Under review as a conference paper at ICLR 2026

TEMPORAL SAMPLING FOR FORGOTTEN REASONING IN
LILMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) is intended to improve their reasoning capabilities,
yet we uncover a counterintuitive effect: models often forget how to solve problems they pre-
viously answered correctly during training. We term this phenomenon Temporal Forgetting and
show that it is widespread across model sizes, fine-tuning methods (both Reinforcement Learn-
ing and Supervised Fine-Tuning), and multiple reasoning benchmarks. Our analysis reveals on
average more than 20 % of final errors were once solved correctly at an earlier checkpoint. In-
spired by the phenomenon of Temporal Forgetting, we proposed Temporal Sampling, a simple
decoding strategy that draws outputs from multiple checkpoints along the training trajectory.
This approach recovers forgotten solutions and leads to significant improvements in reasoning
performance than final-ckpt-sampling only, gains from 4 to 19 points in Pass@¥k and consis-
tent gains for majority-voting and Best-of-N across several benchmarks. Temporal sampling
also outperforms strong baselines such as model merging. By leveraging the temporal diver-
sity inherent in training, Temporal Sampling offers a practical, compute-efficient way to surface
hidden reasoning ability and rethink how we evaluate LLMs.

20 AIME24 Temporal Sampling
g 80| _Temporal Sampling @ 12 CKPT = 76.7% | [E) each sample
& 70| Final CKPT Pass@12 = 66.7%
A ‘ 7]] = = = =
E 60 = = -> >
[}
)
)
gao ckpt1 ckpt2 ckpt3 ckpt4
=}
V30
Base Model Pass@1 = 26.9%] | : . . =
20 Training Dynamics

1 2 3 4 5 8 9 10 11 12

6 7
Checkpoint
(a) (b)

Figure 1: (a) We observed that during RL training process of Deepseek-R1-1.5B model, 76.7% of AIME problems
were solved correctly at least once by some intermediate checkpoint, yet only 30% remained correct in the final
model. This indicates that many problems answered correctly during training were ultimately incorrect in the
final checkpoint. We term this phenomenon as Temporal Forgetting. (b) We proposed Temporal Sampling:
This method utilizes training dynamics as a source of answer diversity by distributing inference samples across
multiple distinct checkpoints from the training trajectory, rather than relying solely on the single final checkpoint.

1 INTRODUCTION

Fine-tuning large language models (LLMs) is expected to improve their reasoning ability Luo et al. (2025);
DeepSeek-Al et al. (2025); Zeng et al. (2025); Muennighoff et al. (2025); NovaSky (2025); Jin et al. (2025).
Yet, we uncover a surprising phenomenon: models often forget how to solve problems they previously solved
correctly during fine-tuning. We refer to this systematic behavior as Temporal Forgetting.

Temporal Forgetting is not rare or model-specific. To quantify this phenomenon, we introduce a new metric:
the Temporal Forgetting Score (Prrs). Prrs captures the percentage of questions in the benchmark that were
answered correctly by some checkpoint during RL/ SFT but were ultimately answered incorrectly by the final
checkpoint. Across Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) fine-tuning Shao et al.
(2024a); DeepSeek-Al et al. (2025); Zeng et al. (2025) of Qwen2.5 models (1.5B and 7B) on multiple reasoning
benchmarks (AIME, AMC, OlympiadBench He et al. (2024), MATH-500 Hendrycks et al. (2021a), GPQA Rein
et al. (2024)), we find that on average more than 20% of final errors were once solved correctly at an earlier
checkpoint. This pattern persists across different model sizes, architectures, and training approaches.

Under review as a conference paper at ICLR 2026

R1-1.5B VS DeepScaleR-1.5B Qwen2.5-Math-7B-Instruct VS OpenR1-7B

1
1
1
55 ! 56.6
53.5 Before Training : Before Training
50 48.3 After Training : 504 After Training
o | g
5 45 : o 42.5 41.9
& 20 : & 40
36.9 1
35.4 1 20.8
35 ! 301 :
OIympiédBench GPQA—Ijiamond : OIympiédBench GPQA—Ijiamond
1
=== 1 -
ST . - ~< ———
L7 N P SRR 1 P N e ~q
’ ~ 1 "/ ~ - 7N ~
///I/ \\\ \\\ y /,/ \\\ N | // // \\\ \\\ // / N N
[R 4 ,' “ b : [} ,’ \ \ ! 4 \ \
A L
({'i-*‘- 41.9 '11.6 115.7{ 197 |17.2) 1 \92 33.3 :|23 3] I‘12.1: 17 | 242 lu
\ [\ \
‘\\ \‘ ,” /l \\\ \\ //’ /I : \\\ \\ ,/I //I \\\ ‘\ /” 4 !
\ \ \ / / \ N \ / ’
RN s Se D\ g 1 o\ 7 S . e
. 7 7 Se > __-- 1 _\‘_,/ R = N _-"
ezl o Before
Before After Before After : Before After After
1
CZ23 Both Correct £Z°50 Lost CZ23 Improve

Figure 2: Fine-tuned models like DeepscaleR-1.5B Luo et al. (2025) and OpenR1-7B Face (2025) outperform the
base model overall but also forget many questions the base model answered correctly.

This metrics highlight a fundamental limitation in current evaluation methodologies. Standard metrics like
Pass@Fk Chen et al. (2021) and Majority@k Wang et al. (2023b), computed only on the final model, implic-
itly assume that checkpoint to be the model’s most capable state. However, our findings reveal that many correct
reasoning paths are transient, making final-checkpoint-only evaluation a narrow and often misleading lens. The
significant Temporal Forgetting Score suggests that the reasoning potential of fine-tuned models are substantially
underestimated when using only the final checkpoint.

Inspired by this, we proposed Temporal Sampling, a simple decoding strategy that samples completions across
multiple checkpoints rather than just the final one, which is shown in Figure 1 (b). By spreading the sample
budget across time, Temporal Sampling recovers forgotten solutions without retraining or ensembling. Temporal
Sampling yields substantial improvements across diverse reasoning tasks. On benchmarks such as AIME2024,
AMC, and AIME2025, we observe gains from 4 to 19 points in Pass@k compared to final-checkpoint-only sam-
pling, and consistent improvements in Majority @ k and Best-of-N.

These findings suggest that true model competence may not reside in a single parameter snapshot, but rather in
the collective dynamics of training itself. Temporal Sampling offers a practical and powerful way to reclaim lost
reasoning ability, challenging the standard paradigm of using only the final model checkpoint for evaluation and
deployment.

2 TEMPORAL FORGETTING: CORRECT ANSWERS EMERGE AND VANISH IN TRAINING

2.1 OVERALL PERFORMANCE SCORE CANNOT TELL EVERYTHING

To understand how RL or SFT alters a model’s ability to correctly answer reasoning problems, we investigate
instances where base models succeeded on questions but failed after fine-tuning. To quantify this, we introduce
the Lost Score:

* Piost (Lost Score): The percentage of questions in a benchmark that were answered correctly by the base
model but incorrectly by the model after fine-tuning.

This score specifically highlights the phenomenon where a model, despite any overall performance changes after
fine-tuning, loses its correctness on certain problems it previously solved correctly. Note that overall performance
scores cannot capture the statistical pattern reflected by Pr,s¢.

Experiment Setup. We consider various existing SOTA model such as DeepScaleR-1.5B Luo et al. (2025),
OpenR1-7B Face (2025) and S1-32B Muennighoff et al. (2025). Please see Appendix F.2 for the full list of evalu-
ated models and their base models. We calculate the overall performance of various SOTA models after fine-tuning
(denoted Fgr), the performance of their corresponding base model (denoted Pg,se), and our proposed Lost Score
(PLost)- These evaluations were conducted on the OlympiadBench He et al. (2024), MATH-500 Hendrycks et al.
(2021b), and GPQA Rein et al. (2024) benchmarks. We excluded AIME2024 and AMC2023 from this particular
analysis because the number of questions available in these datasets was insufficient for a meaningful comparison.

Under review as a conference paper at ICLR 2026

To minimize variability arising from different sampling methods during evaluation, we employ greedy sampling
following Wei et al. (2022).

Table 1: Performance of the base model (Pg. 1), the fine-tuned model (FPer 1) and the Lost Score (Pr,o4; |) for
different SOTA models. We observed that in spite of the improvement of overall performance, the average Pr,,s¢
ranges from 6.1 to 16.0, which implies a high percentage of questions answered correctly by the base model is an-
swered incorrectly after RL or SFT. To minimize variability caused by random fluctuations in model performance
from diverse sampling, we employed greedy sampling following Wei et al. (2022). Please see Appendix F.2 for
more training details of each model.

Model OlympiadBench MATH-500 GPQA-Diamond

Avg. Prost
PBasc PF'T PLost PBasc PFT PLost PBasc PFT PLost

DeepScaleR-1.5B Luo et al. (2025) 483 535 64 820 89.8 24 354 369 157 8.2

Still-1.5B Team (2025b) 483 484 8.6 820 838 50 354 348 172 10.3
S1.1-1.5B Muennighoff et al. (2025) 18.7 11.7 11.1 46.2 37.6 192 232 162 17.7 16.0
II-thought-1.5B Internet (2025) 483 584 53 820 88.0 34 354 343 16.7 8.5
S1.1-3B Muennighoff et al. (2025) 29.8 247 124 650 64.8 102 32.8 30.3 18.7 13.8
SmallThinker-3B 29.8 382 6.2 650 692 98 328 283 21.7 12.6
S1.1-7B Muennighoff et al. (2025) 404 422 105 76.0 76.8 7.8 328 414 152 11.2
OpenR1-Qwen-7B Face (2025) 425 566 92 83.0 89.8 38 298 419 121 8.4
OpenThinker-7B Team (2025a) 404 487 8.1 760 850 4.2 328 439 13.6 8.6

S1-32B Muennighoff et al. (2025) 498 60.1 43 81.6 89.6 32 439 551 13.1 6.9
Sky-T1-32B-Preview NovaSky (2025) 49.8 584 4.6 81.6 882 3.0 439 53.0 11.1 6.2
Bespoke-Stratos-32B 498 542 7.1 81.6 892 3.0 439 576 8.1 6.1
OpenThinker-32B Team (2025a) 498 612 80 816 914 2.8 439 59.1 11.1 7.3

Results. Figure 2 demonstrates that although OpenR1-7B improves OlympiadBench performance from 42.5 to
56.6, a notable percentage of questions (Pr.s: = 9.2) were correctly solved by the base model but incorrectly
by the fine-tuned model. In Table 1, we present a comprehensive analysis of various SOTA models. We found
that Pr,s; could range from 6.1 to 16.0 points, with the average of 9.5 points. This implies that there are a
considerable number of questions answered correctly by the base model but incorrectly after RL or SFT, in spite
of the improvement of overall performance. Additionally, we demonstrate more experiments results regarding
different sampling methods for various SOTA models, detailed results of which are included in Appendix F.2.

Takeaway 1: Overall Performance Score Cannot Tell Everything

In spite of the improvement of overall performance, a considerable percentage of questions (from 6.1% to
16%) answered correctly by the base model may be answered incorrectly after RL/SFT.

2.2 TEMPORAL FORGETTING

To investigate how answer correctness evolves during post-training, we conducted SFT and RL on various base
models, evaluating checkpoints at different training steps. We introduce two metrics to quantify the temporal
dynamics: the Ever Correct Score and the Temporal Forgetting Score:

* Prcs (Ever Correct Score): The percentage of questions in the benchmark that were answered correctly
by at least one checkpoint saved during RL/SFT.

* Prrs (Temporal Forgetting Score): The percentage of questions in the benchmark that were answered
correctly at least once by some checkpoint during RL/SFT but were ultimately answered incorrectly by
the final checkpoint. Mathematically, Prrs = Prcs — Prr, where Prr is the performance score of
the fine-tuned model.

Furthermore, to characterize how answer correctness changes between consecutive checkpoints, we define specific
events: an answer is considered to “Forget” if it shifts from correct to incorrect, and “Improve” if it transitions
from incorrect to correct. If the answer’s correctness status (either correct or incorrect) remains unchanged across
two consecutive checkpoints, it is labeled as “Both Correct/Wrong.”

Experiment Setup. We performed GRPO Shao et al. (2024b) on the Qwen2.5-7B, Qwen2.5-1.5B, and Qwen2.5-
Math-7B models Yang et al. (2024a;b). The training data consisted of 4k samples randomly selected from the

Under review as a conference paper at ICLR 2026

\ |
Both Wrong Forget Improve Both Correct

100
[Z5 Final Correct 89.6
Ever Forgotten
0 77.
H & Ever Correct 73.8 5
0 9
) o
m <
o 0 60 58.7
S o 52.5
o E 47.5
- c
5 9 4 39.7
9 v 2.3 ﬁa 4
3 g 23.3 :
£ a 20.0°"
o 20
67 ‘
1-2 253 324 455 556 6-7 78 AIME24 OlympiadBench MATH-500 AMC

Checkpoints
(a) (b)

Figure 3: Forgetting dynamics of Qwen2.5-7B during RL training. (a) Answer correctness trajectories for
OlympiadBench questions across training checkpoints, illustrating solutions oscillate between correct and in-
correct states. “Forget” implies that an answer was correct at the previous checkpoint but incorrect at the current
one. Conversely, "Improve” implies that an answer that was incorrect at the previous checkpoint but correct at the

current one. (b) Percentage of questions per benchmark that are ever forgotten or ever correct at some checkpoint
during GRPO.

Table 2: Performance of fine-tuned models (Ppr 71), the Ever Correct Score (Pgcs 1), and the Temporal For-
getting Score (Prrg |) of different models after GRPO or SFT. We observed both high Prcgs and Prrg, which
implies a high percentage of questions (more than 20% on average) are answered correctly at some checkpoint
during training but are ultimately incorrect in the final checkpoint. Please see the base model performance and
more benchmark results in Appendix F.3.

OlympiadBench MATH-500 GPQA-Diamond

Model Avg. Prrs
Per Pees Pres Per FPees Pres Per FPees Pres
Qwen2.5-7B (GRPO) 39.7 58.7 19.0 738 89.6 158 338 747 409 252
Qwen2.5-7B (SFT) 40.1 558 157 69.8 86.6 16.8 253 814 56.1 29.5
Qwen2.5-1.5B (GRPO) 18.8 36.1 173 556 73.0 174 268 723 455 26.7
Qwen2.5-1.5B (SFT) 11.0 26.0 150 362 660 29.8 13.1 65.1 52.0 32.3

Qwen2.5-Math-7B (GRPO, 41.0 573 163 79.8 862 64 328 71.7 389 20.5
Qwen2.5-Math-7B (SFT) 439 629 190 764 904 142 308 798 49.0 274

DeepscaleR-40k dataset Luo et al. (2025). Throughout the training of each model, we saved 8 checkpoints. We
set the RL training parameters following Luo et al. (2025), and detailed training script parameters can be found in
Appendix E. For SFT, we utilized the same DeepscaleR-4k sampled data. We then employed QwQ-Preview-32B
Qwen Team (2024) for rejection sampling to obtain correct responses Dong et al. (2023), subsequently fine-
tuning each model on this curated dataset. We evaluated the performance of various checkpoints from the training
process on five benchmarks: AIME24, AMC, MATH-500, OlympiadBench, and GPQA-Diamond. To minimize
variability caused by random fluctuations in model performance from diverse sampling, we employed greedy
sampling following Wei et al. (2022).

Results. In Figure 3 (a), we illustrate the correct- Tgple 3: Temporal Forgetting on TheoremQA (Chen
ness of answers to different OlympiadBench ques- ¢ al., 2023), a free-form QA dataset with 800 questions
tions at various checkpoints during the RL training gpanning diverse natural science domains. The model
of Qwen2.5-7B. Figure 3 (a) demonstrates the phe- mygt generate full reasoning traces and answers without
nomenon of Forgetting Dynamics: Questions ex- selecting from pre-defined options. This demonstrates
hibits alternating “Improve” and “Forget” events fre- that the temporal forgetting phenomenon persists beyond

quently during training, which means the model os- multiple-choice settings of GPQA-D.
cillates between correct and incorrect answers across

checkpoints. In Figure 3 (b), we show the percentage Model TheoremQA

of questions across different benchmarks that experi- Ppase Prr Ppcs Prrs
enced the “Forget” event could achieve up to 32.3% in Qwen2.5-7B (GRPO) 36 374 593 219
OlympiadBench and 52.5% in AMC. Qwen2.5-Math-7B (GRPO) 358 37.1 575 204

Under review as a conference paper at ICLR 2026

Table 2 presents the Ever Correct Score Pgcg and

Temporal Forgetting Score Prrg of different models after RL or SFT. We observed that a substantial number
of questions were correctly answered at some checkpoint during the training process but were answered incor-
rectly by the final checkpoint (measured by a significantly high Prrg). Surprisingly, we found that Prrg ranges
from 6.4% to 56.1%, with average as high as 25 points. This implies that, on average, up to 25% of the questions
in a benchmark were correctly solved by the model at some checkpoint during training but were incorrect in the
final output. Please see Appendix F.3 for base model performance and more benchmark results including AIME24
and AMC.

We further evaluate models on TheoremQA (Chen et al., 2023), which is a free-form QA dataset with 800 ques-
tions spanning diverse natural science domains. The model must generate full reasoning traces and answers
without selecting from pre-defined options. We report results of Ppcs and Prrg for RL models on TheoremQA.
Notably, over 20% of questions exhibit temporal forgetting, i.e., they were answered correctly by an earlier check-
point but incorrectly by the final checkpoint. This demonstrates that the temporal forgetting phenomenon persists
beyond multiple-choice settings of GPQA-D.

Takeaway 2: Temporal Forgetting

Benchmark questions may oscillate between correct and incorrect states across checkpoints during RL/
SFT. A considerable percentage of questions (more than 20% on average) are answered correctly at least
once by some checkpoint during training but are ultimately incorrect in the final checkpoint.

Comparison with Catastrophic Forgetting.

Catastrophic Forgetting (Luo et al., 2023) focuses on cross-domain degradation, while Temporal Forgetting in our
work refers to in-domain degradation over time. Thus, the underlying problem formulations may differ in these
two phenomenon. Additionally, in contrast to Catastrophic Forgetting where overall performance drops markedly,
Temporal Forgetting focuses on changes in correctness at the individual question level, in spite of the improvement
of overall performance. Thus temporal forgetting cannot be directly captured by the overall performance score
only.

3 TEMPORAL SAMPLING: SCALING INFERENCE COMPUTE OVER CHECKPOINTS

3.1 TEMPORAL SAMPLING

Inspired by the observed learning and forgetting dynamics during model training, we propose Temporal Sam-
pling. Temporal Sampling utilizes the evolving state of the model across different training checkpoints as a source
of diversity for answer generation at inference time. Specifically, instead of relying solely on the final checkpoint,
k samples are generated by allocating the sampling budget across ¢ distinct training checkpoints according to a

chosen distribution strategy.
0.4 Pass@1 0.6

Temporal Sampling typically selects the ¢ most recent 0.0 0.2 0.8 1.0
available checkpoints, which are then ordered from | _
latest (e.g., the final checkpoint) to the ¢-th latest.
While various methods can be employed to distribute
the k£ sampling attempts among these checkpoints, this
paper primarily focuses on a round-robin allocation.
In this approach, sampling commences with the lat-
est checkpoint for the first sample, the next latest for
the second, and so on, cycling through the ordered se-
quence. This procedure defaults to conventional sam-
pling (from only the final checkpoint) when ¢ = 1.
Please see more experiment results in Appendix F.4
for choosing checkpoints in different orders.

AIME24
0.66 | 0.06 | 0.09]0.09]0.16 | 0.41 | 0.25 | 0.06

0.41]10.34]0.28]0.06]0.12 | 0.47 | 0.44] 0.09

0.5010.19]0.31|0.000.19]0.41]0.34] 0.16

0.53]10.16 | 0.22] 0.22] 0.06 | 0.50 | 0.28 | 0.06

Checkpoint

0.47 1 0.19] 0.09] 0.00] 0.03] 0.50 | 0.38 | 0.22

0.660.12 [0.19 | 0.09 | 0.00 | 0.31] 0.31] 0.16
~ Different Questions ‘ ‘

3.2 METRIC Pass@k]|t Figure 4: Pass rate distribution across training check-
) points on AIME24. Individual problems show varying

pass rates over time. Temporal Sampling exploits these

To better measure the performance of Temporal Sam- . . L ;
dynamics to improve answer diversity at inference.

pling, we introduce a new metric, PassQk|t. This
metric is defined as the probability of obtaining at least
one correct answer when k samples are drawn from ¢
checkpoints. Although samples may be drawn in various ways, in what follows we adopt a round-robin manner:
we first give the formal definition of Pass@Fk|¢t under this distribution way and then derive the unbiased estimator.

Under review as a conference paper at ICLR 2026

Definition. Let 7; ; denote the Pass@1 rate (i.e., the probability of correctness with a single sample) for the j-th
checkpoint on the i-th problem. We define

t
Pass@k|t =R 1— [[(1 -7)%
assQk| E [T —rip

j=1

where > k; = k and {k;} is the Balanced Integer Partition of k on t Andrews & Eriksson (2004):

k,{Lk/tJH if j < (k (mod t))
T LLk/t if j > (k (mod t))

Note that if ¢ = 1, this reduces to the standard definition of Pass@k Chen et al. (2021).

Unbiased Estimation. We provide an unbiased estimator for Pass@k|t. Let N be the total number of candidate
samples generated for evaluation from each checkpoint j on a problem i. Let C; ; be the number of correct
samples among these [V candidates for problem ¢ from checkpoint j. The unbiased estimation can be expressed

PassQk|t :I§ 1- li[<(N(1§)J>>

j=1 k;j

The proof of this estimator’s unbiased nature is provided in Appendix D.

3.3 EXPERIMENT SETUP

To evaluate the efficacy of Temporal Sampling, we conducted experiments on benchmarks including AIME2024,
AMC2023, and AIME2025. We utilized GRPO to fine-tune the Qwen-7B-Base model on the DeepScaleR-4k
dataset, following the training settings detailed in Luo et al. (2025). For each problem, we generated 64 responses
using diverse sampling with a temperature of 0.6, top-p of 0.95, and a maximum token length of 16384 Yue et al.
(2025).

We saved 8 checkpoints during the RL training phase, which constituted the checkpoint pool for our Temporal
Sampling. As baselines, we considered the standard Pass@Qk Chen et al. (2021) and MajQ¥k (self-consistency,
also known as majority voting) Wang et al. (2023a). For Maj@¥k, we followed the Majority Voting Wang et al.
(2023a) by generating k samples and selecting the most frequent answer as the final model output. We denote our
Temporal Sampling variants as Pass@Qk|¢t and Maj@Qk|t. For Best-of-N (BoN) sampling, we follow Snell et al.
(2024b) and select answers with the highest score given by the reward model as the final output. When ¢t = 1,
Pass@Fk|t Maj@Fk|t, and BoN with temporal sampling are equivalent to the baseline settings that samples only on
the final checkpoint.

3.4 TEMPORAL SAMPLING ACHIEVES HIGHER SAMPLING PERFORMANCE

Figure 5 demonstrates that Temporal Sampling achieves higher sampling performance (as measured by PassQk|t)
compared to the baseline of sampling only on the final checkpoint, under identical computational budgets. These
advantages are consistently observed across the AIME2024, AIME2025, and AMC benchmarks. For instance
Pass@k|8 of Qwen2.5-7B results in a pass rate that is over 19 percentage points higher than that of sampling
only on the final checkpoint on AIME24 when k = 64. The enhanced efficiency of Temporal Sampling is further
highlighted by its ability to reach a 22.5% pass rate with only k£ = 5 samples, a level that requires k = 64 samples
fort = 1.

Takeaway 3: Improvement of Sampling Performance

Temporal Sampling has higher pass rates than sampling only on the final checkpoint.

3.5 TEMPORAL SAMPLING IMPROVES PERFORMANCE OF INFERENCE-TIME SCALING

Figure 6 demonstrates that Temporal Sampling markedly enhances the performance of majority voting (measured
by Maj@k|t). Across the AIME2024, AIME2025, and AMC benchmarks, employing a greater number of check-
points (¢) within the Temporal Sampling framework leads to improved accuracy compared to the baseline MajQk
only sampling on the final checkpoint under identical computational budgets. Specifically, at k = 64, M ajQk|8
achieves an accuracy exceeding 21, substantially outperforming the 13% accuracy of the baseline.

Figure 7 demonstrates the effectiveness of Temporal Sampling when combined with Best-of-N (BoN) decoding
on the AIME2024, AMC, and AIME2025 benchmarks. We use Qwen2.5-Math-PRM-72B following Zhang et al.
(2025) as the process reward model. The results clearly show that Temporal Sampling with ¢ = 8 checkpoints

Under review as a conference paper at ICLR 2026

AIME24 AMC AIME25
I et
0w T 80- 4 " 30 7
fg ﬁ o 4
N I 20-
g 820 60- /
o f 10
25 50 25 50 25 50
- g e
o 40- “ g
] e 75- -
ke . 20- 7 . —
A 20- 50 /il i
&/ /
1 O

Qwen2.5-Math-7B Qwen2.5-1.5B

_8 60 P =
© 1 P B SRR 1
& 50- 40
i 40
& 20
1 1 60 1 1 1 1
100 200 100 200 100 200
Sampling number k Sampling number k Sampling number k

Figure 5: Pass@k for different numbers of checkpoints ¢ on the AIME2024, AMC, and AIME2025 benchmarks
when using Temporal Sampling. The case t = 1 represents the baseline of standard Pass@Fk sampling on the final
checkpoint. Our proposed Temporal Sampling for Qwen2.5-7B with ¢ = 8 outperforms the baseline by more than
19, 13, and 4 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

AIME24 AMC AIME25
 20- v/ 60- " 15-
@\ »
(© " e &
= 15- - " - - ol 0 a o . . » -
» - 'S - > - - o 1 b | b
J 1 U U SOJ 1 1 U J 1 1 1
20 40 60 20 40 60 20 40 60
Sampling number k
—— =1 t=2 t=4 = t=8

Figure 6: MajQk (Majority voting) for different numbers of checkpoints ¢ on the AIME2024, AMC, and
AIME2025 benchmarks using Temporal Sampling. The case ¢ = 1 represents the baseline of standard majority
voting sampling on the final checkpoint. Our proposed Temporal Sampling with ¢ = 8 checkpoints outperforms
the baseline by more than 8, 7, and 7 percentage points on AIME2024, AMC, and AIME2025, respectively, when
sampling 64 responses.

significantly outperforms the baseline (f = 1), achieving improvements of more than 7, 8, and 1 percentage points
across the three benchmarks when sampling k¥ = 64 responses. We present more results of Best-of-N sampling
with different reward models in Appendix F.1.

Takeaway 4: Improvement of Test-Time Scaling Performance

Temporal Sampling has better test-time scaling performance than sampling only on the final checkpoint.

Under review as a conference paper at ICLR 2026

AIME24 AMC AIME2S
z 251 70 g et
qa | s - S :/ - o © - - - 20- py >
5 20 - 60- '
@ 15-
f 50-’ 104
20 40 60 20 40 60 J0 40 6o
Sampling number k
—— t=1 t=2 t=4 —— t=8

Figure 7: Best-of-N decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling.
The case ¢ = 1 represents the baseline of standard BoN sampling on the final checkpoint. Our proposed Tem-
poral Sampling with ¢ = 8 checkpoints outperforms the baseline by more than 7, 8, and 1 percentage points on
AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

Table 4: Temporal Sampling V.S. Model Merge on AIME24, AIME25 and AMC. We observed that temporal
sampling consistently outperforms checkpoint merging across all benchmarks, particularly at larger sampling
sizes (pass@64 and maj@64). When t = 4 and k = 64, temporal sampling exceeds checkpoint merging by 10.7,
9.5, and 7.6 on AIME2024, AMC, and AIME2025, respectively.

Method Task | Pass@k | Maj@k
| @4 @8 @16 @32 @64 | @4 @8 @16 @32 @64
Merge AIME24 2| 17.6 214 252 284 298 | 122 130 135 136 135
Temporal Sampling AIME24 2 | 21.7 265 313 349 365|133 149 153 158 160
Merge AMC 2] 684 749 794 818 824|530 540 550 558 569
Temporal Sampling AMC 2 | 70.1 766 81.7 854 872|544 557 564 569 57.1
Merge AIME25 2| 166 221 266 291 299 | 77 84 95 103 112
Temporal Sampling AIME25 2 | 187 245 297 335 361 | 107 115 124 133 136
Merge AIME24 4 [192 235 270 291 299 | 134 142 153 152 149
Temporal Sampling AIME24 4 | 213 259 309 363 406 | 138 158 168 17.6 183
Merge AMC 4679 744 792 817 824|537 551 555 551 525
Temporal Sampling AMC 4 | 70.6 784 849 895 919 | 542 564 569 574 57.1
Merge AIME25 4| 197 246 283 298 300 | 99 109 112 127 135
Temporal Sampling AIME25 4 | 184 243 297 342 376 | 105 122 133 140 145

AIME24 AMC AIME25

17.5-
© 15.0- 557 10-
= 125 p 20 AR AR~
1 1 U 5- 1 u;' -
25 50 25 50 25 50

Sampling number k

\ Temporal Sampling === Mixture of Models |

Figure 8: Maj@Fk comparison between Temporal Sampling (¢ = 3) and a Mixture of Models (MoM) approach on
the AIME2024, AMC, and AIME2025 benchmarks. For MoM, the model pool included the Qwen2.5-7B-Base
final RL checkpoint, Deepseek-Math-7B-Instruct, and Llama-3.1-8B-Instruct. Temporal Sampling outperforms
the MoM approach by more than 4, 9, and 9 percentage points on AIME2024, AMC, and AIME2025, respectively,
when sampling 64 responses.

Under review as a conference paper at ICLR 2026

3.6 MORE ABLATIONS

Comparison with Model Merge. We merged the last t checkpoints of training to form a single model and
compared it against temporal sampling over the same t checkpoints. As shown in Table 4, temporal sampling con-
sistently outperforms checkpoint merging across all benchmarks (AIME2024, AMC, AIME2025), particularly at
larger sampling sizes (pass@64 and maj@64). For example, when t = 4: on pass@64, temporal sampling exceeds
checkpoint merging by 10.7, 9.5, and 7.6 on AIME2024, AMC, and AIME2025, respectively. On maj@64, the
gains are 3.4, 4.6, and 1.0, respectively. These results suggest that sampling diverse responses from temporally
spaced checkpoints yields greater performance than simply averaging weights.

Comparison with Mixture of Models (MoM). We evaluate our proposed Temporal Sampling against the Mixture
of Models, which combines outputs from different foundation models to answer each question collaboratively. To
compare sampling efficiencies, we construct a model pool containing three models: our RL-trained final check-
point (Qwen2.5-7B-Base), Llama 3.1-8B, and DeepSeek-Math-7B-Instruct. We apply Temporal Sampling (with
t = 3) and the mixture strategy by sampling in a round-robin manner over the pool, then measure the majority
voting performance Maj@k. As shown in Figure 8, Temporal Sampling achieves higher sampling performance
than the mixture of models under the same computational budget. At Maj@64, Temporal Sampling outperforms
the mixture approach by over 4, 9, and 9 points on the AIME24, AMC, and AIME25 benchmarks, respectively.

Ablation on Different Models We trained an RL Typle 5: Comparison of latecy overheads between tem-

model u§ing a non—Qwen—bgsed DeepSeek-Math-7B, poral forgetting and sampling on final CKPT.
and applied Temporal Sampling. We show that Tem-

Latency (in seconds)

poral Sampling provides consistent gains on non- Exp Run
Qwen models. Please see Appendix F.5 for more in- AIME24 AIME25S AMC
formation. 1 404 327 332
Final CKPT S li 2 382 342 346
Latency Overheads of Temporal Sampling. We "™ amping - 3 377 292 341
show that reasonably allocating GPU resources could Avg 388 320 340
make the latency overheads of temporal sampling sim- 1 400 358 371
ilar with that of sampling on final CKPT. We use a . 2 385 349 358
Temporal Sampling (t=4
total of 64 samples per question, 4 A100 GPUs and P pling (1=4) 3 412 365 384
conduct the following experiments on the 7B model. Avg 399 357 371
We run each setting for three times and measure end- 1 431 367 356
to-end latency (in seconds): ino (1=8) 2 364 326 408
y () Temporal Sampling (t=8) 3 389 380 175
(1) Sampling on final checkpoint: 1 model with data Avg 395 358 380

parallel on 4 GPUs
(2) Temporal Sampling with t = 4: 4 models on 4 GPUs without data parallel
(3) Temporal Sampling with t = 8: 8 models on 4 GPUs with 2 CKPT per GPU (50% GPU utilization).

As shown in the Table 5, most of time temporal sampling has the similar latency overheads than sampling only on
final CKPT and the maximum additional overheads is within 40 seconds.

4 CONCLUSION AND FUTURE WORK

In this paper, we observed the phenomenon of Temporal Forgetting: many correct solutions emerge transiently
during training but are absent in the final model. Our analysis of training trajectories revealed significant forgetting
dynamics, with model answers oscillating between correct and incorrect states across checkpoints. Inspired by
this phenomenon, we propose Temporal Sampling, a simple inference-time method that samples from multiple
training checkpoints to recover forgotten solutions. This approach consistently improves reasoning performance
by 4-19 points in Pass@k across benchmarks.

These findings suggest that true model competence may not reside in a single parameter snapshot, but rather in
the collective dynamics of training itself. Temporal Sampling offers a practical and powerful way to reclaim lost
reasoning ability, challenging the standard paradigm of using only the final model checkpoint for evaluation and
deployment.

We will further explore several promising directions as future work. Firstly, further reduce the storage costs of
temporal scaling, particularly for reinforcement learning trajectories, such as RL LoRA fine-tuning. Secondly,
investigating methods to transfer the performance gains from Pass@k|t to Pass@1|1 is a promising avenue.
Third, developing a more comprehensive theoretical framework for learning and forgetting dynamics could better
explain the observed Temporal Forgetting phenomena during model training.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work investigates LLM reasoning for math related tasks. It does not involve human subjects, user studies,
or the collection of personally identifiable information. All experiments are conducted on publicly available
benchmarks released under their respective licenses, which, to the best of our knowledge, do not contain sensitive
personal data.

REPRODUCIBLE STATEMENT

We will provide the code for our implementation, along with detailed instructions for executing the pipeline end-to-
end. The main paper and appendix document key implementation details, including hyperparameter configurations
used during fine-tuning and evaluation. After publication, we will release the full codebase in a public GitHub
repository and make our training models publicly available on the Hugging Face platform.

REFERENCES

George E Andrews and Kimmo Eriksson. Integer partitions. Cambridge University Press, 2004.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate unrolled
differentiation, 2024. URL https://arxiv.org/abs/2405.12186.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
open models, 2024. URL https://huggingface.co/spaces/HuggingFaceH4/
blogpost—-scaling-test-time—-compute.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony Xia.
TheoremQA: A theorem-driven question answering dataset. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023.

DeepSeek-Al Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao,
Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin,
Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang,
Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li,
Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia
Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun,
Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei,
Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan
Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu,
Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei
Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng Zhang,

Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment,
2023. URL https://arxiv.org/abs/2304.06767.

10

https://arxiv.org/abs/2405.12186
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2304.06767

Under review as a conference paper at ICLR 2026

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https://github.
com/huggingface/open-rl.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
Alphazero-like tree-search can guide large language model decoding and training, 2023.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challeng-
ing benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems, 2024. URL
https://arxiv.org/abs/2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. In J. Vanschoren and S. Yeung
(eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, vol-
ume 1, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b. URL https://arxiv.
org/abs/2103.03874.

Shengyi Costa Huang and Arash Ahmadian. Putting rl back in rlhf. https://huggingface.co/blog/
putting_rl_back_in_rlhf with_rloo, June 12 2024. Hugging Face Blog.

Intelligent Internet. li-thought : A large-scale, high-quality reasoning dataset, 2025.

Mingyu Jin, Weidi Luo, Sitao Cheng, Xinyi Wang, Wenyue Hua, Ruixiang Tang, William Yang Wang, and
Yongfeng Zhang. Disentangling memory and reasoning ability in large language models, 2025. URL
https://arxiv.org/abs/2411.13504.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Qianyi Sun, Boxing Chen, Dong Li, Xu He, Quan He,
Feng Wen, et al. MindStar: Enhancing math reasoning in pre-trained llms at inference time. arXiv preprint
arXiv:2405.16265, 2024.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. ARGS: Alignment as reward-guided search. In International
Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
shgx0eqgdwb6.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with 1lms, 2025.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can distort pretrained
features and underperform out-of-distribution, 2022. URL https://arxiv.org/abs/2202.10054.

Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-rl: Reinforcement learning for gen-
eralizable medical reasoning in vision-language models, 2025. URL https://arxiv.org/abs/2503.
139309.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D.
Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith,
Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model
post-training, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. = Deepscaler: Surpassing ol-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-0l-Preview-with—-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8
2025. Notion Blog.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of catastrophic
forgetting in large language models during continual fine-tuning. arXiv preprint arXiv:2308.08747, 2023.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can predict if they can
do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,
Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-time scaling, 2025. URL https:
//arxiv.org/abs/2501.19393.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://huggingface.co/blog/putting_rl_back_in_rlhf_with_rloo
https://huggingface.co/blog/putting_rl_back_in_rlhf_with_rloo
https://arxiv.org/abs/2411.13504
https://openreview.net/forum?id=shgx0eqdw6
https://openreview.net/forum?id=shgx0eqdw6
https://arxiv.org/abs/2202.10054
https://arxiv.org/abs/2503.13939
https://arxiv.org/abs/2503.13939
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393

Under review as a conference paper at ICLR 2026

NovaSky. Sky-T1: Train your own ol preview model within $450, 2025. URL https://novasky-ai.
github.io/posts/sky—-t1. Accessed: 2025-01-09.

OpenAlL Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-11lms/.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie
Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models
to follow instructions with human feedback, 2022.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, 2024. URL https://gwenlm.github.
io/blog/gwg—-32b-preview/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model, 2024. URL https://arxiv.
org/abs/2305.18290.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R Bowman. Gpqga: A graduate-level google-proof q&a benchmark. In First Conference
on Language Modeling, 2024.

Yi Ren and Danica J. Sutherland. Learning dynamics of llm finetuning, 2025. URL https://arxiv.org/
abs/2407.10490.

Yi Ren, Shangmin Guo, Wonho Bae, and Danica J. Sutherland. How to prepare your task head for finetuning,
2023. URL https://arxiv.org/abs/2302.057709.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Accounting for
inference in language model scaling laws. In International Conference on Machine Learning (ICML), volume
235, pp. 4344543460, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. DeepSeekMath: Pushing the limits of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024a.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and Daya
Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint
arXiv:2402.03300, 2024b.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint arXiv: 2409.19256, 2024.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more
effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024a.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more
effective than scaling model parameters, 2024b. URL https://arxiv.org/abs/2408.03314.

OpenThoughts Team. Open Thoughts. https://open-thoughts.ai, January 2025a.

RUCAIBox STILL Team. Still-3-1.5b-preview: Enhancing slow thinking abilities of small models through rein-
forcement learning. 2025b. URL https://github.com/RUCAIBox/Slow_Thinking with_ LLMs.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus Mcaleer, Ying Wen, Weinan Zhang, and Jun Wang.
AlphaZero-like tree-search can guide large language model decoding and training. In International Conference
on Machine Learning (ICML), volume 235, pp. 49890-49920, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models, 2023a. URL https:
//arxiv.org/abs/2203.11171.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In International
Conference on Learning Representations (ICLR), 2023b. URL https://openreview.net/forum?id=
1PLINIMMrw.

12

https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2302.05779
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2408.03314
https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information pro-
cessing systems, 35:24824-24837, 2022.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried, Gabriel
Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing 1lm reasoning via reinforcement learning on
open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An em-
pirical analysis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Xie. Self-
evaluation guided beam search for reasoning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 41618-41650. Curran
Associates, Inc., 2023.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and Xiaodan
Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data. arXiv preprint
arXiv:2405.14333, 2024.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong Zhang, Caiming
Xiong, and Hanze Dong. A minimalist approach to 1lm reasoning: from rejection sampling to reinforce, 2025.
URL https://arxiv.org/abs/2504.11343.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren
Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang,
Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.
arXiv preprint arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jin-
gren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and Zhenru
Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement. arXiv
preprint arXiv:2409.12122, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. In Advances in Neural Information
Processing Systems (NeurIPS), volume 36, pp. 11809-11822, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun
Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang,
Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai,
Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao,
Yonghui Wu, and Mingxuan Wang. Dapo: An open-source 1lm reinforcement learning system at scale, 2025.
URL https://arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement
learning really incentivize reasoning capacity in llms beyond the base model? arXiv preprint arXiv:2504.13837,
2025.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model and
8k examples: Emerging reasoning with reinforcement learning is both effective and efficient. https:
//hkust-nlp.notion.site/simplerl—-reason, 2025. Notion Blog.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou,
and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. arXiv preprint
arXiv:2501.07301, 2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yonggiang Ma.
Llamafactory: Unified efficient fine-tuning of 100+ language models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 3: System Demonstrations), Bangkok, Thailand,
2024. Association for Computational Linguistics. URL http://arxiv.org/abs/2403.13372.

https://arxiv.org/abs/2504.11343
https://arxiv.org/abs/2503.14476
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

A LLM USE STATEMENT

We use LLMs as general-purpose assist tools to check typos and grammar errors in writing.

B RELATED WORK

Reinforcement learning for LLM. Reinforcement Learning (RL) has rapidly become a cornerstone for extending
the capabilities of LLLMs across various applications. Although it was first employed to align model behavior with
human preferences through approaches like Reinforcement Learning from Human Feedback (RLHF) Ouyang et al.
(2022), its role now encompasses reasoning on complex tasks Kimi Team (2025); DeepSeek-Al (2025); Lambert
et al. (2024). For example, DeepSeek-R1 applied RL directly to a base “zero” LLM DeepSeek-Al (2025), and
Kimi K1.5 augmented this framework with multimodal reasoning and verbosity control Kimi Team (2025). In
particular, Reinforcement Learning has gained traction in areas such as mathematics and programming, where
reward signals can be defined by clear, rule-based criteria like answer matching Lambert et al. (2024); Shao et al.
(2024b); Chen et al. (2021); DeepSeek-Al (2025); Feng et al. (2023); Snell et al. (2024a); Xie et al. (2023); Wan
et al. (2024). Advances in optimization, such as specialized PPO variants (e.g., VinePPO Feng et al. (2023))
and stabilized GRPO algorithms (e.g., DAPO Yu et al. (2025)), have simplified reward design, making RL more
practical. Our work shifts focus from static performance gains of RL to the evolution of answer correctness over
the procedure of RL training. We harness these temporal fluctuations as the diversity source to increase inference-
time performance.

Inference Time Scaling. Expanding the computational budget available during inference has become a powerful
lever for squeezing extra performance out of large language models, giving rise to an ever-growing family of
test-time scaling (TTS) techniques OpenAl (2024). The field has seen a variety of approaches to leverage this.
Established techniques include sampling-driven methods like majority voting Wang et al. (2023b) or best-of-
N Sardana et al. (2024), which generate many candidate answers and select the most persuasive one. More
intricate are search-based algorithms such as Tree-of-Thoughts (ToT) explorations Yao et al. (2023) and Monte-
Carlo tree search (MCTS) Xie et al. (2023); Khanov et al. (2024); Wan et al. (2024). Such approaches often
build upon the development of sophisticated verifiers and may integrate process-based reward signals directly
into search methods Kang et al. (2024); Wu et al. (2024); Snell et al. (2024a). To further enhance efficiency and
adaptiveness, other techniques include self-evaluation mechanisms for judicious compute allocation Manvi et al.
(2024) and diversity-aware search tactics, sometimes referred to as Test-Time Scaling (TTS) with diversity, to
reduce redundant sampling and explore a wider solution space Beeching et al. (2024).

Learning Dynamics. Learning dynamics analyze model behavior during training, such as explaining “aha mo-
ments” DeepSeek-Al (2025), and challenges in fine-tuning generalization (e.g., Kumar et al. (2022); Ren et al.
(2023)). These works focus on the training process itself and offer novel perspectives on how models learn
and develop capabilities. Other research analyzes the step-wise decomposition of how influence accumulates
among different potential responses for both instruction and preference tuning in LLMs Ren & Sutherland (2025).
This detailed analytical framework, offering hypothetical explanations for why specific types of hallucination
are strengthened post-finetuning. From the data perspective, Training Data Attribution (TDA) Bae et al. (2024)
identifies influential training examples to explain model predictions. Orthogonal to these works, we empirically
investigate the dynamic fluctuations in answer correctness across diverse reasoning tasks, and harness the learning
dynamics as a source of answer diversity to widen the sampling space and performance.

C LIMITATIONS AND BROADER IMPACTS

Our investigation into the Temporal Forgetting phenomenon has primarily concentrated on mathematical rea-
soning tasks. We have not yet extended our analysis to other potentially relevant domains where similar patterns
might emerge, such as automated theorem proving Xin et al. (2024), healthcare applications Lai et al. (2025),
or code generation Wei et al. (2025). The experimental foundation of our work focuses on GRPO Shao et al.
(2024b) and SFT frameworks. While we believe our findings can generalize to other training methodologies, in-
cluding on-policy approaches like PPO Schulman et al. (2017), RLOO Huang & Ahmadian (2024), and DAPO Yu
et al. (2025), as well as off-policy techniques such as DPO Rafailov et al. (2024), RAFT Dong et al. (2023),
and Reinforce-Rej Xiong et al. (2025) that rely on rejection sampling. we have not empirically validated this
hypothesis.

When implementing Temporal Sampling, we focus on round-robin allocation strategies for distributing the k
sampling attempts across ¢ checkpoints. Alternative distribution approaches represent a promising avenue that we
reserve for subsequent research.

Broader Impacts. Through our research, we have uncovered the temporal forgetting phenomenon and devel-
oped temporal sampling as an effective method to enhance inference-time sampling performance in mathematical
reasoning. We have not identified negative societal implications associated with this work.

14

Under review as a conference paper at ICLR 2026

D PROOF OF UNBIASED ESTIMATION

We provide a formal proof that our proposed estimator for Pass@Fk|t is unbiased. The Pass@k|t metric measures
the probability of obtaining at least one correct answer when samples are drawn from multiple checkpoints in a
round-robin manner. The following proof establishes the statistical validity of our evaluation framework, ensuring
that our empirical measurements accurately reflect the true performance of Temporal Sampling across different
checkpoints.

Theorem 1. Denote r; j as the Pass@1 rate for the j-th checkpoint on problem i, C; ; as the number of correct
samples among N candidates for problem i from checkpoint j. Let

t

Pi =1- H(l — ’I’i’j)kj

J=1

denote the probability of obtaining at least one correct answer when k samples are drawn from t checkpoints for
problem i, (i.e., Pass@k|t), where k;j is determined by the balanced integer partition of k on t:

ke — {Uf/tJ +1 ifj < (k (modt))
Tk ifj > (k (mod t))

We have

is an unbiased estimator of P, i.e., E[PZ] =P,

Proof. For a single checkpoint j on problem 7, we consider the probability of obtaining no correct solutions when
sampling k; solutions without replacement from N total samples. Given that C; ; of these N samples are correct,
this probability follows the hypergeometric distribution:

(")
P(Xi’j = 0) ==

()

For Pass@Fk|t, we succeed if at least one sample across all checkpoints is correct. The probability of failure (no
correct solutions from any checkpoint) is:

t t
P(failure) = [[P(Xi; =0) = [[——
=1 j

Thus, our estimator for the success probability is:

-1y

>

To prove this estimator is unbiased, we need to show that E[P;] = P;. We first prove that:

(N*Ciyj

k) N
—2 | =(1-— Tij 7
) 1 ()

Since C; ; follows a binomial distribution B(N,7; ;), we have:

" L) N _
El a] = () v
j c=0 3

E

We can simplify the coefficient:

2

) () SRV —e—k)l - ND (N)]

_ (N -k
_()) 3

15

C

Under review as a conference paper at ICLR 2026

Substituting this back:

N-Cj ; N—k;
(k;) N —Ek;\ . .
: <N)] B (c j)’“i,j(l i) @
k;j c=0
N—k;
J N _ .
= (1 — Ti,j)kj (. kj)'r,i](l _ Ti,j)N_kj_c (5)
c=0

The summation represents the binomial expansion of (r; j + (1 — ;. ;) —ki = 1N=ki = 1, yielding:

(
(¥55)

)

Since the samples from different checkpoints are independent, we have:

E

] =(1—ry) 6)

CO L O
| 1Ty | =112 || - TTa-ra g
Jj=1 (kj) j=1 (kj) Jj=1
Therefore:
R t (N*Ci,j) t
EP)=1-E|[[=] =1-J[a-r)" =P)
= () et

This proves that]52 is an unbiased estimator for Pass@k|t. O

E EXPERIMENT SETUP

E.1 GRPO

We follow Luo et al. (2025) and use the following hyper-parameters detailed in Table 6 for Zero RL training. We
perform experiments on eight A100 GPUs. The model is trained using VERL Sheng et al. (2024).

Table 6: This table shows the hyper-parameters for zero RL training.

Hyper-parameter Value

Learning Rate 1x1076
Number of Epochs 9

Number of Devices 8

Rollout Batch Size 128

PPO Mini Batch Size 64

Max Prompt Length 1024

Max Response Length 3072 (QWEN2.5-MATH-7B), 8192 (OTHERS)
KL Coefficient 0.001

Rollout Engine VLLM (v0.8.2)
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Ratio 0.1

E.2 SUPERVISED FINE-TUNING
Our model SFT is conducted using LLaMA-Factory (Zheng et al., 2024), on a server with four NVIDIA A100-

SXM4-80GB GPUs. We follow NovaSky (2025) for the training parameters. Table 7 lists hyper-parameters for
full parameter supervised fine-tuning.

F MORE EXPERIMENT RESULTS

F.1 TEMPORAL SAMPLING FOR BEST-OF-N

Figure 9 demonstrates the effectiveness of Temporal Sampling when combined with Best-of-N (BoN) decoding
on the AIME2024, AMC, and AIME2025 benchmarks. Using Qwen2.5-Math-PRM-72B Zhang et al. (2025) as

16

Under review as a conference paper at ICLR 2026

Table 7: This table shows the hyper-parameters for full parameter supervised fine-tuning.

Hyper-parameter Value
Learning Rate 1x107°
Number of Epochs 3
Number of Devices 4
Per-device Batch Size 1
Optimizer Adamnw

Learning Rate Scheduler cosine
Max Sequence Length 16384

AIME24 AMC AIME25
P -
= 25- ’c 70- ee", ’::-Qgg'
S 20- /° | 7
(]
m 15-y
! 104
20 40 60 20 40 60
Sampling number k
— t=1 t=2 t=4 —— t=8

Figure 9: BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal
Sampling. Qwen2.5-Math-PRM-72B is used as the process reward model. We choose the answer with the highest
reward as the final answer. The case ¢ = 1 represents the baseline of standard BoN on the final checkpoint. Our
proposed Temporal Sampling with ¢ = 8 checkpoints outperforms the baseline by more than 7, 8, and 1 percentage
points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

AIME24 AMC AIME25
70~

Aﬂi ’A{_M; - - - -

30+

=2
qC_) .4 P ‘ 20- =
-IJJ’ 20- 60- g //f L] L] - Y ®
<) & e - - - o of
m
50 10-/
20 40 60 20 40 60 20 40 60
Sampling number k
\—o— t=1 t=2 —— t=4 —— t=8\

Figure 10: BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal
Sampling. Qwen2.5-Math-PRM-7B is used as the process reward model. We choose the answer with the highest
reward as the final answer. The case ¢ = 1 represents the baseline of standard BoN on the final checkpoint.
Our proposed Temporal Sampling with ¢ = 8 checkpoints outperforms the baseline by more than 10, 2, and 5
percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

the process reward model, answers with the highest reward were selected as the final output. The results clearly
show that Temporal Sampling with ¢ = 8 checkpoints significantly outperforms the baseline (¢t = 1), achieving
improvements of more than 7, 8, and 1 percentage points across the three benchmarks when sampling k£ = 64
responses. Figure 10 presents additional evidence for the effectiveness of Temporal Sampling with Best-of-N
decoding when using the smaller Qwen2.5-Math-PRM-7B Zhang et al. (2025) as the process reward model. This
highlights the value of leveraging multiple training checkpoints for enhancing reward-based selection methods.

F.2 MORE RESULTS OF TEMPORAL FORGETTING

Table 8 provides a comprehensive list of the SOTA models evaluated in Table | along with their corresponding
base models.

17

Under review as a conference paper at ICLR 2026

Table 8: Full list of SOTA models evaluated in Table 1 and their corresponding base models.

Model Based on Training
DeepScaleR-1.5B Distill-R1-1.5B RL
Still-1.5B Distill-R1-1.5B RL
S1.1-1.5B Qwen2.5-1.5B-Instruct SFT
II-thought-1.5B-preview Distill-R1-1.5B RL
S1.1-3B Qwen2.5-3B-Instruct SFT
SmallThinker-3B Qwen2.5-3B-Instruct SFT
S1.1-7B Qwen2.5-7B-Instruct SFT

OpenR1-Qwen-7B Qwen2.5-Math-7B-Instruct SFT

OpenThinker-7B Qwen2.5-7B-Instruct SFT
s1-32B Qwen2.5-32B-Instruct SFT
Sky-T1-32B-Preview Qwen2.5-32B-Instruct SFT
Bespoke-Stratos-32B Qwen2.5-32B-Instruct SFT
OpenThinker-32B Qwen2.5-32B-Instruct SFT
80 OlympiadBench
B Pass@1 Pgase Pass@8 Pgase
B Pass@1 Per Pass@8 Pgr
B Pass@1 Piost Pass@8 Post
70
65.7
62.3
X 60 58.7 59.2
> 55.8 %,
g 53 53
8
44.5
40
30 DeepScaleR-1.5B Still-3-1.5B

Models

Figure 11: Performance of the base model (FPgsgse 1), the fine-tuned model (Pgr 1) and the Lost Score (Prost)
for Pass@1 sampling and Pass@8 sampling. Fine-tuned models like DeepscaleR-1.5B Luo et al. (2025) and Still-
3-1.5B Face (2025) outperform the base model overall but also forget many questions the base model answered
correctly.

Figure 11 illustrates the performance comparison between base models and fine-tuned models using both Pass@ 1
and Pass@8 sampling on the OlympiadBench dataset. The figure shows that while fine-tuned models like
DeepscaleR-1.5B and Still-3-1.5B achieve higher overall performance than their base models (Prr > Pgase), they
also exhibit the temporal forgetting phenomenon with substantial Lost Scores (Pr,s;) for both Pass@1 sampling
and Pass @8 sampling.

F.3 MORE RESULTS OF FORGETTING DYNAMICS

Table 9 presents detailed performance metrics for different fine-tuned models evaluated specifically on AIME24
and AMC benchmarks. The table shows the base model performance (Pg,se), fine-tuned model performance (Fgr),
Ever Correct Score (Pgcs), and Temporal Forgetting Score (Prrg) across various models with both GRPO and
SFT training methods. Notably, models exhibit significant temporal forgetting, with Prprg values ranging from
6.7% to 30%, which implies that many questions solved correctly at some point during training were ultimately
answered incorrectly in the final checkpoint.

Table 10 complements Table 2 by providing a more comprehensive view of base model (Pg,s) and fine-tuned
model (Pgr) performance across all five mathematical benchmark.

18

Under review as a conference paper at ICLR 2026

Table 9: Performance of fine-tuned models (Prr 71), the Ever Correct Score (Pgcs 1), and the Temporal For-
getting Score (Prrg |) of different fine-tuned models evaluated on AIME24 and AMC. We observed both high
Prcs and Prpg in spite of the improving overall performance, which implies a high percentage of questions
(from 6.7% to 30%) are answered correctly at some checkpoint during training but are ultimately incorrect in the

final checkpoint.

Model AMC AIME24

Ppase Pt Pecs Prrs Pease Pt FPecs Prrs
Qwen2.5-7B (GRPO) 325 475 775 300 6.7 6.7 23.4 16.7
Qwen2.5-7B (SFT) 325 525 750 225 6.7 10.0 200 10.0
Qwen2.5-1.5B (GRPO) 0.0 30.0 45.0 15.0 0.0 33 10.0 6.7
Qwen2.5-1.5B (SFT) 0.0 150 350 200 0.0 0.0 6.7 6.7
Qwen2.5-Math-7B (GRPO) 32,5 725 825 10.0 133 167 400 233
Qwen2.5-Math-7B (SFT) 325 50.0 750 250 133 20.0 400 20.0

Table 10: Detailed performance score of base models (Ppys.) and fine-tuned models (Ppr) across five mathe-

matical benchmarks, served as complementary of Table 2.

Model Olympiad ~ MATH-500 GPQA AMC AIME
PBasc PFT PBasc PFT PBasc PFT PBasc PFT PBasc PFT
Qwen2.5-7B (GRPO) 221 397 532 738 298 338 325 475 6.7 6.7
Qwen2.5-7B (SFT) 221 401 532 698 298 253 325 525 6.7 10.0
Qwen2.5-1.5B (GRPO) 0.6 188 0.6 556 30 268 0.0 300 00 33
Qwen2.5-1.5B (SFT) 0.6 11.0 0.6 36.2 3.0 13.1 0.0 15.0 0.0 0.0
Qwen2.5-Math-7B (GRPO) 193 41.0 602 79.8 303 328 325 725 133 167
Qwen2.5-Math-7B (SFT) 193 439 602 764 303 308 325 500 133 200

F.4 ABLATION ON CHECKPOINT SELECTION OF TEMPORAL SAMPLING

We find that later checkpoints are more stable near convergence thus we choose the recent checkpoints for temporal

sampling. We compared two different ordering strategies:

Reverse (most recent first): ckpts 8, 7, 6,
Forward (least recent first): ckpts 8, 1, 2,

We observed that the reverse order consistently outperforms forward across most benchmarks in the Table 11.

v 1

w1

Table 11: Ablation on Checkpoint Selection of Temporal Sampling

Task Order Pass@k Average
pass@8 pass@16 pass@32 pass@64
Reverse 26.1 30.8 35.1 38.1 32.53
AIME24 - porward 25.5 29.4 326 348 30.58
Reverse 24.1 29.6 34.2 37.4 31.33
AIME25 Forward 22.1 27.7 329 37.0 29.93
AMC Reverse 77.6 83.7 88.3 90.9 85.13
Forward 77.8 84.0 88.9 91.8 85.63

F.5 ABLATION ON NON-QWEN-BASED MODELS

We trained an RL model using a non-Qwen-based model, DeepSeek-Math-7B, and applied Temporal Sampling.
Results are shown in Table 12. The results confirm that Temporal Sampling provides consistent gains on non-

Qwen models.

19

Under review as a conference paper at ICLR 2026

Table 12: Performance of Temporal Sampling on DeepSeek-Math-7B model after RL. We show that Temporal
Sampling provides consistent gains on this model.

Method Task Pass@k

@1 @2 @4 @8 @l6 @32 @64
Final Checkpoint AIME25 04 08 1.6 28 46 6.3 6.7
Temporal Sampling (t=8) AIME25 0.4 1.0 1.7 33 59 99 148
Final Checkpoint AIME24 1.1 22 40 66 99 133 167
Temporal Sampling (t=8) AIME24 1.1 2.1 39 67 100 137 18.6
Final Checkpoint AMC 17.1 254 349 453 557 639 70.0

Temporal Sampling (t=8) AMC 17.1 263 369 48.6 599 704 798

20

	Introduction
	Temporal Forgetting: Correct Answers Emerge and Vanish in Training
	Overall Performance Score cannot Tell Everything
	Temporal Forgetting

	Temporal Sampling: Scaling Inference Compute over Checkpoints
	Temporal Sampling
	Metric Pass@k|t
	Experiment Setup
	Temporal Sampling Achieves Higher Sampling Performance
	Temporal Sampling Improves Performance of Inference-Time Scaling
	More Ablations

	Conclusion and Future Work
	LLM Use Statement
	Related Work
	Limitations and Broader Impacts
	Proof of Unbiased Estimation
	Experiment Setup
	GRPO
	Supervised Fine-tuning

	More Experiment results
	Temporal Sampling for Best-of-N
	More Results of Temporal Forgetting
	More Results of Forgetting Dynamics
	Ablation on Checkpoint Selection of Temporal Sampling
	Ablation on Non-Qwen-based models

