
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SARM: STAGE-AWARE REWARD MODELING FOR
LONG HORIZON ROBOT MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale robot learning has made progress on complex manipulation tasks,
yet long-horizon, contact-rich problems—especially those involving deformable
objects—remain challenging due to inconsistent demonstration quality. We pro-
pose a stage-aware, video-based reward modeling framework that jointly predicts
task stage and fine-grained progress, using natural-language subtask annotations
to derive consistent labels across variable-length demonstrations. This avoids the
brittleness of frame-index-based labeling and provides stable supervision even in
tasks like T-shirt folding. Our reward model is robust to demonstration variabil-
ity, generalizes to out-of-distribution scenarios, and improves downstream policy
training. Building on it, we introduce Reward-Aligned Behavior Cloning (RA-
BC), which filters and reweights demonstrations based on reward estimates. Ex-
periments show that our method significantly outperforms baselines in both real-
world rollouts and human validation. On T-shirt folding, we achieve 83% success
from the flattened state and 67% from the crumpled state, compared to 8% and 0%
with vanilla BC. Overall, our results highlight reward modeling as a scalable and
annotation-efficient solution for long-horizon robotic manipulation. Project web-
site: https://qianzhong-chen.github.io/sarm.github.io/.
Keywords: Imitation Learning, Reward Modeling, Robotics Manipulation

1 INTRODUCTION

The long-standing vision of enabling robots to seamlessly assist humans in household chores has
inspired decades of research in robotics. From tidying living spaces to preparing meals, such capa-
bilities hold the promise of freeing up human time, and improving quality of life. Recent progress
in foundation models for robotics, or more generally robot behavior models (RBMs), has sparked
renewed optimism toward this goal. By combining visual perception, motor control, and option-
ally language processing in a single framework, RBMs (Chi et al., 2023; Zhao et al., 2023; Chen
et al., 2025; Sun et al., 2024; Huang et al., 2024; Yu et al., 2024; Wang et al., 2023a; Black et al.;
Team et al., 2024; Zitkovich et al., 2023; Shentu et al., 2024; Huang et al., 2025a;b) enable robots
to perform complex tasks, making it possible to execute these tasks in unstructured household envi-
ronments.

Despite their promise, RBMs still struggle with long-horizon, contact-rich manipulation, particularly
with deformable objects like T-shirts. Such tasks demand handling changing geometries, occlusions,
fabric variations, and error-free multi-step planning—challenges where current models, often tuned
for short-horizon rigid-object tasks, fall short. They fail to generalize beyond curated data, lose
consistency over time, and misinterpret intermediate states. While many prior works in RBMs
have focused on scaling up data (Barreiros et al., 2025; Lin et al., 2024), far less attention has
been given to data quality. However, high-quality data is difficult to obtain: expert demonstrations
are costly and time-intensive, while larger datasets often include noisy or suboptimal trajectories
from less experienced operators. Even more challenging, demonstration quality itself is a difficult
metric to quantify, since it depends on hidden factors such as action consistency and contact stability
that cannot be directly measured, aside from simple proxy heuristics like task duration. Although
there exist more sophisticated data-modeling approaches for assessing data quality and filtering
trajectories after policy training (Belkhale et al., 2023; Dass et al., 2025; Agia et al., 2025), practical
evaluation of demonstration quality remains challenging.

1

https://qianzhong-chen.github.io/sarm.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Stage #1: grab …

Stage #2: flattern …

Stage #3: fold …

…

(a) Label progress with annotated data (b) Train stage-aware reward model

Reward Model

Reward-Aligned Weights

(c) Train robot policy with RA-BC

Stage
Model

Subtask
Model

Image Frames Joint State

Reward
Model

Figure 1: Overview of our method’s framework for (a) data processing, (b) reward model training,
and (c) policy training with reward signals. Danno denotes the annotated dataset used for training the
reward model, with examples shown in Fig. 5 and Fig. 6. Ddiverse refers to a diverse expert dataset
without annotations, which contains many suboptimal trajectories.

In light of these challenges, we propose a video-based reward modeling framework that leverages
natural language annotations to assign progress labels and enable stable reward estimation for multi-
step tasks. The learned reward model drives a Reward-Aligned Behavior Cloning (RA-BC) frame-
work, filtering higher-quality data and improving policy performance in both simulation and the
real world. Focusing on the T-shirt folding task, our experiments show that coupling the reward
model with RA-BC significantly boosts performance, underscoring the importance of data quality in
long-horizon manipulation. Together, these contributions advance scalable and annotation-efficient
imitation learning. An overview is shown in Figure 1.

Our contributions can be summarized as follows:

• We present SARM: a stage-aware reward modeling framework that automatically derives task
progress labels from natural language annotations. Given any subsequence of RGB frames,
the model jointly predicts the current task stage and fine-grained progress within that subtask,
achieving robustness, generalization to out-of-distribution scenarios, and strong utility for down-
stream policy learning.

• We propose the RA-BC framework, which leverages the learned reward model to identify high-
quality demonstrations and reweight training data accordingly.

• We validate our approach on the real-world task of T-shirt folding, a challenging long-horizon
task that requires manipulating deformable objects, where it consistently outperforms strong
behavior cloning baselines.

2 RELATED WORKS

2.1 LEARNED REWARD MODELS FOR ROBOTICS

Prior work on learning reward functions includes inverse reinforcement learning (Ng et al., 2000;
Abbeel & Ng, 2004; Ramachandran & Amir, 2007; Ziebart et al., 2008; Finn et al., 2016), which
infers rewards from demonstrations but suffers from reward identifiability and sensitivity to partial
observability that hinder scalability to high-dimensional, long-horizon problems.

Learning from human feedback (e.g., preference rankings, scaled preferences, interventions) has
proven effective in training large language models (LLM) (Christiano et al., 2017; Ziegler et al.,
2019). Recently, RLHF has also gained increasing interest in robotics but still requires substantial
task-specific input and suffers from annotator inconsistency (Sadigh et al., 2017; Liu et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A complementary direction uses LLM to synthesize reward functions or shaping code (Ma et al.,
2024a; Shentu et al., 2024), which can accelerate bootstrapping but often assumes privileged or
structured state information that is rarely available outside simulation and can degrade under sensor
noise and domain shift.

Several prior works (Lee et al., 2021; Ma et al., 2022; Escontrela et al., 2023) estimate rewards
by computing the feature distance to a goal state, enabling self-supervised reward model training
without manual annotation. While effective for simple tasks with a single objective, such approaches
struggle in long-horizon settings where the task naturally decomposes into multiple subtasks or
stages. In these cases, a single goal distance fails to capture intermediate progress, often causing the
reward signal to become uninformative or misleading.

Another line computes rewards directly from visual observations combined with task text using
vision-language models (VLM). Among these, LIV (Ma et al., 2023), VLC (Alakuijala et al., 2024),
GVL (Ma et al., 2024b), VICtoR (Hung et al., 2024), REDS (Kim et al., 2025), ReWiND (Zhang
et al., 2025) and SARM—reward robot manipulation tasks directly from visual perceptions. In
practice, many VLM based reward models struggle on long-horizon, highly dynamic, and contact-
rich manipulation tasks because they process entire trajectories from the initial frame to resolve
temporal dependencies, which increases data and computation demands and impedes scaling.

There are prior works such as DrS (Mu et al., 2024) and REDS (Kim et al., 2025) that use stage-
aware reward models for long-horizon tasks. However, DrS is fundamentally different from visual-
based SARM: it is purely state-based, depends on full simulator states as stage indicators, and re-
quires training a separate discriminator for each stage, making it difficult to scale. REDS also differs
from SARM: instead of modeling a continuous frame-wise progress curve, it learns a semi-sparse
step-shaped reward with monotonicity regularization, which struggles to generalize when trajec-
tories progress at different speeds. In addition, REDS infers stage via image–subtask embedding
similarity rather than a dedicated stage-estimation network, which becomes unreliable when sub-
task descriptions are semantically similar.

2.2 IMITATION LEARNING WITH SUBOPTIMAL DEMONSTRATIONS

Prior works have explored imitation learning under suboptimal datasets. One direction adopts boot-
strapped frameworks (Sasaki & Yamashina, 2020; Belkhale et al., 2023; Dass et al., 2025; Agia et al.,
2025), which actively change the dataset distribution based on analyzing current policy’s gradient,
rollout, or learning objective during training. While effective, such methods are computationally
expensive and require extensive hyperparameter tuning. Another line of research focuses on explic-
itly labeling and classifying demonstrations (Wu et al., 2019; Wang et al., 2023b), but this approach
depends on a small, high-quality dataset as prior knowledge.

An alternative direction investigates weighted BC through offline reinforcement learning (RL) tech-
niques (Wang et al., 2018; Chen et al., 2020; Siegel et al., 2020; Xu et al., 2022), where estimates of
the advantage function are used to prioritize actions in the dataset. These methods, however, often
assume access to full-state feedback and a well-trained critic, and have not been validated on real-
world, vision-based, long-horizon manipulation tasks. In contrast, our RA-BC framework leverages
a pre-trained, vision-based reward model to generate robust and accurate K-step advantage esti-
mates, which then guide weighted BC training.

3 METHOD

3.1 REWARD MODEL TRAINING

Data Processing. Extracting dense reward labels remains a challenge, especially in long-horizon,
complex tasks. Prior work often relies on frame indices as labels (Zhang et al., 2025). While this
may suffice for short tasks with fixed duration, such as “pick up the cup,” it fails for tasks like
“fold the T-shirt,” where trajectories vary greatly, task duration is not fixed, and motion sequences
differ across demonstrations. For example, in T-shirt folding, the flattening phase may require more
or fewer motions depending on shirt placement or fabric configuration, yet frame-based labeling
only reflects elapsed time. As a result, identical task states (e.g., a fully flattened shirt) can receive

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Stage
Estimator

Subtask
Estimator

Classification
Head

Regression
Head

Transformer Sequential Aggregator

State Normalizer

Linear Projector

CLIP

Linear Projector
Pos. Embedding

MLP Fusion Net

Image Frames Joint State

Figure 2: Overview of SARM, stage-aware reward modeling. Left: SARM overview, which in-
cludes both a stage estimator and subtask estimator. First the task stage is predicted from the ob-
servations. This prediction is additionally passed into the subtask estimator which predicts a scale
value of the progress within the stage. Right: An overview of the estimator architecture which is
replicated for both the stage estimator and the subtask estimator.

progress values ranging from 0.2 to 0.8, introducing severe label noise that harms reward model
learning and downstream policy training.

To resolve this, we leverage subtask annotations on the robot trajectory data. The collected trajec-
tories consist of three video streams (top, left wrist, and right wrist), joint states, and joint actions.
Before annotation, we designed annotation protocols by decomposing each task into semantically
meaningful subtasks. For T-shirt folding, we developed two distinct protocols: one for sparse an-
notation and another for dense annotation, as illustrated in Table A.3 and Fig. 5 and 6. During
annotation, only the subtasks defined by the protocol were labeled, and any trajectory that did not
contain the complete sequence of subtasks specified by the protocol was discarded. Annotators
watched the top-view video and segmented each trajectory into subtasks by recording the start and
end frame indices. If a serious mistake (e.g. the manipulator hitting the table heavily or executing a
completely reversed motion sequence) occurred during execution, its start and end frames were also
labeled; trajectories containing mistakes were excluded from subsequent model training.

Using the annotated data, we computed the average temporal proportion of each subtask across
the dataset to automatically assign progress values to the start and end frames of each subtask.
Within each subtask, finer-grained progress labels were generated by linearly interpolating over
frame indices. This procedure ensures that progress labels remain closely aligned with the semantic
meaning of the motions while maintaining consistency across the entire dataset.

Labeling by subtask priors: Let a trajectory i have total length Ti and be segmented into K subtasks
with lengths {Li,k}Kk=1. We estimate a dataset-level prior proportion for each subtask

ᾱk =
1

M

M∑
i=1

Li,k

Ti
, ᾱk ≥ 0,

K∑
k=1

ᾱk = 1, (1)

where M is the number of trajectories.

Frame-wise progress targets: For a frame t that lies inside subtask k with local bounds [sk, ek],
define the within-subtask normalized time τt = t−sk

ek−sk
∈ [0, 1] and the cumulative prior Pk =∑k

j=1 ᾱj (with P0 = 0). We assign the normalized progress target

yt = Pk−1 + ᾱk τt ∈ [0, 1], (2)

so that ysk = Pk−1 and yek = Pk.

Model Architecture. We adopt a dual reward-model architecture with a shared backbone archi-
tecture and two task-specific heads. The stage model predicts the current high-level stage, while the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

subtask model estimates fine-grained progress conditioned on the stage prediction. An overview of
SARM architecture is demonstrated in Fig. 4. These models operate sequentially: the subtask model
uses the predicted stage as prior context to refine the final progress estimate. The stage model out-
puts a probability distribution over discrete task stages, providing a coarse localization of the robot’s
progress, while the subtask model leverages the stage embedding to produce a continuous progress
value in [0, 1]. Together, they provide both high-level stage classification and fine-grained progress
estimation, enabling stable reward modeling in long-horizon manipulation tasks. An overview of
the reward-model architecture is shown in Figure 4.

The input pipeline proceeds as follows: (1) a sequence of N images is encoded by a frozen CLIP
encoder, producing visual embeddings shared across both models; (2) visual embeddings and joint
states are projected into a common dmodel-dimensional space, where only the first frame receives
an explicit positional bias to prevent absolute temporal leakage, following ReWiND (Zhang et al.,
2025); (3) the multimodal sequence is then processed by a transformer encoder to capture tem-
poral dependencies and cross-modal interactions; (4) a lightweight MLP head fuses the aggre-
gated features and outputs either stage logits Ψ̂1:N ∈ RN×k (stage model) or scalar progress
predictions τ̂1:N ∈ [0, 1]N (subtask model), where the latter is explicitly conditioned on the
predicted stage to refine the progress estimate. Stage probabilities are obtained via a softmax
Π1:N = softmax(Ψ̂1:N) ∈ [0, 1]N×k, from which the discrete stage prediction and normalized
progress are calculated as

Ŝ1:N = arg max
i∈{1,...,k}

Π1:N,i, Ŝt ∈ {1, . . . , k}, (3)

ŷ1:N = P̂k−1, 1:N + ᾱk, 1:N τ̂1:N , ŷ1:N ∈ [0, 1]. (4)

3.2 REWARD-ALIGNED BEHAVIOR CLONING (RA-BC)

Behavior Cloning (BC) trains a policy πθ to imitate actions from demonstrations by minimizing a
supervised loss on state–action pairs (oi, ai). The standard BC objective averages per-sample losses,

LBC(θ) =
1

N

N∑
i=1

ℓ(πθ(oi), ai) , (5)

where ℓ is mean squared error for continuous actions or cross-entropy for discrete actions.

RA-BC objective. RA-BC replaces the uniform prior in equation 5 with a reward-aligned weight-
ing that emphasizes demonstrations predicted to make progress. For each training item i, we sam-
ple a current window (anchor) and its next window obtained by advancing one action chunk. Let
ϕ(·) ∈ [0, 1] denote the normalized progress score produced by the reward model (Sec. 3.1). If the
anchor window ends at time t and the chunk length (stride) is ∆, we form a per-item progress delta

r̂i = ϕ
(
o t+∆
i

)
− ϕ

(
o t
i

)
, (6)

which serves as a scalar signal of expected improvement. This r̂i is then mapped to a weight wi ∈
[0, 1] (see weighting rules below), and RA-BC minimizes the normalized weighted objective

LRA-BC(θ) =

∑N
i=1 wi ℓ(πθ(oi), ai)∑N

i=1 wi + ε
, (7)

with a small ε > 0 to avoid division by zero.

Weighting from running statistics. To calibrate wi without fixed heuristics, RA-BC maintains
online running statistics (mean µ and standard deviation σ) of the raw progress deltas {r̂j} via
a numerically stable estimator (Welford). We clamp the running mean to be nonnegative, µ ←
max(µ, 0), to avoid centering weights around negative progress in early training. Each r̂i is mapped
to a soft weight by a linear ramp between (µ− 2σ) and (µ+ 2σ):

w̃i = clip

(
r̂i − (µ− 2σ)

4σ + ϵ
, 0, 1

)
, (8)

where clip(x, 0, 1) = min(max(x, 0), 1) and ϵ > 0 guards small variances.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

Ground Truth
Proposed Model
ReWiND Model

Figure 3: A visualization of the predicted task progress for T-shirt folding demonstrations. Com-
pared with ReWiND, SARM provides more accurate and calibrated estimates.

Prior overrides and validity mask. We incorporate lightweight prior knowledge via a threshold
κ > 0 to make weights decisive for clearly good/bad items:

wi = 1{r̂i>κ} + 1{0≤r̂i≤κ} w̃i. (9)

Granularity and implementation. RA-BC is architecture-agnostic and can be applied at the sam-
ple or sequence level. In our implementation, losses are first averaged over a temporal chunk to ob-
tain a per-item loss, after which Eqs. equation 8–equation 9 produce wi used in Eq. equation 7. This
makes RA-BC a drop-in replacement for Eq. equation 5 that softly filters noisy or non-progressing
data while preserving training stability via normalization. In practice, RA-BC selectively empha-
sizes high-quality segments and down-weights suboptimal ones, enhancing policy learning espe-
cially when the dataset is diverse and contains imperfect demonstrations.

4 RESULTS

In this section, we answer three questions:

• Q1. How does SARM lead to more robust reward model when faced with long horizon,
complex manipulation tasks?

• Q2. How can RA-BC enhance policy training when faced with diverse datasets?
• Q3. How does the quality of the reward model affect RA-BC performance?

4.1 Q1: REWARD MODEL EVALUATION

We evaluate SARM on two tasks, (1) T-shirt folding: a long-horizon, multi-stage, contact-rich ma-
nipulation problem, (2) unload dishes from a rack: a shorter-horizon multi-stage task with high vari-
ation due to varying dish counts, orientations, rack positions, and optional handovers. We utilized
these two tasks to demonstrate the effectiveness of the proposed reward model training framework.

Baselines. We compare SARM against LIV (Ma et al., 2023), a reward model pre-trained on
EpicKitchens (Damen et al., 2022); VLC (Alakuijala et al., 2024), which fine-tunes a VLM via
sequential ranking to encourage monotonically increasing rewards; GVL (Ma et al., 2024b), which
prompts a pre-trained VLM with shuffled frames to predict per-frame progress; VICtoR (Hung et al.,
2024), which determines the motion class and motion progress by evaluating the similarity between
the vision and text embeddings encoded from current frame and language instruction, respectively;
REDS (Kim et al., 2025), which is a stage-aware reward model learning from the stage segmenta-
tion; and ReWiND (Zhang et al., 2025), which augments input sequences with rewound frames to
improve robustness against failure cases. All applicable baselines use transformer encoders matched
in model size to SARM; implementation details are provided in A.4. All baselines are trained on the
union of the dense and sparse datasets. Ground-truth rewards are normalized to the range [0, 1] for
both annotation types.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of reward models. “Demo L” denotes the single-step MSE of reward models on
the validation set. All models are evaluated on 70 trajectories (50 from Dsparse and 20 from Ddense),
where both ground-truth progress and model predictions are normalized to the [0, 1] range. The two-
scheme models (last two columns) are evaluated in “sparse mode.” “Rollout ρ” reports performance
on real policy rollouts. Visualization examples of reward model predictions on both demonstration
data and policy rollouts are provided in Appendix A.5.

Metrics Baseline Methods Ablation Studies SARMGVL VLC LIV REDS VICtoR ReWiND Dense Sparse w/o R SARM (VB)
Demo L ↓ 0.064 0.083 0.021 0.036 0.079 0.019 0.027 0.013 0.008 0.015 0.009
Rollout ρ ↑ -0.39 -0.33 0.33 0.16 0.00 0.50 0.11 0.78 0.67 0.78 0.94

Classification SR Breakdown
SE 0/12 12/12 6/12 12/12 0/12 12/12 12/12 10/12 12/12 12/12 12/12
PSE 6/12 0/12 12/12 8/12 3/12 8/12 3/12 11/12 9/12 10/12 11/12
FE 5/12 0/12 6/12 7/12 12/12 7/12 5/12 11/12 9/12 10/12 12/12

Ablation Studies. We additionally perform ablations by (1) Dense: training a single-scheme
model only on the dense annotation dataset, (2) Sparse: training a single-scheme model only on
the sparse annotation dataset, (3) w/o R: removing rewinding frames augmentation, and (4) SARM
(VB): evaluating SARM under varied brightness, where each frame’s brightness is perturbed by up
to ±0.3 from its original value.

Evaluation Protocol. Evaluation consists of two parts. First, for human demonstration progress
estimation, models are evaluated on unseen testing data. For all baselines and two-scheme models,
the validation set is the union of the 10% hold-out data from both datasets. For the single-scheme
ablations, we apply cross-dataset validation: models trained on dense annotations are evaluated on
the sparse hold-out set, and vice versa. We report single-step mean squared error (MSE) loss L on
the validation set. Second, for robot rollout progress estimation, we fine-tune a Pi0 policy (Black
et al.) on the datasets we mentioned above using RA-BC, and then deploy the policy at different
training stages on a real robot to collect 36 trajectories. These trajectories include 12 successful
episodes (SE), 12 partially successful episodes (PSE), and 12 failed episodes (FE) rollouts. Reward
models are evaluated on these rollout trajectories according to the following classification protocol:

Label =


SE, if Pfinal > 0.8 ∧ 1

T/3

∑T
t=2T/3 Pt > 0.6,

PSE, if 1
T

∑T
t=1 Pt ≥ ξ,

FE, otherwise.

(10)

where Pt is the predicted progress at frame t, T is the trajectory length, and ξ is the median of
the average progress over the non-successful rollouts, ensuring an equal split between PSE and
FE. By doing so, we avoid the bias introduced by manually setting thresholds for distinguishing
between PSE and FE. We further compute a classification score ρ by assigning +1 for each correct
prediction and −1 for each incorrect one, normalized by the total number of rollouts (36), i.e.,
ρ = #correct−#wrong

36 . We additionally report a breakdown of the estimation success rate (SR) for
each category (SE, PSE, FE) across models, in order to highlight their distinct behaviors, such as
being overly optimistic or assigning zero progress universally.

Analysis on T-shirt folding task. We prepare two datasets: Ddense with dense annotations con-
taining 200 trajectories, and Dsparse with sparse annotations containing 500 trajectories, examples
of dense and sparse annotated demonstration data can be found at Fig. 5 and 6. Importantly, these
are distinct demonstrations rather than the same trajectories annotated differently. We reserve 10%
of each dataset for testing and use the remainder for training. Dsparse, due to its larger size, cov-
ers a wider range of scenarios, whereas Ddense provides more detailed per-trajectory labeling. We
trained SARM reward model on both Ddense and Dsparse, the details on model training are provided
in Appendix A.4.

The detailed comparison results of the reward models are presented in Table 2. Among the baselines,
GVL, VLC , and VICtoR failed to provide reliable reward signals: classification breakdowns reveal
that GVL and VICtoR tend to be overly pessimistic, while VLC is excessively optimistic. LIV,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ReWiND , and REDS achieve stronger performance, delivering more accurate classifications of
policy rollouts. However, due to the unstable reward labeling issues discussed in Section 3.1, their
effectiveness remains limited on both human demonstrations and robot rollouts when compared
with SARM. Although its regularization loss introduces a mild progressive trend, the estimation
backbone of REDS remains step-shaped and semi-sparse, making it difficult to produce dense and
accurate reward estimates.

For the ablation studies, both single-scheme variants underperform relative to our two-scheme
model, highlighting the advantage of leveraging larger datasets with heterogeneous annotation pro-
tocols. Notably, the model trained solely on the dense annotation dataset performs poorly on unseen
scenarios. Since this dataset is smaller and less diverse, it fails to capture the wide range of situations
present in real-world rollouts, which often involve complex patterns such as back-and-forth motions,
misgrasps, and recovery struggles. Training without rewind augmentation also results in degraded
performance. While human demonstration evaluation remains largely unaffected—since the dataset
does not contain deliberate failure cases and progress is generally monotonic—the performance on
real robot rollouts drops substantially. In this case, the model becomes overly optimistic, failing to
recognize regressions or failures. These findings demonstrate that rewind augmentation is essential
for building reward models that generalize to real-world policies. SARM (VB) showcased SARM’s
robustness under varied lighting conditions, which is important when faced with diverse dataset.

In summary, our method consistently outperforms all baselines, achieving more than 50% relative
improvement on human demonstration benchmarks and over 80% improvement on real robot roll-
outs compared to the strongest baseline, ReWiND.

Analysis on dish unloading task. Dish unloading is a multi-stage task where the robot removes
dishes from a rack and places them flat on a table. The process has three stages: (1) grasp and lift, (2)
optionally hand over to the other arm, and (3) place on the table. Unlike T-shirt folding, it is shorter-
horizon and does not involve deformable objects, but introduces greater execution diversity: varying
dish counts, orientations, rack positions (left vs. right arm use), and whether handovers are needed.
This variability makes reward modeling challenging, especially for visual understanding. We use
a single dataset, Ddish, with the same annotation protocol and training setup as T-shirt folding. As
shown in Table 2, SARM consistently outperforms all baselines. The visualization results can be
found at Fig. 13 and 14.

Table 2: Evaluation of reward models for “unloading dishes” task. “Demo L” denotes the single-
step MSE of reward models on the validation set. All models are evaluated on 30 trajectories which
are not included in training set. Both ground-truth progress and model predictions are normalized to
the [0, 1] range. “Rollout ρ” reports performance on real policy rollouts.

Metrics GVL VLC LIV ReWiND w/o R SARM
Demo L ↓ 0.089 0.045 0.042 0.018 0.013 0.013
Rollout ρ ↑ 0 -0.33 0.39 0.55 0.50 0.67

Classification SR Breakdown
SE 0/12 12/12 7/12 12/12 12/12 10/12
PSE 6/12 0/12 12/12 9/12 7/12 9/12
FE 12/12 0/12 6/12 7/12 8/12 11/12

4.2 Q2: POLICY LEARNING WITH RA-BC

Folding a crumpled T-shirt is among the most challenging robotic manipulation tasks, as it requires
robust visual understanding, long-horizon planning, and the ability to handle deformable objects.
Pi0 (Black et al.) a RBM demonstrated the capabilities of completing this task. Although the
policy weights have been open-sourced, the embodiment gap and the lack of high-quality datasets
still makes it difficult to reproduce or further improve upon their results. For the remainder of this
section, all policies we report are fine-tuned from Pi0.

Dataset. We collect a large dataset Dall comprising 200 hours of T-shirt folding demonstrations
using the GELLO teleoperation system (Wu et al., 2024) with YAM 7-DoF bimanual robotic
arms.From this, we derive a smaller subset D2min by filtering trajectories based on task duration,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Success rates (SR) of T-shirt folding policies at 20K and 40K training steps. Each block
reports the overall SR for each task. Detailed per-color results are provided in Table A.7.

Training Steps Tasks (1) Dall (2) D2min (3) ReWiND (4) SARM

20K
Simple 12/12 12/12 12/12 12/12

Medium 0/12 4/12 1/12 7/12
Hard 0/12 1/12 1/12 6/12

40K
Simple 12/12 12/12 12/12 12/12

Medium 1/12 7/12 6/12 10/12
Hard 0/12 0/12 3/12 8/12

retaining only those completed within 2 minutes, resulting in a 20-hour dataset. Each demonstration
follows a structured procedure: (1) picking a randomly crumpled T-shirt from a box, (2) flattening
the T-shirt, (3) folding the T-shirt, and (4) placing it neatly in the corner. To encourage general-
ization, we randomize T-shirt color and texture as well as the background environment. Aside from
trajectory duration, however, no direct quantitative index is available to measure demonstration qual-
ity. Furthermore, annotations are not explicitly incorporated during policy training.

Tasks and Evaluation Protocol. To conduct a more detailed evaluation of the trained T-shirt fold-
ing policy, we decompose the task into three sub-tasks of increasing difficulty: (1) Easy: picking
the shirt from the box and placing it at the center of the table, (2) Medium: folding the T-shirt start-
ing from a flattened state, and (3) Hard: completing the full pipeline from a crumpled initial state.
Task 1 is relatively simple, requiring only picking and placing skills, with human demonstrations
typically lasting within 5 seconds. Task 2 demands contact-rich manipulation of deformable objects
and long-horizon planning, with human demonstrations lasting 30 seconds to 1 minute. Task 3 is the
most challenging, as it includes the flattening stage. Here, the robot must rely on strong visual un-
derstanding to handle occlusions and uncertainties inherent in deformable object manipulation. The
policy must judge whether the T-shirt is sufficiently flattened, as failure to do so would compromise
the subsequent folding step. Human demonstrations for Task 3 typically range from 1 to 3 minutes.
For evaluation, we test each task using three different colored T-shirts (red, black, and blue). Each
task is rolled out 4 times per color, for a total of 12 trials per task. Success criteria are defined as
follows: for Task 1, the T-shirt must be picked from the box and placed at the table center within 1
minute; for Task 2, the T-shirt must be neatly folded and placed at the corner within 3 minutes; and
for Task 3, the T-shirt must be neatly folded and placed at the corner within 5 minutes.

Training Methods. We fine-tune four policies in total: (1) BC-All, trained on the full dataset
Dall using standard behavior cloning; (2) BC-2min, trained on the filtered high-quality subset D2min
using standard behavior cloning; (3) RA-BC-ReWiND, trained on Dall using RA-BC with a reward
model trained by the ReWiND baseline (Zhang et al., 2025); and (4) RA-BC-SARM, trained on
Dall using RA-BC with our proposed reward model, SARM. It is to be noted that (1) and (2) are
trained without any reweighting. They serve as baselines/ablations to illustrate the performance of
plain behavior cloning on the diverse datasetDall and on the naively filtered subsetD2min. The policy
training details are listed in Appendix A.7. We evaluate policies at both 20k and 40k training steps
and report their success rates for each task. The experiment results can be found at Table 4.2.

All policies achieve high success rates on the easy task (picking and placing the T-shirt), indicating
that both the dataset and training procedure are sufficient for learning basic manipulation skills. On
the medium task (folding from a flattened state), the policy trained on D2min substantially outper-
forms the one trained onDall, with its success rate at 40k steps improving from near 0% to over 50%.
This highlights the importance of carefully filtered, high-quality data for learning more complex ma-
nipulation behaviors. Nevertheless, this policy still fails on the hard task (folding from a crumpled
state), indicating that filtering by duration alone is insufficient. Such a naive strategy cannot empha-
size demonstrations that require advanced perception and decision making, such as judging whether
the T-shirt has been adequately flattened before folding. As a result, it fails to deliver the dynamic
and contact-rich manipulation needed for tasks that demand seamless coordination of both arms.

By leveraging SARM, the RA-BC policy surpasses both BC baselines by a significant margin on
medium and hard tasks at both 20k and 40k steps. In particular, the RA-BC policy at 40k steps

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

achieves an 83% success rate on the medium task and a 67% success rate on the hard task. These
results demonstrate that RA-BC effectively exploits diverse datasets by filtering high-quality data
frames, enabling the policy to learn robust long-horizon manipulation strategies.

4.3 Q3: EFFECT OF REWARD MODEL QUALITY IN RA-BC

To investigate how the quality of the reward model influences RA-BC performance, we conduct an
ablation study by training the T-shirt folding policy using RA-BC with the baseline ReWiND (Zhang
et al., 2025) reward model. The evaluation results of reward models are presented in Table 2, and the
corresponding policy performance is summarized in Table 4.2. Compared to RA-BC with SARM,
RA-BC with the ReWiND reward model achieves substantially lower success rates on both the
medium (83% v.s. 50%) and hard tasks (67% v.s. 25%). In particular, on the medium task, its
performance drops to the level of the vanilla BC baseline trained on the filtered dataset D2min.

These results highlight the central role of reward model quality in RA-BC. A reliable model accu-
rately captures task progress, enabling effective filtering of demonstrations and consistent supervi-
sion for policy learning. In contrast, a poor model misjudges progress, misweights data, and weakens
the benefits of filtering. This reliability is especially crucial in long-horizon, multi-stage tasks like
T-shirt folding, where failures and partial progress are common.

We further explore the use of SARM in reinforcement learning (RL) by training a DiffQL (Wang
et al., 2022) manipulation policy with reward signals provided by SARM. The detailed methodology,
experimental setup, and results are presented in Appendix A.8.

5 CONCLUSION

This paper explored how demonstration quality shapes the effectiveness of RBMs when tackling
complex, long-horizon manipulation. Using T-shirt folding as a demanding case study, we showed
that naı̈vely scaling dataset size is insufficient, and that progress-aware supervision is needed to
guide learning. To this end, we designed SARM, a stage-aware, video-based reward modeling
framework that transforms natural language annotations into structured progress signals, enabling
more reliable estimation of task advancement across diverse demonstrations. We further introduced
the RA-BC framework, which incorporates these signals to emphasize higher-value trajectories dur-
ing training. Our empirical evaluation revealed clear benefits: SARM consistently surpassed prior
baselines, and policies trained with RA-BC achieved strong performance on real robots, including an
83% success rate when folding T-shirts from a flattened configuration and 67% when starting from a
crumpled state. Additional analysis showed that the accuracy of the reward model is pivotal—when
the reward signal is weak, RA-BC loses its ability to properly weight samples and overall policy
performance degrades. We also demonstrate that SARM can be incorporated into reinforcement
learning (RL) to further improve policy performance by modifying DiffQL Wang et al. (2022) on
a pick-and-place task in the MuJoCo Todorov et al. (2012) simulation environment. Details are
provided in A.8. These findings underscore that high-quality reward modeling, combined with se-
lective data filtering, is a powerful path forward for building robust and scalable RBMs capable of
addressing long-horizon manipulation challenges.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Christopher Agia, Rohan Sinha, Jingyun Yang, Rika Antonova, Marco Pavone, Haruki Nishimura,
Masha Itkina, and Jeannette Bohg. Cupid: Curating data your robot loves with influence func-
tions. arXiv preprint arXiv:2506.19121, 2025.

Minttu Alakuijala, Reginald McLean, Isaac Woungang, Nariman Farsad, Samuel Kaski, Pekka
Marttinen, and Kai Yuan. Video-language critic: Transferable reward functions for language-
conditioned robotics. arXiv preprint arXiv:2405.19988, 2024.

Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau, Hongkai Dai, Ching-
Hsin Fang, Kunimatsu Hashimoto, Muhammad Zubair Irshad, Masha Itkina, et al. A care-
ful examination of large behavior models for multitask dexterous manipulation. arXiv preprint
arXiv:2507.05331, 2025.

Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Data quality in imitation learning. Advances in
neural information processing systems, 36:80375–80395, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. corr, abs/2410.24164, 2024. doi: 10.48550. arXiv preprint
ARXIV.2410.24164.

Qianzhong Chen, Naixiang Gao, Suning Huang, JunEn Low, Timothy Chen, Jiankai Sun, and Mac
Schwager. Grad-nav++: Vision-language model enabled visual drone navigation with gaussian
radiance fields and differentiable dynamics. arXiv preprint arXiv:2506.14009, 2025.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,
Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocen-
tric vision: Collection, pipeline and challenges for epic-kitchens-100. International Journal of
Computer Vision, 130(1):33–55, 2022.

Shivin Dass, Alaa Khaddaj, Logan Engstrom, Aleksander Madry, Andrew Ilyas, and Roberto
Martı́n-Martı́n. Datamil: Selecting data for robot imitation learning with datamodels. arXiv
preprint arXiv:2505.09603, 2025.

Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay Jain, Xue Bin Peng, Ken Goldberg, Young-
woon Lee, Danijar Hafner, and Pieter Abbeel. Video prediction models as rewards for reinforce-
ment learning. Advances in Neural Information Processing Systems, 36:68760–68783, 2023.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR,
2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken Gold-
berg, and Pieter Abbeel. Otter: A vision-language-action model with text-aware visual feature
extraction. arXiv preprint arXiv:2503.03734, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Suning Huang, Zheyu Zhang, Tianhai Liang, Yihan Xu, Zhehao Kou, Chenhao Lu, Guowei Xu,
Zhengrong Xue, and Huazhe Xu. Mentor: Mixture-of-experts network with task-oriented pertur-
bation for visual reinforcement learning. arXiv preprint arXiv:2410.14972, 2024.

Suning Huang, Qianzhong Chen, Xiaohan Zhang, Jiankai Sun, and Mac Schwager. Particleformer:
A 3d point cloud world model for multi-object, multi-material robotic manipulation. arXiv
preprint arXiv:2506.23126, 2025b.

Kuo-Han Hung, Pang-Chi Lo, Jia-Fong Yeh, Han-Yuan Hsu, Yi-Ting Chen, and Winston H Hsu.
Victor: Learning hierarchical vision-instruction correlation rewards for long-horizon manipula-
tion. arXiv preprint arXiv:2405.16545, 2024.

I2RT-Robotics. Yam – 6-dof robotic arm. https://i2rt.com/products/
yam-manipulator, 2025.

Changyeon Kim, Minho Heo, Doohyun Lee, Jinwoo Shin, Honglak Lee, Joseph J Lim, and Kimin
Lee. Subtask-aware visual reward learning from segmented demonstrations. arXiv preprint
arXiv:2502.20630, 2025.

Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J Lim. Generalizable imitation learn-
ing from observation via inferring goal proximity. Advances in neural information processing
systems, 34:16118–16130, 2021.

Fanqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen, Jiacheng You, and Yang Gao. Data scaling
laws in imitation learning for robotic manipulation. arXiv preprint arXiv:2410.18647, 2024.

Runze Liu, Yali Du, Fengshuo Bai, Jiafei Lyu, and Xiu Li. Pearl: Zero-shot cross-task preference
alignment and robust reward learning for robotic manipulation. arXiv preprint arXiv:2306.03615,
2023.

Jason Ma, William Liang, Hung-Ju Wang, Yuke Zhu, Linxi Fan, Osbert Bastani, and Dinesh Jayara-
man. Dreureka: Language model guided sim-to-real transfer. RSS, 2024a.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv:
Language-image representations and rewards for robotic control. In International Conference
on Machine Learning, pp. 23301–23320. PMLR, 2023.

Yecheng Jason Ma, Joey Hejna, Chuyuan Fu, Dhruv Shah, Jacky Liang, Zhuo Xu, Sean Kirmani,
Peng Xu, Danny Driess, Ted Xiao, et al. Vision language models are in-context value learners. In
The Thirteenth International Conference on Learning Representations, 2024b.

Tongzhou Mu, Minghua Liu, and Hao Su. Drs: Learning reusable dense rewards for multi-stage
tasks. arXiv preprint arXiv:2404.16779, 2024.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, vol-
ume 7, pp. 2586–2591, 2007.

RealSense. Realsensedepth camera d405. https://store.realsenseai.com/
buy-intel-realsense-depth-camera-d405.html, 2025.

Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active preference-based learning of
reward functions. 2017.

Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In Interna-
tional Conference on Learning Representations, 2020.

12

https://i2rt.com/products/yam-manipulator
https://i2rt.com/products/yam-manipulator
https://store.realsenseai.com/buy-intel-realsense-depth-camera-d405.html
https://store.realsenseai.com/buy-intel-realsense-depth-camera-d405.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yide Shentu, Philipp Wu, Aravind Rajeswaran, and Pieter Abbeel. From llms to actions: Latent
codes as bridges in hierarchical robot control. In 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 8539–8546. IEEE, 2024.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Jiankai Sun, Aidan Curtis, Yang You, Yan Xu, Michael Koehle, Leonidas Guibas, Sachin Chitta,
Mac Schwager, and Hui Li. Hierarchical hybrid learning for long-horizon contact-rich robotic
assembly. arXiv preprint arXiv:2409.16451, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang, Li Fei-Fei, Danfei Xu, Yuke Zhu, and An-
ima Anandkumar. Mimicplay: Long-horizon imitation learning by watching human play. arXiv
preprint arXiv:2302.12422, 2023a.

Qiang Wang, Robert McCarthy, David Cordova Bulens, Kevin McGuinness, Noel E O’Connor,
Francisco Roldan Sanchez, Nico Gürtler, Felix Widmaier, and Stephen J Redmond. Improving
behavioural cloning with positive unlabeled learning. In Conference on robot learning, pp. 3851–
3869. PMLR, 2023b.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31,
2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and Pieter Abbeel. Gello: A general, low-cost,
and intuitive teleoperation framework for robot manipulators. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 12156–12163. IEEE, 2024.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imi-
tation learning from imperfect demonstration. In International Conference on Machine Learning,
pp. 6818–6827. PMLR, 2019.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imitation
learning from suboptimal demonstrations. In International Conference on Machine Learning, pp.
24725–24742. PMLR, 2022.

Justin Yu, Tara Sadjadpour, Abby O’Neill, Mehdi Khfifi, Lawrence Yunliang Chen, Richard Cheng,
Muhammad Zubair Irshad, Ashwin Balakrishna, Thomas Kollar, and Ken Goldberg. Manip:
A modular architecture for integrating interactive perception for robot manipulation. In 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1283–1289.
IEEE, 2024.

Jiahui Zhang, Yusen Luo, Abrar Anwar, Sumedh Anand Sontakke, Joseph J Lim, Jesse Thomason,
Erdem Biyik, and Jesse Zhang. Rewind: Language-guided rewards teach robot policies without
new demonstrations. arXiv preprint arXiv:2505.10911, 2025.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE DISCLOSURE.

In accordance with the submission policy, we disclose that large language models (LLMs) were used
only for minor wording improvements, grammar checking, and proofreading. All ideas, technical
content, experimental design, and analysis were solely developed by the authors, who take full
responsibility for the final manuscript.

A.2 HARDWARE SETUP

For our real world experiments we leverage
a bimanual robot table top platform. The
system consists of:

• Two 6 DOF YAM robot arms, built
by the manufacturer I2RT (I2RT-
Robotics, 2025).

• Three RealSense D405 cameras.
One for each wrist and a third stat-
ically mounted above for viewing
the scene (RealSense, 2025).

Data is collected using a leader follower
system GELLO teleoperation system(Wu
et al., 2024). The environment run at
recorded at 30 fps and includes synchro-
nized streams from three cameras (left
wrist, right wrist, and a fixed top view)
along with robot joint angles and action
joint angle commands.

Figure 4: The physical station used for data
collection and policy evaluation.

A.3 T-SHIRT FOLDING EXPERT DEMONSTRATION DATA

We provide two examples of demonstration trajectories collected with the GELLO system in Fig. 5
and Fig. 6. For clarity, the annotation corresponding to each motion stage is shown above every
frame. Compared to Dsparse, the dense annotated dataset Ddense further decomposes the overall “fold
the T-shirt” stage into five fine-grained motions. A comparison of the average temporal portion of
each task in the two datasets is summarized in Table A.3. It is important to note that Dsparse and
Ddense are distinct datasets collected from different trajectories; therefore, even for the same task
(e.g., “flatten the T-shirt out”), the average temporal portion differs a little across datasets.

Table 4: Average temporal portion of each task in two dataset.
Sparse Annotated Dataset Dsparse Dense Annotated Dataset Ddense

Task Portion (%) Task Portion (%)
Grab the T-shirt from the pile 5 Grab T-shirt and move to center 9
Move the T-shirt to the center 5 Flatten out the T-shirt 26

Flatten the T-shirt out 25 Grab near side and fold 15
Fold the T-shirt 55 Grab far side and fold 13

Put folded T-shirt into corner 10 Rotate the T-shirt 90 deg 8
Grab bottom and fold 9
Grab 2/3 side and fold 9

Put folded T-shirt into corner 11

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

grab the tshirt from the pile

1

move the tshirt to the center

2

flatten the tshirt out

3
fold the tshirt

4

put folded tshirt into corner

5

Figure 5: Expert demonstration with sparse annotation.

grab tshirt and move to center

1

flatten out the tshirt

2

grab near side and fold

3

grab far side and fold

4
rotate the tshirt 90 deg

5

grab bottom and fold

6

grab 2/3 side and fold

7

put folded tshirt into corner

8

Figure 6: Expert demonstration with dense annotation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 REWARD MODEL TRAINING

Implementation Details. We employ a frozen clip-vit-base-patch32 encoder to process
both RGB image sequences and task descriptions. The dataset is recorded at a fixed frame rate of 30
fps, and each input sequence consists of 9 images: the first is always the initial frame of the episode,
while the remaining 8 are sampled consecutively from the same episode with a fixed interval of 30
frames, resulting in a temporal span of approximately 8 seconds. To enhance temporal diversity and
better capture failure scenarios, we follow the rewind augmentation strategy (Zhang et al., 2025),
appending up to four frames from earlier timestamps with reversed order to the end of each training
sequence. Additionally, to improve video-language alignment, the task descriptions are occasionally
perturbed with randomly generated incorrect instructions.

The backbone is a transformer-based temporal aggregator with 8 layers, 12 attention heads, and a
hidden dimension of 768. To mitigate information leakage, positional embeddings are applied only
to the first frame, corresponding to the episode start. On top of the backbone, we incorporate twin
MLP-based output heads tailored for different annotation types, namely dense and sparse labels.
This design enhances the flexibility of the reward model, allowing it to effectively utilize hetero-
geneous supervision and remain compatible with multiple annotation protocols. Each output head
comprises 2 layers with a hidden dimension of 512. The stage model is trained with cross-entropy
loss, whereas the subtask model is optimized with mean squared error loss.

Optimization is performed with the AdamW optimizer, using a learning rate of 5 × 10−5 and a
weight decay of 1 × 10−3. Models are trained for 2 epochs with a batch size of 64 on a single
NVIDIA RTX 4090 GPU.

Scale Analysis. We study the effect of model scale on reward model performance by varying
the number of transformer layers in the temporal aggregator from 4, 8, to 12, corresponding to
models with 30M, 60M, and 90M parameters, respectively, while keeping all other hyperparameters
fixed. The results are summarized in Table 5 and Fig. 7. The smallest model (30M) exhibits clear
underfitting, with poor performance across both evaluation metrics. Increasing the size from 30M
to 60M leads to substantial gains, but further scaling from 60M to 90M yields only marginal or
negligible improvement. This suggests that a 60M-parameter model is sufficient to capture the task
dynamics of T-shirt folding. Larger models risk overfitting, particularly given the limited size of
the training data. Overall, the chosen 60M configuration strikes an effective balance between model
capacity and computational efficiency, and is therefore adopted throughout the paper.

0 10k 20k 30k 40k 50k
Step

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

n_layers=4
n_layers=8
n_layers=12

Figure 7: Scale analysis plots of reward models with various layers.

Table 5: Scalability analysis of reward model on T-shirt folding task

Metrics Layer Number
4 8 12

Demo L ↓ 0.015 0.009 0.007
Rollout ρ ↑ 0.72 0.94 0.88

Classification SR Breakdown
SE 10/12 12/12 12/12
PSE 10/12 11/12 11/12
FE 11/12 12/12 11/12

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Ablation Study. We perform a comprehensive ablation study to evaluate the impact of different
design choices in reward model training. Specifically, we examine: (1) the use of joint state as an
additional input, (2) the inclusion of wrist cameras, (3) the number of observation steps, and (4) the
frame gap between observation steps. The corresponding training loss curves are shown in Fig. 8.

Joint state input: We compare two variants of the reward model: one that incorporates the robot’s
joint state (SARM’s default configuration) and one that relies only on visual observations. As shown
in Table 6, including joint state leads to more accurate estimation on both human demonstrations and
policy rollouts. The improvement, however, is relatively modest, suggesting that visual input already
contains most of the task-relevant information.

Wrist cameras: We evaluate the effect of adding wrist camera views in addition to the fixed top-down
camera. The results in Table 7 show little to no benefit, likely because the top-down perspective
already provides sufficient task coverage, while wrist cameras contribute redundant information.
Moreover, incorporating wrist views increases system complexity and introduces a threefold I/O
cost. For these reasons, we exclude them from the final design.

Number of observation steps: We vary the number of observation steps from 4, 8 (SARM’s default),
to 12, while keeping the temporal horizon fixed at approximately 8 seconds. Results in Table 8
indicate that too few steps (4) limit the model’s ability to capture temporal dynamics, resulting in
underfitting. On the other hand, too many steps (12) introduce redundancy and additional compu-
tational overhead without clear gains. An intermediate choice of 8 steps provides a good balance
between temporal coverage and efficiency.

Frame gap between steps: We also assess the effect of varying the frame gap between consecutive
observation steps at 15, 30 (SARM’s default), and 60 frames. As shown in Table 9, a small gap of
15 frames (0.5s) produces highly correlated inputs, limiting temporal diversity and shortening the
effective temporal span, which leads to underfitting. A large gap of 60 frames (2s) risks missing
important intermediate states, thereby confusing the model and degrading performance. A moderate
gap of 30 frames (1s) achieves the best trade-off by capturing meaningful temporal transitions while
avoiding redundancy.

In summary, these results underscore the importance of balancing model capacity, input modalities,
and temporal resolution. Our final design choices—using joint state input, excluding wrist cameras,
adopting 8 observation steps, and a frame gap of 30 frames—reflect the insights gained from this
ablation analysis and provide a robust configuration for long-horizon reward modeling.

0 10k 20k 30k 40k 50k
Step

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Joint State Ablation

w/o State
Baseline

0 10k 20k 30k 40k 50k
Step

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Wrist Camera Ablation

w/ Wrist Camera
Baseline

0 10k 20k 30k 40k 50k
Step

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

#Obs Steps Ablation

n_obs=4
n_obs=8
n_obs=12

0 10k 20k 30k 40k 50k
Step

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Frame Gap Ablation

frame_gap=15
frame_gap=30
frame_gap=60

Figure 8: Ablation study training loss curves

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Ablation study of T-shirt folding reward model on using joint state (our choice: Yes).

Metrics Using Joint State (our choice: Yes).
Yes No

Demo L ↓ 0.010 0.009
Rollout ρ ↑ 0.72 0.94

Classification SR Breakdown
SE 12/12 12/12
PSE 9/12 11/12
FE 10/12 12/12

Table 7: Ablation study of T-shirt folding reward model on using wrist cameras (our choice: No).

Metrics Using Wrist Cameras
Yes No

Demo L ↓ 0.008 0.009
Rollout ρ ↑ 0.94 0.94

Classification SR Breakdown
SE 12/12 12/12
PSE 11/12 11/12
FE 12/12 12/12

Table 8: Ablation study of T-shirt folding reward model on observation steps number (our choice:
8).

Metrics Observation Step Number
4 8 12

Demo L ↓ 0.013 0.009 0.009
Rollout ρ ↑ 0.67 0.94 0.89

Classification SR Breakdown
SE 12/12 12/12 12/12
PSE 8/12 11/12 11/12
FE 10/12 12/12 11/12

Table 9: Ablation study of T-shirt folding reward model on sequence frames gap (our choice: 30).

Metrics Frame Gap
15 30 60

Demo L ↓ 0.015 0.009 0.022
Rollout ρ ↑ 0.50 0.94 0.56

Classification SR Breakdown
SE 9/12 12/12 12/12
PSE 8/12 11/12 8/12
FE 10/12 12/12 8/12

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5 REWARD MODEL EVALUATION RESULTS VISUALIZATION

Demo Data Estimation. We present two visualization examples of reward predictions from
SARM and the ReWiND baseline in Fig. 9 and Fig. 10, using trajectories from the validation set
of human demonstration data. Compared with SARM, ReWiND exhibits several notable shortcom-
ings: (1) as it relies solely on direct regression, it fails to capture the full progression of long-horizon
tasks—for instance, its predictions do not start at zero even at the beginning of a trajectory; and (2)
its estimates are highly unstable, with frequent oscillations and even negative spikes, which should
not occur in human demonstration data. These issues prevent ReWiND from producing consistent
long-horizon reward signals and ultimately limit its effectiveness for downstream policy learning.

0 5 10 15 20 25 30 35
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

Figure 9: Examples of proposed reward model prediction on demonstration data.

0 5 10 15 20 25 30 35
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

Figure 10: Examples of ReWiND reward model prediction on demonstration data.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Policy Rollout Estimation. We present two visualization examples of reward predictions from
SARM and the ReWiND baseline in Fig. 11 and Fig. 12, using trajectories from real robot policy
rollouts. Compared with human demonstration data, policy rollouts are more challenging because
they often include failure modes that are out-of-distribution (OOD), such as misgrasps, recovery
attempts, and back-and-forth motions. In the first example, the trajectory corresponds to a successful
rollout where the robot folds the T-shirt correctly, with only minor struggles and misgrasps in the
first ten seconds. In this case, SARM remains stable, keeping the estimated progress near zero during
these OOD motions, whereas ReWiND is easily triggered and produces noisy, unstable estimates.
The second example highlights a failed rollout, with four key frames: (1) the T-shirt is flattened after
struggling, (2) folding is nearly complete, (3) the robot suddenly fails and crumples the T-shirt on
the table, and (4) the unfolded T-shirt is placed in the corner. SARM provides reasonable progress
estimates across all four stages, reflecting the actual task status. By contrast, ReWiND continues
to exhibit high noise and spurious spikes, and even assigns a high progress score to the final “fake
finish” state, effectively being misled by the failed outcome. These results further emphasize the
robustness and reliability of SARM framework for real-world robotic applications.

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

0 50 100 150 200
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

Figure 11: Examples of proposed reward model prediction on policy rollouts.

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

0 50 100 150 200
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

Figure 12: Examples of ReWiND reward model prediction on policy rollouts.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.6 TRAINING SARM FOR DISH UNLOADING
Demo Data Estimation. The visualization of reward predictions from SARM and the ReWiND
baseline on two example trajectories from the validation set of human demonstration data is shown
in Fig. 13 and Fig. 14. SARM produces consistent and robust progress estimates, maintaining sta-
ble predictions for sequences as long as unloading eight dishes consecutively, which corresponds to
over 1.5 minutes of execution. This demonstrates the effectiveness of SARM in handling diverse
and highly dynamic tasks. By contrast, ReWiND exhibits similar shortcomings as in the T-shirt
folding experiments: it fails to capture the full progression of the task (in this case never estimat-
ing completion, with peak values below 0.75) and generates unstable predictions with noticeable
fluctuations.

0 10 20 30 40
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

0 20 40 60 80 100
Time (s)

0.00

0.25

0.50

0.75

1.00

Pr
ed

ic
te

d
Pr

og
re

ss

Figure 13: Examples of proposed reward model prediction on demonstration data.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 10 20 30 40
Time (s)

0.0

0.5

1.0

Pr
ed

ic
te

d
Pr

og
re

ss

0 20 40 60 80 100
Time (s)

0.00

0.25

0.50

0.75

1.00

Pr
ed

ic
te

d
Pr

og
re

ss

Figure 14: Examples of ReWind reward model prediction on demonstration data.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.7 TRAINING MANIPULATION POLICY WITH RA-BC

Implementation Detail. All policies are fine-tuned with low rank adaptation (LoRA) (Hu et al.,
2022) for 40k steps using a batch size of 32 on a dual NVIDIA RTX 4090 machine. The RA-BC
hyperparameters are set to κ = 0.01 and ϵ = 10−6, with a chunk length of ∆ = 25 actions to align
with the policy’s action chunking. Since the dataset is recorded at 30 fps, κ = 0.01 corresponds
roughly to a task duration of 1 minute 30 seconds, which represents the threshold for the top 5% of
demonstrations. For data points better than this threshold, we assign a weight of 1. For data points
that are worse than this threshold but still demonstrate positive progress, we assign a soft weight
between 0 and 1 according to Eq. 8. For data points exhibiting negative progress, the assigned
weight is 0.

Loss Curve. The policy training loss curves for all four methods are shown in Fig. 15. We observe
that the two pure BC methods initially exhibit a faster decrease in loss compared to RA-BC, but
they plateau early and converge to a higher final loss value. In contrast, RA-BC methods display
a slower but more consistent reduction in loss and ultimately achieve lower convergence values.
This phenomenon can be explained by the data distribution: pure BC leverages a broader set of
demonstrations, which allows an unconverged policy to quickly match parts of the dataset, resulting
in smaller loss at the early stages of training. However, this diversity also introduces conflicting
gradient signals that prevent further improvement, causing convergence at a suboptimal plateau. On
the other hand, RA-BC employs a more focused learning objective that emphasizes high-quality
data. Although such data is harder to fit initially, the targeted supervision enables the policy to
continue improving and avoid stagnation. The final converged loss values are consistent with the
policy evaluation results in Table A.7, where RA-BC with our SARM framework delivers the best
overall performance.

0 5k 10k 15k 20k 25k 30k 35k 40k
Step

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Lo
ss

BC-All
BC-2min
RA-BC-ReWiND
RA-BC-SARM

Figure 15: Trained T-shirt folding policies loss curves.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Success rates (SR) of T-shirt folding policies at 20K and 40K training steps. For each
method, the first column reports SR for each T-shirt color (R = red, B = blue, K = black), and the
last row in each block shows the overall SR for that task.

Training Steps Tasks Color (1) Dall (2) D2min (3) ReWiND (4) SARM

20K

Simple

R 4/4 4/4 4/4 4/4
B 4/4 4/4 4/4 4/4
K 4/4 4/4 4/4 4/4

Overall 12/12 12/12 12/12 12/12

Medium

R 0/4 3/4 0/4 3/4
B 0/4 1/4 1/4 2/4
K 0/4 0/4 0/4 2/4

Overall 0/12 4/12 1/12 7/12

Hard

R 0/4 1/4 1/4 2/4
B 0/4 0/4 0/4 4/4
K 0/4 0/4 0/4 0/4

Overall 0/12 1/12 1/12 6/12

40K

Simple

R 4/4 4/4 4/4 4/4
B 4/4 4/4 4/4 4/4
K 4/4 4/4 4/4 4/4

Overall 12/12 12/12 12/12 12/12

Medium

R 0/4 4/4 2/4 4/4
B 1/4 1/4 3/4 4/4
K 0/4 2/4 1/4 2/4

Overall 1/12 7/12 6/12 10/12

Hard

R 0/4 0/4 2/4 2/4
B 0/4 0/4 0/4 4/4
K 0/4 0/4 1/4 2/4

Overall 0/12 0/12 3/12 8/12

Rollout Example. An example policy rollout is shown in Fig. 16, where the robot successfully
folds a T-shirt from a crumpled state into a neat configuration within 90 seconds, without any mis-
grasps.

1 2 3 4

5 6 7 8

Figure 16: Example of RA-BC trained T-shirt folding policy rollout.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.8 REINFORCEMENT LEARNING EXAMPLE.

Beyond RA-BC, we also explored integrating SARM with reinforcement learning (RL) to further
improve policy performance. We adopt a two-stage training scheme: (1) pre-training, where the
policy is trained with pure behavior cloning (BC) using the diffusion policy (Chi et al., 2023); and
(2) fine-tuning, where the policy is refined with DiffQL (Wang et al., 2022), a Q-learning method
specifically designed for diffusion-based policies. We refer to this approach as RA-QL.

We evaluate RA-QL on a simple two-stage task: pick up a cube. In this task, the robot arm must
first reach toward the cube on the desktop, then grasp and lift it into a goal region, which is a fixed
designated box space. An illustration of the task is provided in Fig. 17. We collected 300 expert
demonstrations in the MuJoCo simulation environment (Todorov et al., 2012) with randomized cube
initial position, denoted asDcube. From these, 100 trajectories were annotated to train a reward model
with the same architecture used for T-shirt folding.

Figure 17: Expert demonstration of the cube-picking task. The desired goal region is highlighted in
green.

We first pre-trained a diffusion transformer policy onDcube using pure BC. While the policy achieved
high success rates, the motions were often inefficient and imprecise, especially during the reaching
and grasping phases. We then fine-tuned this BC-trained policy with DiffQL for an additional 10k
steps. Our implementation closely follows DiffQL (Wang et al., 2022), with the key modification
that the critic network receives rewards from our learned reward model, SARM, rather than hand-
crafted signals. For ablation, we also continued training the diffusion policy with pure BC for
another 10k steps under the same conditions.

During fine-tuning, we evaluated both the BC and RA-QL policies every 500 steps. Each policy was
rolled out 10 times with randomized cube positions, and we report the average success rate (SR) and
average discounted return. The experiment results are demonstrated in Fig. 18 The reward function
is automatically judged by the simulator: a step reward of 1 is given if the cube is lifted to the desired
height, and 0 otherwise. An episode terminates either when the cube is successfully placed in the
goal region (labeled as success) or when the horizon of 1000 steps is reached (labeled as fail).

Gt =

T−t−1∑
k=0

γk rt+k, (11)

where Gt denotes the discounted return from time step t and γ = 0.995 is the discount factor.

0 2000 4000 6000 8000 10000
Step

0.7

0.8

0.9

1.0

1.1

SR
 (%

)

Success Rate Comparison

RA-QL
pure BC

0 2000 4000 6000 8000 10000
Step

0.60

0.65

0.70

0.75

0.80

0.85

R
et

ur
n

Discounted Episode Return Comparison

RA-QL
pure BC

Figure 18: Comparison of RA-QL and pure BC on picking up cube policy training.

26

	Introduction
	Related Works
	Learned Reward Models for Robotics
	Imitation Learning with Suboptimal Demonstrations

	Method
	Reward Model Training
	Reward-Aligned Behavior Cloning (RA-BC)

	Results
	Q1: Reward Model Evaluation
	Q2: Policy Learning with RA-BC
	Q3: Effect of Reward Model Quality in RA-BC

	Conclusion
	Appendix
	LLM Usage Disclosure.
	Hardware setup
	T-shirt Folding Expert Demonstration Data
	Reward model training
	Reward Model Evaluation Results Visualization
	Training SARM for Dish Unloading
	Training Manipulation Policy with RA-BC
	Reinforcement Learning Example.

