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ABSTRACT

Next-token prediction (NTP) has driven the success of large language models
(LLMs), but it struggles with long-horizon reasoning, planning, and creative writ-
ing, with these limitations largely attributed to teacher-forced training. Multi-
token prediction (MTP) partially mitigates these issues by predicting several fu-
ture tokens at once, but it mostly captures short-range dependencies and offers
limited improvement. We propose future summary prediction (FSP), which trains
an auxiliary head to predict a compact representation of the long-term future, pre-
serving information relevant for long-form generations. We explore two variants
of FSP: handcrafted summaries, for example, a bag of words summary of the fu-
ture of the sequence, and learned summaries, which use embeddings produced by
a reverse language model trained from right to left. Large-scale pretraining exper-
iments (3B and 8B-parameter models) demonstrate that FSP provides improve-
ments over both NTP and MTP across math, reasoning, and coding benchmarks.

1 INTRODUCTION

Early progress in large language models was primarily driven by massive scaling of both data and
compute (Brown et al., 2020; Kaplan et al., 2020). However, the returns from this vanilla scaling
approach are beginning to diminish as we encounter the “data wall” (Sutskever, 2024). This has
renewed efforts toward algorithmic advances, including new architectures and pretraining objectives,
that can extract more predictive signal from a fixed amount of training data.

Next-token prediction (NTP) with teacher forcing—training models by conditioning on ground-truth
history when predicting the next token—is foundational to current pretraining methods. However,
this approach introduces a train-inference mismatch known as exposure bias: during inference, the
model must rely on its own outputs rather than the ground truth, leading to compounding errors and
degraded long-range generation quality (Bengio et al., 2015). Moreover, teacher forcing can induce
training-time shortcut learning as well, where the model exploits local cues from the ground-truth
prefix instead of capturing true long-range dependencies (Bachmann & Nagarajan, 2024). These
issues manifest most clearly in tasks demanding extended reasoning, narrative coherence, and open-
ended creativity (Papalampidi et al., 2022; Nagarajan et al., 2025).

An appealing alternative to teacher forcing is teacherless training, where the model learns from its
own generations rather than relying on ground-truth histories. However, this approach is compu-
tationally intensive and challenging to parallelize. As a practical compromise, recent research has
explored multi-token prediction (MTP) methods (Gloeckle et al., 2024), which train auxiliary heads
to predict several future tokens simultaneously. MTP has demonstrated success in large-scale sys-
tems such as DeepSeek-V3 (Liu et al., 2024) and Qwen-3 (Yang et al., 2025). In MTP, each time step
augments the standard next-token prediction (xt+1) with auxiliary heads that predict additional fu-
ture tokens (e.g., xt+2 and beyond). However, these methods typically assume independence among
the predicted tokens given the prefix, resulting in poor approximations of the true joint distribution
over long future spans.

In this work, we propose a different approach: rather than predicting multiple future tokens individ-
ually, we train a single auxiliary head to predict a summary representation of the future sequence. It
aims to push as much information as possible about the future into a single target vector, while fil-
tering out information that is inherently unpredictable and would only introduce noise. At each time
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x≤t xt+1 xt+2 xT−1 xTx≤t xt+1 xt+2 xT−1 xT. . . . . .

Figure 1: A comparison of future-aware pretraining objectives. All methods take a prefix x≤t as
input. NTP: Only predicts the immediate next token. MTP: Uses multiple auxiliary heads, each
predicting a specific future token. FSP-BCE: Our proposed hand-crafted summary method that
predicts a multi-hot “bag-of-tokens” summary of a long future window using a single auxiliary head.
FSP-RevLM: Our proposed learned summary method predicts a compact hidden representation of
the future, which is generated by a reverse language model (RevLM).

step t, given the future tokens (xt+2, xt+3, . . . , xt+τ ), we construct a summary vector a(t, τ) to pro-
vide supervision to the auxiliary head. We explore two complementary approaches for constructing
future summaries: a simple token-level aggregation method, and our main contribution, a learned
representation of the future sequence that captures long-range dependencies more effectively.

• Hand-crafted summary. We train the auxiliary head to predict all the future tokens that will
occur in a future window, without requiring to know their exact positions. Concretely, at each
step t, we define a multi-hot vector a(t, τ) over the vocabulary, akin to bag-of-words, where
a(t, τ)i = I(i ∈ {xt+2, . . . , xt+τ}), and train the model with a binary cross-entropy objective.

• Learned summary. Handcrafted summaries such as the one proposed above can be noisy: not all
future tokens are equally relevant, and predicting them all can dilute the signal. To address this,
we propose to learn a compact summary of the future. We do this by training a reverse language
model (gr) on reversed sequences, so that its hidden representation a(t, τ) = gr(x≥t+2) serves as
a rich embedding of the future context. The auxiliary head of the forward model is then trained to
match this representation with an ℓ2 loss.

We use the lens of synthetic tasks, path-star graph and sibling discovery (Bachmann & Nagarajan,
2024; Nagarajan et al., 2025) to clarify the conceptual difference between MTP and our approach.
On path-star graph, hand-crafted summaries deliver strong gains over MTP, which only predicts
immediate future tokens, demonstrating the benefit of long-horizon supervision. However, in sibling
discovery, where the future includes content unrelated to the current local sequence, handcrafted
summaries struggle, as they treat all future tokens equally. In contrast, our learned summary vectors
focus on the informative parts of the future and achieve consistent gains.

We then scale our approach to real-world pretraining at the 8B parameter level, conducting a sys-
tematic evaluation across six methods, including DeepSeek-MTP and multiple handcrafted summary
variants. This scale and breadth of comparison is rare in the literature due to its high computational
cost. Here, the proposed future summary prediction with learned summaries yields substantial im-
provements over NTP and MTP baselines, with gains of up to 5% on math and coding benchmarks
that demand long-horizon reasoning and planning. These results demonstrate that future summary
prediction is not only effective in controlled synthetic settings but also translates into meaningful
gains for large-scale LLM training.

2 FUTURE-AWARE PRETRAINING

2.1 BACKGROUND ON NEXT-TOKEN AND MULTI-TOKEN PREDICTION

Let define a sequence of tokens as X = (X1, X2, . . . , XT ) sampled from a distribution PX , where
each token is a discrete random variable supported on {1, 2, . . . , V }.
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Next-Token Prediction (NTP). The standard next-token prediction objective is:

LNTP(X,Pθ) = −Ex∼PX

[
T−1∑
t=1

logPθ(xt+1 |x≤t)

]
, (1)

where Pθ is the predictor, optimized via
θ⋆ = argmin

θ
LNTP(X,Pθ). (2)

A typical parameterization is:

Pθ(xt+1 |x≤t) = softmax
(
fu ◦ fh ◦ fs

(
x≤t

))
, (3)

where fs is the transformer backbone, fh is a processing head, and fu is the unembedding layer
(Figure 2).

Multi-Token Prediction (MTP). MTP aims to jointly predict multiple future tokens, as follows:

LMTP-Joint(X,Pθ) = −Ex∼PX

[
T−1∑
t=1

logPθ(xt+1, . . . , xt+τ |x≤t)

]
. (4)

Since modeling the exact joint distribution is intractable, a common simplification is to model the
marginal distribution of future tokens given the prefix (Gloeckle et al., 2024; Liu et al., 2024):

LMTP(X,Pθ) = −Ex∼PX

[
T−1∑
t=1

τ∑
k=1

1[t+ k ≤ T ] logPθ(xt+k |x≤t)

]
. (5)

Following Gloeckle et al. (2024), the predictor uses separate auxiliary heads for each k:

Pθ(xt+1 |x≤t) = softmax
(
fu ◦ fh ◦ fs

(
x≤t

))
,

Pθ(xt+k |x≤t) = softmax
(
fu ◦ f ′

hk
◦ fs

(
x≤t

))
, ∀k > 1,

(6)

where f ′
hk

are auxiliary transformer blocks specialized for predicting future tokens xt+k.

This design reduces teacher forcing by predicting xt+k from x≤t only, rather than conditioning on
the full prefix x≤t+k−1. This is the key principle behind multi-token prediction, i.e., reduced teacher
forcing by requiring the model to predict a block of future tokens at each step.

We discuss other variants of MTP such as DeepSeek-MTP and random future token MTP (Thankaraj
et al., 2025) in Appendix A.

2.2 FUTURE SUMMARY PREDICTION (FSP)

In MTP, we use a set of auxiliary heads to predict a block of immediate future tokens. A key
limitation of this approach is that one does not know exactly where the informative signal in the
future sequence lies. Informative signals in future could occur far away in the sequence and be well
beyond the number of future tokens (k) that MTP predicts. A trivial approach to overcome this
could be to predict all the future tokens. However, having one auxiliary head per future token is not
scalable, and limits the amount of future tokens we can utilize during training.

Towards this, we propose Future Summary Prediction (FSP), that predicts a compact summary of
the (long) future sequence rather than each token individually.

Let a(t, τ) represent a summary of future tokens (xt+2, . . . , xt+τ ). The learning objective is:

LFSP(X,Pθ) = LNTP(X,Pθ) + Ex∼PX

[
la
(
Aϕ(x≤t), a(t, τ)

)]
, (7)

where Pθ is the next-token predictor, Aϕ is the summary predictor, and la is the loss between pre-
dicted and ground-truth summaries. The architecture is:

Pθ(xt+1 |x≤t) = softmax
(
fu ◦ fh ◦ fs

(
x≤t

))
,

Aϕ(x≤t) = f ′
ha

◦ fs
(
x≤t

)
.

(8)
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Transformer backbone

MainBlock

x≤t

f ′
ha

(.)fh(.)

a(t, τ)

fs(.)

AuxBlock

Future

summaryxt+1

Figure 2: An abstraction
of the architecture that
subsumes NTP, MTP,
and FSP.

Unlike MTP, FSP requires only a single auxiliary head f ′
ha

, making it
more scalable.

The key question, then, is how to construct an effective future summary.
In this work, we investigate two approaches:

(1) Hand-crafted future summaries. We define a binary vector
a(t, τ) ∈ RV indicating whether token i appears in the future window:

a(t, τ)i = I
(
i ∈ {xt+2, . . . , xt+τ}

)
. (9)

Given logits from Aϕ(x≤t), we minimize a reweighted binary cross-
entropy loss:

la
(
Aϕ(x≤t), a(t, τ)

)
= −

V∑
i=1

w(i)
[
ai log σ(zi)+(1−ai) log

(
1−σ(zi)

)]
(10)

where ai = I
(
i ∈ {xt+2, . . . , xt+τ}

)
, zi is the i-th logit of Aϕ(x≤t),

σ is the sigmoid, and w(i) reflects the importance of token i (e.g. term
frequency-inverse document frequency, tf–idf).

(2) Learned future summaries. Predicting every future token via
hand-crafted summaries as discussed above could be noisy. For exam-
ple, not all tokens in the future are informative and thus hand-crafted summaries that account for all
of them can be wasteful. Instead of predicting all the future tokens, we therefore propose to predict
a learned representation of the future tokens relevant to predicting the current token xt+1. We learn
this representation via a reverse language model Qψ , (RevLM), trained on ”right-to-left” sequences:

LRevLM(X,Qψ) = −Ex∼PX

[
T−1∑
t=1

logQψ(xt+1 |x≥t+2)

]
. (11)

RevLM shares the same architecture, and we take its hidden state as the summary vector:
a(t, T − t) = gh ◦ gs

(
x≥t+2

)
. (12)

We then train Aϕ(x≤t) to match this representation via the ℓ2 loss:

la
(
Aϕ(x≤t), a(t, T − t)

)
=

∥∥Aϕ(x≤t)− gh ◦ gs(x≥t+2)
∥∥2
2
. (13)

Why Future Summary Prediction? The key advantage of future summary prediction is its abil-
ity to reduce dependence on teacher forcing when modeling long future sequences. To intuitively
measure teacher forcing, consider for each ground-truth token exposed to the model, how much in-
formation is the model required to predict about unseen tokens? If the model predicts more such
information, then we have reduced teacher forcing. Next-token prediction (NTP) uses the highest
degree of teacher forcing, since the model always conditions on ground-truth histories to predict
just the next token. Multi-token prediction (MTP) partially relaxes this by asking the model to pre-
dict short blocks of future tokens, thereby reducing teacher forcing locally. However, MTP remains
constrained by the short horizon of its predictions. In contrast, our proposed approach predicts sum-
maries of long future sequences, substantially reducing teacher forcing by requiring the model to
reason about rich, global properties of the target trajectory.

3 ANALYZING FUTURE SUMMARIES

Future summary prediction provides a unified view of a broad family of pretraining objectives, cov-
ering MTP and its variants that sample random future tokens (Thankaraj et al., 2025; Gerontopoulos
et al., 2025), and our proposed bag-of-words (FSP-BCE) and reverseLM (FSP-RevLM) summary
prediction objectives.

To better understand how the FSP framework clarifies the tradeoffs of each objective on long-horizon
planning, we consider the graph modeling benchmarks introduced in prior works.

Our analysis yields following insights:
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• Long future summaries matter. On the canonical path–star task (Bachmann & Nagarajan,
2024), we find that MTP with short range future prediction fails to generalize, highlighting
the need for auxiliary objectives that incorporate long-range future information.

• Adaptive future summaries matter. On a modified sibling discovery task (Nagarajan
et al., 2025), we show that incorporating every future token with hand-crafted summaries
is suboptimal, highlighting the need for learned summaries that retain key information.

3.1 LONG FUTURE SUMMARY IS IMPORTANT

<graph> s 5 1 2 3 4 5 
<graph> s 5 1 2 3 4 5 
<graph> s 5 1 2 3 4 5 
<graph> s 5 1 2 3 4 5 
<graph> s 5 1 2 3 4 5

<graph> s 5 1 2 3 4 5

 Difficult prediction task

 Too easy due to shortcut

 Mix of 1- to 4-hop reasoning

NTP:

FSP:

Example Sequence:

x = <graph> s 5 1 2 3 4 5

start/goal path

Example Graph:

s
1 2 3 4 5

6 7 8 9 10

Figure 3: Analysis of FSP-BCE on the path-star task, which tests long-horizon planning. Left:
Accuracy (mean over 5 random seeds) of different pretraining objectives on degree 2 graphs with
path lengths 6 and 8. Standard NTP generalizes poorly, and MTP’s accuracy degrades as the path
length increases, while FSP-BCE achieves perfect accuracy. Right: An illustration of why NTP fails
while FSP-BCE succeeds, where the input context is shown in grey and the target is in beige .

We consider the path-star graph, a directed acyclic graph (DAG) G(d, l) composed of d paths, each
of length l, originating from a central start node vstart. The model is provided with the adjacency list
of the graph in the prefix, and the task is to generate the path from vstart to a designated end node
vend.

Let the target path be (vstart, v1, v2, · · · , vend) and the input prefix be p = (Adj(G), vstart, vend). Then
NTP with teacher forcing predicts an intermediate node in the path as Pθ(vi+1|p, v≤i). As shown
by Bachmann & Nagarajan (2024), NTP often learns shortcut solutions: the model can recover vi+1

directly from vi by scanning the adjacency list in p, without learning the underlying long-range plan
(Figure 3). This leads to gradient starvation (Pezeshki et al., 2021), where the supervision signal
for the actual planning task is lost. Once the shortcut is learned, meaningful gradient information
remains only for predicting the first step v1, as it is the only difficult token.

A natural remedy is to reduce teacher forcing via future prediction approaches, which require the
model to predict tokens further ahead. This makes shortcuts less effective, as multiple lookups in
the adjacency list would be needed to predict future tokens. Hence, we consider the MTP approach,
which predicts the immediate future token, and the handcrafted summary method FSP-BCE, which
compresses the information about all the future tokens from the path. By summarizing the entire
future trajectory, FSP-BCE substantially reduces teacher forcing, encouraging the model to plan the
full path instead of exploiting shortcuts.

We conduct experiments for two graphs G(2, 6) and G(2, 8), with all the approaches pretrained
from scratch using the GPT-Mini architecture (details in Appendix B.1). At inference, we discard
the auxiliary head used in future prediction, and the task is to generate the complete path given the
prefix p. The evaluation metric checks whether the generated path exactly matches the true path.
Results in Figure 3 (left) show that both NTP and MTP fail to generalize (both obtained perfect
training accuracy), and the accuracy of MTP degrades further for the scenario with longer path
G(2, 8). Hence, predicting just the immediate future token is not enough, and FSP-BCE tackles this
by efficiently compressing all the future tokens from the path, enabling it to achieve perfect accuracy

5
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in both cases. Appendix B.1 (Table 4) shows that increasing the number of auxiliary heads in MTP
can provide some improvement, but practical limits exist: even with four additional future heads
MTP cannot solve the longer path graph G(2, 8).

3.2 ADAPTIVE FUTURE SUMMARY IS IMPORTANT

Example Sequence:

Graph:

x = S1 S1 S1 P1 S3 S3 S3 P3 S2 S2 S2 P21 2 3 1 2 3 1 2 3

P1

S1 1 S1 2 S1 3

Pm

Sm 1 Sm 2 Sm 3

....

Relevant 
future

Not predictable 
from the prefix

If this is 
the prefix 

Convergence Speed Relative to NTP:

Number of Components

Figure 4: Analysis on the modified sibling discovery task which requires adaptive future summaries.
Left: Convergence speed (mean (s.e.) over 3 random seeds) relative to NTP, where lower values
imply faster convergence. FSP-RevLM converges faster than NTP while FSP-BCE improves only
in the cases with few components. Right: Task setup illustration– given the prefix, only future
tokens in the highlighted component are informative. FSP-BCE, which summarizes all future tokens,
suffers from irrelevant information, whereas FSP-RevLM summarizes only the informative aspects.

Long handcrafted summaries often incorporate all future tokens, even though only a subset may
provide meaningful supervision signals, while the rest can introduce noise. This motivates the need
for an adaptive future summary. We illustrate this with modification of the sibling discovery task.
Figure 4 (right) depicts the setup, the model must generate sequences made of concatenated, inde-
pendent components, where each component lists its children nodes first, followed by their parent
(e.g., nodes S1

1 , S
1
2 , S

1
3 followed by parent P 1).

Intuitively, the causal factorization implied by the DAG (parent followed by children) implies a
goal-conditioned approach: by conditioning on the parent, the model can easily capture the sibling
dependencies. Under NTP, the model estimates Pθ(S1

2 |S1
1) without the parent, making sibling rela-

tionships harder to learn and requiring more samples. Future prediction can help, when the model
predicts the parent from S1

1 , then the representation can incorporate the parent information. This
enables goal-conditioned planning, the model can predict S1

2 conditioned on both S1
1 and the parent,

allowing sample efficient learning of sibling relationships (see Nagarajan et al. (2025) for details).

However, not all future tokens are equally informative. As Figure 4 illustrates, future tokens from a
different component do not provide relevant signal for predicting S1

2 . Handcrafted summaries that
include all future tokens may therefore be affected by the irrelevant information, whereas learned
summaries remain robust, as the reverse language model learns representation that emphasize only
the predictive signals needed to infer the next token.

We verify this empirically by comparing FSP-BCE and FSP-RevLM in experiments with varying
number of total components. All models are pretrained from scratch with the GPT-Mini architecture
(details in Appendix B.2), and the inference task requires generating a coherent sequence (siblings
followed by parent for each component). At convergence, all models produce coherent sequences; to
quantify the learning speedup over NTP, we report the ratio of steps to convergence relative to NTP,
with lower values indicating faster learning. Since all methods eventually reach perfect consistency
at convergence, time to convergence is a reliable metric for comparison. Results in figure 4 (left)
shows that FSP-BCE improves over NTP only when the number of components is small, with gains
disappearing for more than six components. In contrast, FSP-RevLM consistently achieves faster
convergence across all component sizes, confirming the benefit of adaptive future summaries.
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4 EXPERIMENTS

4.1 SETUP

We pretrain 3B- and 8B-parameter models on corpora of 250B and 1T tokens, respectively, covering
diverse domains. The majority of the data comes from DCLM-like sources and GitHub repositories,
supplemented by specialized material in mathematics, programming, and related areas. Models are
evaluated across a diverse set of benchmarks: ARC-Easy/Challenge (Clark et al., 2018) for general
reasoning, MBPP (Austin et al., 2021) and HumanEval+ (Liu et al., 2023) for code generation, and
GSM8K (Cobbe et al., 2021) and Math-500 (Hendrycks et al., 2021) for mathematical reasoning.
Details of the pretraining corpus and hyperparameters are provided in Appendix B.3.

We first benchmark our primary method, FSP-RevLM, against the baselines: next-token prediction
(NTP), standard multi-token prediction (MTP) (Gloeckle et al., 2024), and DeepSeek-MTP (DS-
MTP) (Liu et al., 2024). Further, a natural way to improve MTP for longer horizons is to add
multiple auxiliary heads, each predicting a token farther into the future, but this approach quickly
becomes impractical. We therefore constrain both MTP and DS-MTP to a single auxiliary head
predicting the immediate future token. This design choice keeps the comparison consistent and
aligned with the proposed FSP, since it uses a single auxiliary head.

Building on this unified single auxiliary head framework, we conduct an analysis of how MTP can
be enhanced by predicting richer future targets instead of the immediate future token. In addition
to predicting the learned future summary (FSP-RevLM), we compare handcrafted future summaries
over short- and long-range windows. This includes the proposed multi-hot future summary (FSP-
BCE) as a contributed baseline, and a random-token summary baseline (radomly sampling token
from future), in line with prior works (Thankaraj et al., 2025; Gerontopoulos et al., 2025).

Note regarding experiment design. All experiments are conducted under iso-data conditions,
meaning that all the methods are trained on identical datasets. For the proposed FSP-RevLM, this
implies that both the forward and reverse models are trained on the same data. In line with standard
practice in distillation, we do not perform iso-compute comparisons that include the teacher model’s
(ReverseLM) cost in the reported compute budget. In practical scenarios, the computational cost of
training the teacher model is typically amortized, hence it can be treated as a one-time overhead that
is excluded from comparisons of student models (Gemma et al., 2024; 2025).

Note regarding FSP-RevLM implementation. In our experiments with FSP-RevLM, the reverse
model is the same size as the forward model (and other baselines), and it is trained for the same
number of steps. As a result, FSP-RevLM roughly doubles the total compute cost compared to
standard NTP training. While FSP-RevLM increases training FLOPs, we believe this tradeoff is
reasonable in today’s compute-rich, data-limited scaling regime. The field has effectively hit the
data wall, whereas available compute continues to grow. Progress increasingly depends on using
this growing compute-per-token budget to extract more value from fixed datasets. In this context,
methods that deliver measurable gains without requiring additional data, even at higher compute
cost, are valuable.

4.2 RESULTS

At the 8B scale (Table 1), future-summary supervision via the reverseLM (FSP-RevLM) consistently
improves the performance across different evaluation tasks. On ARC-Easy, FSP-RevLM (76.6%)
provides significant improvement over NTP (71.8%) and MTP (73.6%), and it also leads on ARC-
Challenge and MATH. For code generation, it achieves the highest score on MBPP and ties with
MTP on HumanEval+, showing that the benefits of predicting future summaries generalize across
both reasoning and program synthesis tasks. GSM8K is the one task where NTP (71.6%) holds a
lead, though FSP-RevLM (70.5%) still narrows the gap relative to MTP (67.8%).

At the 3B scale (Table 2), DeepSeek-MTP is a strong baseline and obtains better performance than
FSP-RevLM on most tasks, except math reasoning. More importantly, FSP-RevLM exhibits larger
relative improvements as scale increases from 3B to 8B parameters, and becomes more favourable
than DS-MTP. Further, note that even at the 3B scale, FSP-RevLM still beats MTP on ARC and
math reasoning tasks, and performs comparably on MBPP, suggesting that even at smaller scales,
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Task NTP MTP DS-MTP FSP-RevLM

ARC-Easy 0.718 (0.000) 0.736 (0.000) 0.617 (0.003) 0.766 (0.000)

ARC-Challenge 0.531 (0.000) 0.552 (0.000) 0.426 (0.002) 0.559 (0.000)

GSM8K 0.716 (0.003) 0.678 (0.007) 0.704 (0.003) 0.705 (0.004)

MATH 0.342 (0.008) 0.309 (0.006) 0.335 (0.014) 0.351 (0.017)

MBPP 0.657 (0.004) 0.672 (0.008) 0.678 (0.006) 0.683 (0.006)

HumanEval+ 0.478 (0.019) 0.541 (0.011) 0.526 (0.013) 0.541 (0.009)

Table 1: Pretraining at 8B scale. We benchmark the proposed FSP-RevLM approach against NTP,
MTP, and DS-MTP. Results (mean ± s.e. over 3 seeds) report pass@16 for code/math tasks and
accuracy for ARC. FSP-RevLM achieves the strongest overall performance, with large gains over the
baselines on ARC tasks and MATH, and competitive results with (DS) MTP on code benchmarks.

Task NTP MTP DS-MTP FSP-RevLM

ARC-Easy 0.263 (0.002) 0.272 (0.005) 0.293 (0.000) 0.277 (0.000)

ARC-Challenge 0.263 (0.001) 0.245 (0.002) 0.274 (0.008) 0.255 (0.000)

GSM8K 0.410 (0.003) 0.411 (0.001) 0.417 (0.003) 0.436 (0.003)

MATH 0.213 (0.004) 0.196 (0.009) 0.201 (0.004) 0.212 (0.002)

MBPP 0.521 (0.007) 0.526 (0.004) 0.537 (0.007) 0.524 (0.001)

HumanEval+ 0.301 (0.009) 0.321 (0.015) 0.348 (0.022) 0.305 (0.006)

Table 2: Pretraining at 3B scale. We benchmark the proposed FSP-RevLM approach against NTP,
MTP, and DS-MTP. Results (mean ± s.e. over 3 seeds) report pass@16 for code/math tasks and
accuracy for ARC. At this smaller scale, DS-MTP is a strong overall baseline, but FSP-RevLM
outperforms it on math reasoning tasks, and also provides substantial gains over MTP on ARC and
math reasoning tasks. Further, as we scale the approaches to 8B parameters, FSP-RevLM scales
more favorably than DS-MTP, overtaking it on most tasks.

learning to predict future summaries may provide more effective auxiliary signal than immediate
future token prediction with MTP.

4.3 ANALYZING MTP WITH DIFFERENT FUTURE SUMMARIES

Table 3 presents our analysis of different future-summary strategies as auxiliary head targets at 8B
scale. We focus on the standard MTP architecture, without comparing to DS-MTP as it modifies the
input to auxiliary head, to isolate the effect of different future targets on the auxiliary head.

Our results show that random-token handcrafted future summaries perform worse than standard
MTP with immediate future token prediction, and performance further degrades as the future win-
dow (τ ) increases. In contrast, the proposed multi-hot or bag-of-words handcrafted future sum-
maries yield meaningful improvements over MTP, especially on math reasoning tasks, with both
shorter (τ = 12) and longer (τ = 100) future windows. For example, FSP-BCE with τ = 12
achieves 33.1% on MATH (+2.2 points) and 69.9% on GSM8K (+2.1 points), while even longer
windows (τ = 100) further amplifies the performance on GSM8K (71.4%, +3.6 points).

Finally, our learned future summaries (FSP-RevLM) outperform MTP across all evaluation tasks,
with especially pronounced gains on math reasoning: 35.1% on MATH (+4.2 points) and 70.5% on
GSM8K (+3.5 points). Further analysis (Figure 5) for these math reasoning tasks shows that learned
summaries promote greater output diversity across different pass@k settings, compared to vanilla
MTP with immediate future token prediction.

In Appendix B.3 (Table 5), we replicate these findings at 3B scale, where both handcrafted and
learned future summaries improve over vanilla MTP, again most prominently on math reasoning
tasks. Additional ablations explore the effects of omitting reweighting in FSP-BCE and predicting
learned summaries from deeper layers of the reverseLM (FSP-RevLM).
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Method MBPP GSM8K MATH HumanEval+ ARC-Challenge ARC-Easy

MTP 0.672 (0.008) 0.678 (0.007) 0.309 (0.006) 0.541 (0.011) 0.552 (0.000) 0.736 (0.000)

MTP-Skip τ :4 0.658 (0.005) 0.639 (0.004) 0.277 (0.020) 0.508 (0.009) 0.494 (0.003) 0.722 (0.000)

MTP-Skip τ :12 0.623 (0.002) 0.621 (0.005) 0.287 (0.018) 0.486 (0.010) 0.512 (0.000) 0.710 (0.003)

MTP-Skip τ :32 0.611 (0.008) 0.598 (0.007) 0.271 (0.005) 0.459 (0.007) 0.379 (0.000) 0.564 (0.000)

FSP-BCE τ :12 0.669 (0.005) 0.699 (0.006) 0.331 (0.016) 0.508 (0.005) 0.562 (0.000) 0.737 (0.000)

FSP-BCE τ :100 0.671 (0.002) 0.714 (0.009) 0.331 (0.007) 0.500 (0.019) 0.459 (0.000) 0.662 (0.000)

FSP-RevLM 0.683 (0.006) 0.705 (0.004) 0.351 (0.017) 0.541 (0.009) 0.559 (0.000) 0.766 (0.000)

Table 3: Analysis of future-summary strategies at 8B Scale. We evaluate the effect of different
future-summary prediction approaches against vanilla MTP. Results (mean ± s.e. over 3 seeds)
report pass@16 for code/math tasks and accuracy for ARC. Handcrafted multi-hot summaries (FSP-
BCE) improve over standard MTP, especially on math reasoning (e.g., GSM8K and MATH), while
learned summaries (FSP-RevLM) provide the largest gains across math reasoning and ARC tasks.

1 4 8 16
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1 4 8 16
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Figure 5: Enhanced diversity through learned future summaries. We compare standard MTP,
which predicts the immediate future token, with FSP-RevLM, which enriches the auxiliary head tar-
get using learned future summaries. FSP-RevLM substantially increases output diversity compared
to MTP on GSM8K and MATH benchmarks.

5 RELATED WORK

Pitfalls of Next-Token Prediction (NTP). While next-token prediction (NTP) is the standard loss
for modern LLMs, its shortcomings are increasingly evident. The main issue is the mismatch be-
tween training (teacher forcing) and inference (autoregression): during training, the model sees
ground-truth tokens, which encourages learning spurious correlations or “shortcuts” rather than the
true data distribution. Bachmann & Nagarajan (2024) describe this as the “Clever Hans cheat”,
where the model exploits trivial cues from the prefix and fails on lookahead tasks such as their
path-star graph problem. Nagarajan et al. (2025) further show that NTP is data-inefficient for tasks
requiring a “leap of thought,” such as Sibling Discovery. Our approach tackles these failures by
providing a more robust, long-range training signal that discourages such shortcuts.

Going Beyond Immediate Next Token. Multi-Token Prediction (MTP) addresses limitations of
Next Token Prediction (NTP) by using auxiliary heads to predict future tokens (Gloeckle et al.,
2024). DeepSeek-V3 (Liu et al., 2024) modifies these auxiliary heads to allow slight teacher forc-
ing, and recently Joint Token Prediction (Ahn et al., 2025) improves over DeepSeek-V3’s design
of slight teacher forcing to predict the joint distribution of future tokens. But the key issue with all
these approaches is that scaling the auxiliary heads for long-range dependencies is impractical. Re-
cent work aims to improve efficiency and capture longer dependencies. Gerontopoulos et al. (2025)
introduce register tokens, predicting tokens k steps ahead without architectural changes. Thankaraj
et al. (2025) insert lookahead tokens containing future subsequences, while Liu et al. (2025) use a
leap-based strategy to predict non-sequential future tokens. However, heuristically sampling ran-
dom future tokens still poses the risk of missing informative long-range signals. Our FSP-RevLM
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addresses this by predicting a learned summary of the future, such that it can extract meaningful
long-range information.

A relevant predecessor from the RNN literature that in principle avoids scaling auxiliary heads is
ProphetNet (Qi et al., 2020), which uses a shared self-attention mechanism together with relative
positional encodings to predict future n-grams without introducing separate heads. While this may
seem related to our bag-of-words summary (FSP-BCE), ProphetNet still supervises each future to-
ken individually and preserves positional order. In contrast, FSP-BCE operates on a summary vector
that discards positional information, and applies a binary cross-entropy objective over an unordered
future-token summary, yielding a fundamentally different training signal.

Bidirectional models. Leveraging reverse, or “right-to-left,” order during training has proven ef-
fective across several paradigms. The Belief State Transformer (BST) (Hu et al., 2024) uses dual
forward and backward encoders to predict the next token after a prefix and the previous token before
a suffix, encouraging a compact belief state, but does not explicitly reduce teacher forcing. Meet-
in-the-Middle (MiM) (Nguyen et al., 2023) jointly trains forward and backward models with shared
parameters, using an agreement regularizer to align their outputs. Reverse Training (Golovneva
et al., 2024) augments the dataset with reversed sequences to teach bidirectional dependencies and
mitigate the Reversal Curse (Berglund et al., 2023). Our FSP-RevLM similarly incorporates a re-
verse model but with a distinct goal: reducing reliance on teacher forcing. Trained on standard
left-to-right inputs, it aligns the forward model’s embeddings with the reverse model’s, effectively
distilling the reverse signal into the forward LM.

The most closely related work aimed at reducing teacher forcing is Twin Networks (Serdyuk et al.,
2017), which trains a reverse RNN and matches the forward hidden states to those of the reverse
model to encourage long-range future dependence. While similar at a high level, our contributions
go beyond the specific FSP-RevLM mechanism: we present a broader perspective in which future
summary prediction serves as a framework for understanding and designing pretraining objectives,
together with evidence showing when simpler approaches fail and why a learned summary coupled
with a reverse LM becomes necessary. Moreover, scaling this idea to Transformers is non-trivial.
Just as TwinNet anticipated aspects of our reverse component, earlier work also explored multiple
future tokens or parallel token blocks prediction from a given prefix (Tschannen et al., 2023; Monea
et al., 2023) well before Gloeckle et al. (2024), though without establishing MTP as a broadly
effective objective for large-scale Transformers. Gloeckle et al. (2024) deserve credit for identifying
a formulation that works in modern LLM training, and our results extend this line by showing that
both MTP and future-summary prediction can be cleanly integrated into Transformer pretraining
and scaled to yield robust gains.

Another somewhat related line is z-forcing (Goyal et al., 2017), which uses a reverse RNN to infer
latent variables that are then injected into the forward RNN to compute its hidden states. In contrast,
our reverse LM is not performing latent-variable inference; it is used solely to generate targets for an
auxiliary prediction head. Furthermore, unlike Z-forcing, our approach does not require the reverse
model at inference time—the reverse LM is purely a training-time component, whereas Z-forcing
depends on the reverse RNN during inference as well.

6 CONCLUSION

In this work, we highlighted a key limitation of existing multi-token prediction methods: the diffi-
culty of scaling auxiliary heads for long-horizon future prediction. Towards this, we proposed Future
Summary Prediction (FSP), a novel pretraining framework that shifts the auxiliary objective from
predicting specific future tokens to predicting a (learned) summary of the future. Experiments on 8B
models, using both hand-crafted and learned summaries, demonstrate that FSP delivers a stronger,
more robust training signal, improving over NTP and MTP on challenging reasoning and coding
tasks. Our findings indicate that focusing on abstract, predictable aspects of the future is a promis-
ing strategy for designing more efficient and effective pretraining objectives for next-generation
large language models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Alex Lamb, and John Langford. Efficient joint prediction of multiple future tokens.
arXiv preprint arXiv:2503.21801, 2025.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics, 2023.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In International
Conference on Machine Learning, pp. 2296–2318. PMLR, 2024.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems,
28, 2015.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Kor-
bak, and Owain Evans. The reversal curse: Llms trained on” a is b” fail to learn” b is a”. arXiv
preprint arXiv:2309.12288, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Team Gemma, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
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A ADDITIONAL MTP VARIANTS

In Section 2, we discussed MTP and the proposed future summary prediction to address a major
limitation in MTP. We summarize other variants proposed in the literature and their limitations here.

DeepSeek (DS) MTP. Another popular variant for MTP was proposed in DeepSeek (Liu
et al., 2024), where we condition the auxiliary head f

′

hk
with full prefix x≤t+k−1 to pre-

dict the future tokens xt+k, but with reduced teacher forcing from the ”auxiliary” tokens
{xt+1, xt+2, · · · , x≤t+k−1}.

LDSMTP(X,Pθ) = −Ex∼PX

[
T−1∑
t=1

τ∑
k=1

1[t+ k ≤ T ] logPθ(xt+k |x≤t+k−1)

]
. (14)

The parameterization is:

Pθ(xt+1 |x≤t) = softmax
(
fu ◦ fh ◦ fs

(
x≤t

))
,

Pθ(xt+k |x≤t+k−1) = softmax
(
fu ◦ f ′

hk

(
fs
(
x≤t

)
, xt+1, . . . , xt+k−1

))
, ∀k > 1.

(15)

Here, the auxiliary (future) tokens (xt+1, . . . , xt+k−1) are injected directly into the auxiliary heads,
bypassing the backbone, which reduces teacher forcing compared to standard NTP.

However, this approach suffers from the same short-horizon limitation as MTP: predicting multiple
future steps would require adding separate auxiliary heads for each token, which quickly becomes
impractical and limits scalability to long future sequences.

TRELAWNEY. In this work, we emphasized that standard MTP and DS-MTP often fail to cap-
ture the most informative future tokens, as both primarily focus on predicting the immediate next
tokens via the auxiliary head. The TRELAWNEY approach of Thankaraj et al. (2025) adopts a
complementary strategy: rather than altering the model architecture, it augments the training data
by inserting a window of future tokens, bounded by special markers. This encourages the model to
predict an the sampled block of future tokens, thereby reducing reliance on teacher forcing. More-
over, TRELAWNEY allows random subsequences to be sampled from the future, with the goal of
exposing the model to a richer and more informative signal than what is available in the immediate
next few steps. However, this heuristic random sampling can still fail to capture critical information
from tokens far in the future, limiting its robustness for long-horizon planning tasks.
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B EXPERIMENTS

B.1 PATH-STAR GRAPH

Experiment Setup. We adopt the dataset generation procedure from the official code repository1

of Bachmann & Nagarajan (2024). Specifically, we construct a set of 50 distinct nodes and generate
multiple instances of path-star graph sequences by randomly sampling nodes from this set. The
training set consists of ntrain = 200,000 sequences, and evaluation is performed on ntest = 20,000
sequences.

For modeling, we employ the GPT-Mini architecture with the following configuration:

• Total Layers: 12
• Embedding Dimension: 384
• Total Attention Heads: 6
• MLP expansion factor: 4

We summarize the other relevant hyperparameters below.

• Learning Rate: 3e− 4

• Batch Size: 256
• Weight Decay: 1e− 2

• Total Epochs: 500
• Gradient Norm Clipping: 1.0

Experiment with multiple auxiliary heads in MTP. A naive approach to incorporate longer-
term future dependencies in MTP is by increasing the number of auxiliary heads. Table 4 reports the
results: adding more auxiliary heads improves performance on G(2, 6), due to reduced teacher forc-
ing. However, simply scaling the number of auxiliary heads is not a practical solution for modeling
long-range dependencies, as shown by the poor performance on the longer path graph G(2, 8).

Method G(2,6) G(2,8)
NTP 0.45 (0.01) 0.45 (0.03)
MTP 0.66 (0.17) 0.15 (0.15)
MTP (aux heads: 2) 0.79 (0.13) 0.28 (0.11)
MTP (aux heads: 3) 0.90 (0.10) 0.38 (0.09)
MTP (aux heads: 4) 0.90 (0.10) 0.20 (0.12)
BCE 1.00 (0.00) 1.00 (0.00)

Table 4: Analyzing the performance of MTP on path-star graphs with an increasing number of aux-
iliary heads. Augmenting MTP with additional auxiliary heads improves performance on G(2, 6),
but practical limits exist: even with four auxiliary heads, MTP fails to solve the longer path graph
G(2, 8).

B.2 SIBLING DISCOVERY

Experiment Setup. We build on the dataset generation procedure from the official code reposi-
tory2 of Nagarajan et al. (2025). While the original sibling discovery task presents sequences from
a single component, we modify the setup by concatenating sequences from multiple components.
Each component i is defined by a unique parent P i and three child nodes Si1, S

i
2, S

i
3. The support

of each conditional distribution P (Si | P i) is disjoint across children—i.e., each child Si can take
N possible values, and these sets of values are non-overlapping across children. As a result, with K
components, the total number of distinct child value combinations is N3K . In our experiments, we

1https://github.com/gregorbachmann/Next-Token-Failures/
2https://github.com/chenwu98/algorithmic-creativity
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vary the number of components K ∈ 2, 4, 6, 8, 10 while fixing N = 100. For training, we randomly
sample child values for each component to construct ntrain = 20,000 sequences, and evaluate on
ntest = 3,000 sequences.

We use the GPT-Mini architecture with the following specifications.

• Total Layers: 12

• Embedding Dimension: 384

• Total Attention Heads: 6

• MLP expansion factor: 4

We summarize the other relevant hyperparameters below.

• Learning Rate: 3e− 4

• Batch Size: 256

• Weight Decay: 1e− 2

• Total Epochs: 150

Figure 6: Each subplot corresponds to a different attention head. Red squares highlight queries
belonging to a particular component, showing that they attend predominantly to keys within the
same component, forming a subgroup-wise pattern. While the average across heads shows some
cross-component diffusion, several heads exhibit clean intra-component attention, indicating that the
reverse model preserves the structural organization of the future input rather than mixing information
across unrelated parts of the sequence.

Additional Experiment: Interpretability of attention weights from RevLM. Interpreting the
learned future summaries is crucial for understanding how RevLM captures information from future
context. For the sibling-discovery experiment (Section 3.2), we conducted a preliminary analysis
using attention weights from the final layer, which directly contribute to the future-summary repre-
sentation. We observe that queries associated with a particular component in the sequence attend
predominantly to keys from the same component, indicating limited cross-component interaction.
While the average across heads shows some diffusion of attention beyond component boundaries,
three individual heads exhibit a clear subgroup-wise structure without such leakage. This suggests
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that the learned future summaries preserve the informative structure of the future input by prioritiz-
ing intra-component tokens. Prior work shows that hidden states of LLMs naturally encode detailed
information about surrounding tokens (see Section 5 of Physics of LLMs (Allen-Zhu & Li, 2023)),
supporting the intuition that reverse-direction representations can capture meaningful long-range
patterns. Extending this analysis with additional interpretability tools, such as linear probing and
activation patching, remains a promising direction for future work.

B.3 REAL WORLD PRETRAINING

Pretraining dataset composition. Our pretraining corpus is constructed to cover a wide range
of domains, aiming to equip models with both broad knowledge and strong reasoning ability.
The bulk of the data is drawn from a DCLM-style mixture (Li et al., 2025) and large-scale code
sources such as GitHub (neogithub, 2022). To strengthen performance on more specialized skills,
we further supplement with mathematics and scientific data, including the DeepMind Mathemat-
ics dataset (Saxton et al., 2019), Proof Pile 2 (ArXiv, OpenWebMath, Algebraic Stack) (Azerbayev
et al., 2023), and Stack Exchange from the Pile (Gao et al., 2020). Additional curated resources in-
clude FineWeb-Edu (Lozhkov et al., 2024), the Natural Reasoning Dataset (Yuan et al., 2025), and
AQuA (Ling et al., 2017). Together, this mixture balances large-scale general text with carefully
chosen reasoning-focused datasets.

Pretraining hyperparameters. All the models were trained using NVIDIA H200 GPUs. We train
models using a cosine learning rate scheduler, with an initial learning rate of 3×10−3 for 3B models
and 3× 10−4 for 8B models. We provide details regarding the other hyperparameters below.

• 3B Models
– Batch Size (per GPU): 16
– Total GPUs: 128
– Sequence Length: 2048
– Total Steps: 60k

• 8B Models
– Batch Size (per GPU): 2
– Total GPUs: 256
– Sequence Length: 8192
– Total Steps: 240k

Evaluation Metrics. We report accuracy for ARC and pass@k for code and math reasoning tasks,
with mean and standard error computed over 3 random seeds. For pass@k, we evaluate each method
across a range of temperature values (0, 0.1, 0.2, . . . , 0.9, 1.0) and report the results corresponding
to the temperature that yields the best performance for each method and task. Note that, in all
cases, the auxiliary head is used only during training, and methods are evaluated via their next-token
prediction heads at test time.
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Additional Experiment: Analysis of future summaries (3B). Table 5 presents our analysis of
different future-summary strategies as auxiliary head targets at the 3B scale. Similar to the 8B
case, we focus on the standard MTP architecture, without comparing to DS-MTP since it modi-
fies the input to the auxiliary head, allowing us to isolate the effect of different future targets. Our
findings are similar: random-skip handcrafted summaries underperform relative to MTP, while the
proposed multi-hot/bag-of-words approaches perform well. In our experiments, we observed con-
sistent improvement over MTP with the proposed handcrafted summaries (FSP-BCE) on both Math
and GSM8k tasks, across the 3B and 8B model scales. For the 3B ablation, we tested removing
tf-idf reweighting as well and found that, in most cases, it did not provide benefits, which led us to
keep the tf-idf reweighting for our 8B experiments. The only exceptions where no tf-idf reweighting
performed better were GSM8k at τ = 12 and HumanEval+ at τ = 10. Additionally, we experi-
mented with using deeper layers at the 3B scale and found that the last layer performed better on
ARC Challenge and ARC Easy, though it was slightly worse on MBPP and Math. Based on these
findings, we chose to use the last layer for our 8B-scale experiments.

Method MBPP GSM8K MATH HumanEval+ ARC-Challenge ARC-Easy

MTP 0.526 (0.004) 0.411 (0.001) 0.196 (0.009) 0.321 (0.015) 0.245 (0.002) 0.272 (0.005)

MTP-Skip τ :4 0.519 (0.004) 0.368 (0.007) 0.181 (0.005) 0.309 (0.004) 0.241 (0.000) 0.282 (0.000)

MTP-Skip τ :12 0.485 (0.011) 0.354 (0.005) 0.177 (0.006) 0.287 (0.009) 0.264 (0.008) 0.262 (0.000)

MTP-Skip τ : 32 0.467 (0.007) 0.354 (0.003) 0.189 (0.004) 0.278 (0.017) 0.243 (0.000) 0.240 (0.003)

FSP-BCE τ :12, no tf-idf 0.518 (0.006) 0.431 (0.004) 0.201 (0.009) 0.301 (0.009) 0.250 (0.000) 0.251 (0.000)

FSP-BCE τ :12 0.521 (0.005) 0.419 (0.003) 0.204 (0.002) 0.305 (0.012) 0.254 (0.000) 0.262 (0.004)

FSP-BCE τ :100, no tf-idf 0.512 (0.007) 0.416 (0.005) 0.203 (0.008) 0.309 (0.004) 0.228 (0.003) 0.238 (0.000)

FSP-BCE τ :100 0.524 (0.004) 0.417 (0.004) 0.209 (0.003) 0.293 (0.012) 0.254 (0.006) 0.262 (0.000)

FSP-RevLM depth: 2 0.528 (0.004) 0.428 (0.003) 0.217 (0.006) 0.305 (0.013) 0.243 (0.007) 0.265 (0.000)

FSP-RevLM 0.524 (0.001) 0.436 (0.003) 0.212 (0.002) 0.305 (0.006) 0.255 (0.000) 0.277 (0.000)

Table 5: Analysis of future summaries at 3B Scale. We evaluate the effect of different future-
summary prediction approaches against vanilla MTP. Results (mean ± s.e. over 3 seeds) report
pass@16 for code/math tasks and accuracy for ARC. Handcrafted multi-hot summaries (FSP-BCE)
improve over standard MTP, especially on math reasoning (e.g., GSM8K and MATH), while learned
summaries (FSP-RevLM) provide the largest gains across math reasoning and ARC tasks.
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