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ABSTRACT

Recent advances in self-supervised pre-training of foundation models for natural images have made
them a popular choice for various visual systems and applications. Self-supervised strategies have
also shown promise in non-RGB scientific imaging domains such as in biology, medical and satellite
imagery, but their broader application is hampered by heterogeneity in channel composition and
semantics between relevant datasets: two datasets may contain different numbers of channels, and
these may reveal distinct aspects of an object or scene. Recent works on channel-invariant strategies
report substantial advantages for those that account for variable channel compositions without
sacrificing the ability to jointly encode channels; yet, how these strategies behave at scale remains
unclear. We here show that, surprisingly, trained across large-scale microscopy datasets, independent-
encoding of channels consistently outperforms joint-encoding methods by a substantial margin. We
explore this result along an extensive set of experiments and open-source a new general purpose
feature extractor for fluorescent microscopy images, DINO BoC, that sets a new state-of-the-art
across challenging benchmarks, including generalization to out-of-distribution tasks and unseen
channel combinations at test time.

1 INTRODUCTION

By enabling scientists to reveal the substructural composition and dynamics of cells and tissues,
fluorescent microscopy has enabled countless scientific discoveries that collectively underpin modern
medicine and our understanding of life. Owing to a recent confluence of effective protocols to reveal
distinct subcellular structures across multiple channels, and to automate image acquisition across
hundreds of experimental conditions and thousands of cells, high-content fluorescent microscopy is
emerging as a powerful platform to uncover mechanisms of disease, to accelerate drug discovery,
and to interrogate cellular biology at unprecedented scale and salient detail (Chandrasekaran et al.,
2021). In addition, vast amounts of microscopy data that have been generated over the last decades
wait to be leveraged to train general purpose foundation models to comprehensively represent the
morphological "body-language" of cells.

Towards this goal, we here focus on a key technical challenge that, along with many other scientific
imaging domains (Zhu et al., 2022), distinguishes fluorescent microscopy data from natural images:
to observe specific biological phenomena of interest, biologists routinely design bespoke imaging
protocols to reveal distinct sets of cellular structures. The data-landscape of fluorescent microscopy
thus consists of a vast number of small-to-moderate scale datasets that vary both in the number of
channels they contain, and with respect to the biological semantics of each channel (see Fig. 1).
In contrast to natural (RGB) images, most models trained on one fluorescent microscopy dataset
can thus neither be re-used in other studies, nor draw on other datasets, yielding representations
of limited expressivity and that generalize poorly (Chen et al., 2024). Learning powerful unified
feature extraction models for scientific imaging domains with variable channel composition therefore
requires channel-invariant methods.

Fluorescent microscopy has proven a particularly fruitful test-bed for the development of such
methods. As proposed by (Xun et al., 2024), a technically trivial solution to the challenge of variable
channel inputs is to simply abandon the joint-encoding of channels, pass channels through the model
one-by-one and concatenate their output embeddings. This has the theoretical advantage of yielding
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truly channel-agnostic models, but sacrifices the ability to (explicitly) learn inter-channel interactions
and would thus be expected to broadly fail at key analytical use cases, such as the analysis of protein-
localization changes relative to reference channels that provide ground-truth for organelle position
(Human Protein Atlas, 2019; Lacoste et al., 2024). Consistently, recent works report significant
advantages for more technically sophisticated approaches, that reconcile joint-channel-encoding
with variable number of input channels (up to some maximum) through customizations of vision
transformers (ViTs) (Bao et al., 2024; Bourriez et al., 2024; Pham & Plummer, 2024).

However, all previous studies employed inconsistent sets of relatively small pre-training datasets,
employed supervised learning objectives (Bao et al., 2024), or did not evaluate generalization to
out-of-distribution (OOD) tasks and datasets with unseen channel combinations - key metrics of
success for the utility of general purpose, channel-invariant feature extractors. We here conduct a
first, large-scale study into the scaling properties of channel-invariant methods, across uniform model
architectures and learning objectives, and rigorous benchmarks. Completely inconsistent and often
missing labels across microscopy datasets render supervised methods ill-suited to this end. We hence
base our study on state-of-the-art (SOTA) self-supervised learning (SSL) strategies which have been
shown to yield rich representations of cellular morphology on channel-homogeneous microscopy
datasets (Doron et al., 2023; Kraus et al., 2024).

In marked contrast to previous results, we find that, at scale, independent channel-encoders, i.e. Bag
of Channel (BoC) models, leveraging ViT architectures trained with DINOv2 (Oquab et al., 2023),
significantly and consistently outperform joint-channel-encoding methods across an extensive set of
testing regimes. Our results pose a broad challenge to the assumption that joint-channel-encoding is
beneficial in non-RGB domains. Our main contributions are as follows:

Figure 1: Training across fluorescent microscopy datasets. (A) We consolidate images from Hu-
man Protein Atlas (2019)(HPA-FOV), Le et al. (2022)(HPA-SC), Cho et al. (2022)(OpenCell), Viana
et al. (2023)(WTC) and Doron et al. (2023)(Cell Painting), into a dataset (ExtendedCHAMMI) that
reflects the diversity in channel number, order, and semantics, that characterizes fluorescent mi-
croscopy studies. Despite some conventions (e.g. the nucleus is usually imaged using blue fluorescing
stains), there is no necessary correspondence between specific channels and/or wavelengths, and their
biological semantics. Images are pseudo-colored according to emission wavelength. CellPainting
visualizes Plasma Membrane (PM) and Actin in one channel. (B) We benchmark self-supervised
channel-invariant strategies on their capacity to yield features that generalize to OOD tasks. Our
DINO BoC approach compares favorably.

• We conduct an extensive study of channel-invariant SSL methods across large and diverse
microscopy datasets.

• Against all previous evidence, we report that independent-encoding of channels outperforms
joint-channel-encoding strategies across an extensive set of experiments including in-domain,
cross-dataset, and OOD generalization setups, challenging key theoretical assumptions on
the optimality of joint-channel-encoding in non-RGB domains.
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• We substantiate our results through a set of control experiments to directly analyze the
impact of joint versus independent-channel-encoding by virtue of a novel channel-invariant
Hierarchical Attention scheme, as well as an ablation of SSL objectives.

• We open-source a new general-purpose feature extractor, DINO BoC, that sets a new SOTA
for channel-invariant learning for microscopy.

2 RELATED WORK

Vision transformers and self-supervised learning. The goal of self-supervised learning (SSL)
is to learn to project the data onto an embedding space such that the features retain the information
contained in the original data while being organized in a way that reflects high-level relationships
between the data points. In SSL this is achieved by using the samples themselves as the source of
supervision, without leveraging additional labels. Learning task-agnostic representations has become
pervasive both in Natural Language Processing (Devlin et al., 2019; Radford et al., 2019; Touvron
et al., 2023) and, more recently, in Computer Vision (Chen et al., 2020; Caron et al., 2021; He
et al., 2022; Assran et al., 2023). The promise of this approach is that it enables the use of large
amounts of unlabeled data to learn multi-purpose features that can be applied off the shelf, without
fine-tuning, to any downstream tasks, often surpassing the performance of task-specific models. A
widely adopted approach involves the use of a contrastive objective, such as in DINOv2 (Oquab et al.,
2023) – currently the state-of-the-art in SSL models for computer vision. In contrast, generative
models, such as Masked Autoencoders (MAE) (He et al., 2022), are trained by reconstructing masked
or corrupted regions of the input.

Applications of SSL to microscopy images. The literature on self-supervised learning for cellular
microscopy focuses mainly on models designed for specific datasets (Doron et al., 2023; Kobayashi
et al., 2022) or imaging protocols, such as the Cell Painting assay (Kim et al., 2023). However, these
pre-trained models cannot be reused across studies with different microscopy configurations. Further,
this approach is not viable for learning powerful feature representations for small-scale datasets.

To overcome this limitation, CytoImageNet (Hua et al., 2021) proposed collapsing channels into one
by averaging across them. This approach loses the semantic information carried by distinct channels.
Alternatively, Microsnoop (Xun et al., 2024) proposed to encode each channel individually with a
U-Net (Ronneberger et al., 2015) trained with a masked SSL strategy, and reassembling whole-image
representations post-hoc by concatenating the embeddings for each channel.

In contrast, ChAda-ViT (Bourriez et al., 2024), Channel-ViT (Bao et al., 2024), Kraus et al. (2024)
and (Pham & Plummer, 2024) studied joint-channel-encoding with ViTs by converting the variable
number of channels problem into a variable sequence length problem, as such, channel interactions
can be readily learned. Channel-ViT (Bao et al., 2024), in particular, tackles a problem distinct
to channel-invariant learning, they focus rather on robustness to missing channels. Supervised
frameworks, such as those of Hua et al. (2021), Bao et al. (2024) and Pham & Plummer (2024) do not
fully align with the end goal of channel-invariant models, which aim to be transferable across new
microscopy studies and thus require features that are task-agnostic. We here pioneer independent-
channel-encoding with ViT backbones and SSL objectives, and benchmark it against joint-encoding
(Channel-ViT) methods, while scaling both model and dataset sizes.

3 METHOD

3.1 INDEPENDENT-CHANNEL-ENCODING

Given a channel-heterogeneous dataset X, where a sample x(j) has Kj channels, let Kmax denote the
maximum number of channels across all images. The goal of channel-invariant learning is to propose
a model that is able to accommodate images with a variable number of channels.

A straightforward strategy to deal with channel number variability is to separately encode each
channel, using a common backbone. The individual features obtained for each channel can then be
aggregated, e.g., via concatenation, to obtain the image-level representation.
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A B

C D

Figure 2: Overview of different channel-invariant strategies. (A) Joint-channel-encoding strategy of
Channel-ViT (Bao et al., 2024; Bourriez et al., 2024): the image is reshaped into a sequence of single-
channel patches and channel embeddings are used to retain channel information. (B) Hierarchical
Attention model: a specialized attention mask is used to enforce independent-channel-encoding via
channel class tokens xCH, while the global class token xCLS supports inter-channel reasoning. (C)
Independent-channel-encoding strategy, note that a common backbone is used. (D) Attention mask
of the Hierarchical Attention model.

This is the strategy employed by Microsnoop (Xun et al., 2024), a tool for profiling heterogeneous
microscopy images based on a convolutional U-Net (Ronneberger et al., 2015) backbone and trained
with a masked SSL strategy.

In this work we pioneer independent channel modeling using ViTs and the DINOv2 SSL framework.
We denominate our approach the DINO Bag of Channels model (DINO BoC). We demonstrate its
superior performance compared to Microsnoop, as well as the advantages of DINOv2 over alternative
SSL frameworks. Furthermore, we benchmark it against channel-adaptive methods, that model the
channels jointly, disproving the claimed benefits of incorporating inter-channel attention.

3.2 JOINT-CHANNEL-ENCODING

The challenge of joint-channel-encoding on datasets with variable number of channels has been
addressed by ChAda-ViT (Bourriez et al., 2024) and Channel-ViT (Bao et al., 2024), specifically for
transformer architectures. In particular, they propose an adaptation of the patchfication process, and
introduce the concept of channel embeddings.

Multi-channel patch model. In the original ViT architecture proposed by Dosovitskiy et al. (2021),
given an input image x ∈ RK×H×W and a patch size S, the image is reshaped into a sequence of
flattened multi-channel patches:

x = [x1 x2 · · · xN ] , xi ∈ RKS2

,
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where K is the number of channels and N = HW/S2. A linear embedding layer is applied to each
patch xi resulting in a sequence of patch embeddings hi of dimension D, to which a learnable class
token xCLS is prepended:

h = [xCLS h1 · · · hN ] ∈ RD×(1+N),

To retain positional information, learnable position embeddings are added to the patch embeddings.

Single-channel patch model. To accommodate variable numbers of channels, Bourriez et al. (2024)
and Bao et al. (2024) reshape an image into a sequence of flattened single-channel patches:

x = [x1,1 · · · x1,N · · · xK,1 · · · xK,N ] , xk,i ∈ RS2

,

where, in xk,i, k indicates which channel the patch belongs to and i its raster position. After projecting
the patches with a linear embedding layer and prepending the class tokens one obtains:

h = [xCLS h1,1 · · · h1,N · · · hK,1 · · · hK,N ] ∈ RD×(1+NK),

As a result, the variable number of channels problem becomes a variable sequence length one,
benefiting from the transformer’s inherent capability of handling arbitrary sequence lengths.

Channel embeddings. In the single-channel patch model, the approach of Bourriez et al. (2024)
and Bao et al. (2024) to retain channel information, as well as position information, is to add both
position embeddings and channel embeddings to the patch embeddings hk,i. Let pi (i = 1, . . . , N)
denote the position embeddings and ck (k = 1, . . . ,K) the channel embeddings. The resulting
sequence of patch embeddings for a sample x is:

[xCLS h1,1 + p1 + c1 · · · hK,N + pN + cK ] .

Note that, if the maximum number of channels per image on the pre-training data is Kmax, this
method cannot be used on images that have more channels than Kmax, as there will be no trained
channel embeddings for the extra channels.

Bourriez et al. (2024) used a ViT-S architecture and the DINO SSL objective. For fairness in
comparison with DINO BoC, we scale the model using a ViT-L architecture and update the pre-
training recipe to the improved DINOv2. This model will be referred to as the Channel-ViT model.

Note that Channel-ViT outputs a single constant-sized embedding regardless of the channel-
composition of the input data, contrary to the strategy of obtaining separate features for each
channel. The utility of producing a constant-sized embedding irrespective of the number of channels
is questionable (see Appendix G). We also tested a channel sampling technique introduced by Bao
et al. (2024) for the training of Channel-ViT, however it did not improve the performance of the
model, as shown in Appendix E.

Bourriez et al. (2024) claimed superiority of the joint-channel-encoding strategy over independent-
encoding, attributing it to the inter-channel attention mechanism. However we have found that,
at scale, combining independent-channel-encoding with the DINOv2 SSL method brings superior
performance and robustness.

3.2.1 HIERARCHICAL ATTENTION MODEL

This work introduces a novel approach that balances joint and independent-channel-encoding strate-
gies. This method plays a critical role in testing the hypothesis that limiting inter-channel interactions
enhances the performance of channel-invariant models.

In this approach, the image is reshaped into a sequence of single-channel patches x ∈ RS2×NK .
After embedding the patch tokens with a linear layer, both a global class token xCLS and channel
class tokens xCH are inserted into the sequence, only position embeddings are used:

[xCLS xCH1 h1,1 + p1 · · · h1,N + pN · · · xCHK hK,1 + p1 · · · hK,N + pN ] .
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A specialized attention mask is employed in the Multi-Head Self-Attention blocks. Tokens within a
single channel (channel class token and corresponding patch tokens) can only attend to other tokens
within that same channel, therefore, at this level, the channels are processed independently. The
global class token, however, attends to all channel class tokens, enabling inter-channel reasoning at a
higher semantic level. This approach, termed DINO Hierarchical Attention (DINO HA) model, and
the attention mask are illustrated in Figure 2 (see Appendix C for more details).

4 EXPERIMENTS

We test the merits of DINO BoC on diverse biological benchmarks, and compare it to existing
channel-invariant strategies. Section 4.1 introduces the datasets used in this work, including the
CHAMMI benchmark. Section 4.3 demonstrates the impact of choosing the SSL DINOv2 method
(Oquab et al., 2023) instead of MAE (He et al., 2022), and compares DINO BoC to Channel-ViT and
Microsnoop (Xun et al., 2024). In section 4.4, we further investigate the advantages of DINO BoC on
cross-dataset generalization tasks. Then, in section 4.5 we evaluate self-supervised DINO BoC,
Channel-ViT, and DINO HA models in the CHAMMI benchmark – designed to assess performance
in in-distribution and OOD tasks – compared to SOTA supervised channel-invariant approaches.

4.1 DATASETS AND BENCHMARKS

We leverage multiple microscopy datasets with varying numbers of channels. In particular, we use the
Human Protein Atlas, WTC-11, JUMP-CP and Cyclops datasets for evaluation tasks. Additionally,
we employ the CHAMMI benchmark, a standardized evaluation framework for channel-invariant
models.

Human Protein Atlas dataset. The subset of the Human Protein Atlas (HPA) data that is considered
is the one of the Kaggle competition Human Protein Atlas (2019), concerned with the subcellular
distribution of the proteins encoded by different genes. It covers 35 cell lines and 28 subcellular
structures of protein localization. There are 113, 545 images in total, with four channels. There is
also a single cell version of the same dataset (Le et al., 2022), obtained through segmentation of the
field-of-view (FOV) images. The HPA Single Cell dataset contains 839, 612 images.
WTC-11 dataset. This dataset is a version of the WTC-11 hiPSC Single-Cell Image Dataset v1
(Viana et al., 2023) of the Allen Institute curated for the CytoData Symposium 2022 hackathon
(Allen Institute, 2022). The dataset contains 214, 037 3D images of cells, we used the maximum
z-projection of the original images. The dataset provides cell-cycle stage annotations, with six stages.
The images have one bright-field (BF) channel and three fluorescence channels; BF was excluded.
Cell Painting dataset. We utilize the Cell Painting (CP) dataset curated by Moshkov et al. (2024),
totaling 8, 423, 455 images with five channels. The dataset has the objective of allowing the study of
the response of cells to different compound treatments and gene over-expression experiments.
JUMP-CP dataset. This dataset, used by Bao et al. (2024), is a processed version of the data made
available by the JUMP-Cell Painting Consortium (Broad Institute, 2021). It contains 229, 228 single
cell images. We used only the five fluorescence channels in our work.
Cyclops dataset. We used the same dataset as described by Xun et al. (2024) consisting of 28,166
2-channel yeast cell images from the Cyclops database (Lu et al., 2018).
OpenCell dataset. The OpenCell dataset was introduced by Kobayashi et al. (2022), and encom-
passes 1, 311 different tagged proteins. In total, 1, 134, 592 images were made available, with two
fluorescence channels. More details on the five datasets mentioned above are given in Appendix A.
CHAMMI benchmark. The CHAMMI benchmark (Chen et al., 2024) includes a dataset curated
from the WTC-11, HPA Single Cell and Cell Painting datasets. In total there are 220, 284 images,
of which 100, 145 are used for training. The benchmark is a standardized evaluation framework for
channel-invariant models. It presents a comprehensive set of nine tasks for channel-invariant models
of varying complexity, that evaluate the ability of the models to generalize to new biologically-relevant
experimental regimes. As such it positions itself as an indispensable benchmark to evaluate those
models. The images from each data source present in the CHAMMI dataset are split into one training
set and several test sets, designed for specific tasks. Tasks with suffix 1 are IID classification problems,
where the test and train data follow the same distribution. Tasks with suffix greater than 1 evaluate
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the OOD generalization capabilities of the model, and simulate biologically-relevant application
scenarios (see Appendix B.1 for a detailed description of each task).

ExtendedCHAMMI dataset We extend the CHAMMI train set to a total of 7, 748, 662 images,
incorporating additional data from both the source datasets and new data sources. The extended
training dataset preserves the OOD characteristics of the CHAMMI tasks (see Appendix B.2).

4.2 IMPLEMENTATION DETAILS

When pre-training the models, care was taken to ensure that the models processed the same amount of
data. For the DINO BoC model, a sample consists of a single channel, whereas for the other models,
a sample is an image with all of its channels. Therefore the former must be trained for more iterations
to achieve fair comparison.

For each pre-training dataset, the Channel-ViT and DINO HA models were pre-trained for 45, 000
iterations. Taking into account the average number of channels in the pre-training dataset, the Bag of
Channels model was trained for a proportionally larger number of epochs. The batch size used was
of 1024 for all models, and the batch size per GPU was set to 8, except for DINO BoC model, for
which 32 fits in memory. On our largest dataset, we trained the models for about 2 days using 16
nodes, or 4 nodes for the DINO BoC model. Unless specified otherwise, we trained ViT large models.
More details are provided in Appendix D. On the ExtendedCHAMMI dataset, the channel-invariant
models were pre-trained with balanced sampling across data sources.

4.3 SCALING CHANNEL AGNOSTIC FEATURE REPRESENTATIONS WITH DINOV2

Table 1 displays the results for channel-invariant models pre-trained on the ExtendedCHAMMI
dataset, as well as for baseline fixed-channel models (Doron et al., 2023) pre-trained either on the
HPA-FOV, JUMP-CP or WTC dataset. We evaluate the models on the HPA-FOV, JUMP-CP and
WTC datasets, note that the fixed-channel models can only be evaluated on the datasets they are
pre-trained on. The JUMP-CP dataset is not included in ExtendedCHAMMI, therefore it evaluates the
generalization capability of channel-invariant models on novel data sources. Results for an ablation
removing datasets from the ExtendedCHAMMI dataset are presented in Appendix H, and results on
all eight JUMP-CP channels are listed in Appendix I.

First of all – comparing DINO BoC to Channel-VIT using the same SSL method and network size –
we observe that the strategy of independently encoding the channels significantly outperforms the
one of jointly encoding them across all tasks.

We also observe that DINO BoC has stronger performance than fixed-channel models on three out
of four tasks, including when evaluating on the novel JUMP-CP dataset. This shows that DINO
BoC successfully leverages diverse microscopy data to learn an improved encoder, justifying the
interest in channel-invariant models.

Table 1 also shows that DINO outperforms MAE as a learning objective, demonstrating that DINOv2
is a key component of the success of our approach.

Furthermore, we evaluate the impact of the network size on DINO BoC. Although using a ViT-L
leads to improved performance, even with a ViT-S, DINO BoC outperforms ViT-L MAE BoC and
Channel-ViT models.

Absent the ability of directly pre-training Microsnoop on ExtendedCHAMMI due to the unavailability
of the training code, the performance of MAE BoC serves as a proxy for Microsnoop performance,
as it uses the same SSL method. In addition, we demonstrate in Table 2 that DINO BoC outperforms
Microsnoop on the challenging Cyclops dataset (on which they reported the largest gains) by a
substantial margin, while especially fortifying performance on rare classes (up to 20 points).

Unexpectedly, the BoC approach, and DINO BoC in particular, thus not only matches, but outperforms
joint-channel-encoding, including on protein-localization prediction, setting a new SOTA.

7
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Table 1: Comparison of channel-invariant models trained on the ExtendedCHAMMI dataset
and fixed-channel models. The first three rows (CellDINO) are fixed-channel baseline models,
separately pre-trained either on the HPA-FOV, JUMP-CP or WTC datasets. Best channel-invariant
results in bold; best results overall are underlined.

Model SSL Network Channel Training set HPA-FOV F1 HPA-FOV F1 JUMP-CP WTC F1
method size invariant Protein loc. Cell type Accuracy Cell cycle st.

CellDINOv2 DINOv2 ViT-L ✗ HPA-FOV 65.0 89.3 ✗ ✗
CellDINOv2 DINOv2 ViT-L ✗ JUMP-CP ✗ ✗ 44.3 ✗
CellDINOv1 DINOv1 ViT-L ✗ WTC ✗ ✗ ✗ 82.3

Channel-ViT DINOv2 ViT-L ✓ ExtendedCHAMMI 57.4 -7.6 90.4 +1.1 39.4 -4.9 87.2 +4.9

BoC

MAE ViT-L ✓

ExtendedCHAMMI

54.0 -11.0 90.8 +1.5 39.3 -5.0 89.4 +7.1

DINOv2 ViT-S ✓ 55.6 -9.4 90.7 +1.4 44.5 +0.2 91.0 +8.7

DINOv2 ViT-L ✓ 61.7 -3.3 91.1 +1.8 45.2 +0.9 90.5 +8.2

Table 2: Comparison to Microsnoop on the Cyclops dataset. DINO BoC dramatically outperforms
Microsnoop, especially on the 4 least frequent classes (out of 16).

Class Budtip Cell periphery Budneck Actin All
frequency 1.5 % 1.9% 2.4% 3.8%

Microsnoop (Xun et al., 2024) 32.1 96.4 43.4 48.0 75.9
DINO BoC 62.1 97.5 72.6 63.7 83.1

4.4 CROSS-DATASET GENERALIZATION

To further analyze the surprising result that inter-channel reasoning is detrimental to the performance
and robustness of channel-invariant models we investigate the cross-dataset generalization capabilities
of the DINO Channel-VIT, DINO HA and DINO BoC models.

We train the models either on HPA-FOV or JUMP-CP, and evaluate them on HPA-FOV, JUMP-CP
and WTC, the results are shown in Table 3. DINO BoC outperforms DINO Channel-ViT on all
cross-dataset tasks. A further point of analysis is the DINO HA model, which balances joint and
independent-channel-encoding characteristics. DINO HA yields systematically better performances
than Channel-ViT, while falling behind DINO BoC, corroborating the conclusion that independent-
channel-encoding is the winning strategy for channel-invariant models.

Table 3: Cross-dataset generalization of channel-invariant models. DINO BoC shows superior
performance on unseen channel combinations. In-dataset results are shown in gray for reference.

Model Channel Training set HPA-FOV F1 HPA-FOV F1 JUMP-CP WTC F1
invariant Protein loc. Cell type Accuracy Cell cycle st.

DINO Channel-ViT ✓ HPA-FOV 65.5 90.9 35.3 80.0
DINO HA (Ours) ✓ HPA-FOV 66.7 91.3 37.3 88.9

DINO BoC (Ours) ✓ HPA-FOV 65.2 91.5 40.2 89.8

DINO Channel-ViT ✓ JUMP-CP 29.5 82.0 53.4 81.8
DINO HA (Ours) ✓ JUMP-CP 30.3 85.2 52.0 84.2

DINO BoC (Ours) ✓ JUMP-CP 31.6 85.0 41.3 90.5

4.5 OUT-OF-DISTRIBUTION GENERALIZATION ON CHAMMI

Table 4 reports results on the CHAMMI benchmark using the 1-NN classifier protocol as defined
in (Chen et al., 2024). The table provides a comparison to the results of Chen et al. (2024) for
supervised models trained from scratch, where the best performance is obtained by the HyperNet
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model. The approach, inspired by Hypernetworks (Ha et al., 2017), uses a CNN backbone and a
MLP that generates kernel weights for the initial convolutional layer of each input channel. Note
that while the model is channel-invariant, it is supervised and requires labels during training, as
is the case for all other channel-invariant models in CHAMMI (Chen et al., 2024). Despite the
small size of the CHAMMI training set of about 100k images, not ideal for pre-training, Table 4
demonstrates improved F1 scores of our DINO BoC approach on OOD tasks on two datasets out of
three, outperforming the best supervised baseline by 5.3% on WTC and 3, 8% on CP on average.

4.5.1 SCALING SELF-SUPERVISED CHANNEL-INVARIANT APPROACHES

SSL methods tend to benefit from pre-training on a larger corpus of data. To explore the scaling
properties for channel-invariant models, we hence leverage the ExtendedCHAMMI dataset, which
has almost 8M images and preserves the OOD characteristics of the CHAMMI tasks.

The flexibility to extend the training set with new images with no labels is an advantage of SSL
pre-training. In contrast, supervised methods are constrained by the need for more annotated data.
Table 5 presents results for the SSL models pre-trained on the ExtendedCHAMMI dataset.

Table 4: F1 scores for 1-NN search on the CHAMMI test set. The models were pre-trained on the
CHAMMI train split. Lines 1-6 report the results of Chen et al. (2024) for CNN-based models trained
from scratch in a supervised fashion. Line 1 reports the performance of FixedChannels, that consists
on a separate model trained for each fixed channel combination. Lines 2-6 are channel-invariant
models. Lines 7-9 are self-supervised channel-invariant ViTs. Best results between channel-invariant
self-supervised approaches are in bold.

Model Average OOD WTC HPA CP
Mean WTC HPA CP Task1 Task2 Task1 Task2 Task3 Task1 Task2 Task3 Task4

FixedChannels 50.0 64.8 59.2 25.9 64.9 64.8 80.7 76.3 42.1 66.0 48.1 23.0 6.6
Depthwise 51.7 65.2 64.4 25.6 68.9 65.2 84.9 81.3 47.5 67.3 47.8 22.4 6.5

TargetParam 49.6 59.0 62.3 27.3 69.5 59.0 83.7 79.4 45.2 71.7 50.8 23.4 7.7
SliceParam 45.7 56.8 54.6 25.6 61.6 56.8 77.0 69.0 40.3 64.6 47.5 22.2 7.1

HyperNet 53.7 66.1 67.1 27.8 72.6 66.1 88.7 85.8 48.3 72.0 51.7 24.7 6.9su
pe

rv
is

ed

Template mixing 46.6 56.5 57.7 25.7 63.1 56.5 80.8 74.1 41.3 67.1 46.8 22.7 7.5

DINO Channel-ViT 42.6 45.3 53.6 29.0 68.7 45.3 92.2 65.2 42.0 95.2 51.5 25.2 10.3
DINO BoC (Ours) 48.8 71.4 43.3 31.6 79.4 71.4 87.0 56.4 30.2 93.5 58.5 20.1 16.3

Table 5: F1 scores for 1-NN search on the CHAMMI test set. The self-supervised models were
pre-trained on the ExtendedCHAMMI dataset. Line 1 presents the best performing supervised
baseline (HyperNet), which can only be trained on the annotated subset of CHAMMI.

Model Average OOD WTC HPA CP
Mean WTC HPA CP Task 1 Task 2 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 4

HyperNet 53.7 66.1 67.1 27.8 72.6 66.1 88.7 85.8 48.3 72.0 51.7 24.7 6.9

DINO Channel-ViT 43.6 46.2 55.6 28.9 64.5 46.2 92.1 65.3 45.9 89.0 53.5 21.8 11.3
DINO BoC (Ours) 51.6 79.0 43.0 32.7 79.4 79.0 86.6 59.3 29.6 92.6 57.6 22.1 18.5

Comparing Tables 4 and 5, it is evident that the models benefit from scaling the dataset size, even
though part of the additional data comes from datasets unrelated to those on which the models are
evaluated on. DINO BoC show the greatest improvements, gaining 2.8 points in the average OOD
score, while Channel-ViT gains only 1.0 point. This is a promising result for channel-invariant
models, especially for DINO BoC, demonstrating that by leveraging diverse data sources, more robust
biological feature extractors can be learned, bringing advantages over study-specific models.

4.5.2 LINEAR PROBE FOR CHAMMI

Analyzing Table 5, among the self-supervised models, DINO BoC has the best performance. Further-
more, the OOD results of DINO BoC strongly outperform all previous attempts on the WTC and CP
datasets, including the supervised HyperNet strategy. This result suggests that self-supervision can
help overcome the limitations of supervised learning for OOD generalization. Supervised learning
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may capture spurious correlations in the training set, leading to poor performance on OOD tasks. In
contrast, SSL leverages only image-based information, resulting in an unbiased representation that
can be more robust to domain shifts.

We note that the Channel-ViT and DINO BoC models were pre-trained in a self-supervised fashion,
while the results reported in the CHAMMI paper (Chen et al., 2024) reflect models pre-trained with a
supervised ProxyNCA++ loss (Teh et al., 2020), which represents each training class with a proxy
in the embedding space, and draws the samples towards their corresponding proxies. It therefore
naturally encourages the clustering of the data in the embedding space according to their labels,
facilitating the one nearest neighbor search. Without the benefit of label information to organize the
embedding space according to a given downstream task, SSL approaches yield nested embedding
spaces (Doron et al., 2023). For example, for the HPA task, the features first cluster by cell type,
while the protein localization are retained as a nested factor of variation (see Appendix F). This
organization is ill-suited to nearest-neighbor protein localization classification on a novel cell type
(HPA Task 2), or on a known cell type but for which there are no examples of the targeted protein
localization (HPA Task 3). We hence further evaluated model performance using a linear probe.

Table 6: F1 scores for a linear probe on CHAMMI test set. Self-supervised models were pre-trained
on the ExtendedCHAMMI dataset, while the supervised HyperNet was pre-trained on CHAMMI.

Average OOD WTC HPA CP
Model Mean WTC HPA CP Task1 Task2 Task1 Task2 Task 3 Task1 Task2 Task3 Task4

HyperNet 65.4 85.3 82.9 27.9 87.9 85.3 94.4 92.5 73.2 93.5 51.5 17.3 15.0

DINO Channel-ViT 59.8 66.9 76.7 35.9 83.1 66.9 88.2 84.9 68.4 80.5 54.5 23.3 30.0
DINO HA (Ours) 62.7 76.2 72.4 39.5 88.0 76.2 88.5 82.4 62.4 91.7 61.6 27.5 29.3

DINO BoC (Ours) 67.9 89.2 74.9 39.7 90.5 89.2 88.3 84.7 65.0 90.5 60.5 25.8 32.7

Moreover, the use of a linear probe is of particular interest for DINO BoC: while no explicit cross-
channel features can be learned by models that encode channels independently, relevant information
may nevertheless be preserved. Thus, even a minimal opportunity to relate information across
channels may lead to further performance gains. Indeed, comparing Tables 5 and 6, the use of a linear
probe significantly improves the scores on HPA Task 2 and 3, corroborating the hypothesis that the
poor performance of nearest neighbor search on these tasks is due to the nesting of the factors of
variation. Moreover, employing a linear classifier, DINO BoC surpasses the HyperNet supervised
baseline on the mean OOD score, as well as Channel-ViT on HPA, suggesting that ample information
suitable to cross-channel integration is preserved in its channel-specific embeddings. This highlights
the potential of this simple strategy to yield a powerful biological feature extractor.

5 CONCLUSIONS

We report results on a large-scale study into self-supervised channel-invariant training strategies,
as a step towards general-purpose feature extractors for fluorescent microscopy. Scaling the BoC
approach using Vision Transformers and the state-of-the-art self-supervised DINOv2 method, DINO
BoC outperforms models that rely on inter-channel reasoning, and positions it as the leading channel-
invariant approach. In addition to its strong performances, DINO BoC is notable for its simplicity,
lacking any priors; whereas joint-encoding methods can adapt to variable channel numbers up to
some maximum (see Appendix I), DINO BoC is channel-agnostic, rendering it suitable to arbitrary
channel combinations. We also note that even the theoretical advantage of a uniform embedding
space produced by joint-encoding methods (Bourriez et al., 2024) compared to BoC in practice
remains unclear (see Appendix G). Instead, we show that DINO BoC substantially outperforms
Channel-ViT in generalization to unseen channel combinations, and OOD tasks at test time. More
broadly, our results call the utility of joint-channel-encoding as a prior for non-RGB domains into
question. Indeed, we find that the DINO BoC approach achieves performance on par with SOTA
results out-of-the-box for aerial remote sensing settings (Appendix J).
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A DATASETS

This section provides a detailed description of the datasets, and of the channels they encompass.

Human Protein Atlas dataset. The Human Protein Atlas (HPA) is an initiative that aims to map
all human proteins across cells, tissues and organs. The subset of the data that is considered is the one
of the Kaggle competition Human Protein Atlas (2019), concerned with the subcellular distribution
of the proteins encoded by different genes. It covers 35 cell lines and 28 subcellular structures of
protein localization. It covers thirty five cell lines and more than 13, 000 proteins. The subcellular
localization of each protein was classified into one or more of 28 subcellular structures.

The images were acquired using immunofluorescence and confocal microscopy. Four fluorescence
dyes binding to (0) microtobules, (1) encoded protein, (3) nucleus and (4) endoplasmic reticulum are
imaged in different channels. There are 113, 545 images in total.

There is also a single cell version of the same dataset Le et al. (2022) obtained through segmentation
of the FOV images. The HPA Single Cell dataset contains 839, 612 images.

WTC-11 dataset. The dataset contains 214, 037 3D images of cells, spanning 25 cellular structures.
Other than tagging the structure of interest with a fluorescent protein (FP), fluorescent DNA and
cell-membrane dyes were employed. The images have four-channels: bright-field; nucleus; cell
membrane; structure of interest. Given that the focus of this work is to develop a foundation
channel-invariant model for fluorescent microscopy, the bright-field channel was discarded.

The dataset provides cell-cycle stage annotations. The six possible labels are M0, M1M2, M3, M4M5,
M6M7_single, M6M7_complete; where M0 through M7 denote cell cycle stages.

Cell Painting dataset. The Cell Painting Dataset Doron et al. (2023) used is the combination of
the LINCS (Way et al., 2022), BBBC036 (Bray et al., 2017) and a third curated dataset (Moshkov
et al., 2024), which includes BBBC022. All of those datasets were obtained following the Cell
Painting protocol Bray et al. (2016), a standardized morphological profiling assay that images six
fluorescent dyes in five channels, revealing eight cellular components. The components visualized
in each channel are (0) nucleus; (1) endoplasmic reticulum; (2) nucleoli, cytoplasmic reticulum; (3)
actin, golgi, plasma membrane; and (4) mitochondria. The goal of the studies included in the Cell
Painting Dataset was to quantify the response of the cells to different perturbations: either compound
treatments or gene over-expression experiments. Overall, the dataset includes 400 compounds and 80
gene over-expression experiments, totaling 8, 423, 455 images.

CHAMMI dataset. The CHAMMI dataset was curated from the WTC-11, HPA Single Cell and
Cell Painting datasets. It includes 65, 103 images from the WTC-11 dataset covering six tagged
structures; 66, 936 images from the HPA Single-Cell dataset covering 18 cell lines and 8 protein
localization classes, only images with a single protein localization annotation were selected; and
88, 245 images from the Cell Painting dataset covering seven compound experiments, including the
negative control. In total there are 220, 284 images, of which 100, 145 are used for training.

JUMP-CP dataset. We considered the version of the JUMP-CP dataset used by Bao et al. (2024);
it is a processed version of the data made available by the JUMP-Cell Painting Consortium Broad
Institute (2021). Each image includes the five Cell Painting channels and three brightfield channels
(HighZBF, LowZBF and brightfield).

The datasets generated by the JUMP-Cell Painting Consortium have the goal of enabling image-based
drug mechanisms of action determination. As such, it encompasses multiple chemical and genetic
perturbations. This particular version of the JUMP-CP dataset contains 229, 228 single cell images.

OpenCell dataset. The OpenCell dataset was introduced by Kobayashi et al. (2022), and consists
of confocal images encompassing 1, 311 different tagged proteins. On average, each protein was
imaged in 18.59 field of view images. Crops containing from 1 to 3 complete cells were extracted
from each image, resulting in approximately 800 cropped images per protein. In total, 1, 134, 592
images were made available. In addition to the tagged protein, a nuclear marker was used to visualize
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the nucleus. From the nuclear channel, they constructed a distance map and segmentation masks.
However those two additional channels were not used for the purposes of this work.

B DETAILS ON THE CHAMMI BENCHMARK AND DATASET EXTENSION

B.1 CHAMMI BENCHMARK

The CHAMMI benchmark Chen et al. (2024) is a standardized evaluation framework for channel-
invariant models. It presents a comprehensive set of nine tasks for channel-invariant models of
varying complexity, that evaluates the ability of the models to generalize to new biologically-relevant
experimental regimes. The images from each data source present in the CHAMMI dataset are split
into one training set and several test sets, designed for specific tasks. Tasks with suffix 1 are IID
classification problems, where the test and train data follow the same distribution. Originally, the
CHAMMI benchmark considers a Nearest Neighbor (NN) evaluation.

The WTC-11 data is used for cell-cycle stage classification. The train set contains images with one
of four cellular structures tagged: nuclear speckles, mitochondria, microtubules, or Golgi apparatus.
Images of W_Task2 are tagged with three novel cellular structures, the task evaluates whether the
model is able to classify cell-cycle stages when an unseen cellular structure is tagged.

The HPA data supports protein localization classification. The train split covers 17 cell lines and
four protein localizations: nuclear speckles, mitochondria, microtubules, or Golgi apparatus. The
H_Task2 images come from a novel cell line but covering the same protein localizations as the train
split. The H_Task3 images come from the same cell lines as the train split, but labeled with one of
three novel protein localizations.

Lastly, the Cell Painting data is used for perturbation classification. The train set includes images of
cells coming from 9 plates and perturbed with one of three treatments, as well as negative controls;
The C_Task2 images are perturbed with the same treatments as the train split and coming from the
same data sources, however they belong to a set of 3 novel plates. The C_Task3 includes the same
treatments as the train split, but coming from the BBBC022 dataset and covering 4 novel plates.
Finally, the C_Task4 images are from the same set of plates and data sources as the train split, but the
cells are perturbed with novel treatments.

For tasks that introduce new labels that are not present in the train set (HPA Task 3 and CP Task 4), a
leave-one-out evaluation strategy is employed. Taking the example of HPA Task 3, the test data is
split into sub-groups according to the cell line. Then, for each sub-group, the NN search is computed
on both the training data and the remaining sub-groups. For CP Task 4, the data is split by plate ID.

B.2 EXTENDEDCHAMMI DATASET

The ExtendedCHAMMI dataset extends the CHAMMI train split to a total of 7, 748, 662 images,
using additional data from both the source datasets and new data sources, while preserving the OOD
characteristics of the CHAMMI tasks.

In order to build the ExtendedCHAMMI dataset, the HPA FOV, HPA Single Cell, WTC-11, Cell
Painting and OpenCell datasets were used. The samples belonging to the IID tasks W_Task1,
H_Task1 and C_Task1 were removed from the WTC-11, HPA Single Cell and Cell Painting datasets,
respectively. Furthermore, the images of the HPA FOV dataset containing cells present on H_Task1
were removed as well. With respect to the OOD tasks, the unseen tagged cellular structures for
WTC-11; cell lines and protein localizations for HPA FOV and HPA Single Cell; and plates, data
sources and treatments for Cell Painting were removed. The resulting number of images per dataset
is summarized in Table 7.

C HIERARCHICAL ATTENTION MODEL TRAINING OBJECTIVE

The hierarchical attention model is based on a single-channel patch approach and, in addition to
a global CLS token, it also inserts into the sequence channel CLS tokens. Moreover, it leverages
a hierarchical attention mask (Figure 2), that constrains a channel’s patch and CLS tokens to only
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Table 7: Data included on the ExtendedCHAMMI dataset. The third column lists the amount of
data that was included on ExtendedCHAMMI over the total size of the data source. For each data
source, the number of channels and image type is specified: field-of-view (FOV) images, cropped
FOV images containing a smaller number of cells, or images of a single cell. The last column lists
which biological or experimental factors were discarded from the original datasets to preserve the
OOD characteristic of the CHAMMI tasks.

Dataset Image type Size Channels Discarded factors

HPA Single Cell One cell 296670/839612 4 Cell line (HEK 293); protein localization (cytosol, endo-
plasmic reticulum, nucleoplasm)

WTC One cell 179994/214037 3 Tagged cellular components (centrioles, tight junctions,
actin bundles)

OpenCell Cropped FOV 1134592/1134592 2 None

Cell Painting Cropped FOV 6103565/8423455 5 Plates (SQ00015125, SQ00015168, SQ00015221); data
source (BBBC022); treatments (BRD-K11129031, BRD-
K62310379, BRD-K77947974)

HPA FOV FOV 33841/102190 4 Cell line (HEK 293); protein localization (cytosol, endo-
plasmic reticulum, nucleoplasm)

interact with one another, while the global CLS token attends to the channel CLS tokens. Conse-
quently, the model produces both a global image representation, and channel-level representations. In
view of this, additional loss terms were included in the DINOv2 training objective, to account for the
channel-level representations.

Consider an image x, and let G(x) denote the set of global crops of x, and C(x) the set of all crops of
x, note that G(x) ⊂ C(x). Furthermore, let p[CLS]

s (u) and p
[CLS]
t (u) be the CLS tokens, transformed

into probability vectors, output by the student and teacher networks for a crop u. Then, the DINO
loss for a sample x is: ∑

u∈G(x)

∑
v∈C(x)
v ̸=u

H
(
p
[CLS]
t (u), p[CLS]

s (v)
)
,

where H(·) denotes the cross-entropy. With the additional channel CLS tokens, [CH1], . . . , [CHC],
the DINO loss is extended to:

∑
u∈G(x)

∑
v∈C(x)
v ̸=u

(
λ
[CLS]
dino H

(
p
[CLS]
t (u), p[CLS]

s (v)
)
+ λ

[CH]
dino

C∑
i=1

H
(
p
[CHi]
t (u), p[CHi]

s (v)
))

.

Another component of the DINOv2 loss is the KoLeo regularizer, that encourages the uniform span
of features within a batch. Other than applying the KoLeo loss to the set of global CLS tokens for a
batch, the loss is also separately applied to the set of all channel CLS tokens in the batch, with weights
λ
[CLS]
koleo and λ

[CH]
koleo. The remaining component of the DINOv2 loss, the iBOT masked-image-modeling

loss, is left unchanged. We gave an equal weight to the losses on the global and channel CLS tokens.
For the pre-training on the small scale CHAMMI dataset only, the DINO and KoLeo losses on
channel class tokens were discarded, due to instabilities during training.

D TRAINING AND EVALUATION DETAILS

D.1 PRE-TRAINING DETAILS

Unless specified otherwise, we trained ViT-Large models with default patch size 16, and the default
parameters of DINOv2 except a drop path rate of 0.1, a teacher momentum of 0.996, a learning rate
of 5.0 · 10−4, and 20 warm-up epochs. Transforms used include random contrast and brightness
augmentations, flips and random resize crops of size 224.
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D.2 EVALUATION DETAILS

The feature vector used in the evaluations – with the exception of the evaluations on the CHAMMI
benchmark – are obtained by concatenating the CLS tokens across the last L layers (L = 4), as well
as the channel-wise average pooled patch tokens. If D is the dimension of the tokens (for a ViT-L
D = 1024), and K is the number of channels, then the feature size for Channel-ViT is LD +KD,
for DINO BoC it is LKD +KD and for DINO HA it is L(1 +K)D +KD.

For the evaluations on the CHAMMI benchmark (Tables 4, 5 and 6), only the CLS tokens are used
and L = 1, therefore the feature size for Channel-ViT is D, for DINO BoC it is KD and for DINO
HA it is (1 +K)D. We ablate the impact of feature dimension in Appendix K.

We used the AdamW optimizer and a one cycle Cosine scheduler. We used the same train/val/test
splits as Bao et al. (2024) for the JUMP-CP dataset. For HPA, we used the same train/val splits as
Doron et al. (2023). For WTC, we created 80%− 10%− 10% uniformly distributed train/val/test
splits. For every evaluation, we trained 14 classifiers varying the learning rate between 10−4 and
1, and selected the best classifier on the val set. We trained all classifiers for 4350 iterations on 8
GPUs with a batch size per gpu of 32 for HPA-FOV and WTC, and 128 for JUMP-CP. To train the
linear classifiers on HPA-FOV, the following transforms are used : random crop of size 384, flips
and self normalization. For evaluation, a center crop of size 384 × 384 is taken, followed by self
normalization. For JUMP-CP, we used the same normalization as in Bao et al. (2024) instead of self
normalization, and crops of size 224. For WTC, we used self normalization and crops of size 224.

E INFLUENCE OF HIERARCHICAL CHANNEL SAMPLING

Bao et al. (2024) introduced a channel sampling technique for the training of ChannelViT, denoted
hierarchical channel sampling (HCS). For an image x with K channels, HCS consists in sampling
a number m ∈ {1, . . . ,K} uniformly at random and then randomly selecting m channels from x
without replacement.

Results summarized in Table 8 suggest that Hierarchical Channel Sampling (Bao et al., 2024) hinders
the performance of single-channel patch models. The channel sampling technique was found by Bao
et al. (2024) to boost performance when pre-training and evaluating on the same dataset, mainly in
the supervised scenario of missing channels at evaluation time. However it does not translate into
improvements on the channel heterogeneous setting explored in this work. We postulate that it plays
the role of a regularizer in the supervised context, but that this strategy is not well adapted to SSL.

Table 8: Influence of HSC on DINO Channel-ViT models. The models were pre-trained on the
ExtendedCHAMMI dataset and evaluated on CHAMMI.

Model HCS Average OOD WTC HPA CP
Mean WTC HPA CP Task1 Task2 Task1 Task2 Task3 Task1 Task2 Task3 Task4

DINO Channel-ViT ✗ 43.6 46.2 55.6 28.9 64.5 46.2 92.1 65.3 45.9 89.0 53.5 21.8 11.3
DINO Channel-ViT ✓ 39.9 39.5 51.9 28.4 66.4 39.5 88.5 62.3 41.5 90.2 56.0 22.3 6.9

F HIERARCHY OF FACTORS OF VARIATION IN THE FEATURE SPACE

SSL methods learn image representations using the samples themselves as the supervisory signal,
therefore no label information controls the organization of the features in the embedding space.

In the channel-invariant models pre-trained on HPA FOV, we observe an emerging clustering of the
features according to a hierarchy of semantic concepts, as illustrated in Figure 3. The features first
cluster by cell type, while the protein localization is retained as a nested factor of variation.

G CHANNELS AS CONFOUNDERS IN A UNIFIED FEATURE SPACE

To assess the utility of a unified feature space produced by channel-invariant models such as the
one proposed by Bourriez et al. (2024), we explore the effect of ablating channels in the HPA FOV
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(a) (b)

Figure 3: UMAP of the HPA FOV dataset highlighting different factors of variation. UMAP
space of the HPA FOV features obtained from the DINO BoC model pre-trained on the same dataset,
colored according to (a) cell type and (b) protein localization. In (b) only samples with a single
protein localization are displayed. The features are obtained separately for each channel, and then
concatenated.

dataset. Specifically, we remove nucleus and ER channels from a random half of the dataset and
compare the resulting features against those of images with all channels within a jointly computed
UMAP space (Figure 4).

We observe that the data is clustered into distinct groups depending on the channels, and samples
with different channels can hardly be compared to one another, even if their features have the same
dimension. Therefore a common embedding space does not constitute an advantage of Channel-ViT
over DINO BoC.

(a) (b)

Figure 4: UMAP of the HPA FOV dataset to assess utility of unified feature space. a) UMAP
space of the HPA FOV features obtained from the Channel-ViT model pre-trained on the same dataset,
comparing features computed when the model sees all four channels of the dataset, in blue, and
features computed with only two channels (microtobules and protein), in orange. b) Same UMAP as
in (a) but filtered for images with only one protein localization and colored according to them.
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H IMPACT OF THE REMOVAL OF DIFFERENT PRE-TRAINING DATASETS

Table 9: Ablation removing one dataset from the ExtendedCHAMMI dataset. We report the
linear evaluation results for DINO BoC.

Training HPA-FOV F1 HPA-FOV F1 Accuracy WTC F1
set Protein loc. Cell type on JUMP-CP Cell cycle st.

ExtendedCHAMMI 61.7 91.1 45.2 90.5

minus WTC 60.4 - 1.3 91.1 - 0.0 43.7 - 1.5 90.9 + 0.4

minus Cell painting 60.2 - 1.5 91.1 - 0.0 44.1 - 1.1 89.8 - 0.7

minus HPA (FOV, single cell) 41.7 -20.0 89.9 - 1.2 46.9 + 1.7 92.3 + 1.8

minus OpenCell 60.9 - 0.2 91.0 - 0.1 44.2 - 1.0 90.0 - 0.5

To study the influence of specific pre-training datasets on the performance on others, we remove some
pre-training datasets in Table 9 and evaluate the performance on HPA-FOV, JUMP-CP and WTC.
As expected, when removing both HPA datasets, the protein localization performance is severely
altered, but the cell type classification, a much easier task remains accurate. Not much difference is
observed on the HPA tasks when removing the other datasets. In general, removing any dataset hurts
the overall performance.

I RESULTS ON THE EIGHT CHANNELS OF JUMP-CP

As shown in Table 10, both DINO HA and DINO BoC are flexible, resulting in improved performance
when the downstream tasks involves a larger number of channels than at pre-training time. Here, the
pre-training dataset contains up to 5 channels, while the models are evaluated with up to 8.

Note that the Channel ViT approach cannot be evaluated on images that contain more channels than
the maximum number of channels per image of the pre-training data, since there are no trained
channel embeddings for the extra channels.

Table 10: Mean accuracy on the JUMP-CP dataset with models pre-trained on Extended-
CHAMMI with a maximum of five channels.

JUMP-CP 5 channels JUMP-CP 8 channels

Channel ViT 39.5 ✗
DINO HA 45.2 51.4
DINO BoC 45.2 51.6

J EXPERIMENTS ON AERIAL IMAGERY

To demonstrate the capability of our DINO BoC approach to obtain useful features for imaging
domains other than microcopy, we train and benchmark the performance of DINO BoC on the
Meter-ML dataset introduced by Zhu et al. (2022) in Table 11.

The Meter-ML dataset contains images acquired by multiple sensors: four channels for NAIP images
at resolution 720× 720, four channels from Sentinel-2 at resolution 72× 72, and lower resolution
images from Sentinel-2 (S2) and Sentinel-1 (S1). The task consists in classifying sources of methane
emissions in six categories (CAFOs, Landfills, Mines, ProcessingPlants, RefineriesAndTerminals,
WWTreatment). Zhu et al. (2022) showed that the NAIP images led to better performance, and S2
could improve the result of one class accuracy. We trained one DINO BoC model on NAIP, one on
NAIP and S2 images, with only the highest resolution channels, and one model on all S1, S2 and
NAIP channels.
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Table 11: DINO BoC outperforms the state-of-the-art models when using all channels on the
Meter-ML dataset. Top: AUROC of models trained on NAIP and Sentinel data. Bottom: AUROC
of models using only NAIP channels at inference.

Approach Architecture Test dataset Pre-training dataset mAP

Meter-ML Zhu et al. (2022) DenseNet-121 NAIP, S2, S1 NAIP, S2, S1 (85K) 51.7
LHRS-bot Muhtar et al. (2024) VLM NAIP, S2, S1 LHRS-Align-Recap (1.1M images & text) 71.8

VHM Pang et al. (2024) VLM NAIP, S2, S1 VersaD (14M images & text) 72.7
DINO BoC(ours) ViT-L NAIP, S1, S2 Meter-ML NAIP, S1, S2 train (85K) 76.6

Approach Architecture Test dataset Pre-training dataset mAP

Meter-ML Zhu et al. (2022) DenseNet-121 NAIP NAIP (85K) 54.8
Supervised Cong et al. (2022) ViT-L NAIP fMoW Sentinel (770K) 69.7
SatMAE Cong et al. (2022) ViT-L NAIP fMoW Sentinel (770K) 76.9

ScaleMAE Reed et al. (2023) ViT-L NAIP fMoW RGB (363K) 78.4
USatMAE Irvin et al. (2023) ViT-L NAIP USAtlas NAIP (3.6M) 83.7

DINO BoC(ours) ViT-L NAIP NAIP, S1, S2 (85K) 76.5
DINO BoC(ours) ViT-L NAIP NAIP, S2 (85K) 81.9
DINO BoC(ours) ViT-L NAIP NAIP (85K) 82.2

Using the exact same normalization and evaluation protocol than for the microscopy benchmarks, of
our DINO BoC approach outperforms the state-of-the-art by a large margin when using all channels.
Using only NAIP imagery, it is close to state-of-the-art approaches, even though it is pre-trained with
much smaller datasets (2 orders of magnitude less than the approach of Irvin et al. (2023)), and does
not use remote-sensing specific architectures. This demonstrates the generality of our approach to a
wider range of imaging domains.

K ABLATION ON FEATURE DIMENSION

In Appendix D.2 we describe how the features are obtained for each of the channel-invariant methods.
In particular, joint and independent channel encoding strategies naturally lead to different sized
embeddings, since the former results in an image level representation, while the later results in
channel level representations.

Let D denote the backbone’s token dimension, K the number of channels, and L the number of last
layers the CLS tokens are taken from. Then, when using both CLS and channel-wise average pooled
patch tokens, the feature size for Channel-ViT is LD + KD, for DINO BoC it is LKD + KD
and for DINO HA it is L(1 +K)D +KD. When only CLS tokens are used, the feature size for
Channel-ViT is LD, for DINO BoC it is LKD and for DINO HA it is L(1 +K)D.

In order to demonstrate that DINO BoC outperforms DINO Channel-ViT due to the quality of the
features and not due to its dimension, we consider two setups where both models have the same
feature size. Those setups are:

1. For Channel-ViT we use only the CLS token from the last layer; while for DINO BoC we
average pool the CLS tokens for each channel. Thus for both models the features are
D-dimensional.

2. For Channel-ViT we concatenate the CLS token from the last layer to the channel-wise
average pooled patch tokens, thus the feature is D + KD-dimensional. On the other
hand, for DINO BoC we concatenate only the CLS tokens for each channel, resulting in a
KD-dimensional feature.

The results obtained for those setups on the CHAMMI benchmark are listed in Table 12. In both
cases DINO BoC outperforms DINO Channel-ViT.
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Table 12: F1 scores for a linear probe on CHAMMI test set: Ablation with similar embedding
size.

Feature Average OOD WTC HPA CP
Model dimension Mean WTC HPA CP Task1 Task2 Task1 Task2 Task 3 Task1 Task2 Task3 Task4

DINO Channel-ViT D 59.8 66.9 76.7 35.9 83.1 66.9 88.2 84.9 68.4 80.5 54.5 23.3 30.0
DINO BoC D 65.4 86.7 67.9 41.5 89.4 86.7 82.9 79.1 56.7 83.8 61.2 26.6 36.8

DINO Channel-ViT KD 63.2 74.2 77.9 37.4 86.4 74.2 90.2 86.2 69.7 83.3 56.5 24.4 31.3
DINO BoC KD 67.9 89.2 74.9 39.7 90.5 89.2 88.3 84.7 65.0 90.5 60.5 25.8 32.7
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