γ(2)
≥ · · · , (65)

where L is the Lipschitz constant of the gradient of the objective. Then given any t ≥ 1, and for any θ∗∗ = θ
(t)
md + d with

some d ∈ U , we have

V πθ∗∗ (µ)− V
π
(t)
θag (µ) ≤ Γ(t)

α(1)
∥∥∥θ∗∗ − θ

(0)
ag + m̄init

∥∥∥2
λ(1)

(66)

where m̄init, θ
(0)
ag ∈ Rn are input variables of Algorithm 3.

Proof of Theorem 4. First, by Lemma 14 and (12), we have

−V π
(t)
θag (µ) ≤ −V π

(t)
θmd (µ)−

〈
∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

, θ(t)ag − θ
(t)
md

〉
+

L

2

∥∥∥θ(t)ag − θ
(t)
md

∥∥∥2
= −V π

(t)
θmd (µ)− β(t)

∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2 + L(β(t))2

2

∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2 . (67)

Therefore, by the near-concavity of the objective (from our assumption) and (10), we have

− V
π
(t)
θmd (µ) +

[
(1− α(t))V

π
(t−1)
θag (µ) + α(t)V πθ∗∗ (µ)

]
= α(t)

[
V πθ∗∗ (µ)− V

π
(t)
θmd (µ)

]
+ (1− α(t))

[
V

π
(t−1)
θag (µ)− V

π
(t)
θmd (µ)

]
≤ C · α(t)

〈
∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

, θ∗∗ − θ
(t)
md

〉
+ C · (1− α(t))

〈
∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

, θ(t−1)
ag − θ

(t)
md

〉
= C ·

〈
∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

, α(t)(θ∗∗ − θ
(t)
md) + (1− α(t))(θ(t−1)

ag − θ
(t)
md)

〉
= C · α(t)

〈
∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

, θ∗∗ − θ̂(t−1)

〉
(68)

By (11), we have∥∥∥θ∗∗ − θ̂(t−1)
∥∥∥2 − 2λ(t)

〈
∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

, θ∗∗ − θ̂(t−1)

〉
+
(
λ(t)
)2 ∥∥∥∥∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

∥∥∥∥2
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=

∥∥∥∥θ∗∗ − θ̂(t−1) − λ(t)∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2
=
∥∥∥θ∗∗ − θ̂(t)

∥∥∥2 ,
which directly leads to

α(t)

〈
∇θV

πθ (µ)
∣∣∣
θ=θ

(t)
md

, θ∗∗ − θ̂(t−1)

〉
=

α(t)

2λ(t)

[∥∥∥θ∗∗ − θ̂(t−1)
∥∥∥2 − ∥∥∥θ∗∗ − θ̂(t)

∥∥∥2]+ α(t)λ(t)

2

∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2 . (69)

Combining (67)-(69), we have

−V π
(t)
θag (µ) ≤ −

[
(1− α(t))V

π
(t−1)
θag (µ) + α(t)V πθ∗∗ (µ)

]
+ C · α

(t)

2λ(t)

[∥∥∥θ∗∗ − θ̂(t−1)
∥∥∥2 − ∥∥∥θ∗∗ − θ̂(t)

∥∥∥2]
+ C · α

(t)λ(t)

2

∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2
− β(t)

∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2
+

L(β(t))2

2

∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2
≤ −

[
(1− α(t))V

π
(t−1)
θag (µ) + α(t)V πθ∗∗ (µ)

]
+ C · α

(t)

2λ(t)

[∥∥∥θ∗∗ − θ̂(t−1)
∥∥∥2 − ∥∥∥θ∗∗ − θ̂(t)

∥∥∥2]
− β(t)

2

(
2− C − Lβ(t)

)∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(t)
md

∥∥∥∥2

Adding V πθ∗∗ (µ) to both sides of the above inequality and using (64), we have

V πθ∗∗ (µ)− V
π
(t)
θag (µ)

Γ(t)
≤ C ·

t∑
k=1

α(k)

2λ(k)Γ(k)

[∥∥∥θ∗∗ − θ̂(k−1)
∥∥∥2 − ∥∥∥θ∗∗ − θ̂(k)

∥∥∥2]

−
t∑

k=1

β(k)

2Γ(k)

(
2− C − Lβ(k)

)
︸ ︷︷ ︸

>0, by (65)

∥∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ

(k)
md

∥∥∥∥2

≤
α(1)C ·

∥∥∥θ∗∗ − θ̂(0)
∥∥∥2

2λ(1)
(70)

≤
α(1)

∥∥∥θ∗∗ − θ̂(0)
∥∥∥2

λ(1)
(71)

=
α(1)

∥∥∥θ∗∗ − θ
(0)
ag + m̄init

∥∥∥2
λ(1)
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where (70) holds by the fact that

t∑
k=1

α(k)

λ(k)Γ(k)

[∥∥∥θ∗∗ − θ̂(k−1)
∥∥∥2 − ∥∥∥θ∗∗ − θ̂(k)

∥∥∥2] ≤ α(1)
∥∥∥θ∗∗ − θ̂(0)

∥∥∥2
λ(1)Γ(1)

=
α(1)

∥∥∥θ∗∗ − θ̂(0)
∥∥∥2

λ(1)
,

and (71) is from our assumption of C ≤ 3
2 < 2. Finally, we obtain the desired result by rearranging (71).

Corollary 1 (Corollary 1 in (Ghadimi & Lan, 2016) with a slight modification). Given Tshift ∈ N, suppose that
{
α(t)

}
,{

β(t)
}

and
{
λ(t)
}

in Algorithm 3 for softmax parameterization are set to

α(t) =
2

(t+ 1) + Tshift
, β(t) =

t+ Tshift

(t+ 1) + Tshift
· 1

2L
, λ(t) =

(t+ 1) + Tshift

2
· β(t), where Tshift > 0, (72)

where L is the Lipschitz constant of the gradient of the objective. Assume that V πθ (µ) is 3
2 -nearly concave at θ(t)md along

the direction θ
(t)
ag − θ

(t)
md for every t ≥ 1. Suppose θ

(t)
ag − θ

(t)
md ∈ U for every t ≥ 1. Then given any t ≥ 1, and for any

θ∗∗ = θ
(t)
md + d with some d ∈ U , we have

V πθ∗∗ (µ)− V π
(t)
θ (µ) ≤

8L
∥∥∥θ∗∗ − θ

(0)
ag + m̄init

∥∥∥2
(t+ Tshift + 1)(t+ Tshift)

= O

(
1

t2

)
,

where m̄init, θ
(0)
ag ∈ Rn are input variables of Algorithm 3.

Remark 14. In Theorem 4 and Corollary 1, addition to extending from concavity to near concavity, we have also made the
following modifications: (i) We have introduced a iteration counter Tshift, since our objective is not nearly-concave initially
and the theoretical result needs to be revised to account for the shifted initial step size when the nearly-concave region is
entered. (ii) We have adjusted λ from t

2 to t+1
2 and β from 1

2L to t+Tshift
(t+1)+Tshift

· 1
2L to ensure applicability of both Lemma 3

and Theorem 4.

Remark 15. Theorem 4 and Corollary 1 are built upon local near concavity of the objective function. In Appendix D, we
will show that such local near concavity indeed holds under APG in the MDP setting.

Proof of Corollary 1. We leverage Theorem 4 to reach our desired result. It suffices to show that the choice of{
α(t), λ(t), β(t)

}
in (72) satisfy (65). Because α(t) · λ(t) = β(t) < 1

2L , the first part of (65) holds. By the definition
of Γ(t) in (64), we have:

Γ(t) =
(2 + Tshift)(1 + Tshift)

((t+ 1) + Tshift)(t+ Tshift)
. (73)

Therefore,

α(t)

λ(t)Γ(t)
=

2
(t+1)+Tshift

(t+1)+Tshift
2 · t+Tshift

(t+1)+Tshift
· 1
2L ·

(2+Tshift)(1+Tshift)
((t+1)+Tshift)(t+Tshift)

=
8L

(2 + Tshift)(1 + Tshift)
,

which satisfies the second condition in (65). We hence reach the desired result by plugging (73) and the choice of λ(1) in
(72) into (66).
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C. Asymptotic Convergence
C.1. Supporting Lemmas for Asymptotic Convergence of APG

Lemma 25. Under APG for softmax parameterzation with uniformly randomly initialized surrogate initial state distribution
µ, and suppose there are η′ ≥ η > 0 such that η(t) ∈ [η, η′] for all t. Then, almost surely, the limits of both V π(t)

ω (µ) and
V π

(t)
θ (µ) when t approaches infinity exist, limt→∞ V π(t)

ω (µ) = limt→∞ V π
(t)
θ (µ), and

lim
t→∞

∥∥∇θV
πθ (s)|θ=ω(t)

∥∥ = 0, lim
t→∞

∥∥∇θV
πθ (s)|θ=θ(t)

∥∥ = 0. (74)

Proof of Lemma 25. For any t ∈ N, we know that V π
(t+1)
θ (s) ≥ V π(t)

ω (s) for all s ∈ S by Lemma 22. Then, since
V π(µ) =

∑
s µ(s)V

π(s), we have V π
(t+1)
θ (µ) ≥ V π(t)

ω (µ). This together with (8) implies that for any t ∈ N, we have

V π(t+1)
ω (µ) ≥ V π

(t+1)
θ (µ) ≥ V π(t)

ω (µ) ≥ V π
(t)
θ (µ). (75)

By (75) and that V πθ (µ) ≤ 1
1−γ for all θ from Lemma 10, we know from the monotone convergence theorem that the limits

of both V π(t)
ω (µ) and V π

(t)
θ (µ) exist and limt→∞ V π(t)

ω (µ) = limt→∞ V π
(t)
θ (µ). Therefore, by the update rule (6) of APG,

the Lipschitz continuity of ∇θV
πθ (µ) from Lemma 14, and our assumption that η(t) is bounded away from zero, we further

see
lim
t→∞

∥∥∇θV
πθ (µ)|θ=ω(t)

∥∥ = 0. (76)

By (76), application of (6) again, the Lipschitz continuity of∇θV
πθ (µ), and the boundedness of {η(t)}, we also have

lim
t→∞

∥∥∇θV
πθ (µ)|θ=θ(t)

∥∥ = 0. (77)

By the uniformly random initialization of µ, we know that mins∈S µ(s) > 0 almost surely. Thus, the expression of softmax
policy gradient in Lemma 11, (76), (77), and Lemma 5 imply that with probability one, for all (s, a),

π(t)
ω (a|s)Aπ(t)

ω (s, a)→ 0, as t→∞, (78)

π
(t)
θ (a|s)Aπ

(t)
θ (s, a)→ 0, as t→∞, (79)

proving (74).

In the proofs of the subsequent lemmas (from Lemma 26 to Lemma 35), the upper bound for the step size is needed only for
leveraging the result in Lemma 25. Other than that, these proofs only require the step sizes {η(t)} to be lower-bounded away
from zero, but do not require an upper bound as in Lemma 25. We will demonstrate in Appendix E that (74) still holds
under a time-varying step size setting, and therefore relaxing the requirement for an upper bound for the step sizes under
such settings.
Lemma 26. Under the setting of Lemma 25, the following statements hold almost surely:

• The limits limt→∞ V π(t)
ω (s), limt→∞ Qπ(t)

ω (s, a), and limt→∞ Aπ(t)
ω (s, a) all exist for all s ∈ S and all a ∈ A.

• The limits limt→∞ V π
(t)
θ (s), limt→∞ Qπ

(t)
θ (s, a), and limt→∞ Aπ

(t)
θ (s, a) all exist for all s ∈ S and all a ∈ A.

Furthermore, we have

lim
t→∞

V π(t)
ω (s) = lim

t→∞
V π

(t)
θ (s); lim

t→∞
Qπ(t)

ω (s, a) = lim
t→∞

Qπ
(t)
θ (s, a); lim

t→∞
Aπ(t)

ω (s, a) = lim
t→∞

Aπ
(t)
θ (s, a)

for all s ∈ S and all a ∈ A when these limits exist when these limits exist.

Proof of Lemma 26. Recall that we use V π to denote the |S|-dimensional vector whose s-th component is V π(s) for all
s ∈ S . Our first goal is to show that the limit of the value vector V π(t)

ω exists, i.e., limt→∞ V π(t)
ω (s) exist for all s ∈ S . We

define

V :=
{
V π :

∣∣π(a|s)Aπ(s, a)
∣∣ = 0,∀(s, a) ∈ S ×A

}
. (80)

Before starting our proof, we make the following claim.
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Claim 1. The cardinality of V is at most |A||S|.

To prove Claim 1, we first observe that there are |A||S| deterministic policies. In addition, by Lemma 7, we know that the
value vector of any deterministic policy belongs to V . For any stochastic policy π such that V π ∈ V , by (80), it follows that
for any (s, a) satisfying the condition π(a|s) > 0, we have Aπ(s, a) = 0. Consequently, selecting the deterministic policy
π′ associated with π, wherein for all states s ∈ S we set π′(a|s) = 1 for some action a satisfying π(a|s) > 0, allows us to
confirm that V π = V π′

using Lemma 4. Hence, for every value vector V π in V , there exists at least one corresponding
deterministic policy. Since there are only |A||S| deterministic policies, the number of distinct value vectors in V is at most
|A||S|, establishing the claim.

With Claim 1 proven, we are now ready to prove Lemma 26. For any point x and any set Y , we define

d(x, Y ) := inf
y∈Y
∥y − x∥1

as the distance between x and Y measured by the L1-norm. We first show that

lim
t→∞

d(V π(t)
ω ,V) = 0. (81)

Given any ε > 0, let ε′ = (1−γ)ε
| S |2 . By (78), we know that there exists T ≥ 0 such that

|π(t)
ω (a|s)Aπ(t)

ω (s, a)| < ε′

| A |
, ∀(s, a) ∈ S ×A, ∀t ≥ T. (82)

Since
∑

a∈A π(a|s) = 1 for any s ∈ S and any policy π, there must be at least one action at each state satisfying
π
(t)
ω (a|s) ≥ 1/| A |. We can thus observe from (82) that for any t ≥ T and any s ∈ S , there must be an action a

(t)
s such that

|Aπ(t)
ω (s, a

(t)
s )| < ε′. Therefore, for every t ≥ T , we pick V (t) ∈ V as the value vector corresponding to the deterministic

policy π(t) with π(t)(a
(t)
s |s) = 1 and π(t)(a|s) = 0 for all a ̸= a

(t)
s for all s ∈ S. (Note that the value vector of any

deterministic policy belongs to V .) Then, we can see that for every t ≥ T ,

d(V π(t)
ω ,V) ≤ ∥V (t) − V π(t)

ω ∥1

=
∑
s

∣∣∣ 1

1− γ

∑
s′

dπ
(t)

s (s′)
∑
a

π(t)(a|s′)Aπ(t)
ω (s′, a)

∣∣∣ (83)

=
∑
s

∣∣∣ 1

1− γ

∑
s′

dπ
(t)

s (s′)︸ ︷︷ ︸
∈[0,1]

Aπ(t)
ω (s′, a

(t)
s′ )
∣∣∣ (84)

≤
∑
s

1

1− γ

∑
s′

∣∣∣Aπ(t)
ω (s′, a

(t)
s′ )
∣∣∣

=
| S |
1− γ

∑
s′

∣∣∣Aπ(t)
ω (s′, a

(t)
s′ )
∣∣∣

<
| S |2

1− γ
ε′ = ε,

where (83) holds by Lemma 4 and (84) is due to the fact that π(t)(a
(t)
s |s) = 1. Since ε is arbitrary, we have proven (81).

Accordingly, since V is a finite and bounded (and thus compact) set according to Claim 1, there are two possible scenarios:
(i) There exists V ∈ V such that limt→∞ V π(t)

ω = V ; (ii)
{
V π(t)

ω

}∞
t=1

has at least two limit points in V .

For (i), we obtain the desired results. Regarding (ii), we prove that with probability one, this scenario will not occur. For
any two distinct value vectors V π1 ̸= V π2 in V , we know that the set of µ such that V π1(µ) = V π2(µ) is a subset in ∆(S)
with dimension strictly less than the dimension of ∆(S) due to the given hypothesis V π1 ̸= V π2 . Thus, the set of µ such
that V π1(µ) = V π2(µ) is of measure zero in ∆(S). Additionally, since there are only finitely many distinct value vectors in
V by Claim 1, the union of those sets of µ is still of measure zero in ∆(S). Hence, by the uniformly random initialization of
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the surrogate initial state distribution µ, we have that with probability one, any two distinct value vectors V π1 ̸= V π2 in V
satisfy V π1(µ) ̸= V π2(µ).

Let V1 and V2 be two distinct limit points in in scenario (ii), and {it} and {jt} be two infinite index sequences such that

lim
t→∞

V π(it)
ω = V1, lim

t→∞
V π(jt)

ω = V2,

which implies
lim
t→∞

V π(it)
ω (µ) = V1(µ), lim

t→∞
V π(jt)

ω (µ) = V2(µ). (85)

We have argued that with probability one, V1(µ) ̸= V2(µ), and let us assume without loss of generality that V1(µ) > V2(µ)
and denote ϵ := V1(µ)− V2(µ). From (85), almost surely there is T1 ≥ 0 such that

V π(it)
ω (µ) > V1(µ)−

ϵ

2
, ∀t ≥ T1. (86)

By (75), we see that V π(t)
ω (µ) is monotonically increasing, which together with (86) implies that

V π(t)
ω (µ) ≥ V2(µ) +

ϵ

2
, ∀t ≥ iT1

,

contradicting the second equality of (85) and that {jt} should be an infinite sequence. Therefore, {V π(t)
ω } converges to a

point. Since limt→∞ V π(t)
ω (s) exists for all s ∈ S, we see that limt→∞ Qπ(t)

ω (s, a) and therefore limt→∞ Aπ(t)
ω (s, a) also

exist for all s ∈ S and all a ∈ A according to (1). Existence of the limit of {V π
(t)
θ }, {Qπ

(t)
θ (s, a)}, and {Aπ

(t)
θ (s, a)}

follows the same argument above with (78) replaced by (79).

Finally, we demonstrate that the limits of the value function, the Q-value function, and the advantage function with
respect to ω(t) and θ(t) are equal. It suffices to show that limt→∞ V π(t)

ω (s) = limt→∞ V π
(t)
θ (s) for all s ∈ S, i.e.,

limt→∞ V π(t)
ω = limt→∞ V π

(t)
θ . We will prove it by contradiction. Let

V π(∞)
ω := lim

t→∞
V π(t)

ω , V π
(∞)
θ := lim

t→∞
V π

(t)
θ

and suppose that V π(∞)
ω ̸= V π

(∞)
θ . Recall that from our uniformly random initialization of µ, if V π1 ̸= V π2 in V , then

V π1(µ) ̸= V π2(µ) almost surely. We know that both V π(∞)
ω and V π

(∞)
θ belong to V . By the hypothesis, with probability

one we have V π(∞)
ω (µ) ̸= V π

(∞)
θ (µ), leading to the contradiction due to the fact that limt→∞ V π(t)

ω (µ) = limt→∞ V π
(t)
θ (µ)

from (75). Hence, we obtain that with probability one, limt→∞ V π(t)
ω (s) = limt→∞ V π

(t)
θ (s) for all s ∈ S, and by (2) we

also obtain the desired results for both the Q-value function and the advantage function.

In the sequel, we use the following notations.
A(∞)(s, a) := limt→∞ Aπ(t)

ω (s, a) = limt→∞ Aπ
(t)
θ (s, a),

Q(∞)(s, a) := limt→∞ Qπ(t)
ω (s, a) = limt→∞ Qπ

(t)
θ (s, a),

V (∞)(s) := limt→∞ V π(t)
ω (s) = limt→∞ V π

(t)
θ (s).

(87)

We divide the action space into the following subsets based on the advantage function:

I+s := {a ∈ A : A(∞)(s, a) > 0},
I−s := {a ∈ A : A(∞)(s, a) < 0},
I0s := {a ∈ A : A(∞)(s, a) = 0}.

The above action sets are well-defined as the limiting value functions exist by Lemma 26.

For each state s, we define
∆s := min

a∈I+
s ∪I−

s

|A(∞)(s, a)|.

Accordingly, we know that for each state s ∈ S, there must exist some T̄s such that the following hold:
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• (i) For all a ∈ I+s ,

Aπ(t)
ω (s, a) ≥ +

∆s

4
, for all t ≥ T̄s, (88)

• (ii) For all a ∈ I−s ,

Aπ(t)
ω (s, a) ≤ −∆s

4
, for all t ≥ T̄s. (89)

• (iii) For all a ∈ I0s ,

|Aπ(t)
ω (s, a)|≤ ∆s

4
, for all t ≥ T̄s. (90)

Lemma 27. Under the setting of Lemma 25, for any state s ∈ S, we have

lim
t→∞

∑
a∈I+

s ∪I−
s

π(t)
ω (a|s) = 0, lim

t→∞

∑
a∈I+

s ∪I−
s

π
(t)
θ (a|s) = 0.

As a result, we also have
lim
t→∞

∑
a∈I0

s

π(t)
ω (a|s) = 1, lim

t→∞

∑
a∈I0

s

π
(t)
θ (a|s) = 1.

Proof of Lemma 27. For any a ∈ I+s , we have limt→∞ Aπ(t)
ω (s, a) = limt→∞ Aπ

(t)
θ (s, a) > 0. By (78) and (79), this

implies that π(t)
ω (a|s) → 0 and π

(t)
θ (a|s) → 0 as t → ∞ for all a ∈ I+s . Similarly, for any a ∈ I−s , we also have

limt→∞ Aπ(t)
ω (s, a) = limt→∞ Aπ

(t)
θ (s, a) < 0. Again, by (78) and (79), this implies that π(t)

ω (a|s)→ 0 and π
(t)
θ (a|s)→ 0

as t→∞ for all a ∈ I−s . Hence, we conclude that
∑

a∈I+
s ∪I−

s
π
(t)
ω (a|s)→ 0 and

∑
a∈I+

s ∪I−
s
π
(t)
θ (a|s)→ 0 as t→∞ due

to the finiteness of the cardinality of A.

Lemma 28. Consider any state s ∈ S . Let a be an action in I+s . Under the setting of Lemma 25, {θ(t)s,a}∞t=1 and {ω(t)
s,a}∞t=1

are bounded from below.

Proof of Lemma 28. Recall the part of our definition in (88) of T̄s. From Lemma 11, we see that

η(t)∇θs,aV
πθ (µ)

∣∣∣
θ=ω(t−1)

≥ 0, ∀t ≥ T̄s + 1. (91)

We let δT̄s
:= θ

(T̄s)
s,a − θ

(T̄s−1)
s,a . Regarding the case δT̄s

≥ 0, by (91) and the update rules in (6) and (7), the sequences
{θ(t)s,a}t≥T̄s+1, {ω

(t)
s,a}t≥T̄s+1 are monotonically increasing and therefore lower-bounded.

On the other hand, if δT̄s
< 0, for any M ∈ N, we have

θ(T̄s+M)
s,a = ω(T̄s+M−1)

s,a + η(T̄s+M) ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(T̄s+M−1)

≥ θ(T̄s+M−1)
s,a + I

{
V π(T̄s+M−1)

φ (µ) ≥ V π
(T̄s+M−1)
θ (µ)

}
· T̄s +M − 2

T̄s +M + 1
(θ(T̄s+M−1)

s,a − θ(T̄s+M−2)
s,a )

≥ θ(T̄s)
s,a +

T̄s − 1

T̄s + 2
δT̄s

+
T̄s(T̄s − 1)

(T̄s + 3)(T̄s + 2)
δT̄s

+ · · ·+ (T̄s +M − 2) · · · (T̄s − 1)

(T̄s +M + 1) · · · (T̄s + 2)
δT̄s

(92)

= θ(T̄s)
s,a +

[ T̄s − 1

T̄s + 2
+

T̄s(T̄s − 1)

(T̄s + 3)(T̄s + 2)
+

M∑
τ=2

(T̄s + 1)T̄s(T̄s − 1)

(T̄s + τ + 2)(T̄s + τ + 1)(T̄s + τ)

]
δT̄s

,

where (92) holds by disregarding the updates contributed by the gradients taken at all t > T̄s, which are always nonnegative
according to (91).
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We note that for any M ∈ N,

M∑
τ=2

(T̄s + 1)T̄s(T̄s − 1)

(T̄s + τ + 2)(T̄s + τ + 1)(T̄s + τ)

= (T̄s + 1)T̄s(T̄s − 1)

M∑
τ=2

1

2

( 1

(T̄s + τ)(T̄s + τ + 1)
− 1

(T̄s + τ + 1)(T̄s + τ + 2)

)
= (T̄s + 1)T̄s(T̄s − 1) · 1

2

( 1

(T̄s + 2)(T̄s + 3)
− 1

(T̄s +M + 1)(T̄s +M + 2)

)
≤ T̄s

2
. (93)

Therefore, it follows that for any M ∈ N,

θ(T̄s+M)
s,a ≥ θ(T̄s)

s,a −
(
2 +

T̄s

2

)
|δT̄s
|.

Hence, θ(t)s,a ≥ θ
(T̄s)
s,a − (2 + T̄s

2 )|δT̄s
| for all t ≥ T̄s. By (91), if there is some T̄ ′

s ≥ T̄s such that θ(t)s,a − θ
(t−1)
s,a ≥ 0 for any

a ∈ I+s , we obtain that {ω(t)
s,a}∞t=1 is also bounded from below since a ∈ I+s . Otherwise, if there is no such T̄ ′

s, then {θ}∞t=1

is monotonically decreasing after time T̄ ′
s. Thus, we can bound {ω(t)

s,a}∞t=1 from below due to the momentum update (7),
where ω

(t)
s,a ≥ 2(θ

(T̄s)
s,a − (2 + T̄s

2 )|δT̄s
|) −maxt≤T̄s

θ
(t)
s,a for all t ≥ T̄s. Hence, we obtain that {ω(t)

s,a}∞t=1 is alsobounded
from below for all s ∈ S and a ∈ I+s .

Lemma 29. Consider any state s ∈ S . Let a be an action in I−s . Under the setting of Lemma 25, {θ(t)s,a}∞t=1 and {ω(t)
s,a}∞t=1

are bounded from above.

Proof of Lemma 29. We follow the same procedure as that in Lemma 28. Again, let δT̄s
:= θ

(T̄s)
s,a − θ

(T̄s−1)
s,a . From (88) and

Lemma 11, we see that
η(t)∇θs,aV

πθ (µ)
∣∣∣
θ=ω(t−1)

≤ 0, ∀t ≥ T̄s + 1. (94)

Therefore, by (6), (7) and (94), we have

θ(T̄s+1)
s,a = ω(T̄s)

s,a + η(T̄s+1) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(T̄s)

≤ ω(T̄s)
s,a .

Regarding the case of δT̄s
≤ 0, the result directly holds by (94) as argued in the proof of Lemma 28. Considering δT̄s

> 0,
for any M ∈ N, we have

θ(T̄s+M)
s,a = ω(T̄s+M−1)

s,a + η(T̄s+M) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(T̄s+M−1)

≤ θ(T̄s+M−1)
s,a + I

{
V π(T0+M−1)

φ (µ) ≥ V π
(T0+M−1)

θ (µ)
}
· T̄s +M − 2

T̄s +M + 1
(θ(T̄s+M−1)

s,a − θ(T̄s+M−2)
s,a )

≤ θ(T̄s)
s,a +

T̄s − 1

T̄s + 2
δT̄s

+
T̄s(T̄s − 1)

(T̄s + 3)(T̄s + 2)
δT̄s

+ · · ·+ (T̄s +M − 2) · · · (T̄s − 1)

(T̄s +M + 1) · · · (T̄s + 2)
δT̄s

= θ(T̄s)
s,a +

[ T̄s − 1

T̄s + 2
+

T̄s(T̄s − 1)

(T̄s + 3)(T̄s + 2)
+

M∑
τ=2

(T̄s + 1)T̄s(T̄s − 1)

(T̄s + τ + 2)(T̄s + τ + 1)(T̄s + τ)

]
δT̄s

.

By (93), we know
∑M

τ=2
(T̄s+1)T̄s(T̄s−1)

(T̄s+τ+2)(T̄s+τ+1)(T̄s+τ)
≤ T̄s

2 . As a result, for any M ∈ N,

θ(T̄s+M)
s,a ≤ θ(T̄s)

s,a + (2 +
T̄s

2
)|δT̄s

|.

Hence, θ(t)s,a ≤ θ
(T̄s)
s,a + (2 + T̄s

2 )|δT̄s
| for all t ≥ T̄s. By using the same argument as in Lemma 28, we have ω

(t)
s,a ≤

2(θ
(T̄s)
s,a + (2 + T̄s

2 )|δT̄s
|)−mint≤T̄s

for all s ∈ I−s . Hence, we obtain that {ω(t)
s,a}∞t=1 is bounded from above for all s ∈ S

and a ∈ I+s .
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Lemma 30. Consider any state s ∈ S. Under the setting of Lemma 25, if I+s is non-empty, then

lim
t→∞

max
a∈I0

s

ω(t)
s,a =∞, lim

t→∞
max
a∈I0

s

θ(t)s,a =∞.

Proof. By Lemma 27, we know
∑

a∈I0
s
π
(t)
ω (a|s)→ 1 and

∑
a∈I0

s
π
(t)
θ (a|s)→ 1 as t→∞. Moreover, by Lemma 28, we

know {ω(t)
s,a} and {θ(t)s,a} are lower-bounded for all a ∈ I+s . Therefore, under the softmax policy parameterization, we obtain

the desired results.

Recall from (89) that for all a ∈ I−s , we have Aπ(t)
ω (s, a) ≤ −∆s

4 for all t ≥ T̄s.

Lemma 31. Consider any state s ∈ S. Under the setting of Lemma 25, if I+s is non-empty, then for any a ∈ I−s , we have
ω
(t)
s,a → −∞ as t→∞.

Proof of Lemma 31. We prove this by contradiction. Motivated by the proof of Lemma C11 in (Agarwal et al., 2021), our
proof here extends their argument to the case with momentum by considering the cumulative effect of all the gradient terms
on the policy parameter θ(t).

We first show that limt→∞ θ
(t)
s,a = −∞. We prove

lim inf
t→∞

θ(t)s,a = −∞ (95)

first by contradiction. Given an action a ∈ I−s , suppose that there exists ϑ such that θ(t)s,a > ϑ for all t ≥ T̄s. Then, by
Lemmas 24 and 30, we know there must exist an action a′ ∈ A such that lim inft→∞ θ

(t)
s,a′ = −∞. Let δ > 0 be some

positive scalar such that θ(T̄s)
s,a ≥ ϑ− δ. For each t ≥ T̄s, define

ν(t) := sup{τ : θ
(τ)
s,a′ ≥ ϑ− δ, T̄s ≤ τ ≤ t}, (96)

which is the latest iteration that θ(τ)s,a′ remains no smaller than ϑ− δ. We consider two cases: (i) {ν(t)}∞t=1 is bounded, and
(ii) limt→∞ ν(t) =∞.

For case (i), we define the following index set

J (t) :=
{
τ :

∂V πθ (µ)

∂θs,a′

∣∣∣
θ=ω(τ)

< 0, ν(t) < τ < t
}
. (97)

and denote the cumulative effect (up to iteration t) of the gradient terms from those iterations in J (t) as

Z(t) :=
∑

t′∈J (t)

η(t
′+1) · ∂V

πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

·G(t′, t), (98)

where G(t′, t) is defined in (53). If J (t) = ∅, we define Z(t) = 0.

By setting Rmax = 1 in Lemma 10, we have the upper bounds V π(s) ≤ 1/(1− γ) for any s ∈ S and any π, Qπ(s, a) ≤
1/(1− γ) for any (s, a) ∈ S ×A and any π, and also |A(s, a)| ≤ 1/(1− γ) for any (s, a) ∈ S ×A and any π. Leveraging
these upper bounds and Lemma 11, we have

|∂V πθ (µ)/∂θs,a| ≤ 1/(1− γ)2, ∀(s, a) ∈ S ×A . (99)
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Accordingly, for any t > T̄s, we have

Z(t) ≤
∑

t′∈J (t)

η(t
′+1) · ∂V

πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

·G(t′, t) +
∑

t′:t′ /∈J (t),ν(t)<t′<t

η(t
′+1) · ∂V

πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

·G(t′, t)︸ ︷︷ ︸
≥0,by the definition of J (t)

+
∑

t′≤ν(t)

η(t
′+1) ·

(∂V πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

+
1

(1− γ)2

)
·G(t′, t)︸ ︷︷ ︸

≥0, by (99)

=
∑
t′≤t

η(t
′+1) · ∂V

πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

·G(t′, t) +
∑

t′≤ν(t)

η(t
′+1) 1

(1− γ)2
G(t′, t)

= (θ
(t)
s,a′ − θ

(1)
s,a′) +

∑
t′≤ν(t)

η(t
′+1) 1

(1− γ)2
G(t′, t), (100)

where (100) is from the update scheme of APG as in Algorithm 2. Since {ν(t)}∞t=1 is bounded, there is a finite constant M
such that

∑
t′≤ν(t) η

(t′+1) 1
(1−γ)2G(t′, t) ≤M for all t. Therefore, by taking the limit infimum on (100), we know

lim inf
t→∞

Z(t) = −∞. (101)

Now we are ready to quantify θ
(t)
s,a for the action a ∈ I−s . For all t′ ∈ J (t), we have

|(∂V πθ (µ)/∂θs,a)|θ=ω(t′) |
|(∂V πθ (µ)/∂θs,a′)|θ=ω(t′) |

=

∣∣∣∣ π(t′)
ω (a|s)Aπ(t′)

ω (s, a)

π
(t′)
ω (a′|s)Aπ

(t′)
ω (s, a′)

∣∣∣∣ ≥ exp(ϑ− θ
(t′)
s,a′) ·

(1− γ)∆s

4
≥ exp(δ) · (1− γ)∆s

4
, (102)

where the first inequality follows from the softmax parameterization, the assumed upper bound of θ(t)s,a, that |Aπ(t′)
ω (s, a′)| ≤

1/(1− γ), and that Aπ(t′)
ω (s, a) ≤ −∆s/4, and the second one holds by the definition of ν(t) in (96). For any J (t) ̸= ∅,

we have

θ(t)s,a − θ(1)s,a =
∑

t′:1≤t′<T̄s

η(t
′+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, t) +
∑

t′:t′≥T̄s

η(t
′+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, t)

≤
∑

t′:1≤t′<T̄s

η(t
′+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, t) +
∑

t′:t′∈J (t)

η(t
′+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, t) (103)

≤
∑

t′:1≤t′<T̄s

η(t
′+1) ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

G(t′, t)

︸ ︷︷ ︸
<∞ and does not depend on t

+exp(δ)
(1− γ)∆s

4

∑
t′:t′∈J (t)

η(t
′+1) ∂V

πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

G(t′, t)

︸ ︷︷ ︸
≡Z(t)

,

(104)

where (103) holds by the fact that Aπ(t′)
ω (s, a) < 0 for all t ≥ T̄s, and (104) is a direct result of (102). Therefore, by taking

the limit infimum on (104), we have lim inft→∞ θ
(t)
s,a = −∞, which leads to a contradiction.

For the case (ii), given that ν(t) becomes unbounded as t→∞, there are infinitely many τ ≥ T̄s such that θ(τ)s,a′ ≥ ϑ− δ.

In addition, recall that a′ is an action that satisfies lim inft→∞ θ
(t)
s,a′ = −∞. Therefore, we can find a subsequence {ti}∞i=1

of time indices satisfying the following properties:

• t1 ≥ T̄s

• limi→∞ θ
(ti)
s,a′ = −∞.

• θ
(ti)
s,a′ < ϑ− δ for all i ≥ 1.

36



Accelerated Policy Gradient: On the Convergence Rates of the Nesterov Momentum for Reinforcement Learning

• There is always a τi ≥ T̄s satisfying that θ(τi)s,a′ ≥ ϑ− δ, τi ∈ (ti, ti+1), and we specifically let τi := inf{τ ∈ (ti, ti+1) :

θ
(τi)
s,a′ ≥ ϑ− δ} for each i ≥ 1.

Since limi→∞ θ
(ti)
s,a′ = −∞, we can select {ti} in a way such that θ(ti)s,a′ − θ

(ti−1)
s,a′ < 0 for all i. Therefore,

θ
(τi)
s,a′ − θ

(ti)
s,a′ = (θ

(ti)
s,a′ − θ

(ti−1)
s,a′ ) · (G(ti − 1, τi)− 1) +

∑
ti≤t′<τi

η(t
′+1) · ∂V

πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

·G(t′, τi)

≤
∑

ti≤t′<τi

η(t
′+1) · ∂V

πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

·G(t′, τi)

≤
∑

ti≤t′<τi

∣∣∣η(t′+1) · ∂V
πθ (µ)

∂θs,a′

∣∣∣
θ=ω(t′)

·G(t′, τi)
∣∣∣

≤ 4

(1− γ)∆s
·
∑

ti≤t′<τi

∣∣∣η(t′+1) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, τi)
∣∣∣, (105)

where (105) is from that

|(∂V πθ (µ)/∂θs,a′)|θ=ω(t′) |
|(∂V πθ (µ)/∂θs,a)|θ=ω(t′) |

=

∣∣∣∣π(t′)
ω (a′|s)Aπ(t′)

ω (s, a′)

π
(t′)
ω (a|s)Aπ

(t′)
ω (s, a)

∣∣∣∣ ≤ ∣∣∣∣Aπ(t′)
ω (s, a′)

Aπ
(t′)
ω (s, a)

∣∣∣∣ ≤ 4

(1− γ)∆s
, (106)

where the first inequality holds because θ(t
′)

s,a′ ≤ θ
(t′)
s,a , implying π

(t′)
ω (a′|s) ≤ π

(t′)
ω (a|s). Since θ(τi)s,a′ − θ

(ti)
s,a′ →∞ as i→∞,

we have

lim
i→∞

∑
ti≤t′<τi

∣∣∣η(t′+1) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, τi)
∣∣∣ = lim

i→∞

∣∣∣ ∑
ti≤t′<τi

η(t
′+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, τi)
∣∣∣ =∞, (107)

where the first equality holds because a ∈ I−s together with t′ ≥ T̄s implies that ∂V πθ (µ)
∂θs,a

∣∣
θ=ω(t′) < 0 for all t′ included in

the summation. Now consider

θ(t)s,a − θ(T̄s)
s,a = (θ(T̄s)

s,a − θ(T̄s−1)
s,a ) · (G(T̄s − 1, t)− 1) +

t−1∑
t′=T̄s

η(t
′+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(t′)

·G(t′, τi).

By an argument similar to (93), the first term above is at most (θ(T̄s)
s,a − θ

(T̄s−1)
s,a ) ·O(T̄s) regardless of t. Combining this

with (94) and (107), we obtain lim inft→∞ θ
(t)
s,a = −∞, which also leads to a contradiction. Therefore, (95) is proven.

Then, we show that there exists a time T̄ ′
s ≥ T̄s such that θ(T̄

′
s+1)

s,a − θ
(T̄ ′

s)
s,a ≤ 0. If such a T̄ ′

s does not exist, which means
that {θ(t)s,a} is monotonically increasing, we see a contradiction with (95). Since a ∈ I−s , from (94), we know that if
θ
(T̄ ′

s+1)
s,a − θ

(T̄ ′
s)

s,a ≤ 0, then θ
(t+1)
s,a − θ

(t)
s,a ≤ 0 for all t ≥ T̄ ′

s, meaning that θ(t)s,a is monotonically decreasing after T̄ ′
s.

Therefore, combining this monotinicity after T̄ ′
s and (95), we obtain limt→∞ θ

(t)
s,a = −∞.

Finally, we show that limt→∞ ω
(t)
s,a = −∞. Since θ

(t+1)
s,a − θ

(t)
s,a ≤ 0 for all t ≥ T̄ ′

s, by (7) and that a ∈ I−s , we know that
ω
(t)
s,a ≤ θ

(t)
s,a and thus ω(t)

s,a is decreasing for all t ≥ T̄ ′
s. Combining the above properties with limt→∞ θ

(t)
s,a = −∞, we arrive

at limt→∞ ω
(t)
s,a = −∞.

In the following lemma, we use the notation ∆θ
(t)
s,a := θ

(t+1)
s,a − θ

(t)
s,a, for each state-action pair (s, a) and each t ∈ N.

Lemma 32. Consider any state s with non-empty I+s and some a+ ∈ I+s and a ∈ I0s . Under the setting of Lemma 25, if
ω
(τ)
s,a+ > ω

(τ)
s,a and ∆θ

(τ)
s,a+ > ∆θ

(τ)
s,a for some τ > T̄s, then ω

(t)
s,a+ > ω

(t)
s,a and ∆θ

(t)
s,a+ > ∆θ

(t)
s,a for all t > τ .

Proof of Lemma 32. We prove this by induction. Suppose at some time τ > T̄s, we have ω(τ)
s,a+ > ω

(τ)
s,a and ∆θ

(τ)
s,a+ > ∆θ

(τ)
s,a .
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Recalling our definition in (88) and (90), we have from Lemma 11 that

∂V πθ (µ)

∂θs,a+

∣∣∣∣
θ=ω(τ)

=
1

1− γ
· dπ

(τ)
ω

µ (s) · π(τ)
ω (a+|s) ·Aπ(τ)

ω (s, a+)

>
1

1− γ
· dπ

(τ)
ω

µ (s) · π(τ)
ω (a|s) ·Aπ(τ)

ω (s, a) (108)

=
∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(τ)

, (109)

where (108) holds by ω
(τ)
s,a+ > ω

(τ)
s,a and the fact that τ > T̄s implies Aπ(τ)

ω (s, a+) ≥ Aπ(τ)
ω (s, a) from (88). By the update

rule (6), (109) and that ω(τ)
s,a+ > ω

(τ)
s,a imply

θ(τ+1)
s,a+

> θ(τ+1)
s,a . (110)

Thus, from ∆θ
(τ)
s,a+ > ∆θ

(τ)
s,a , (7), (8) and (110), we have

ω(τ+1)
s,a+

= θ(τ+1)
s,a+

+ I
{
V π(τ+1)

φ (µ) ≥ V π
(τ+1)
θ (µ)

}
· τ

τ + 3
(θ(τ+1)

s,a+
− θ(τ)s,a+

)

> θ(τ+1)
s,a + I

{
V π(τ+1)

φ (µ) ≥ V π
(τ+1)
θ (µ)

}
· τ

τ + 3
(θ(τ+1)

s,a − θ(τ)s,a) = ω(τ+1)
s,a . (111)

By (111), (4), and that Aπ(τ+1)
ω (s, a+) ≥ Aπ(τ+1)

ω (s, a), we have

∂V πθ (µ)

∂θs,a+

∣∣∣∣
θ=ω(τ+1)

>
∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(τ+1)

. (112)

Furthermore, by (112) and that ∆θ
(τ)
s,a+ > ∆θ

(τ)
s,a , we have

∆θ(τ+1)
s,a+

= I
{
V π(τ+1)

φ (µ) ≥ V π
(τ+1)
θ (µ)

}
· τ

τ + 3
∆θ(τ)s,a+

+ η(τ+2) ∂V πθ (µ)

∂θs,a+

∣∣∣∣
θ=ω(τ+1)

> I
{
V π(τ+1)

φ (µ) ≥ V π
(τ+1)
θ (µ)

}
· τ

τ + 3
∆θ(τ)s,a + η(τ+2) ∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(τ+1)

= ∆θ(τ+1)
s,a .

By repeating the above argument, we know ω
(t)
s,a+ > ω

(t)
s,a and ∆θ

(t)
s,a+ > ∆θ

(t)
s,a for all t > τ .

Next, we take a closer look at the actions in I0s . We further decompose I0s into two subsets as follows: Consider any state s
with a non-empty I+s , for any a+ ∈ I+s , we define

B0
s (a+) :=

{
a ∈ I0s : For any t ≥ T̄s, either ω(t)

s,a ≥ ω(t)
s,a+

or ∆θ(t)s,a ≥ ∆θ(t)s,a+

}
and use B̄0

s (a+) to denote its complement in I0s . We could thus also write B̄0
s (a+) as

B̄0
s (a+) :=

{
a ∈ I0s : ω(t)

s,a < ω(t)
s,a+

and ∆θ(t)s,a < ∆θ(t)s,a+
for some t ≥ T̄s

}
.

Lemma 33. Consider any state s. Under the setting of Lemma 25, if I+s is nonempty, then:

(a) For all a+ ∈ I+s , we have
lim
t→∞

∑
a∈B0

s(a+)

π(t)
ω (a|s) = 1.

(b) For all a+ ∈ I+s , we have
lim
t→∞

max
a∈B0

s(a+)
ω(t)
s,a =∞.

(c) For all a+ ∈ I+s , we have
lim
t→∞

∑
a∈B0

s(a+)

ω(t)
s,a =∞.
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Proof of Lemma 33. Regarding (a), by the definition of B̄0
s (a+), for each a ∈ B̄0

s (a+), there must exist some T ′ ≥ T̄s such
that ω(T ′)

s,a+ > ω
(T ′)
s,a and ∆θ

(T ′)
s,a+ > ∆θ

(T ′)
s,a . Then, by Lemma 32, we know

ω(t)
s,a+

> ω(t)
s,a and ∆θ(t)s,a+

> ∆θ(t)s,a, for all t ≥ T ′. (113)

Moreover, by Lemma 27 and that a+ ∈ I+s , we have π
(t)
ω (a+|s)→ 0 as t→∞. Based on (113), this further implies that

π
(t)
ω (a|s)→ 0 as t→∞, for all a ∈ B̄0

s (a+). Hence, together with lemma 27 we obtain the desired result.

Regarding (b), by the result in (a) and the argument in the proof of Lemma 30, we directly see that the statement holds true.

Regarding (c), let us consider any action a ∈ B0
s (a+). By the definition of B0

s (a+), at each iteration t ≥ T̄s, either
ω
(t)
s,a ≥ ω

(t)
s,a+ or ∆θ

(t)
s,a ≥ ∆θ

(t)
s,a+ holds. Given the result in (b), it suffices to show that {ω(t)

s,a}∞t=1 is bounded from
below for all a ∈ B0

s (a+). We prove it by contradiction. Suppose that there exists an action ā ∈ B0
s (a+) such that

lim inft→∞ ω
(t)
s,ā = −∞. By Lemma 28, we know that {ω(t)

s,a+}∞t=1 is bounded from below. Therefore, once ω
(t)
s,ā < ω

(t)
s,a+

for some t, we will have ∆θ
(t)
s,ā ≥ ∆θ

(t)
s,a+ . Following an argument similar to that in the proof of Lemma 31 (for case (ii)) to

choose a subsequence of ω(t)
s,ā converging to negative infinity and since ω(t) is θ(t) add momentum with restart, we know

that if momentum goes to negative infinity, by ∆θ
(t)
s,ā ≥ ∆θ

(t)
s,a+ , we will have lim inft→∞ ω

(t)
s,a+ = −∞. Otherwise, if

θ(t) goes to negative infinity, we can observe that the total momentum effect goes to negative infinity, which also leads to
lim inft→∞ ω

(t)
s,a+ = −∞ by ∆θ

(t)
s,ā ≥ ∆θ

(t)
s,a+ . This leads to the desired contradiction and concludes our proof.

Lemma 34. Consider any state s. Under the setting of Lemma 25, for any a+ ∈ I+s , the following hold.

(a) There exists Ta+
such that for all a ∈ B̄0

s (a+),

π(t)
ω (a+|s) > π(t)

ω (a|s), for all t > Ta+
.

(b) There exists T †
a+

such that for all a ∈ B̄0
s (a+),

|Aπ(t)
ω (s, a)| < π

(t)
ω (a+|s)
π
(t)
ω (a|s)

· ∆s

16|A|
, for all t > T †

a+
. (114)

This also implies that ∑
a∈B̄0

s(a+)

π(t)
ω (a|s)Aπ(t)

ω (s, a) > −π(t)
ω (a+|s) ·

∆s

16
, for all t > T †

a+
. (115)

Proof of Lemma 34. Regarding (a), for each a ∈ B̄0
s (a+), we define

ua(a+) := inf{τ ≥ T̄s : ω
(τ)
s,a+

> ω(τ)
s,a and ∆θ(τ)s,a+

> ∆θ(τ)s,a}.

By the definition of B̄0
s (a+), we know the following two facts: (i) ua(a+) is finite for all a ∈ B̄0

s (a+). (ii) By Lemma 32,
for all t ≥ ua(a+), we have ω(t)

s,a+ > ω
(t)
s,a and ∆θ

(t)
s,a+ > ∆θ

(t)
s,a. Therefore, by choosing Ta+

:= maxa∈B̄0
s(a+) ua(a+), we

must have π
(t)
ω (a+|s) > π

(t)
ω (a|s) for all t > Ta+

.

Regarding (b), we have from (a)
π
(t)
ω (a+|s)
π
(t)
ω (a|s)

> 1, ∀t > Ta+ .

Thus, we know that for each a ∈ B̄0
s (a+) ⊆ I0s , there exists some finite t′a > Ta+

such that

|Aπ(t)
ω (s, a)| < π

(t)
ω (a+|s)
π
(t)
ω (a|s)

· ∆s

16|A|
, for all t ≥ t′a.

As a result, by choosing T †
a+

:= maxa∈B̄0
s(a+) t

′
a, we conclude that (114)-(115) indeed hold.
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Lemma 35. Under the setting of Lemma 25, if I+s is non-empty, then for any a+ ∈ I+s , there exists some finite T̃a+
such that∑

a∈I−
s

π(t)
ω (a|s)Aπ(t)

ω (s, a) > −π(t)
ω (a+|s)

∆s

16
, ∀t ≥ T̃a+ . (116)

Proof. Consider any a− ∈ I−s . By Lemmas 28 and 31, we know {ω(t)
s,a+} is bounded from below and ω

(t)
s,a− → −∞ as

t→∞. This implies that π(t)
ω (a−|s)/π(t)

ω (a+|s)→ 0 as t→∞. Therefore, there exists some finite t′a−
≥ T̄s such that

π
(t)
ω (a−|s)

π
(t)
ω (a+|s)

<
∆s(1− γ)

16|A|
, ∀t ≥ t′a−

. (117)

By the definition of T̄s in (89) and Lemma 10, we know that

− 1

1− γ
≤ Aπ(t)

ω (s, a−) < 0, ∀t ≥ t′a−
. (118)

Combining (117) and (118) leads to

π(t)
ω (a−|s)Aπ(t)

ω (s, a−) > −π(t)
ω (a+|s)

∆s

16|A|
. (119)

By choosing T̃a+
:= maxa−∈I−

s
t′a−

and summing (119) over ai ∈ I−s , we obtain (116).
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C.2. Putting Everything Together: Asymptotic Convergence of APG

Now we are ready to put everything together and prove Theorem 1, which we restate below.
Theorem 1 (Asymptotic Convergence Under Softmax Parameterization). Consider a tabular softmax parameterized
policy πθ. For APG with η(t) = t

t+1
(1−γ)3

16 and µ initialized uniformly at random, the following holds almost surely:

lim
t→∞

V π
(t)
θ (s) = V ∗(s),∀s ∈ S .

Proof of Theorem 1. By Lemma 4, it suffices to prove that I+s = ∅ for all s ∈ S . We prove this by contradiction. Suppose
there exists at least one state s ∈ S with a non-empty I+s . Consider an action a+ ∈ I+s . Recall the definitions of T̄s,
Ta+ , T

†
a+

, and T̃a+ from (88)-(90), Lemma 34, and Lemma 35. We define Tmax := max{T̄s, Ta+ , T
†
a+

, T̃a+}, then we have
for all t > Tmax,

0 =
∑

a∈B0
s(a+)

π(t)
ω (a|s)Aπ(t)

ω (s, a) +
∑

a∈B̄0
s(a+)

π(t)
ω (a|s)Aπ(t)

ω (s, a)

︸ ︷︷ ︸
>−π

(t)
ω (a+|s)∆s

16 by Lemma 34

+
∑
a∈I+

s

π(t)
ω (a|s)Aπ(t)

ω (s, a)

︸ ︷︷ ︸
≥π

(t)
ω (a+|s)∆s

4

+
∑
a∈I−

s

π(t)
ω (a|s)Aπ(t)

ω (s, a)

︸ ︷︷ ︸
>−π

(t)
ω (a+|s)∆s

16 by Lemma 35

(120)

>
∑

a∈B0
s(a+)

π(t)
ω (a|s)Aπ(t)

ω (s, a) +
1

8
· π(t)

ω (a+|s)∆s

>
∑

a∈B0
s(a+)

π(t)
ω (a|s)Aπ(t)

ω (s, a), (121)

where (120) uses Lemma 7. By Lemma 11, (121) further implies∑
a∈B0

s(a+)

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t)

< 0, ∀t > Tmax. (122)

Moreover, for any t > Tmax + 4, we have∑
a∈B0

s(a+)

θ(t)s,a − θ(0)s,a

=
∑

a∈B0
s(a+)

t−1∑
t′=0

(
η(t

′+1) · ∂V
πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t′)

·G(t′, t)
)

(123)

=

t−1∑
t′=0

η(t
′+1)G(t′, t) ·

( ∑
a∈B0

s(a+)

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t′)

)

=

Tmax∑
t′=0

η(t
′+1)G(t′, t) ·

( ∑
a∈B0

s(a+)

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t′)

)
︸ ︷︷ ︸

Independent of t and thus finite

+

t−1∑
t′=Tmax+1

η(t
′+1)G(t′, t) ·

( ∑
a∈B0

s(a+)

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t′)

)
︸ ︷︷ ︸

<0 by (122)

,

(124)

where (123) holds due to Lemma 23 and t > Tmax + 4 > 4. By taking the limit of t to infinity at both sides of (124),
the left-hand side goes to positive infinity by Lemma 33 but the right-hand side is bounded from above. This leads to a
contradiction and hence completes the proof.

Corollary 2. Consider a tabular softmax parameterized policy and assume that Assumption 1 holds. Under the setting of
Theorem 1, the following holds almost surely:

lim
t→∞

V π(t)
ω (s) = V ∗(s), lim

t→∞
πθ(a

∗(s)|s) = 1, lim
t→∞

πω(a
∗(s)|s) = 1, ∀s ∈ S .
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Proof of Corollary 2. By Lemma 26 and Theorem 1, we know that almost surely

lim
t→∞

V π(t)
ω (s) = lim

t→∞
V π

(t)
θ (s) = V ∗(s), ∀s ∈ S . (125)

From Assumption 1 and page 14 of (Szepesvári, 2022), (125) then implies that the policy weight of the optimal action a∗(s)
converges to 1, proving the desired results.
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D. Convergence Rate of APG With Nearly Constant Step Sizes
D.1. Proofs of Lemmas 1 and 2

This subsection proves Lemmas 1 and 2 using the lemmas we have developed to prepare for proving Theorem 2. Before
delving into the proof of Lemmas 1 and 2, we state a lemma useful for proving them.

Lemma 36. Under the setting of Corollary 2, there exists a finite time TV such that V π
(t)
θ (s) > Q∗(s, a2(s)) for all s ∈ S

and t ≥ TV almost surely.

Proof of Lemma 36. By Theorem 1, V π
(t)
θ (s) → V ∗(s) for all s ∈ S almost surely. Hence, given ε = V ∗(s) −

Q∗(s, a2(s)) > 0 by Lemma 8,almost surely there is a finite TV (s) such that V π
(t)
θ (s) > Q∗(s, a2(s)) for any t ≥ TV (s).

Accordingly, by noting that S is a finite set and that any finite intersection of measure zero events is still measure zero, we
let TV = maxs∈S TV (s) and the proof is completed.

Lemma 1 (Locally C-Near Concavity; Formal). Given any C > 1 and a direction d satisfying the setting of Lemma 20.
Let θ be a policy parameter satisfying the following conditions: (i) V πθ (s) > Q∗(s, a2(s)) for all s ∈ S; (ii) θs,a∗(s)−θs,a >
MC,d, for all s ∈ S, and a ̸= a∗(s), where

MC,d := max

{
2 max
s∈S,i>1

{
ln
[
2(|A| − 1)

]
− ln[ds,a∗(s) − ds,ai(s)]

}
, ln
[ | S ||A |2

(C − 1)(1− γ)2 mins∈S µ(s)

]}
. (126)

Then, we have that the objective function θ 7→ V πθ (µ) is C-nearly concave along the direction d.

Proof of Lemma 1. Given any s ∈ S , according to Lemma 20, provided that θs,a∗ − θs,a > Md for all a ̸= a∗, the function
θ → πθ(a

∗(s)|s) is concave along the direction d, and the functions θ → πθ(a|s) for all a ̸= a∗(s) are convex along the
direction d. Suppose θ is a parameter satisfies θs,a∗(s) − θs,a > MC,d for all s ∈ S and all a ̸= a∗(s), and consider θ′ as a
parameter obtained from updating θ along the direction d. To show that θ → V πθ (µ) is C-nearly concave along the desired
direction, we have to show that

V πθ′ (µ)− V πθ (µ) ≤ C ·
〈
∇θV

πθ (µ)
∣∣∣
θ=θ

, θ′ − θ
〉
.

By Lemmas 4 and 7,

V πθ′ (µ)− V πθ (µ) =
1

1− γ

∑
s,a

dπθ′
µ (s)πθ′(a|s)Aπθ (s, a)

=
1

1− γ

∑
s,a

dπθ′
µ (s)(πθ′(a|s)− πθ(a|s))Aπθ (s, a)

=
∑
s,a

d
πθ′
µ (s)

dπθ
µ (s)

(πθ′(a|s)− πθ(a|s))
1

1− γ
dπθ
µ (s)Aπθ (s, a)

≤
∥∥∥∥dπθ′

µ

dπθ
µ

∥∥∥∥
∞

〈
∇πθ

V πθ (µ)|πθ=πθ
, πθ′ − πθ

〉
, (127)

where (127) holds by Lemmas 12 and 21.

Since θ′ is obtained by updating θ with the direction d, we have

θ′s,a∗(s) − θ′s,a > θs,a∗(s) − θs,a > MC,d ≥
[ | S ||A |2

(C − 1)(1− γ)2 mins∈S µ(s)

]
.

Thus, by Lemma 19, we have that ∥dπθ′
µ /dπθ

µ ∥∞ < C. Moreover, by Lemma 12, we have〈
∇πθ

V πθ (µ)|πθ=πθ
, πθ′ − πθ

〉
=
〈
∇θV

πθ (µ)|θ=θ,
πθ′ − πθ

πθ

〉
.
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Hence, it remains to show that 〈
∇θV

πθ (µ)|θ=θ,
πθ′ − πθ

πθ

〉
≤
〈
∇θV

πθ (µ)|θ=θ, θ
′ − θ

〉
. (128)

According to the concavity of θ → πθ(a
∗(s)|s) along d for all s ∈ S, we have

πθ′(a∗(s)|s)− πθ(a
∗(s)|s)

πθ(a∗(s)|s)
≤

〈
∇θπθ(a

∗(s)|s)|θ=θ, θ
′ − θ

〉
πθ(a∗(s)|s)

=

∑
a

∂πθ(a
∗(s)|s)

∂θs,a
· (θ′s,a − θs,a)

πθ(a∗(s)|s)
= (1− πθ(a

∗(s)|s)) · (θ′s,a∗(s) − θs,a∗(s))−
∑

a̸=a∗(s)

πθ(a|s) · (θ′s,a − θs,a)

= (θ′s,a∗(s) − θs,a∗(s))−
∑
a

πθ(a|s) · (θ′s,a − θs,a). (129)

On the other hand, since θ → πθ(ai|s) is convex along d for all ai ̸= a∗(s), we have

πθ′(ai|s)− πθ(ai|s)
πθ(ai|s)

≥

〈
∇θπθ(ai|s)

∣∣∣
θ=θ

, θ′ − θ
〉

πθ(ai|s)

=

∑
a

∂πθ(ai|s)
∂θs,a

· (θ′s,a − θs,a)

πθ(ai|s)
= (1− πθ(ai|s)) · (θ′s,ai

− θs,ai)−
∑
a̸=ai

πθ(a|s) · (θ′s,a − θs,a)

= (θ′s,ai
− θs,ai)−

∑
a

πθ(a|s) · (θ′s,a − θs,a). (130)

Finally, we put everything together. By (46), (47), (129) and (130), we have〈
∇θV

πθ (µ)
∣∣∣
θ=θ

,
πθ′ − πθ

πθ

〉
=
∑
s,a

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=θs,a

πθ′(a|s)− πθ(a|s)
πθ(a|s)

≤
∑
s,a

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=θs,a

(
(θ′s,a − θs,a)−

∑
a′

πθ(a
′|s) · (θ′s,a′ − θs,a′)

)
(131)

=
〈
∇θV

πθ (µ)
∣∣∣
θ=θ

, θ′ − θ
〉

−
∑
s

∑
a′

πθ(a
′|s)(θ′s,a′ − θs,a′) ·

∑
a

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=θs,a

=
〈
∇θV

πθ (µ)
∣∣∣
θ=θ

, θ′ − θ
〉
, (132)

where (131) is from (46), (47), (129) and (130), and (132) is because

∑
a

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=θs,a

=
∑
a

1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ (s, a)

=
1

1− γ
dπθ
µ (s)

∑
a

πθ(a|s)Aπθ (s, a) = 0

from Lemmas 7 and 11. We have therefore obtained (128) and thus the proof is completed.
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Lemma 2. Consider a tabular softmax parameterized policy. Under Assumption 1 and the setting of Theorem 1, the
following holds almost surely: Given any M > 0, there exists a finite time T such that for all t ≥ T , s ∈ S, and
a ̸= a∗(s), we have (i) θ(t)s,a∗(s)− θ

(t)
s,a > M , (ii) V π

(t)
θ (s) > Q∗(s, a2(s)), (iii) ∂V πθ (µ)

∂θs,a∗(s)

∣∣∣
θ=ω(t)

> 0 > ∂V πθ (µ)
∂θs,a

∣∣∣
θ=ω(t)

, (iv)

ω
(t)
s,a∗(s) − θ

(t)
s,a∗(s) ≥ ω

(t)
s,a − θ

(t)
s,a.

Proof of Lemma 2. We first show the θ
(t)
s,a∗(s) − θ

(t)
s,a > M part. By Corollary 2, almost surely we have

lim
t→∞

π
(t)
θ (a∗(s)|s) = 1, ∀s ∈ S . (133)

Under this event, assume for contradiction that there is a M > 0 such that no such a finite T exists. Then there is an infinite
sequence {ti} such that for each ti, there is a state sti and an action ati ̸= a∗(sti) satisfying that θ(ti)sti ,a

∗(sti )
− θ

(ti)
sti ,ati

≤M .
Since the action space and the state space are finite, there must be a state s, an action ã, and an infinite subsequence {tij}∞j=1

of {ti} such that θ
(tij )

s,a∗(s) − θ
(tij )

s,ã ≤M for all j ∈ N. For each of such tij , we have

π
(tij )

θ (a∗(s)|s) =
exp(θ

(tij )

s,a∗(s))∑
a exp(θ

(tij )
s,a )

≤
exp(θ

(tij )

s,ã +M)

exp(θ
(tij )

s,ã +M) + exp(θ
(tij )

s,ã )
=

exp(M)

exp(M) + 1
< 1,

which contradicts with (133). Therefore, with probability one, for any M > 0, there is a corresponding TM <∞ such that

θ
(t)
s,a∗(s) − θ(t)s,a > M, ∀s ∈ S, a ̸= a∗(s), ∀t ≥ TM . (134)

From Lemma 36, we directly see that with probability one, there is TV <∞ such that

V π
(t)
θ (s) > Q∗(s, a2(s)), ∀s ∈ S, ∀t ≥ TV . (135)

Given any s ∈ S, by Corollary 2 and (135), we know that almost surely there is a finite T1(s) such that V π(t)
ω (s) >

Q∗(s, a2(s)) for all t ≥ T1(s). By Lemma 8, it then implies

Qπ(t)
ω (s, a) ≤ Q∗(s, a2(s)) < V π(t)

ω (s), ∀a ̸= a∗(s), ∀t ≥ T1(s).

Hence, we have from (2) that Aπ(t)
ω (s, a) < 0 for all a ̸= a∗(s) and all t ≥ T1(s). This together with Lemma 7 and that

πω(t)(a|s) > 0 for all a (from the nature of softmax parameterization) then implies Aπ(t)
ω (s, a∗(s)) > 0. Therefore, by

Lemma 11, we see that with probability one,

∂V πθ (µ)

∂θs,a∗(s)

∣∣∣∣
θ=ω(t)

> 0 >
∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t)

, ∀a ̸= a∗(s), ∀t ≥ T1(s). (136)

By taking T1 := maxs∈S T1(s), (136) implies that with probability one,

∂V πθ (µ)

∂θs,a∗(s)

∣∣∣∣
θ=ω(t)

> 0 >
∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t)

, ∀a ̸= a∗(s), ∀s ∈ S, ∀t ≥ T1. (137)

We now discuss the part regarding (iv). We claim that

Claim 2. For any t ≥ T1 in (137), if there is (s, a′) ∈ S ×A such that

ω
(t)
s,a∗(s) − θ

(t)
s,a∗(s) ≥ ω

(t)
s,a′ − θ

(t)
s,a′ , (138)

then
ω
(t+1)
s,a∗(s) − θ

(t+1)
s,a∗(s) ≥ ω

(t+1)
s,a′ − θ

(t+1)
s,a′ .
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If a′ = a∗(s), there is nothing to prove. When a′ ̸= a∗(s), by considering the update (6), we have

θ(t+1)
s,a = θ(t)s,a + (ω(t)

s,a − θ(t)s,a) + η(t+1) ∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(t)

, ∀a ∈ A . (139)

Let I(t+1) := I
{
V π(t+1)

φ (µ) ≥ V π
(t+1)
θ (µ)

}
. Combining (139) with (7) and (8) then leads to

ω
(t+1)
s,a∗(s) − θ

(t+1)
s,a∗(s) = I(t+1) t

t+ 3
(θ

(t+1)
s,a∗(s) − θ

(t)
s,a∗(s))

= I(t+1) t

t+ 3

(
ω
(t)
s,a∗(s) − θ

(t)
s,a∗(s) + η(t+1) ∂V πθ (µ)

∂θs,a∗(s)

∣∣∣∣
θ=ω(t)

)

≥ I(t+1) t

t+ 3

(
ω
(t)
s,a′ − θ

(t)
s,a′ + η(t+1) ∂V πθ (µ)

∂θs,a′

∣∣∣∣
θ=ω(t)

)
(140)

= I(t+1) t

t+ 3
(θ

(t+1)
s,a′ − θ

(t)
s,a′)

= ω
(t+1)
s,a′ − θ

(t+1)
s,a′ ,

proving Claim 2, where (140) follows from (137) and (138).

With Claim 2, we are now ready to prove that with probability one, there exists a finite Tω ≥ T1 such that

ω
(t)
s,a∗(s) − θ

(t)
s,a∗(s) ≥ ω(t)

s,a − θ(t)s,a, ∀s ∈ S, ∀a ∈ A, ∀t ≥ Tω. (141)

Suppose for contradiction that there is no such a Tω . Then, as S and A are finite sets, there is an infinite sequence {ti} and a
state-action pair (s, ã) such that

ω
(ti)
s,a∗(s) − θ

(ti)
s,a∗(s) < ω

(ti)
s,ã − θ

(ti)
s,ã , ∀i ≥ 0. (142)

If there is a t̂ ≥ T1 such that ω(t̂)
s,a∗(s) − θ

(t̂)
s,a∗(s) ≥ ω

(t̂)
s,ã − θ

(t̂)
s,ã, Claim 2 implies ω(t)

s,a∗(s) − θ
(t)
s,a∗(s) ≥ ω

(t)
s,ã − θ

(t)
s,ã for every

t ≥ t̂, which contradicts (142). Therefore,

ω
(t)
s,a∗(s) − θ

(t)
s,a∗(s) < ω

(t)
s,ã − θ

(t)
s,ã, ∀t ≥ T1. (143)

The strict inequality in (143) implies that
I(t) ̸= 0, ∀t ≥ T1, (144)

for it otherwise leads to ω(t) − θ(t) = 0, and thus ω(t)
s,a∗(s) − θ

(t)
s,a∗(s) = ω

(t)
s,ã − θ

(t)
s,ã by (8).

For any N > T1, we have

θ
(N)
s,a∗(s) = θ

(T1(s))
s,a∗(s) +

N−1∑
t=T1

(θ
(t+1)
s,a∗ − θ

(t)
s,a∗)

= θ
(T1)
s,a∗ +

N−1∑
t=T1

t+ 3

t
(ω

(t+1)
s,a∗ − θ

(t+1)
s,a∗ ) (145)

< θ
(T1)
s,a∗ +

N−1∑
t=T1

t+ 3

t
(ω

(t+1)
s,ã − θ

(t+1)
s,ã ) (146)

= θ
(T1)
s,a∗ +

N−1∑
t=T1

(θ
(t+1)
s,ã − θ

(t)
s,ã) (147)

= θ
(T1)
s,a∗ − θ

(T1)
s,ã + θ

(N)
s,ã , (148)

where (145) and (147) used (7), (8) and (144), and (146) is from (143). Letting N → ∞ in (148), we see a direct
contradiction with (133). Hence, there is a Tω ≥ T1 such that (141) holds.

Finally, the proof is completed by letting T = max{TM , TV , Tω}.
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D.2. Convergence Rate of APG

We need thew following lemma to faciliate the proof of Theorem 2.

Lemma 37. Given any state s ∈ S and a corresponding vector ds,· := [ds,a∗(s), ds,a2(s), · · · , ds,a| A |(s)] satisfying (i)

ds,a∗(s) +
∑| A |

i=2 ds,ai(s) = 0, and (ii) ∥ds,·∥22 = 1, we have

• If ds,a∗(s) > 0 ≥ maxi≥2 ds,ai(s), then mini≥2{ds,a∗(s) − ds,ai(s)} > | A |−
3
2 .

• If ds,a∗(s) > (1 + εr)maxi≥2 ds,ai(s) > 0, then mini≥2{ds,a∗(s) − ds,ai(s)} >
εr

1+εr
| A |− 3

2 .

Proof of Lemma 37. We fix some state s ∈ S. Since ds,a∗(s) +
∑| A |

i=2 ds,ai(s) = 0, we have

|ds,a| ≤
∑

a′:da′>0

ds,a′ , ∀a ∈ A . (149)

By taking square on both side of (149), we obtain from ∥ds,·∥22 = 1 that

1 =
∑
a∈A

d2s,a ≤
∑
a∈A

( ∑
a′:da′>0

ds,a′
)2

= | A |
( ∑
a′:da′>0

ds,a′
)2
. (150)

Using the assumption of ds,a∗(s) > maxi≥2 ds,ai(s) and taking the square root of (150), we get

ds,a∗(s) >
1

| A |
( ∑
a′:da′>0

ds,a′
)
≥ |A|− 3

2 . (151)

Thus, if ds,a∗(s) > 0 ≥ maxi≥2 ds,ai(s), by (151), we have

min
i≥2
{ds,a∗(s) − ds,ai(s)} ≥ ds,a∗(s) > | A |−

3
2 .

On the other hand, if ds,a∗(s) > (1 + εr)maxi≥2 ds,ai(s) > 0, again by (151), we have

min
i≥2
{ds,a∗(s) − ds,ai(s)} > ds,a∗(s) −

ds,a∗(s)

(1 + εr)
≥ εr

1 + εr
| A |− 3

2 .

With all the tools prepared, now we restate and then prove Theorem 2.

Theorem 2 (Convergence Rate of APG; Formal). Consider reinforcement learning with tabular softmax parameterized
policies πθ. Under APG with η(t) = t

t+1 ·
(1−γ)3

16 and µ initialized uniformly at random, the following holds almost surely:
There exists a finite time T such that for all t ≥ T , we have

V ∗(ρ)− V π
(t)
θ (ρ) ≤ 1

(1− γ)3

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

(
2| S |(| A | − 1)

t2 + | A | − 1
+

512| S | ln2(t) + 32
∥∥2θ(T ) − (2 + T )

(
ω(T ) − θ(T )

)∥∥2
(1− γ)(t+ 1)t

)
.

Proof of Theorem 2. We will first show that there exists a finite time T such that for all t ≥ T , the restart mechanism is
inactive and the objective function V πθ (µ) will be 3

2 -nearly concave at each iterate along the APG update directions. We
will then leverage Lemma 3 and Corollary 1 to characterize the convergence rate.

Let

M ′ := ln
[ 2| S ||A |2

(1− γ)2 mins∈S µ(s)

]
.

By Lemma 2, there exists a finite time T ′ such that for all t ≥ T ′, s ∈ S , and a ̸= a∗(s), we have (i) θs,a∗(s) − θs,a > M ′,

(ii) V π
(t)
θ (s) > Q∗(s, a2(s)), (iii) ∂V πθ (µ)

∂θs,a∗(s)

∣∣∣
θ=ω(t)

> 0 > ∂V πθ (µ)
∂θs,a

∣∣∣
θ=ω(t)

, (iv) ω(t)
s,a∗(s) − θ

(t)
s,a∗(s) ≥ ω

(t)
s,a − θ

(t)
s,a.
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We first show that the restart mechanism is inactive for all t > T ′. The momentum term at time t is

t− 1

t+ 2
(θ(t) − θ(t−1)) =

t− 1

t+ 2

(
ω(t−1) − θ(t−1) + η(t)∇θV

πθ (µ)
∣∣∣
θ=ω(t−1)

)
. (152)

We can observe that (152) lies in the feasible update domain U for any t > T ′ by the properties (iii) and (iv) above. Hence,
by combining Lemmas 4, 7 and 21, we know that V π

φ(t) (µ) ≥ V π
θ(t) (µ), meaning that there is no restart at t > T ′.

Additionally, by (iii), we know that the gradient updates also lie in U .

To show that the near concavity of the objective, we separately consider two cases for each state s ∈
S: (I) maxa ̸=a∗(s)

{
ω
(T ′)
s,a − θ

(T ′)
s,a + η(T

′+1) ∂V πθ (µ)
∂θs,a

∣∣∣
θ=ω(T ′)

}
≤ 0; (II) maxa ̸=a∗(s)

{
ω
(T ′)
s,a − θ

(T ′)
s,a +

η(T
′+1) ∂V πθ (µ)

∂θs,a

∣∣∣
θ=ω(T ′)

}
> 0. For case (I), we can see that for any t ≥ T ′, maxa̸=a∗(s)

{
ω
(t)
s,a − θ

(t)
s,a +

η(t+1) ∂V πθ (µ)
∂θs,a

∣∣∣
θ=ω(t)

}
≤ 0 by the APG updates and (iii). Let

M(i) := max
{
2 ln

[
2(|A| − 1)

]
− 2 ln

[
| A |− 3

2

]
,M ′

}
. (153)

From Lemma 2, we know that there is a finite time Ts ≥ T ′ such that (i)-(iv) above with M ′ replaced by M(i) remain

true for all t > Ts. Let d(t)
s,· :=

θ
(t)
s,·−θ

(t−1)
s,·

∥θ(t)
s,·−θ

(t−1)
s,· ∥2

be the scaled APG update direction at time t such that ∥d(t)
s,· ∥2 = 1. By

Lemma 24, we have
∑

a∈A d
(t)
s,a = 0 for any t and s ∈ S. We also know that in this case, maxa̸=a∗(s) d

(t)
s,a ≤ 0 for all

t > Ts. Lemma 37 then leads to mina̸=a∗(s){d
(t)
s,a∗(s) − d

(t)
s,a} > | A |−

3
2 for any t > Ts. By noting that M ′ is exactly the

second term in the maximum in (126) with C = 3/2, we observe that the setting of M(i) in (153) satisfies all the conditions
in Lemma 1, so the objective function θ → V πθ (µ) is 3

2 -nearly concave along our APG update directions for all t > Ts for
the state s in the case (I).

Regarding case (II), let

εT ′ :=
ω
(T ′)
s,a∗(s) − θ

(T ′)
s,a∗(s) + η(t

′+1) ∂V πθ (µ)
∂θs,a∗(s)

∣∣∣
θ=ω(T ′)

maxa ̸=a∗(s)

{
ω
(T ′)
s,a − θ

(T ′)
s,a + η(t′+1) ∂V πθ (µ)

∂θs,a

∣∣∣
θ=ω(T ′)

} − 1.

Note that εT ′ > 0 due to (iii) and (iv) and the hypothesis of this case. Let

M(ii) := max

{
2 ln

[
2(|A| − 1)

]
− 2 ln

[ εT ′

1 + εT ′
| A |− 3

2

]
,M ′

}
. (154)

Again by Lemma 2, we know that there is a finite time T ′
s ≥ T ′ such that (i)-(iv) above with M ′ replaced by M(ii) remain

true for all t > T ′
s. Similarly, we demonstrate that the objective function θ → V πθ (µ) is 3

2 -nearly concave along our APG
update directions for all t > T ′

s for the state s in this case. Following the argument for (I), we only need to show that
εT ′

1+εT ′
| A |− 3

2 is a lower bound for mina̸=a∗(s){d
(t)
s,a∗(s) − d

(t)
s,a} for every t > T ′

s. We use the same definition of d(t)
s,· as

above. Then, for any k ∈ N+ and s ∈ S satisfying maxa ̸=a∗(s) d
(T ′+k)
s,a ≤ 0, from the argument for (I), | A |− 3

2 is a lower
bound for mina̸=a∗(s){d

(t)
s,a∗(s) − d

(t)
s,a}. Moreover, since εT ′

1+εT ′
< 1, εT ′

1+εT ′
| A |− 3

2 is also a valid lower bound for it. On

the other hand, for any k ∈ N+ and s ∈ S satisfying maxa ̸=a∗(s) d
(T ′+k)
s,a > 0, by the APG updates, (iii) and (iv) abvove,

and that there is no restart after time T ′ (as proven above), we have

d
(T ′+k)
s,a∗(s)

maxa̸=a∗(s){d
(T ′+k)
s,a }

=
θ
(T ′+k)
s,a∗(s) − θ

(T ′+k−1)
s,a∗(s)

maxa̸=a∗(s){θ
(T ′+k)
s,a − θ

(T ′+k−1)
s,a }
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=

(∏k−1
j=1

T ′+k−1−j
T ′+k+2−j

)
(ω

(T ′)
s,a∗(s) − θ

(T ′)
s,a∗(s)) +

∑k
t=1

((∏t−1
j=1

T ′+k−1−j
T ′+k+2−j

)
η(T

′+k−t+1)

>0︷ ︸︸ ︷
∂V πθ (µ)

∂θs,a∗(s)

∣∣∣∣
θ=ω(T ′+k−t)

)
maxa̸=a∗(s)

{(∏k−1
j=1

T ′+k−1−j
T ′+k+2−j

)
(ω

(T ′)
s,a − θ

(T ′)
s,a ) +

∑k
t=1

((∏t−1
j=1

T ′+k−1−j
T ′+k+2−j

)
η(T ′+k−t+1)

∂V πθ (µ)

∂θs,a

∣∣∣∣
θ=ω(T ′+k−t)︸ ︷︷ ︸

<0

)}

>

(∏k−1
j=1

T ′+k−1−j
T ′+k+2−j

)(
ω
(T ′)
s,a∗(s) − θ

(T ′)
s,a∗(s) + η(T

′+1) ∂V πθ (µ)
∂θs,a∗(s)

∣∣∣
θ=ω(T ′)

)
maxa̸=a∗(s)

{(∏k−1
j=1

T ′+k−1−j
T ′+k+2−j

)(
ω
(T ′)
s,a − θ

(T ′)
s,a + η(T ′+1) ∂V πθ (µ)

∂θs,a

∣∣∣
θ=ω(T ′)

)}
=

ω
(T ′)
s,a∗(s) − θ

(T ′)
s,a∗(s) + η(T

′+1) ∂V πθ (µ)
∂θs,a∗(s)

∣∣∣
θ=ω(T ′)

maxa̸=a∗(s)

{
ω
(T ′)
s,a − θ

(T ′)
s,a + η(T ′+1) ∂V πθ (µ)

∂θs,a

∣∣∣
θ=ω(T ′)

}
= 1 + εT ′ . (155)

Therefore, by Lemma 37 and (155), we obtain mina ̸=a∗(s){d
(t)
s,a∗(s) − d

(t)
s,a} > εr

1+εr
| A |− 3

2 for any t > T ′
s. Finally, let

T := maxs∈S max{Ts, T
′
s}+ 1, we obtain a finite time T (since |S| is finite) such that the objective function V πθ (µ) is

indeed 3
2 -nearly concave along the APG update directions and the restart mechanism is inactive for all t ≥ T .

As the objective function is 3
2 -nearly concave along the APG update directions and there will be no restart mechanism

for all t ≥ T , we now apply Lemma 3 to establish the asymptotic convergence rate. It is necessary to account for a shift
in the initial step size due to the passage of time T . Specifically, if we divide the update process into two phases based
on time T , the latter phase will commence with a modified step size. Specifically, the latter phase could be considered as
Algorithm 2 with θ(0) = θ(T ), ω(0) = ω(T ) and η(0) = η(T+1). We define the surrogate solution θ∗∗(t) at time t such that
θ
∗∗(t)
s,· := [θ

∗∗(t)
s,a∗(s), θ

∗∗(t)
s,a2(s)

, · · · , θ∗∗(t)s,a| A |(s)
] satisfies θ∗∗(t)s,· = [2 ln(t), 0, 0, · · · , 0] for all s ∈ S.

By Lemmas 3 and 14 and Corollary 1 with Tshift = T and θ∗∗ = θ∗∗(t), we have that

V π
(t+T )

θ∗∗ (µ)− V π
(t+T )
θ (µ) ≤

16
∥∥2θ∗∗(t+T ) − 2θ(T ) − (2 + T )

(
ω(T ) − θ(T )

)∥∥2
(1− γ)3(t+ T + 1)(t+ T )

≤
128

∥∥θ∗∗(t+T )
∥∥2 + 32

∥∥2θ(T ) − (2 + T )
(
ω(T ) − θ(T )

)∥∥2
(1− γ)3(t+ T + 1)(t+ T )

=
512| S | ln2(t+ T ) + 32

∥∥2θ(T ) − (2 + T )
(
ω(T ) − θ(T )

)∥∥2
(1− γ)3(t+ T + 1)(t+ T )

. (156)

Additionally, the sub-optimality gap between the optimal V ∗ and the surrogate optimal solution can be bounded by

V ∗(µ)− V π
(t)

θ∗∗ (µ) =
1

1− γ

∑
s

dπ
∗

µ (s)
∑
a

(π∗(a|s)− π
(t)
θ∗∗(a|s)) ·Aπ

(t)

θ∗∗ (s, a) (157)

≤ 1

1− γ

∑
s

dπ
∗

µ (s)︸ ︷︷ ︸
≤1

∑
a

|π∗(a|s)− π
(t)
θ∗∗(a|s)| · |Aπ

(t)

θ∗∗ (s, a)|︸ ︷︷ ︸
≤ 1

1−γ by Lemma 10

≤ 1

(1− γ)2

∑
s

∑
a

|π∗(a|s)− π
(t)
θ∗∗(a|s)|

=
1

(1− γ)2

∑
s

(
|π∗(a∗(s)|s)− π

(t)
θ∗∗(a

∗(s)|s)|+
∑

a ̸=a∗(s)

|π∗(a|s)− π
(t)
θ∗∗(a|s)|

)
=

1

(1− γ)2

∑
s

2
(
1− π

(t)
θ∗∗(a

∗(s)|s)
)

(158)

≤ 2| S |
(1− γ)2

(
1− exp(2 ln(t))

exp(2 ln(t)) + exp(0) · (| A | − 1)

)
(159)
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=
2| S |

(1− γ)2

(
| A | − 1

t2 + | A | − 1

)
, (160)

where (157) holds by Lemma 4 and Lemma 7, (158) holds due to π∗(a∗(s)|s) = 1 and π∗(a|s) = 0 for all a ̸= a∗(s).

Finally, by Lemma 6, (156) and (160), we can then change the convergence rate bound for V π(µ) to for V π(ρ) and get the
convergence rate:

V ∗(ρ)− V π
(t)
θ (ρ) ≤ 1

1− γ
·

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

·
(
V ∗(µ)− V π

(t)
θ (µ)

)
=

1

1− γ
·

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

·
((

V π
∗∗(t)
θ (µ)− V π

(t)
θ (µ)

)
+
(
V ∗(µ)− V π

∗∗(t)
θ (µ)

))
≤ 1

1− γ
·

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

·

(
2| S |

(1− γ)2
| A | − 1

t2 + | A | − 1

+
512| S | ln2(t) + 32

∥∥2θ(T ) − (2 + T )
(
ω(T ) − θ(T )

)∥∥2
(1− γ)3(t+ 1)t

)

=
1

(1− γ)3

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

(
2| S |(| A | − 1)

t2 + | A | − 1
+

512| S | ln2(t) + 32
∥∥2θ(T ) − (2 + T )

(
ω(T ) − θ(T )

)∥∥2
(1− γ)(t+ 1)t

)

for all t ≥ T , and the proof is complete.
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E. APG With Time-Varying Step Sizes
E.1. Asymptotic Convergence of APG With Time-Varying Step Sizes

Lemma 38. Given any t ∈ N+, let η(t) = βt · (1−γ)3

8 for any exp( 1

8
√

| A || S |
· 1−γ

4C∞−(1−γ) ) > β > 1 and K =

1

4
√

| A || S |
· 1−γ
4C∞−(1−γ) + 2 lnβ where C∞ := maxπ∥

dπ
µ

µ ∥∞. Consider

θ ← ω +
[
η(t)∇θV

πθ (µ)
∣∣∣
θ=ω

]+K

and denote ωζ := ω + ζ · (θ − ω) with some ζ ∈ [0, 1]. Under softmax parameterization, we have,

∥∇θV
πθ |θ=ωζ

∥2 ≤ 2∥∇θV
πθ |θ=ω∥2.

Proof of Lemma 38. By the proofs of Lemmas 3 and 7 in (Mei et al., 2021b), we know that it suffices to replace the upper
bound of ∥θ′ − θ∥2 in (234) in (Mei et al., 2021b) with our updates. Additionally, the upper bound of the norm of our
updates is

√
| S ||A |K. Thus, we have the bound as follows:

∥∇θV
πθ |θ=ωζ

∥2 ≤
1

1− 4C∞−(1−γ)
1−γ

√
| S |
√
| S ||A |K

∥∇θV
πθ |θ=ω∥2. (161)

We elaborate on the bound of 1

1− 4C∞−(1−γ)
1−γ | S |

√
| A |K

,

1

1− 4C∞−(1−γ)
1−γ | S |

√
| A |K

=
1

1− 4C∞−(1−γ)
1−γ | S |

√
| A |( 1

4
√

| A || S |
· 1−γ
4C∞−(1−γ) + 2 lnβ)

=
1

1− 1
4 −

4C∞−(1−γ)
1−γ | S |

√
| A |2 lnβ

≤ 1

1− 1
4 −

4C∞−(1−γ)
1−γ | S |

√
| A | · 2 · ( 1

8
√

| A || S |
· 1−γ
4C∞−(1−γ) )

(162)

=
1

1− 1
2

= 2, (163)

where (162) holds by plugging in the upper bound of β. Hence, we combine (161) and (163) and obtain the results.

Lemma 39. Consider the setting of Theorem 3. Then, almost surely, the limits of both V π(t)
ω (µ) and V π

(t)
θ (µ) when t

approaches infinity exist, limt→∞ V π(t)
ω (µ) = limt→∞ V π

(t)
θ (µ), and

lim
t→∞

∥∥∇θV
πθ (s)|θ=ω(t)

∥∥ = 0, lim
t→∞

∥∥∇θV
πθ (s)|θ=θ(t)

∥∥ = 0. (164)

Proof of Lemma 39. Following the argument in Lemma 25, we have limt→∞ V π(t)
ω (µ) = limt→∞ V π

(t)
θ (µ). We prove

limt→∞
∥∥∇θV

πθ (s)|θ=ω(t)

∥∥ = 0 by contradiction. Suppose that the limit of
∥∥∇θV

πθ (s)|θ=ω(t)

∥∥ does not exist or is not 0.
Then, we know that there exists a sequence {ti}∞i=1 and ε0 > 0 such that for every ti, there is a state-action pair (sti , ati)
satisfying

∂V πθ (µ)

∂θsti ,ati

∣∣∣∣∣
θ=ω(ti)

> ε0. (165)

Note that (165) is satisfied since the summation of the gradient over all actions at any given state s is zero. We define
∂
(t)
s,a := ∂V πθ (µ)

∂θs,a
|θ=ω(t) and Z

(t)
ϕ (s) :=

∑
a∈A exp(ϕ

(t)
s,a) for any policy parameter ϕ(t). Then, for any ti ∈ {ti}∞i=1,

V π
(ti+1)

θ (µ)− V π
(ti)
ω (µ) =

1

1− γ

∑
s

d
π
(ti+1)

θ
µ (s)

∑
a∈A

π
(ti+1)
θ (a|s)Aπ

(ti)
ω (s, a) (166)
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≥ 1

1− γ
d
π
(ti+1)

θ
µ (sti)

∑
a∈A

π
(ti+1)
θ (a|sti)Aπ

(ti)
ω (sti , a) (167)

≥ µ(sti)
∑
a∈A

π
(ti+1)
θ (a|sti)Aπ

(ti)
ω (sti , a) (168)

= µ(sti)
Z

(ti)
ω (sti)

Z
(ti+1)
θ (sti)

∑
a∈A

exp(ω
(ti)
sti ,a

) + clip{η(ti+1)∂
(ti)
sti ,a

,−K,K}
Z

(ti)
ω (sti)

Aπ
(ti)
ω (sti , a)

≥ µ(sti)
Z

(ti)
ω (sti)

Z
(ti+1)
θ (sti)

[(exp(ω(ti)
sti ,ati

) + clip{η(ti+1)∂
(ti)
sti ,ati

,−K,K}
Z

(ti)
ω (sti)

)
Aπ

(ti)
ω (sti , ati)

+
∑
a̸=ati

exp(ω
(ti)
sti ,a

)

Z
(ti)
ω (sti)

Aπ
(ti)
ω (sti , a)

 (169)

= µ(sti)
Z

(ti)
ω (sti)

Z
(ti+1)
θ (sti)

(exp(min{η(ti+1)∂(ti)
sti ,ati

,K})− 1)π(ti)
ω (ati |sti)Aπ

(ti)
ω (sti , ati) (170)

≥ µ(sti)

∑
a∈A exp(ω

(ti)
sti ,a

)∑
a∈A exp(ω

(ti)
sti ,a

+K)
(exp(min{η(ti+1)∂(ti)

sti ,ati
,K})− 1)

(1− γ)ε0
dπθ
µ (sti)

(171)

≥ µ(sti) exp(−K)(exp(min{η(ti+1)ε0,K})− 1)
(1− γ)ε0
dπθ
µ (sti)

> 0, (172)

where (166) holds by Lemma 4, (167) holds by Lemma 22, (168) holds by Lemma 5, (169) is due to the fact that the signs of
the updates are the same as the advantage function values with respect to the corresponding actions (see Lemmas 4 and 11),
(170) is true because of ∂(ti)

sti ,ati
> 0 and Lemma 7, (171) holds due to that the maximum magnitude of the updates is K

by clipping, (165), and Lemma 11. We can observe that (172) is a value bounded away from 0, which leads to a constant
improvement at time ti. This contradicts with limt→∞ V π(t)

ω (µ) = limt→∞ V π
(t)
θ (µ). Hence, we have

lim
t→∞

∥∥∇θV
πθ (s)|θ=ω(t)

∥∥ = 0. (173)

Finally, we show that limt→∞
∥∥∇θV

πθ (s)|θ=θ(t)

∥∥ = 0. By the triangle inequality, we have∥∥∇θV
πθ (s)|θ=θ(t)

∥∥ ≤ ∥∥∇θV
πθ (s)|θ=θ(t) −∇θV

πθ (s)|θ=ω(t−1)

∥∥+ ∥∥∇θV
πθ (s)|θ=ω(t−1)

∥∥. (174)

By Definition 4 and lemmas 16, 17 and 38, we have

∥∥∇θV
πθ (s)|θ=θ(t)−∇θV

πθ (s)|θ=ω(t−1)

∥∥ ≤ [3+ 4 · (C∞ − (1− γ))

1− γ

√
| S |
]
·2 ·
∥∥∇θV

πθ (s)|θ=ω(t−1)

∥∥ ·∥∥θ(t)−ω(t−1)
∥∥.

(175)
By the clipped update, we know that

∥∥θ(t) − ω(t−1)
∥∥ is always upper bounded by

√
| S ||A |K. Thus, (175) approaches 0

as t→∞ by (173), leading to that the RHS of (174) goes to 0 as t→∞. Hence, we have proven (164).

Theorem 5 (Asymptotic Convergence Under Softmax Parameterization). Consider the setting of Theorem 3, the
following holds almost surely: limt→∞ V π

(t)
θ (s) = V ∗(s), for all s ∈ S.

Proof of Theorem 5. We note that the proofs of Theorem 1 and Lemma 26-35 are all based on the results of Lemma 25.
Now we have provided the counterpart of Lemma 25 as Lemma 39, the requirement for the step size upper bounded in these
lemmas can be removed. By using arguments similar to those in the proof of Theorem 1 and Lemma 26-35, we have the
results.

E.2. Convergence Rate of APG With Time-Varying Step Sizes

Lemma 40. Consider a tabular softmax parameterized policy. Under Assumption 1 and the setting of Theorem 5, the
following holds almost surely: Given any M > 0, there exists a finite time T such that for all t ≥ T , s ∈ S, and
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a ̸= a∗(s), we have (i) θ(t)s,a∗(s)− θ
(t)
s,a > M , (ii) V π

(t)
θ (s) > Q∗(s, a2(s)), (iii) ∂V πθ (µ)

∂θs,a∗(s)

∣∣∣
θ=ω(t)

> 0 > ∂V πθ (µ)
∂θs,a

∣∣∣
θ=ω(t)

, (iv)

ω
(t)
s,a∗(s) − θ

(t)
s,a∗(s) ≥ ω

(t)
s,a − θ

(t)
s,a.

Proof of Lemma 40. Applying Theorem 5 and the logic in its proof to the argument of the proof of Lemma 2, we can obtain
the stated results.

Theorem 3 (Convergence Rate of APG with Time-Varying Step Sizes). Consider a tabular softmax parameterized policy
πθ. Under APG with (6) modified as

θ(t) ← ω(t−1) +
[
η(t)∇θV

πθ (µ)
∣∣∣
θ=ω(t−1)

]+K

,

where η(t) = βt · (1−γ)3

8 for any exp( 1

8
√

| A || S |
· 1−γ

4C∞−(1−γ) ) > β > 1, µ initialized uniformly at random, and

K = 1

4
√

| A || S |
· 1−γ
4C∞−(1−γ) + 2 lnβ where C∞ := maxπ∥

dπ
µ

µ ∥∞, the following holds almost surely: There exists a finite

time T such that for all t ≥ T , we have

V ∗(ρ)− V π
(t)
θ (ρ) = O(e−ct),

for some constant c > 0.

Proof of Theorem 3. By Lemma 4, we have

V ∗(µ)− V π
(t)
θ (µ) =

1

1− γ

∑
s,a

dπ
∗

µ (s)π∗(a|s)Aπ
(t)
θ (s, a)

=
1

1− γ

∑
s,a

dπ
∗

µ (s)(π∗(a|s)− π
(t)
θ (a|s))Aπ

(t)
θ (s, a)

≤ 1

1− γ

∑
s,a

∣∣∣∣∣dπ∗

µ (s)(π∗(a|s)− π
(t)
θ (a|s))Aπ

(t)
θ (s, a)

∣∣∣∣∣
≤ 2

(1− γ)2

∥∥∥dπ∗

µ

∥∥∥
∞

∑
s,a

∣∣∣∣∣π∗(a|s)− π
(t)
θ (a|s)

∣∣∣∣∣
=

2

(1− γ)2

∥∥∥dπ∗

µ

∥∥∥
∞

∑
s

(∣∣∣∣∣π∗(a∗|s)− π
(t)
θ (a∗|s)

∣∣∣∣∣+ ∑
a ̸=a∗

∣∣∣∣∣π∗(a|s)− π
(t)
θ (a|s)

∣∣∣∣∣
)

=
2

(1− γ)2

∥∥∥dπ∗

µ

∥∥∥
∞

∑
s

2(1− π
(t)
θ (a∗|s)).

To obtain the desired outcome, it is sufficient to show that there exist c̄, c̃ > 0 such that

1− π
(t)
θ (a∗(s)|s) ≤ c̃e−c̄t (176)

for all s ∈ S and all t ≥ T . Given

M := ln
| A | − 1

exp
(

1

4
√

| A || S |
· 1−γ
4C∞−(1−γ)

)
− 1

> 0,

where C∞ := maxπ∥
dπ
µ

µ ∥∞. Selecting TM from Lemma 40 such that θ(t)s,a∗(s) − θ
(t)
s,a > M for all t ≥ TM , s ∈ S, and

a ∈ A, for contradiction we assume that after time-step TM , for any c̄, c̃ > 0 there exists some state s′ and an infinite time
sequence {ti}∞i=1 such that

1− π
(t)
θ (a∗(s′)|s′) > c̃e−c̄t, ∀t ∈ {ti}∞i=1. (177)
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Define

C := inf
s′∈S,t≥T

{ (1− γ)2

8
· dπ

(t)
ω

µ (s′) · π(t)
ω (a∗(s′)|s′) · (Qπ

(t)
θ (s′, a∗(s′))− max

a̸=a∗(s′)
Qπ

(t)
θ (s′, a∗(s′)))

}
,

then we have C > 0 since dπ
(t)
ω

µ (s′) ≥ (1− γ)µ(s′) by Lemma 5, π(t)
ω (a∗(s′)|s′) > 1

| A | since θs′,a∗(s′) > θs′,a for all a ̸=

a∗(s′) by property (i) of Lemma 40, and Qπ
(t)
θ (s′, a∗(s′)) ≥ V π

(t)
θ (s′) > Q∗(s′, a∗(s′))) > maxa̸=a∗(s′) Q

π
(t)
θ (s′, a∗(s′))

by properties (ii) of Lemma 40 and Lemma 8.

By choosing c̃ = K
C and c̄ = β and using the corresponding s′ and {ti}, we have:

Aπ
(t)
θ (s′, a∗(s′)) = Qπ

(t)
θ (s′, a∗(s′))− V π

(t)
θ (s′)

= Qπ
(t)
θ (s′, a∗(s′))−

∑
a∈A

π
(t)
θ (a(s′)|s′)Qπ

(t)
θ (s′, a)

= (1− π
(t)
θ (a∗(s′)|s′))Qπ

(t)
θ (s′, a∗(s′))−

∑
a̸=a∗(s′)

π
(t)
θ (a|s′)Qπ

(t)
θ (s′, a)

≥ (1− π
(t)
θ (a∗(s′)|s′))Qπ

(t)
θ (s′, a∗(s′))−

∑
a̸=a∗(s′)

π
(t)
θ (a|s′) ·max

a ̸=a∗
Qπ

(t)
θ (s′, a)

= (1− π
(t)
θ (a∗(s′)|s′))Qπ

(t)
θ (s′, a∗(s′))− (1− π

(t)
θ (a∗|s′)) · max

a̸=a∗(s′)
Qπ

(t)
θ (s′, a)

= (1− π
(t)
θ (a∗(s′)|s′)) (Qπ

(t)
θ (s′, a∗(s′))− max

a̸=a∗(s′)
Qπ

(t)
θ (s′, a))︸ ︷︷ ︸

bounded away from 0

>
K

Cβt
· (Qπ

(t)
θ (s′, a∗(s′))− max

a̸=a∗(s′)
Qπ

(t)
θ (s′, a)). (178)

By following (178), for all t ∈ {ti}∞i=1, we have

θ
(t+1)
s′,a∗(s′) − θ

(t)
s′,a∗(s′)

= (θ
(t+1)
s′,a∗(s′) − ω

(t)
s′,a∗(s′))︸ ︷︷ ︸

gradient

+(ω
(t)
s′,a∗(s′) − θ

(t)
s′,a∗(s′))︸ ︷︷ ︸

momentum

= min
{
K, η(t)∇θV

πθ (µ)
∣∣∣
θ=ω(t)

}
+ (ω

(t)
s′,a∗(s′) − θ

(t)
s′,a∗(s′))

= min
{
K, η(t) · 1

1− γ
· dπ

(t)
ω

µ (s′) · π(t)
ω (a∗|s′) ·Aπ(t)

ω (s′, a∗)
}
+ (ω

(t)
s′,a∗(s′) − θ

(t)
s′,a∗(s′))

= K + (ω
(t)
s′,a∗(s′) − θ

(t)
s′,a∗(s′)) (179)

≥ K + max
a̸=a∗(s′)

{
ω
(t)
s′,a − θ

(t)
s′,a

}
, (180)

where (179) holds by

η(t) · 1

1− γ
· dπ

(t)
ω

µ (s′) · π(t)
ω (a∗|s′) ·Aπ(t)

ω (s′, a∗)

> βt · (1− γ)2

8
· dπ

(t)
ω

µ (s′) · π(t)
ω (a∗|s′) · K

Cβt
· (Qπ

(t)
θ (s′, a∗(s′))−max

a̸=a∗
Qπ

(t)
θ (s′, a∗(s′)))

=
(1−γ)2

8 · dπ
(t)
ω

µ (s′) · π(t)
ω (a∗(s′)|s′) · (Qπ

(t)
θ (s′, a∗(s′))−maxa ̸=a∗(s′) Q

π
(t)
θ (s′, a∗(s′)))

C
·K

≥ K,

and (180) holds by Lemma 40.

Now we discuss two possible cases:

54



Accelerated Policy Gradient: On the Convergence Rates of the Nesterov Momentum for Reinforcement Learning

• The infinite time sequence {ti}∞i=1 contains all t > TM . (i.e., {ti}∞i=1 = {TM + 1, TM + 2, TM + 3, · · · }):
In this case, by (180) and Lemma 40, we have that

θ
(t+1)
s′,a∗(s′) − θ

(t)
s′,a∗(s′) ≥ K + max

a ̸=a∗(s′)

{
ω
(t)
s′,a − θ

(t)
s′,a

}
> K + max

a ̸=a∗(s′)

{
(θ

(t+1)
s′,a − ω

(t)
s′,a)︸ ︷︷ ︸

gradient<0

}
+ max

a̸=a∗(s′)

{
(ω

(t)
s′,a − θ

(t)
s′,a)︸ ︷︷ ︸

momentum

}
≥ K + max

a̸=a∗(s′)

{
θ
(t+1)
s′,a − θ

(t)
s′,a

}
This indicates a constant growth of the policy parameter θs′,a∗(s′). Consequently, by softmax parameterization, it follows
that 1− π

(t)
θ (a∗|s′) = O(e−c̄t) for some c̄ > 0, thereby completing our contradiction.

• There exists at least one (ti − 1) > TM such that (ti − 1) /∈ {ti}∞i=1 (i.e., 1− π
(ti−1)
θ (a∗(s)|s′) ≤ K

Cβti−1 ):

In this case, we set K = 1

4
√

| A || S |
· 1−γ
4C∞−(1−γ) + 2 lnβ to ensure that the one step improvement π(ti+1)

θ (a∗(s)|s′)−

π
(ti)
θ (a∗(s)|s′) is sufficiently large once we follow the update θ(ti+1)

s′,a∗(s′) = ω
(ti)
s′,a∗(s′)+K shown in (179). By Lemma 40,

we have

π
(t+1)
θ (a∗(s)|s′)

=
exp(θ

(t+1)
s′,a∗(s′))∑

a ̸=a∗(s′) exp(θ
(t+1)
s′,a )

=
exp(θ

(t)
s′,a∗(s′) + (θ

(t+1)
s′,a∗(s′) − ω

(t)
s′,a∗(s′)) + (ω

(t)
s′,a∗(s′) − θ

(t)
s′,a∗(s′)))∑

a∈A exp(θ
(t)
s′,a + (θ

(t+1)
s′,a − ω

(t)
s′,a) + (ω

(t)
s′,a − θ

(t)
s′,a))

=
exp(θ

(t)
s′,a∗(s′))∑

a∈A exp(θ
(t)
s′,a + (θ

(t+1)
s′,a − ω

(t)
s′,a) + (ω

(t)
s′,a − θ

(t)
s′,a)− (θ

(t+1)
s′,a∗(s′) − ω

(t)
s′,a∗(s′))− (ω

(t)
s′,a∗(s′) − θ

(t)
s′,a∗(s′))︸ ︷︷ ︸

≤0

)

≥
exp(θ

(t)
s′,a∗(s′))∑

a ̸=a∗(s′) exp(θ
(t)
s′,a)

= π
(t)
θ (a∗(s)|s′). (181)

Following (181), since π
(t)
θ (a∗(s)|s′) is increasing for all t > TM , we have∑

a̸=a∗(s′)

π
(ti)
θ (a|s′) = 1− π

(ti)
θ (a∗(s)|s′) < 1− π

(ti−1)
θ (a∗(s)|s′) ≤ K

Cβti−1
. (182)

Moreover, by Lemma 40, we have∑
a̸=a∗(s′) exp(θ

(ti)
s′,a)

exp( 1

4
√

| A || S |
· 1−γ
4C∞−(1−γ) ) exp(θ

(ti)
s′,a∗(s′))

≤
∑

a ̸=a∗(s′)

π
(ti)
θ (a|s′) ≤ K

Cβti−1
, (183)

where the first inequality in (183) holds by the setting of M .

Combining (180), (182) and (183), we get

1− π
(ti+1)
θ (a∗(s)|s′) =

∑
a̸=a∗(s′)

π
(ti+1)
θ (a|s′)

=

∑
a̸=a∗(s′) exp(θ

(ti)
s′,a + (θ

(ti+1)
s′,a − θ

(ti)
s′,a))∑

a∈A exp(θ
(ti)
s′,a + (θ

(ti+1)
s′,a − θ

(ti)
s′,a))
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=

∑
a̸=a∗(s′) exp(θ

(ti)
s′,a +

<0︷ ︸︸ ︷
(θ

(ti+1)
s′,a − ω

(ti)
s′,a)+

≤0︷ ︸︸ ︷
(ω

(ti)
s′,a − θ

(ti)
s′,a)− (ω

(ti)
s′,a∗(s′) − θ

(ti)
s′,a∗(s′)))∑

a∈A exp(θ
(ti)
s′,a + (θ

(ti+1)
s′,a − ω

(ti)
s′,a) + (ω

(ti)
s′,a − θ

(ti)
s′,a)− (ω

(ti)
s′,a∗(s′) − θ

(ti)
s′,a∗(s′)))

≤
∑

a̸=a∗(s′) exp(θ
(ti)
s′,a)

exp(θ
(ti)
s′,a∗(s′) + (θ

(ti+1)
s′,a∗(s′) − ω

(ti)
s′,a) + (ω

(ti)
s′,a∗(s′) − θ

(ti)
a∗(s′))− (ω

(ti)
s′,a∗(s′) − θ

(ti)
s′,a∗(s′)))

≤
∑

a̸=a∗(s′) exp(θ
(ti)
s′,a))

exp(θ
(ti)
s′,a∗(s′) + (θ

(ti+1)
s′,a∗(s′) − ω

(ti)
s′,a∗(s′)))

=

∑
a ̸=a∗(s′) exp(θ

(ti)
s′,a)

exp(θ
(ti)
s′,a∗(s′))

· exp(−K)

≤
exp( 1

2
√

| A || S |
· 1−γ
4C∞−(1−γ) )K

Cβti−1
· exp(−K)

=
K

Cβti+1
, (184)

where (184) holds by setting K = 1

4
√

| A || S |
· 1−γ
4C∞−(1−γ) + 2 lnβ.

Hence we get that once 1−π(t)
θ (a∗(s)|s′) > K

Cβt occurs for any t ∈ {ti}∞i=1, we could ensure that 1−π(t+1)
θ (a∗(s)|s′) ≤

K
Cβt+1 (i.e., (t+1) /∈ {ti}∞i=1 for all t ∈ {ti}∞i=1 with t > ti), In other words, for all t ∈ {ti}∞i=1, we have t−1 /∈ {ti}∞i=1

and hence 1− π
(t−1)
θ (a∗(s)|s′) ≤ K

Cβt−1 . Combining with the monotonicity of 1− π
(t−1)
θ (a∗(s)|s′) in (181), we get

1−π
(t)
θ (a∗(s)|s′) ≤ 1−π

(t−1)
θ (a∗(s)|s′) ≤ K

Cβt−1 . We thus see that 1−π
(t)
θ (a∗(s)|s′) ≤ K

Cβt−1 for all t > TM . This
means that for any such s′ that has a companion infinite sequence {ti} that satisfies (177) with c̃ = K/C and c̄ = β,
the condition (176) actually holds for s′ with c̃ = βK/C and c̄ = β, so for this setting of c̃ and c we have obtained a
contradiction and thus completed the proof.

E.3. Numerical Validation of the Linear Convergence Rate

Figure 4. The sub-optimality gap of APG with time-
varying step sizes under an MDP of five states and five
actions with uniform initialization.

In this subsection, we empirically validate the convergence rate of
APG with an time-varying step sizes scheduling by conducting ex-
periments on an MDP with five states and five actions. This MDP is
identical to the one discussed in Section 6.1, and detailed configura-
tion information is provided in Appendix F. The figure illustrating the
logarithmic sub-optimality gap of APG with an time-varying step sizes
scheduling under uniform initialization is presented in Figure 4. It is
evident that after ten iterations, the curve tends to form a linear pattern.
This behavior aligns with the linear convergence rate demonstrated in
Theorem 3.
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F. Detailed Explanation of the Motivating Example and the Experimental Configurations
F.1. Motivating Examples of APG (Section 4.2)

Consider a simple two-action bandit with actions a∗ and a2 and a reward function r(a∗) = 1, r(a2) = 0. Accordingly, the
objective we aim to optimize is Ea∼πθ

[r(a)] = πθ(a
∗). Under softmax parameterization, the Hessian matrix with respect to

the parameters θa∗ and θa2
is:

H =

 ∂2πθ(a
∗)

∂θa∗∂θa∗
∂2πθ(a

∗)
∂θa∗∂θa2

∂2πθ(a
∗)

∂θa2∂θa∗
∂2πθ(a

∗)
∂θa2∂θa2


=

[
πθ(a

∗)(1− πθ(a
∗))(1− 2πθ(a

∗)) πθ(a
∗)(1− πθ(a

∗))(2πθ(a
∗)− 1)

πθ(a
∗)(1− πθ(a

∗))(2πθ(a
∗)− 1) πθ(a

∗)(1− πθ(a
∗))(1− 2πθ(a

∗))

]
.

After straightforward calculation, we see that its eigenvalues are λ1 = 2πθ(a
∗)(1 − πθ(a

∗))(1 − 2πθ(a
∗)), λ2 = 0.

Therefore, when πθ(a
∗) ≥ 0.5, we see that λ1, λ2 ≤ 0 and thus the Hessian is negative semi-definite, which is equivalent to

that the function Ea∼πθ
[r(a)] is concave.

F.2. Setting of the Experiment for Numerical Validation of the Convergence Rates of APG (Section 6.1)

(Bandit) We conduct a three-action bandit experiment with actions A = [a∗, a2, a3] with the corresponding rewards
being r = [r(a∗), r(a2), r(a3)] = [1, 0.99, 0]. We consider two initializations for the policy parameters. The first one
is the uniform initialization (θ(0) = [0, 0, 0], π(0) = [1/3, 1/3, 1/3]) and the second one is a hard initialization such that
θ(0) = [1, 3, 5], π(0) = [0.01588, 0.11731, 0.86681] and hence the optimal action has the smallest initial probability.

(MDP) We conduct an experiment on an MDP with five states and five actions under the initial state distribution ρ =
[0.3, 0.2, 0.1, 0.15, 0.25]. The reward function, the initial policy parameters, and the transition probability can be found in
Tables 2-9.

r(s, a) a1 a2 a3 a4 a5

s1 1.0 0.8 0.6 0.7 0.4
s2 0.5 0.3 0.1 1.0 0.6
s3 0.6 0.9 0.8 0.7 1.0
s4 0.1 0.2 0.6 0.7 0.4
s5 0.8 0.4 0.6 0.2 0.9

Table 2. Experimental settings: Reward function.

θ
(0)
s,a a1 a2 a3 a4 a5

s1 1 2 3 4 5
s2 3 4 5 1 2
s3 5 2 3 4 1
s4 5 4 2 1 3
s5 2 4 3 5 1

Table 3. Experimental settings: Hard initialization.

θ
(0)
s,a a1 a2 a3 a4 a5

s1 0 0 0 0 0
s2 0 0 0 0 0
s3 0 0 0 0 0
s4 0 0 0 0 0
s5 0 0 0 0 0

Table 4. Experimental settings: Uniform initialization.
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P (s|s1, a) a1 a2 a3 a4 a5

s1 0.1 0.6 0.5 0.4 0.2
s2 0.5 0.1 0.1 0.3 0.1
s3 0.1 0.1 0.1 0.1 0.1
s4 0.2 0.1 0.2 0.1 0.1
s5 0.1 0.1 0.1 0.1 0.5

Table 5. Experimental settings: Transition probability P (·|s1, ·).

P (s|s2, a) a1 a2 a3 a4 a5

s1 0.1 0.4 0.1 0.4 0.2
s2 0.5 0.1 0.4 0.1 0.2
s3 0.2 0.2 0.3 0.1 0.2
s4 0.1 0.2 0.1 0.1 0.2
s5 0.1 0.1 0.1 0.3 0.2

Table 6. Experimental settings: Transition probability P (·|s2, ·).

P (s|s3, a) a1 a2 a3 a4 a5

s1 0.6 0.2 0.3 0.1 0.2
s2 0.1 0.4 0.3 0.4 0.1
s3 0.1 0.1 0.2 0.3 0.1
s4 0.1 0.2 0.1 0.1 0.1
s5 0.1 0.1 0.1 0.1 0.5

Table 7. Experimental settings: Transition probability P (·|s3, ·).

P (s|s4, a) a1 a2 a3 a4 a5

s1 0.6 0.1 0.2 0.4 0.5
s2 0.1 0.5 0.1 0.3 0.1
s3 0.1 0.1 0.1 0.1 0.1
s4 0.1 0.2 0.1 0.1 0.2
s5 0.1 0.1 0.5 0.1 0.1

Table 8. Experimental settings: Transition probability P (·|s4, ·).

P (s|s5, a) a1 a2 a3 a4 a5

s1 0.2 0.4 0.4 0.1 0.2
s2 0.2 0.1 0.1 0.4 0.5
s3 0.2 0.2 0.1 0.2 0.1
s4 0.2 0.2 0.3 0.1 0.1
s5 0.2 0.1 0.1 0.2 0.1

Table 9. Experimental settings: Transition probability P (·|s5, ·).

F.3. APG on Atari 2600 Games (Section 6.2)

We empirically evaluate the performance of APG on four Atari 2600 games from the Arcade Learning Environment (ALE)
(Bellemare et al., 2013).

Our implementation for APG, HBPG, and PG are based on the code base of Stable Baselines3 and RL Baselines3 Zoo
(Raffin, 2020; Raffin et al., 2021). The hyperparameters, exactly set to their default values, are detailed in Table 10. Pseudo
code of HBPG is given in Algorithm 5.

In Atari, one major challenge of implementing the exact APG is how to get a good estimate of the true gradient ∇θV
πθ (µ)

given the large state and action spaces of the Atari games. While it is theoretically possible to get a nearly true gradient by
Monte-Carlo estimation, it is not feasible in practice due to the resulting prohibitively large computation time. To address
this, we made a few design choices in the practical implementation:

• To ensure a sufficiently accurate gradient estimate with a reasonable amount of training time, we use a moderately large
batch size of 80 for APG (also for PG and HBPG for a fair comparison) and leverage RMSProp, which is designed to
better average the stochastic gradients over successive mini-batches than the vanilla stochastic gradient descent.

• To estimate the advantage function (required in the policy gradient), we use the generalized advantage estimator (GAE)
(Schulman et al., 2015b), which is a popular technique for advantage estimation in deep RL.
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Hyperparameters APG (Ours) HBPG PG

Batch Size 80 80 80
Entropy coefficient 0.01 0.01 0.01
Gamma (discount factor) 0.99 0.99 0.99
Lambda for GAE 1.0 1.0 1.0
Learning rate 0.0007 0.0007 0.0007
Number of environments 16 16 16
Time steps 107 107 107

Value function coefficient 0.25 0.25 0.25

Table 10. Hyperparameters of APG, HBPG and PG in Carnival, Pong, Riverraid, and Seaquest.

Algorithm 5 Heavy-Ball Policy Gradient (HBPG)
Input: Step size η = 1

L , where L is the Lipschitz constant of the gradient of the objective function f , momentum factor β.
Initialize: θ(0) and let θ(−1) = θ(0).
for t = 1 to T do
θ(t) = θ(t−1) + η∇θV

πθ (µ)
∣∣∣
θ=θ(t−1)

+ β(θ(t−1) − θ(t−2))

end for
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G. Convergence Rate of Policy Gradient Under Softmax Parameterization
The Gradient Descent (GD) method within the realm of optimization exhibits a convergence rate of O(1/t) when applied to
convex objectives. Remarkably, (Mei et al., 2020) have demonstrated that the Policy Gradient (PG) method, even when deal-
ing with nonconvex RL objectives, can achieve the same convergence rate, leveraging the non-uniform Polyak–Łojasiewicz
(PL) condition under softmax parameterization. In this paper, we employ a primary proof technique involving the char-
acterization of local C-nearly concavity and subsequently establish that the Accelerated Policy Gradient (APG) method
attains this convergence regime. Our investigation also reveals that the PG method with softmax parameterization shares this
intriguing property.

In this section, we will begin by providing a proof demonstrating the Õ(1/t) convergence rate for PG when optimizing the
value objectives that are C-nearly concave, while employing the softmax parameterized policy. Additionally, we will offer a
proof establishing the capability of PG to reach the local C-nearly concavity regime within a finite number of time steps,
considering the general MDP setting.

G.1. Convergence Rate Under Nearly Concave Objectives for Policy Gradient

Theorem 6. Let
{
θ(t)
}
t≥1

be computed by PG and that V πθ (µ) is C-nearly concave along the gradient update at time
t with a constant C > 1 for every t ≥ 1. Then given any T ≥ 1, and for any θ∗∗ such that for all t ≤ T the direction
θ∗∗ − θ(t) satisfies the C-nearly concavity and V πθ∗∗ (µ) ≥ V π

(t)
θ (µ), we have

V πθ∗∗ (µ)− V π
(T )
θ (µ) ≤ 2LC2 (∥θ∗∗∥+ κ lnT )

2

T − 1
,

where L is the Lipschitz constant of the objective and κ ∈ R is a finite constant.

Proof of Theorem 6. Initially, given any T , by (5) and Lemma 14, for any t < T , we have

−V π
(t+1)
θ (µ) ≤ −V π

(t)
θ (µ)−

〈
∇θV

πθ (µ)
∣∣∣
θ=θ(t)

, θ(t+1) − θ(t)
〉
+

L

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2

= −V π
(t)
θ (µ)− η

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥2 + Lη2

2

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥2
= −V π

(t)
θ (µ)− 1

2L

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥2 . (185)

Additionally, by the hypothesis of the nearly concavity of objective along the direction to θ∗∗, we have

−V π
(t)
θ (µ) ≤ −V π∗∗

θ (µ) + C ·
〈
∇θV

πθ (µ)
∣∣∣
θ=θ(t)

, θ∗∗ − θ(t)
〉
. (186)

Define

δ(t) := V π∗∗
θ (µ)− V π

(t)
θ (µ).

Then (185) leads to

δ(t+1) − δ(t) ≤ − 1

2L

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥2 . (187)

Moreover, (186) leads to

δ(t) ≤ C ·
〈
∇θV

πθ (µ)
∣∣∣
θ=θ(t)

, θ∗∗ − θ(t)
〉

≤ C
∥∥∥∇θV

πθ (µ)
∣∣∣
θ=θ(t)

∥∥∥∥∥∥θ∗∗ − θ(t)
∥∥∥

≤ C
∥∥∥∇θV

πθ (µ)
∣∣∣
θ=θ(t)

∥∥∥(∥θ∗∗∥+ ∥∥∥θ(t)∥∥∥)
≤ C

∥∥∥∇θV
πθ (µ)

∣∣∣
θ=θ(t)

∥∥∥(∥θ∗∗∥+max
t′≤t

∥∥∥θ(t′)∥∥∥) . (188)
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By substituting and rearranging (187) and (188), we have

δ(t+1) ≤ δ(t) − 1

2LC2
(
∥θ∗∗∥+maxt′≤t

∥∥θ(t′)∥∥)2 · δ(t)2. (189)

Consequently, by rearranging and dividing δ(t)δ(t+1) on each side of (189), we have

1

δ(t+1)
≥ 1

δ(t)
+

δ(t)(
2LC2

(
∥θ∗∗∥+maxt′≤t

∥∥θ(t′)∥∥)2) δ(t+1)
.

Furthermore, since PG enjoys monotonic improvement, we have

1

δ(t+1)
− 1

δ(t)
≥ δ(t)

δ(t+1)

1

2LC2
(
∥θ∗∗∥+maxt′≤t

∥∥θ(t′)∥∥)2 ≥ 1

2LC2
(
∥θ∗∗∥+maxt′≤T

∥∥θ(t′)∥∥)2 . (190)

By implementing telescoping on (190) from t = 1 to T − 1, we have

δ(T ) = V π∗∗
θ (µ)− V π

(T )
θ (µ) ≤

2LC2
(
∥θ∗∗∥+maxt′≤T

∥∥∥θ(t′)∥∥∥)2
T − 1

. (191)

Finally, we claim that the norm of θ(t) grows in a rate of O(ln t). Without loss of generality, we assume that
∑

a∈A θ
(t)
s,a = 0

for all s ∈ S and t ≥ 1 (the gradient updates sum up to 0). Now we prove it by contradiction. Assume that the norm of θ(t)

does not grow in a rate of O(ln t), then for any M ∈ R, there must exist a finite time T1 such that
∥∥θ(t)∥∥/ln t > M for all

t > T1. Moreover, by the asymptotic convergence results (Theorem 5.1) of (Agarwal et al., 2021) and Assumption 1, we
have that there exist an upper bound M̄ and a finite time T2 such that

θ(t)s,a < M̄, for all a ̸= a∗(s), s ∈ S, t ∈ N, (192)

θ
(t)
s,a∗(s) > θ(t)s,a, for all a ̸= a∗(s), s ∈ S, t > T2. (193)

Hence, by choosing M = 2| A |, then we have∥∥θ(t)∥∥
ln t

> 2| A |, for all t > max{T1, T2}. (194)

Note that by (192) and (193) and the fact that
∥∥θ(t)∥∥ > 2| A | · ln t, we have that θs,a∗(s) > 2 ln t. Hence, for all

t > max{T1, T2}, s ∈ S, we have that

1− π
(t)
θ (a∗(s)|s) ≤

∑
a̸=a∗(s) exp(θs,a)

exp(θs,a∗(s)) +
∑

a̸=a∗(s) exp(θs,a)
≤ (| A | − 1) exp(M̄)

exp(2 ln(t))
=

(| A | − 1) exp(M̄)

t2
,

where the last inequality holds by the positivity of the exponential function exp. Therefore, we can obtain the bound of the
gradient with respect to θs,a∗(s)∣∣∣∣∣∂V π

(t)
θ (µ)

∂θs,a∗(s)

∣∣∣∣∣ =
∣∣∣∣ 1

1− γ
· dπ

(t)
θ

µ (s) · π(t)
θ (a∗(s)|s) ·Aπ

(t)
θ (s, a∗(s))

∣∣∣∣
≤
∣∣∣∣ 1

1− γ
· 1 · 1 · (Qπ

(t)
θ (s, a∗(s))− V π

(t)
θ (s))

∣∣∣∣
=

1

1− γ
·

∣∣∣∣∣Qπ
(t)
θ (s, a∗(s))− π

(t)
θ (a∗(s)|s)Qπ

(t)
θ (s, a∗(s))

−
∑

a̸=a∗(s)

π
(t)
θ (a|s)Qπ

(t)
θ (s, a))

∣∣∣∣∣
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≤
1− π

(t)
θ (a∗(s)|s)
1− γ

(∣∣∣∣∣Qπ
(t)
θ (s, a∗(s))

∣∣∣∣∣+max
a

∣∣∣∣∣Qπ
(t)
θ (s, a)

∣∣∣∣∣
)

≤ 2(| A | − 1) exp(M̄)

t2(1− γ)2
, (195)∣∣∣∣∣∂V π

(t)
θ (µ)

∂θs,a

∣∣∣∣∣ =
∣∣∣∣ 1

1− γ
· dπ

(t)
θ

µ (s) · π(t)
θ (a|s) ·Aπ

(t)
θ (s, a)

∣∣∣∣
≤
∣∣∣∣ 1

1− γ
· 1 · (1− π

(t)
θ (a∗(s)|s)) · 1

1− γ

∣∣∣∣
=

(| A | − 1) exp(M̄)

t2(1− γ)2
, for all a ̸= a∗(s). (196)

Furthermore, by the update rule of PG, for all t > max{T1, T2}, s ∈ S, we have∣∣∣θ(t+k)
s,a∗(s)

∣∣∣ = ∣∣∣∣∣θ(t)s,a∗(s) +

t+k−1∑
i=t

η
∂V π

(i)
θ (µ)

∂θs,a∗(s)

∣∣∣∣∣ ≤ ∣∣∣θ(t)s,a∗(s)

∣∣∣+ ∞∑
i=t

η

∣∣∣∣∣∂V π
(i)
θ (µ)

∂θs,a∗(s)

∣∣∣∣∣︸ ︷︷ ︸
<∞, by (195)

,

∣∣∣θ(t+k)
s,a

∣∣∣ = ∣∣∣∣∣θ(t)s,a +

t+k−1∑
i=t

η
∂V π

(i)
θ (µ)

∂θs,a

∣∣∣∣∣ ≤ ∣∣∣θ(t)s,a

∣∣∣+ ∞∑
i=t

η

∣∣∣∣∣∂V π
(i)
θ (µ)

∂θs,a

∣∣∣∣∣︸ ︷︷ ︸
<∞, by (196)

.

which leads to the contradiction that
∥∥θ(t)∥∥→∞ in (194).

Therefore, for any T , we have maxt′≤T ∥θ(t
′)∥ ∈ O(lnT ). Hence, follow from (191),

V π∗∗
θ (µ)− V π

(T )
θ (µ) ≤

2LC2
(
∥θ∗∗∥+maxt′≤T

∥∥∥θ(t′)∥∥∥)2
T − 1

≤ 2LC2 (∥θ∗∗∥+ κ lnT )
2

T − 1
,

where κ ∈ R is a finite constant.

Remark 16. It is crucial to emphasize that when using PG with softmax parameterization, the parameters cannot exhibit
excessive growth. More specifically, we can demonstrate that the growth rate of the parameters remains bounded by O(ln t).
This remarkable bounding property allows us to relax the objective structure to a C-nearly concave form while still achieving
a convergence rate of Õ(1/t). However, it is worth noting that due to the unbounded nature of softmax parameterization, it
must also compensate for a logarithmic factor in its convergence rate, which may not be tightly aligned with results in the
optimization regime.

G.2. Convergence Rate of Policy Gradient

Theorem 7 (Asymptotic Convergence for Softmax Parameterization in (Agarwal et al., 2021)). Assume we follow the
gradient ascent update rule as specified in (5) and that µ(s) > 0 for all states s. Suppose η(t) ≤ (1−γ)3

8 , then we have that
for all states s, V (t)(s)→ V ∗(s) as t→∞.

Lemma 41. Consider a tabular softmax parameterized policy πθ. Under PG with η(t) = (1−γ)3

8 and Assumption 1, given
any M > 0, there exists a finite time T such that for all t ≥ T, s ∈ S , and a ̸= a∗(s), we have (i) θs,a∗(s) − θs,a > M ; (ii)

V π
(t)
θ (s) > Q∗(s, a2(s)); (iii) ∂V πθ (µ)

∂θs,a∗(s)

∣∣∣
θ=θ(t)

> 0 > ∂V πθ (µ)
∂θs,a

∣∣∣
θ=θ(t)

.

Proof of Lemma 41. By Assumption 1, there is a unique optimal action, so Theorem 7 implies that the policy weight
probability of the optimal action approaches 1. For θs,a∗(s) − θs,a > M , since we also have the asymptotic convergence
property, we can see that the same strategy works here as the proof shown in Lemma 2.
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Moreover, by Lemma 8, we can show that (ii) can imply the third point. Regarding the second point, it is the direct result
of Theorem 7 because V π

(t)
θ can always enter a small enough neighborhood such that the values always are greater than

Q∗(s, a2(s)). Hence, by Lemmas 8 and 11, we obtain the results.

Theorem 8 (Convergence Rate of PG). Consider a tabular softmax parameterized policy πθ. Under PG with η(t) = (1−γ)3

8 ,
there exists a finite time T such that for all t ≥ T , we have

V ∗(ρ)− V π
(t)
θ (ρ) ≤ 1

1− γ

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

(
16C2(κ+ 2)2[ln(t− T )]2

(1− γ)3(t− T − 1)
+

2| S |
(1− γ)2

(
| A | − 1

(t− T )2 + | A | − 1

))
,

where κ ∈ R is a finite constant.

Proof of Theorem 8. Let

M ′ := ln
[ 2| S ||A |2

(1− γ)2 mins∈S µ(s)

]
.

By Lemma 41, there exists a finite time T ′ such that for all t ≥ T ′, s ∈ S , and a ̸= a∗(s), we have (i) θs,a∗(s) − θs,a > M ′,

(ii) V π
(t)
θ (s) > Q∗(s, a2(s)), (iii) ∂V πθ (µ)

∂θs,a∗(s)

∣∣∣
θ=θ(t)

> 0 > ∂V πθ (µ)
∂θs,a

∣∣∣
θ=θ(t)

. By (iii), we know that the PG updates (5) at time

t ≥ T ′ lie in the feasible update domain U . Furthermore, by the first point in Lemma 37 and (iii), we obtain that all the PG
updates after time T ′ under state rescaling, i.e., ∥ds,·∥22 = 1, we have mini≥2{ds,a∗(s) − ds,ai(s)} > | A |−

3
2 . Thus, we

further define
M := max

{
2 ln

[
2(|A| − 1)

]
− 2 ln

[
| A |− 3

2

]
,M ′

}
,

by Lemma 2 again, we know that there is a finite time T ≥ T ′ such that for all t ≥ T ′, s ∈ S, and a ̸= a∗(s), we have
(i) θs,a∗(s) − θs,a > M ′, (ii) V π

(t)
θ (s) > Q∗(s, a2(s)), (iii) ∂V πθ (µ)

∂θs,a∗(s)

∣∣∣
θ=θ(t)

> 0 > ∂V πθ (µ)
∂θs,a

∣∣∣
θ=θ(t)

, (iv) the state rescaled

updates satisfy mini≥2{ds,a∗(s) − ds,ai(s)} > | A |− 3
2 . Therefore, by Lemma 1, we know that the objective function

θ → V πθ (µ) is 3
2 -nearly concave along the PG update directions for all t ≥ T .

By Theorem 6,

V π
(t)

θ∗∗ (µ)− V π
(t)
θ (µ) ≤

2LC2
(∥∥θ∗∗(t)∥∥+ κ ln(t− T )

)2
(t− T )− 1

≤ 16C2 (2 ln(t− T ) + κ ln(t− T ))
2

(1− γ)3(t− T − 1)

=
16C2(κ+ 2)2[ln(t− T )]2

(1− γ)3(t− T − 1)
,

where θ(t)∗∗ := [2 ln(t − T ), 0, 0, · · · , 0] is a chosen surrogate optimal solution at time t. Additionally, we have the
sub-optimality gap between the original optimal solution and the surrogate optimal solution can be bounded as

V ∗(µ)− V π
(t)

θ∗∗ (µ) =
1

1− γ

∑
s

dπ
∗

µ (s)
∑
a

(π∗(a|s)− π
(t)
θ∗∗(a|s)) ·Aπ

(t)

θ∗∗ (s, a)

≤ 2| S |
(1− γ)2

(
1− exp(2 ln(t− T ))

exp(2 ln(t− T )) + exp(0) · (| A | − 1)

)
(197)

=
2| S |

(1− γ)2

(
| A | − 1

(t− T )2 + | A | − 1

)
,

where (197) consider the upper bound of Aπ
(t)

θ∗∗ (s, a) ≤ 1
1−γ and the sum of differences between sub-optimal actions can

be at most the difference between the optimal actions, which causes a preconstant 2. By Lemma 6, we can change the
convergence rate from V π(µ) to V π(ρ),

V ∗(ρ)− V π
(t)
θ (ρ) ≤ 1

1− γ

∥∥∥∥∥dπ
∗

ρ

µ

∥∥∥∥∥
∞

(
16C2(κ+ 2)2[ln(t− T )]2

(1− γ)3(t− T − 1)
+

2| S |
(1− γ)2

(
| A | − 1

(t− T )2 + | A | − 1

))
,

and we complete the proof.
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H. Challenges of APG Without Momentum Restart Mechanisms
In this section, we provide insights into the challenges encountered when applying APG without momentum restart
mechanisms. Furthermore, we’ve established the convergence rate of Õ(1/t2) under APG without restart mechanisms in the
bandit setting. More specifically, In Appendix H.1, we introduce the algorithm, NAPG, which is the original APG without
restart mechanisms. Subsequently, in Appendix H.2, we provide a numerical validation in the bandit setting to illustrate
the non-monotonic improvement of NAPG. Additionally, in Appendix H.3, we illustrate the challenges of establishing the
limiting value functions in the MDPs setting.

H.1. APG Without Restart Mechanisms

For ease of exposition, this subsection presents the algorithm for Nesterov Accelerated Policy Gradient (NAPG) without
restart mechanisms as in Algorithm 6. As depicted in Algorithm 6. It is worth noting that without these restart mechanisms,
Algorithm 6 aligns precisely with the Nesterov acceleration method outlined in (Su et al., 2014).

Algorithm 6 Nesterov Accelerated Policy Gradient (NAPG) Without Restart Mechanisms

Input: Step size η(t) > 0.
Initialize: θ(0) ∈ R|S||A|, ω(0) = θ(0).
for t = 1 to T do

θ(t) ← ω(t−1) + η(t)∇θV
πθ (µ)

∣∣∣
θ=ω(t−1)

ω(t) ← θ(t) +
t− 1

t+ 2
(θ(t) − θ(t−1))

end for

H.2. Numerical Validation of the Non-Monotonic Improvement Under NAPG

Figure 5. The one-step improvement of APG on a three-action
bandit problem.

In this subsection, we illustrate the difficulties involved in an-
alyzing the convergence of NAPG, compared to the standard
policy gradient methods through a numerical experiment. In
contrast to the standard policy gradient (PG) method, which
exhibits monotonic improvement, NAPG could experience non-
monotonic progress as a result of the momentum term, which
could lead to negative performance changes. To further demon-
strate this phenomenon, we conduct a 3-action bandit experi-
ment with a highly sub-optimal initialization, where the weight
of the optimal action of the initial policy is extremely small.
More specifically, we conduct a 3-action bandit experiment with
actions A = [a∗, a2, a3], where the corresponding rewards are
r = [r(a∗), r(a2), r(a3)] = [1, 0.8, 0]. We initialize the policy
parameters as θ(0) = [0, 3, 10], which represents a highly sub-
optimal initialization. Remarkably, the weight of the optimal
action in the initial policy π(0) ≈ [0.00005, 0.00091, 0.99904]
is exceedingly small. As shown in Figure 5, the one-step im-
provement becomes negative around epoch 180 and provides
nearly zero improvement after that point. Notably, the asymptotic convergence of the standard PG is largely built on the
monotonic improvement property, as shown in (Agarwal et al., 2021). With that said, the absence of monotonic improvement
in NAPG poses a fundamental challenge when analyzing the convergence to an optimal policy.

H.3. Challenges of Establishing the Limiting Value Functions in the MDPs Setting Under NAPG

In this subsection, we illustrate the challenges involved in establishing the limiting value functions under NAPG in the
MDPs setting. Recall from Appendix H.2 that NAPG is not guaranteed to achieve monotonic improvement in each iteration
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due to the momentum. This is one salient difference from the standard PG, which inherently enjoys strict improvement and
hence the existence of the limiting value functions (i.e., limt→∞ V π

θ(t) (s)) by Monotone Convergence Theorem (Agarwal
et al., 2021). Without monotonicity, it remains unknown if the limiting value functions even exist.

Furthermore, while the gradient step ensures a guaranteed monotonic improvement, which can help counteract the non-
monotonicity resulting from the momentum step, it is still a challenging task to quantify this non-monotonic behavior due to
the cumulative effect of the momentum. To be more specific, we demonstrate that the influence exerted by the momentum
term can lead to a substantial and challenging-to-control effect.

Let δ(T0) := θ
(T0)
s,a − θ

(T0−1)
s,a , by the update rule of NAPG, we have

θ(T0+1)
s,a = θ(T0)

s,a +
T0 − 1

T0 + 2
δ(T0) + η(T0+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0)

(198)

θ(T0+2)
s,a = θ(T0+1)

s,a +
T0

T0 + 3
δ(T0+1) + η(T0+2) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0+1)

(199)

= θ(T0)
s,a +

T0 − 1

T0 + 2
δ(T0) + η(T0+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0)

+
T0

T0 + 3

(T0 − 1

T0 + 2
δ(T0) + η(T0+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0)

)
+ η(T0+2) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0+1)

(200)

= θ(T0)
s,a +

(T0 − 1

T0 + 2
+

T0

T0 + 3

T0 − 1

T0 + 2

)
· δ(T0)

+
(
1 +

T0

T0 + 3

)
· η(T0+1) · ∂V

πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0)

+ η(T0+2) · ∂V
πθ (µ)

∂θs,a

∣∣∣
θ=ω(T0+1)

(201)

θ(T0+M)
s,a = θ(T0)

s,a +
(T0 − 1

T0 + 2
+

T0

T0 + 3

T0 − 1

T0 + 2
+

M∑
τ=3

T0 + 1

T0 + τ + 1

T0

T0 + τ

T0 − 1

T0 + τ − 1

)
· δ(T0)

+ · · · (202)

where (202) holds by expanding (198)-(201) iteratively.

Note that for large enough M ∈ N,

M∑
τ=3

(T0 + 1)T0(T0 − 1)

(T0 + τ + 2)(T0 + τ + 1)(T0 + τ)

= (T0 + 1)T0(T0 − 1)

M∑
τ=3

1

2

( 1

(T0 + τ)(T0 + τ + 1)
− 1

(T0 + τ + 1)(T0 + τ + 2)

)
= (T0 + 1)T0(T0 − 1) · 1

2

( 1

(T0 + 3)(T0 + 4)
− 1

(T0 +M + 1)(T0 +M + 2)

)
= Θ(T0). (203)

Follow from (202) and (203), we could deduce that the momentum term δ(T0) in time T0 results in an effect that is directly
proportional to T0. Therefore, it becomes crucial to establish the upper bound of the gradient norm to confine the adverse
effects stemming from the momentum term. However, this endeavor involves addressing the intertwined challenge of
estimating both the gradient norm and the momentum norm simultaneously.
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I. Additional Experiments
I.1. Stochastic APG (SAPG)

In this subsection, we conduct an empirical evaluation of the performance of Stochastic Accelerated Policy Gradient (SAPG)
on an MDP with 5 states and 5 actions, utilizing the true gradient. In the subsequent experimental results, we set the batch
size to B = 1 and perform the experiments with 50 different seeds. It’s important to highlight that the MDP used is identical
to the one discussed in Section 6.1, and detailed configuration information is provided in Appendix F.

I.1.1. IMPLEMENTATION DETAIL

For ease of exposition, we provide the pseudo code for Stochastic Accelerated Policy Gradient (SAPG).

Algorithm 7 Stochastic Accelerated Policy Gradient (SAPG)

Input: Step size η(t) > 0, batch size B ∈ N.

Initialize: θ(0) ∈ R|S||A|, ω(0) = θ(0).

for t = 1 to T do
Sample a batch of S(t)×A(t) := {(s(t)1 , a

(t)
1 ), (s

(t)
2 , a

(t)
2 ), . . . , (s

(t)
B , a

(t)
B )} where state s(t) is sampled with probability

dπ
(t)

µ (·) and action a(t) is sampled with probability π(t)(·|s(t)).
Calculate stochastic gradient v(t) =

∑
s,a∈S(t) ×A(t)

∂V πθ (µ)
∂θs,a

∣∣∣
θ=ω(t−1)

.

θ(t) ← ω(t−1) + η(t)v(t)

φ(t) ← θ(t) +
t− 1

t+ 2
(θ(t) − θ(t−1))

ω(t) ←

φ(t), if V π(t)
φ (µ) ≥ V π

(t)
θ (µ),

θ(t), otherwise.

end for

(a) (b) (c)

Figure 6. A comparison between the performance of SAPG and SPG under an MDP with 5 states, 5 actions, with the uniform and hard
policy initialization: (a)-(b) show the value function under the uniform and the hard initialization, respectively. The optimal objective
value V ∗(ρ) ≈ 9.41; (c) show the sub-optimality gaps under uniform initialization.

I.1.2. SAPG UNDER AN MDP WITH 5 STATES AND 5 ACTIONS

In Figure 6, it is evident that SAPG outperforms Stochastic PG (SPG) with a remarkable speed of convergence. Furthermore,
the results presented in Figure 6(c) suggest that SAPG may exhibit a convergence rate of O( 1

tα ), where 2 > α > 1. This
observation opens up the possibility of extending and exploring this potential in future research. Additionally, it’s noteworthy
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that under hard policy initialization (where the optimal action has the smallest initial probability), SPG tends to get stuck at
a local optimum for an extended period, whereas SAPG does not exhibit this issue.

I.2. Empirical comparison between APG and NPG

To further highlight the empirical effectiveness of APG compared to NPG, we provide an additional experimental comparison
in both BipedalWalker and the Atari games. It is worth noting that our implementation on Atari 2600 games for APG, NPG,
and PG are based on the Stable Baselines3 and RL Baselines3 Zoo (Raffin, 2020; Raffin et al., 2021). The hyperparameters,
exactly set to their default values, are detailed in Appendix F. Additionally, for BipedalWalker, we utilize the codebase of
Spinning Up (Achiam, 2018).

In Figure 7, we observe that in BipedalWalker and Carnival, although NPG improves fast during the initial training phase, it
tends to get stuck thereafter. Additionally, APG achieves acceleration compared to PG and reaches higher performance than
both NPG and PG at the 1e7 timesteps. Furthermore, in Riverraid, we observe that APG demonstrates notable acceleration
compared to NPG.

(a) (b) (c)

Figure 7. A comparison of the performance of APG and the benchmark algorithms in BipedalWalker and two Atari 2600 games. All the
results are averaged over 5 random seeds (with the shaded area showing the range of mean ± std).
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J. A Detailed Comparison of the Acceleration Methods for RL
In the optimization literature, there are several major categories of acceleration methods, including momentum, regularization,
natural gradient, and normalization. Interestingly, these approaches all play an important role in the context of RL.

J.1. Momentum

Empirical Aspect: In practice, momentum is one of the most commonly used approaches for acceleration in policy
optimization for RL, mainly due to its simplicity. Specifically, a variety of classic momentum methods (e.g., Nesterov
momentum, heavy-ball method, and AdaGrad) have been already implemented in optimization solvers and deep learning
frameworks (e.g., PyTorch) as a basic machinery and shown to improve the empirical convergence results than the standard
policy gradient methods like A2C and PPO (e.g., see (Henderson et al., 2018)).

Theoretical Aspect: However, despite the popularity of these approaches in empirical RL, it has remained largely unknown
whether momentum could indeed improve the theoretical convergence rates of RL algorithms. To address this fundamental
question, we establish the very first convergence rate of Nesterov momentum in RL (termed APG in our paper) and show that
APG could improve the rate of PG from O(1/t) to Õ(1/t2) (in the constant step-size regime). Given the wide application
of momentum, our analytical framework and the insights from our convergence result (e.g., local near-concavity) serve as an
important first step towards better understanding the momentum approach in RL.

Theoretical Advantage: In addition, we would like to highlight that in the constant step-size regime (which is one of the
most widely adopted setting in practice), our proposed APG indeed achieves a superior convergence rate of Õ(1/t2), which
is better than the O(1/t) rate of vanilla PG and the O(1/t) rate of NPG with constant step sizes.

J.2. Regularization

Theoretical Aspect: In the convex optimization literature, it is known that adding a strongly convex regularizer achieves
acceleration by changing the optimization landscape. In the context of RL, despite the non-concave objective, regularization
has also been shown to achieve faster convergence, such as the log-barrier regularization with O(1/

√
t) rate (Agarwal

et al., 2021) and the entropy regularization (i.e., adding a policy entropy bonus to the reward) with linear convergence rate
O(e−ct) (Mei et al., 2020), both in the exact gradient setting with constant step sizes. Additionally, Lan (2023) presents
linear convergence results when employing strongly convex regularizers.

Despite the above convergence results, one common attack on regularization approaches is that they essentially change the
objective function to that of regularized MDPs and hence do not directly address the original objective in unregularized RL,
as pointed out by (Mei et al., 2021b; Xiao, 2022).

J.3. Natural Gradients (A Special Case of Policy Mirror Descent)

Natural policy gradient (NPG), another RL acceleration technique, borrows the idea from the natural gradient, which uses
the inverse of Fisher information matrix as the preconditioner of the gradient and can be viewed as achieving approximate
steepest descent in the distribution space (Amari, 1998; Kakade, 2001). Moreover, under direct policy parameterization,
NPG is also known as a special case of policy mirror descent (PMD) with KL divergence as the proximal term (Shani et al.,
2020; Xiao, 2022). Regarding the convergence rates, NPG has been shown to achieve: (i) O(1/t) rate with constant step
sizes (Agarwal et al., 2021; Xiao, 2022); (ii) linear convergence either with adaptively increasing step sizes (Khodadadian
et al., 2021) or non-adaptive exponentially growing step sizes (Xiao, 2022). Notably, under direct policy parameterization
and geometrically increasing step sizes, similar linear convergence results can also be established for the more general PMD
method (Xiao, 2022).

Empirical Issues: Despite the above convergence rates, as also pointed out by (Mei et al., 2021b), it is known that NPG in
general requires solving a costly optimization problem in each iteration (cf. (Kakade, 2001; Agarwal et al., 2021)) even with
the help of compatible approximation theorem (Kakade, 2001) (unless the policy parametrization adopts some special forms,
e.g., log-linear policies (Yuan et al., 2022)). Notably, the TRPO algorithm, a variant of NPG, is known to suffer from this
additional computational overhead. Similarly, the PMD in general also requires solving a constrained optimization problem
in each policy update (Xiao, 2022). This computational complexity could be a critical factor for RL in practice.
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J.4. Normalization

Theoretical Aspect: In the exact gradient setting, the normalization approach, which exploits the non-uniform smoothness
by normalizing the true policy gradient by its L2 gradient norm, has also been shown to achieve acceleration in RL.
Specifically, the geometry-aware normalized PG (GNPG) has been shown to exhibit linear convergence rate under softmax
policies (Mei et al., 2021b). This rate could be largely attributed to the effective increasing step size induced by the
normalization technique.

Empirical Issues: Despite the linear convergence property, it has been already shown that GNPG could suffer from
divergence in the standard on-policy stochastic setting, even in simple 1-state MDPs. This phenomenon is mainly due to the
committal behavior induced by the increasing effective step size. This behavior could substantially hinder the use of GNPG
in practice.
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