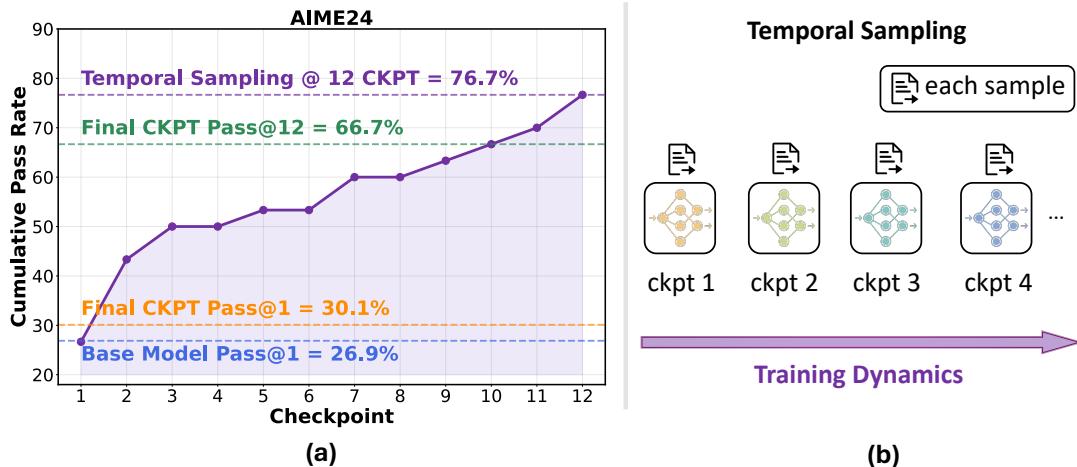


000 TEMPORAL SAMPLING FOR FORGOTTEN REASONING IN 001 LLMs 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006

007 ABSTRACT 008

009
010 Fine-tuning large language models (LLMs) is intended to improve their reasoning capabilities,
011 yet we uncover a counterintuitive effect: models often forget how to solve problems they pre-
012 viously answered correctly during training. We term this phenomenon *Temporal Forgetting* and
013 show that it is widespread across model sizes, fine-tuning methods (both Reinforcement Learn-
014 ing and Supervised Fine-Tuning), and multiple reasoning benchmarks. Our analysis reveals on
015 average more than 20 % of final errors were once solved correctly at an earlier checkpoint. In-
016 spired by the phenomenon of Temporal Forgetting, we proposed *Temporal Sampling*, a simple
017 decoding strategy that draws outputs from multiple checkpoints along the training trajectory.
018 This approach recovers forgotten solutions and leads to significant improvements in reasoning
019 performance than final-ckpt-sampling only, gains from 4 to 19 points in Pass@ k and consist-
020 ent gains for majority-voting and Best-of-N across several benchmarks. Temporal sampling
021 also outperforms strong baselines such as model merging. By leveraging the temporal diver-
022 sity inherent in training, Temporal Sampling offers a practical, compute-efficient way to surface
023 hidden reasoning ability and rethink how we evaluate LLMs.
024



039 Figure 1: (a) We observed that during RL training process of Deepseek-R1-1.5B model, 76.7% of AIME problems
040 were solved correctly at least once by *some* intermediate checkpoint, yet only 30% remained correct in the *final*
041 model. This indicates that many problems answered correctly during training were ultimately incorrect in the
042 final checkpoint. We term this phenomenon as **Temporal Forgetting**. (b) We proposed **Temporal Sampling**:
043 This method utilizes training dynamics as a source of answer diversity by distributing inference samples across
044 multiple distinct checkpoints from the training trajectory, rather than relying solely on the single final checkpoint.
045

046 1 INTRODUCTION

047 Fine-tuning large language models (LLMs) is expected to improve their reasoning ability Luo et al. (2025);
048 DeepSeek-AI et al. (2025); Zeng et al. (2025); Muennighoff et al. (2025); NovaSky (2025); Jin et al. (2025).
049 Yet, we uncover a surprising phenomenon: *models often forget how to solve problems they previously solved*
050 *correctly during fine-tuning*. We refer to this systematic behavior as *Temporal Forgetting*.

051 Temporal Forgetting is not rare or model-specific. To quantify this phenomenon, we introduce a new metric:
052 the Temporal Forgetting Score ($PTFS$). $PTFS$ captures the percentage of questions in the benchmark that were
053 answered correctly by *some* checkpoint during RL/ SFT but were ultimately answered incorrectly by the *final*
054 checkpoint. Across Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) fine-tuning Shao et al.
055 (2024a); DeepSeek-AI et al. (2025); Zeng et al. (2025) of Qwen2.5 models (1.5B and 7B) on multiple reasoning
056 benchmarks (AIME, AMC, OlympiadBench He et al. (2024), MATH-500 Hendrycks et al. (2021a), GPQA Rein
057 et al. (2024)), we find that on average more than 20% of final errors were once solved correctly at an earlier
058 checkpoint. This pattern persists across different model sizes, architectures, and training approaches.

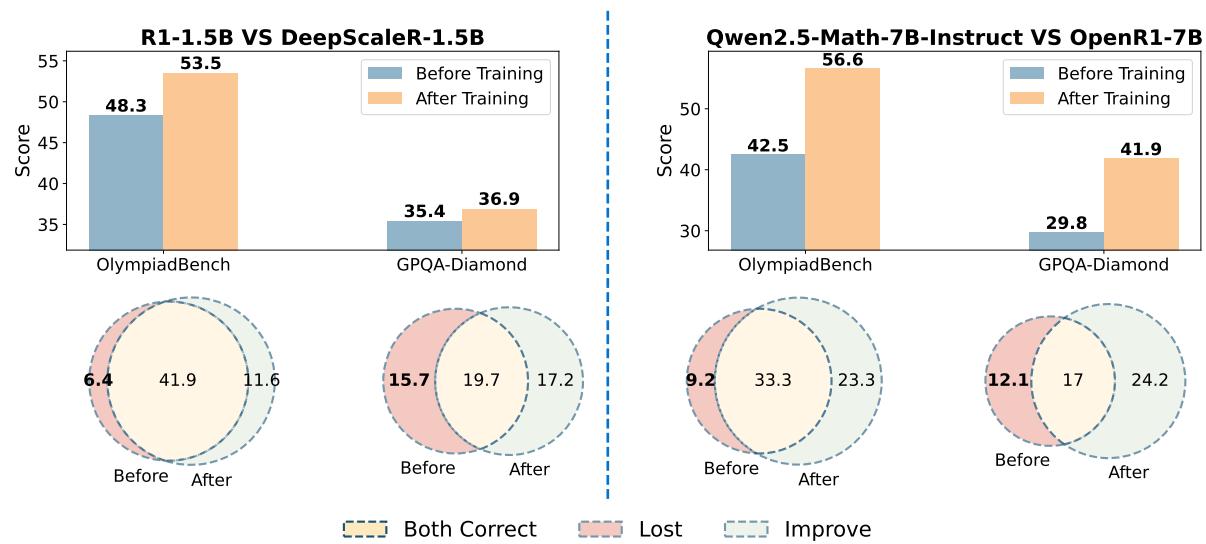


Figure 2: Fine-tuned models like DeepscaleR-1.5B [Luo et al. \(2025\)](#) and OpenR1-7B [Face \(2025\)](#) outperform the base model overall but also forget many questions the base model answered correctly.

This metrics highlight a fundamental limitation in current evaluation methodologies. Standard metrics like Pass@ k [Chen et al. \(2021\)](#) and Majority@ k [Wang et al. \(2023b\)](#), computed only on the final model, implicitly assume that checkpoint to be the model’s most capable state. However, our findings reveal that many correct reasoning paths are transient, making final-checkpoint-only evaluation a narrow and often misleading lens. The significant Temporal Forgetting Score suggests that the reasoning potential of fine-tuned models are substantially underestimated when using only the final checkpoint.

Inspired by this, we proposed *Temporal Sampling*, a simple decoding strategy that samples completions across multiple checkpoints rather than just the final one, which is shown in Figure 1 (b). By spreading the sample budget across time, Temporal Sampling recovers forgotten solutions without retraining or ensembling. Temporal Sampling yields substantial improvements across diverse reasoning tasks. On benchmarks such as AIME2024, AMC, and AIME2025, we observe gains from 4 to 19 points in Pass@ k compared to final-checkpoint-only sampling, and consistent improvements in Majority@ k and Best-of-N.

These findings suggest that true model competence may not reside in a single parameter snapshot, but rather in the collective dynamics of training itself. Temporal Sampling offers a practical and powerful way to reclaim lost reasoning ability, challenging the standard paradigm of using only the final model checkpoint for evaluation and deployment.

2 TEMPORAL FORGETTING: CORRECT ANSWERS EMERGE AND VANISH IN TRAINING

2.1 OVERALL PERFORMANCE SCORE CANNOT TELL EVERYTHING

To understand how RL or SFT alters a model’s ability to correctly answer reasoning problems, we investigate instances where base models succeeded on questions but failed after fine-tuning. To quantify this, we introduce the **Lost Score**:

- P_{Lost} (**Lost Score**): The percentage of questions in a benchmark that were answered correctly by the base model but incorrectly by the model after fine-tuning.

This score specifically highlights the phenomenon where a model, despite any overall performance changes after fine-tuning, loses its correctness on certain problems it previously solved correctly. Note that overall performance scores cannot capture the statistical pattern reflected by P_{Lost} .

Experiment Setup. We consider various existing SOTA model such as DeepScaleR-1.5B [Luo et al. \(2025\)](#), OpenR1-7B [Face \(2025\)](#) and S1-32B [Muennighoff et al. \(2025\)](#). Please see Appendix F.2 for the full list of evaluated models and their base models. We calculate the overall performance of various SOTA models after fine-tuning (denoted P_{FT}), the performance of their corresponding base model (denoted P_{Base}), and our proposed Lost Score (P_{Lost}). These evaluations were conducted on the OlympiadBench [He et al. \(2024\)](#), MATH-500 [Hendrycks et al. \(2021b\)](#), and GPQA [Rein et al. \(2024\)](#) benchmarks. We excluded AIME2024 and AMC2023 from this particular analysis because the number of questions available in these datasets was insufficient for a meaningful comparison.

116 To minimize variability arising from different sampling methods during evaluation, we employ greedy sampling
 117 following [Wei et al. \(2022\)](#).
 118

120 Table 1: Performance of the base model ($P_{\text{Base}} \uparrow$), the fine-tuned model ($P_{\text{FT}} \uparrow$) and the Lost Score ($P_{\text{Lost}} \downarrow$) for
 121 different SOTA models. We observed that in spite of the improvement of overall performance, the average P_{Lost}
 122 ranges from 6.1 to 16.0, which implies a high percentage of questions answered correctly by the base model is an-
 123 swered incorrectly after RL or SFT. To minimize variability caused by random fluctuations in model performance
 124 from diverse sampling, we employed greedy sampling following [Wei et al. \(2022\)](#). Please see Appendix F.2 for
 125 more training details of each model.

Model	OlympiadBench			MATH-500			GPQA-Diamond			Avg. P_{Lost}
	P_{Base}	P_{FT}	P_{Lost}	P_{Base}	P_{FT}	P_{Lost}	P_{Base}	P_{FT}	P_{Lost}	
DeepScaleR-1.5B Luo et al. (2025)	48.3	53.5	6.4	82.0	89.8	2.4	35.4	36.9	15.7	8.2
Still-1.5B Team (2025b)	48.3	48.4	8.6	82.0	83.8	5.0	35.4	34.8	17.2	10.3
S1.1-1.5B Muennighoff et al. (2025)	18.7	11.7	11.1	46.2	37.6	19.2	23.2	16.2	17.7	16.0
II-thought-1.5B Internet (2025)	48.3	58.4	5.3	82.0	88.0	3.4	35.4	34.3	16.7	8.5
S1.1-3B Muennighoff et al. (2025)	29.8	24.7	12.4	65.0	64.8	10.2	32.8	30.3	18.7	13.8
SmallThinker-3B	29.8	38.2	6.2	65.0	69.2	9.8	32.8	28.3	21.7	12.6
S1.1-7B Muennighoff et al. (2025)	40.4	42.2	10.5	76.0	76.8	7.8	32.8	41.4	15.2	11.2
OpenR1-Qwen-7B Face (2025)	42.5	56.6	9.2	83.0	89.8	3.8	29.8	41.9	12.1	8.4
OpenThinker-7B Team (2025a)	40.4	48.7	8.1	76.0	85.0	4.2	32.8	43.9	13.6	8.6
S1-32B Muennighoff et al. (2025)	49.8	60.1	4.3	81.6	89.6	3.2	43.9	55.1	13.1	6.9
Sky-T1-32B-Preview NovaSky (2025)	49.8	58.4	4.6	81.6	88.2	3.0	43.9	53.0	11.1	6.2
Bespoke-Stratos-32B	49.8	54.2	7.1	81.6	89.2	3.0	43.9	57.6	8.1	6.1
OpenThinker-32B Team (2025a)	49.8	61.2	8.0	81.6	91.4	2.8	43.9	59.1	11.1	7.3

144 **Results.** Figure 2 demonstrates that although OpenR1-7B improves OlympiadBench performance from 42.5 to
 145 56.6, a notable percentage of questions ($P_{\text{Lost}} = 9.2$) were correctly solved by the base model but incorrectly
 146 by the fine-tuned model. In Table 1, we present a comprehensive analysis of various SOTA models. We found
 147 that P_{Lost} could range from 6.1 to 16.0 points, with the average of 9.5 points. This implies that there are a
 148 considerable number of questions answered correctly by the base model but incorrectly after RL or SFT, in spite
 149 of the improvement of overall performance. Additionally, we demonstrate more experiments results regarding
 150 different sampling methods for various SOTA models, detailed results of which are included in Appendix F.2.

151 **Takeaway 1: Overall Performance Score Cannot Tell Everything**

152 In spite of the improvement of overall performance, a considerable percentage of questions (from 6.1% to
 153 16%) answered correctly by the base model may be answered incorrectly after RL/SFT.

156 2.2 TEMPORAL FORGETTING

158 To investigate how answer correctness evolves during post-training, we conducted SFT and RL on various base
 159 models, evaluating checkpoints at different training steps. We introduce two metrics to quantify the temporal
 160 dynamics: the **Ever Correct Score** and the **Temporal Forgetting Score**:

162 • P_{ECS} (**Ever Correct Score**): The percentage of questions in the benchmark that were answered correctly
 163 by *at least one* checkpoint saved during RL/SFT.

164 • P_{TFS} (**Temporal Forgetting Score**): The percentage of questions in the benchmark that were answered
 165 correctly at least once by *some* checkpoint during RL/SFT but were ultimately answered incorrectly by
 166 the final checkpoint. Mathematically, $P_{\text{TFS}} = P_{\text{ECS}} - P_{\text{FT}}$, where P_{FT} is the performance score of
 167 the fine-tuned model.

168 Furthermore, to characterize how answer correctness changes between consecutive checkpoints, we define specific
 169 events: an answer is considered to “Forget” if it shifts from correct to incorrect, and “Improve” if it transitions
 170 from incorrect to correct. If the answer’s correctness status (either correct or incorrect) remains unchanged across
 171 two consecutive checkpoints, it is labeled as “Both Correct/Wrong.”

173 **Experiment Setup.** We performed GRPO [Shao et al. \(2024b\)](#) on the Qwen2.5-7B, Qwen2.5-1.5B, and Qwen2.5-
 Math-7B models [Yang et al. \(2024a;b\)](#). The training data consisted of 4k samples randomly selected from the

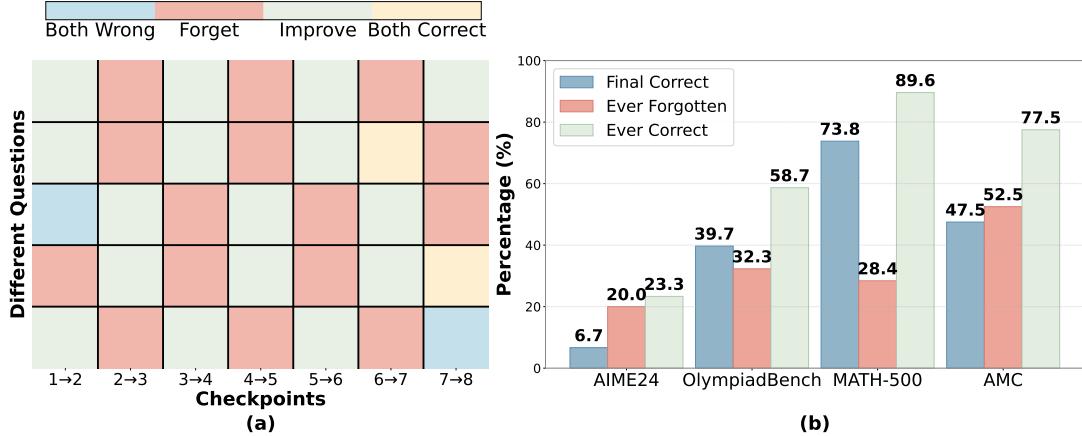


Figure 3: Forgetting dynamics of Qwen2.5-7B during RL training. (a) Answer correctness trajectories for OlympiadBench questions across training checkpoints, illustrating solutions oscillate between correct and incorrect states. "Forget" implies that an answer was correct at the previous checkpoint but incorrect at the current one. Conversely, "Improve" implies that an answer that was incorrect at the previous checkpoint but correct at the current one. (b) Percentage of questions per benchmark that are ever forgotten or ever correct at some checkpoint during GRPO.

Table 2: Performance of fine-tuned models ($P_{FT} \uparrow$), the Ever Correct Score ($P_{ECS} \uparrow$), and the Temporal Forgetting Score ($P_{TFS} \downarrow$) of different models after GRPO or SFT. We observed both high P_{ECS} and P_{TFS} , which implies a high percentage of questions (more than 20% on average) are answered correctly at some checkpoint during training but are ultimately incorrect in the final checkpoint. Please see the base model performance and more benchmark results in Appendix F.3.

Model	OlympiadBench			MATH-500			GPQA-Diamond			Avg. P_{TFS}
	P_{FT}	P_{ECS}	P_{TFS}	P_{FT}	P_{ECS}	P_{TFS}	P_{FT}	P_{ECS}	P_{TFS}	
Qwen2.5-7B (GRPO)	39.7	58.7	19.0	73.8	89.6	15.8	33.8	74.7	40.9	25.2
Qwen2.5-7B (SFT)	40.1	55.8	15.7	69.8	86.6	16.8	25.3	81.4	56.1	29.5
Qwen2.5-1.5B (GRPO)	18.8	36.1	17.3	55.6	73.0	17.4	26.8	72.3	45.5	26.7
Qwen2.5-1.5B (SFT)	11.0	26.0	15.0	36.2	66.0	29.8	13.1	65.1	52.0	32.3
Qwen2.5-Math-7B (GRPO)	41.0	57.3	16.3	79.8	86.2	6.4	32.8	71.7	38.9	20.5
Qwen2.5-Math-7B (SFT)	43.9	62.9	19.0	76.4	90.4	14.2	30.8	79.8	49.0	27.4

DeepscaleR-40k dataset [Luo et al. \(2025\)](#). Throughout the training of each model, we saved 8 checkpoints. We set the RL training parameters following [Luo et al. \(2025\)](#), and detailed training script parameters can be found in Appendix E. For SFT, we utilized the same DeepscaleR-4k sampled data. We then employed QwQ-Preview-32B [Qwen Team \(2024\)](#) for rejection sampling to obtain correct responses [Dong et al. \(2023\)](#), subsequently fine-tuning each model on this curated dataset. We evaluated the performance of various checkpoints from the training process on five benchmarks: AIME24, AMC, MATH-500, OlympiadBench, and GPQA-Diamond. To minimize variability caused by random fluctuations in model performance from diverse sampling, we employed greedy sampling following [Wei et al. \(2022\)](#).

Results. In Figure 3 (a), we illustrate the correctness of answers to different OlympiadBench questions at various checkpoints during the RL training of Qwen2.5-7B. Figure 3 (a) demonstrates the phenomenon of **Forgetting Dynamics**: Questions exhibits alternating "Improve" and "Forget" events frequently during training, which means the model oscillates between correct and incorrect answers across checkpoints. In Figure 3 (b), we show the percentage of questions across different benchmarks that experienced the "Forget" event could achieve up to 32.3% in OlympiadBench and 52.5% in AMC.

Table 3: Temporal Forgetting on TheoremQA ([Chen et al., 2023](#)), a free-form QA dataset with 800 questions spanning diverse natural science domains. The model must generate full reasoning traces and answers without selecting from pre-defined options. This demonstrates that the temporal forgetting phenomenon persists beyond multiple-choice settings of GPQA-D.

Model	TheoremQA			
	P_{Base}	P_{FT}	P_{ECS}	P_{TFS}
Qwen2.5-7B (GRPO)	36	37.4	59.3	21.9
Qwen2.5-Math-7B (GRPO)	35.8	37.1	57.5	20.4

232 Table 2 presents the Ever Correct Score P_{ECS} and
 233 Temporal Forgetting Score P_{TFS} of different models after RL or SFT. We observed that a substantial number
 234 of questions were correctly answered at some checkpoint during the training process but were answered incor-
 235 rectly by the final checkpoint (measured by a significantly high P_{TFS}). Surprisingly, we found that P_{TFS} ranges
 236 from 6.4% to 56.1%, with average as high as 25 points. This implies that, on average, up to 25% of the questions
 237 in a benchmark were correctly solved by the model at some checkpoint during training but were incorrect in the
 238 final output. Please see Appendix F.3 for base model performance and more benchmark results including AIME24
 239 and AMC.

240 We further evaluate models on TheoremQA (Chen et al., 2023), which is a free-form QA dataset with 800 ques-
 241 tions spanning diverse natural science domains. The model must generate full reasoning traces and answers
 242 without selecting from pre-defined options. We report results of P_{ECS} and P_{TFS} for RL models on TheoremQA.
 243 Notably, over 20% of questions exhibit temporal forgetting, i.e., they were answered correctly by an earlier check-
 244 point but incorrectly by the final checkpoint. This demonstrates that the temporal forgetting phenomenon persists
 245 beyond multiple-choice settings of GPQA-D.

246 **Takeaway 2: Temporal Forgetting**

248 Benchmark questions may oscillate between correct and incorrect states across checkpoints during RL/
 249 SFT. A considerable percentage of questions (more than 20% on average) are answered correctly at least
 250 once by some checkpoint during training but are ultimately incorrect in the final checkpoint.

252 **Comparison with Catastrophic Forgetting.**

254 Catastrophic Forgetting (Luo et al., 2023) focuses on cross-domain degradation, while Temporal Forgetting in our
 255 work refers to in-domain degradation over time. Thus, the underlying problem formulations may differ in these
 256 two phenomenon. Additionally, in contrast to Catastrophic Forgetting where overall performance drops markedly,
 257 Temporal Forgetting focuses on changes in correctness at the individual question level, in spite of the improvement
 258 of overall performance. Thus temporal forgetting cannot be directly captured by the overall performance score
 259 only.

260 **3 TEMPORAL SAMPLING: SCALING INFERENCE COMPUTE OVER CHECKPOINTS**

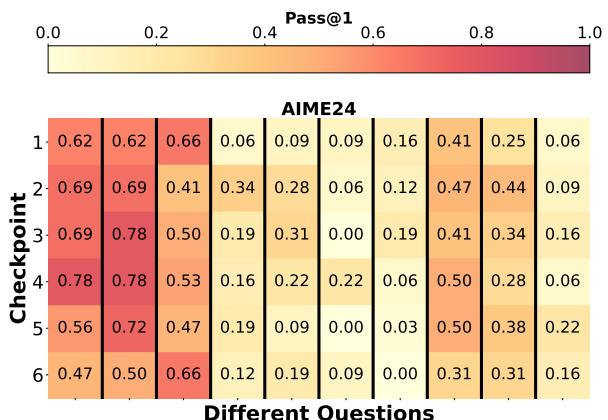
263 **3.1 TEMPORAL SAMPLING**

265 Inspired by the observed learning and forgetting dynamics during model training, we propose **Temporal Sam-
 266 pling**. Temporal Sampling utilizes the evolving state of the model across different training checkpoints as a source
 267 of diversity for answer generation at inference time. Specifically, instead of relying solely on the final checkpoint,
 268 k samples are generated by allocating the sampling budget across t distinct training checkpoints according to a
 269 chosen distribution strategy.

270 Temporal Sampling typically selects the t most recent
 271 available checkpoints, which are then ordered from
 272 latest (e.g., the final checkpoint) to the t -th latest.
 273 While various methods can be employed to distribute
 274 the k sampling attempts among these checkpoints, this
 275 paper primarily focuses on a round-robin allocation.
 276 In this approach, sampling commences with the lat-
 277 est checkpoint for the first sample, the next latest for
 278 the second, and so on, cycling through the ordered se-
 279 quence. This procedure defaults to conventional sam-
 280 pling (from only the final checkpoint) when $t = 1$.
 281 Please see more experiment results in Appendix F.4
 282 for choosing checkpoints in different orders.

283 **3.2 METRIC $Pass@k|t$**

285 To better measure the performance of Temporal Sam-
 286 pling, we introduce a new metric, $Pass@k|t$. This
 287 metric is defined as the probability of obtaining at least
 288 one correct answer when k samples are drawn from t
 289 checkpoints. Although samples may be drawn in various ways, in what follows we adopt a round-robin manner:
 we first give the formal definition of $Pass@k|t$ under this distribution way and then derive the unbiased estimator.



283 Figure 4: Pass rate distribution across training check-
 284 points on AIME24. Individual problems show varying
 285 pass rates over time. Temporal Sampling exploits these
 286 dynamics to improve answer diversity at inference.

290 **Definition.** Let $r_{i,j}$ denote the *Pass@1* rate (i.e., the probability of correctness with a single sample) for the j -th
 291 checkpoint on the i -th problem. We define
 292

$$293 \quad Pass@k|t = \mathbb{E}_i \left\{ 1 - \prod_{j=1}^t (1 - r_{i,j})^{k_j} \right\}$$

$$294$$

$$295$$

296 where $\sum_j k_j = k$ and $\{k_j\}$ is the *Balanced Integer Partition* of k on t [Andrews & Eriksson \(2004\)](#):

$$297$$

$$298 \quad k_j = \begin{cases} \lfloor k/t \rfloor + 1 & \text{if } j \leq (k \pmod t) \\ \lfloor k/t \rfloor & \text{if } j > (k \pmod t) \end{cases}$$

$$299$$

$$300$$

301 Note that if $t = 1$, this reduces to the standard definition of *Pass@k* [Chen et al. \(2021\)](#).

$$302$$

303 **Unbiased Estimation.** We provide an unbiased estimator for $Pass@k|t$. Let N be the total number of candidate
 304 samples generated for evaluation from each checkpoint j on a problem i . Let $C_{i,j}$ be the number of correct
 305 samples among these N candidates for problem i from checkpoint j . The unbiased estimation can be expressed
 306 as:

$$307 \quad Pass@k|t = \mathbb{E}_i \left\{ 1 - \prod_{j=1}^t \left(\frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right) \right\}$$

$$308$$

309 The proof of this estimator's unbiased nature is provided in [Appendix D](#).

$$310$$

311 3.3 EXPERIMENT SETUP

$$312$$

313 To evaluate the efficacy of Temporal Sampling, we conducted experiments on benchmarks including AIME2024,
 314 AMC2023, and AIME2025. We utilized GRPO to fine-tune the Qwen-7B-Base model on the DeepScaleR-4k
 315 dataset, following the training settings detailed in [Luo et al. \(2025\)](#). For each problem, we generated 64 responses
 316 using diverse sampling with a temperature of 0.6, top-p of 0.95, and a maximum token length of 16384 [Yue et al.](#)
 317 [\(2025\)](#).

318 We saved 8 checkpoints during the RL training phase, which constituted the checkpoint pool for our Temporal
 319 Sampling. As baselines, we considered the standard *Pass@k* [Chen et al. \(2021\)](#) and *Maj@k* (self-consistency,
 320 also known as majority voting) [Wang et al. \(2023a\)](#). For *Maj@k*, we followed the Majority Voting [Wang et al.](#)
 321 [\(2023a\)](#) by generating k samples and selecting the most frequent answer as the final model output. We denote our
 322 Temporal Sampling variants as $Pass@k|t$ and $Maj@k|t$. For Best-of-N (BoN) sampling, we follow [Snell et al.](#)
 323 [\(2024b\)](#) and select answers with the highest score given by the reward model as the final output. When $t = 1$,
 324 $Pass@k|t$ $Maj@k|t$, and BoN with temporal sampling are equivalent to the baseline settings that samples only on
 325 the final checkpoint.

$$326$$

327 3.4 TEMPORAL SAMPLING ACHIEVES HIGHER SAMPLING PERFORMANCE

$$328$$

329 Figure 5 demonstrates that Temporal Sampling achieves higher sampling performance (as measured by $Pass@k|t$)
 330 compared to the baseline of sampling only on the final checkpoint, under identical computational budgets. These
 331 advantages are consistently observed across the AIME2024, AIME2025, and AMC benchmarks. For instance
 332 $Pass@k|8$ of Qwen2.5-7B results in a pass rate that is over 19 percentage points higher than that of sampling
 333 only on the final checkpoint on AIME24 when $k = 64$. The enhanced efficiency of Temporal Sampling is further
 334 highlighted by its ability to reach a 22.5% pass rate with only $k = 5$ samples, a level that requires $k = 64$ samples
 335 for $t = 1$.

336 **Takeaway 3: Improvement of Sampling Performance**

337 Temporal Sampling has higher pass rates than sampling only on the final checkpoint.

$$338$$

339 3.5 TEMPORAL SAMPLING IMPROVES PERFORMANCE OF INFERENCE-TIME SCALING

$$340$$

341 Figure 6 demonstrates that Temporal Sampling markedly enhances the performance of majority voting (measured
 342 by $Maj@k|t$). Across the AIME2024, AIME2025, and AMC benchmarks, employing a greater number of check-
 343 points (t) within the Temporal Sampling framework leads to improved accuracy compared to the baseline $Maj@k$
 344 only sampling on the final checkpoint under identical computational budgets. Specifically, at $k = 64$, $Maj@k|8$
 345 achieves an accuracy exceeding 21, substantially outperforming the 13% accuracy of the baseline.

346 Figure 7 demonstrates the effectiveness of Temporal Sampling when combined with Best-of-N (BoN) decoding
 347 on the AIME2024, AMC, and AIME2025 benchmarks. We use Qwen2.5-Math-PRM-72B following [Zhang et al.](#)
 348 [\(2025\)](#) as the process reward model. The results clearly show that Temporal Sampling with $t = 8$ checkpoints

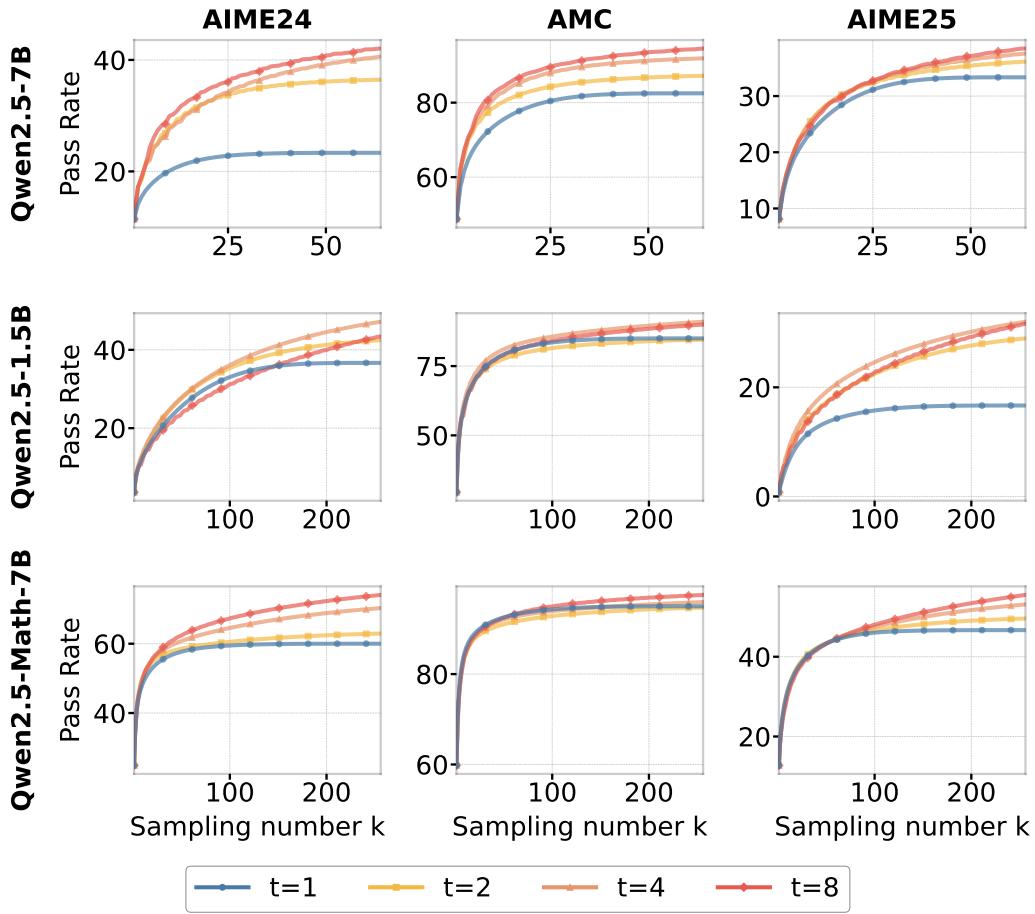


Figure 5: Pass@ k for different numbers of checkpoints t on the AIME2024, AMC, and AIME2025 benchmarks when using Temporal Sampling. The case $t = 1$ represents the baseline of standard $Pass@k$ sampling on the final checkpoint. Our proposed Temporal Sampling for Qwen2.5-7B with $t = 8$ outperforms the baseline by more than 19, 13, and 4 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

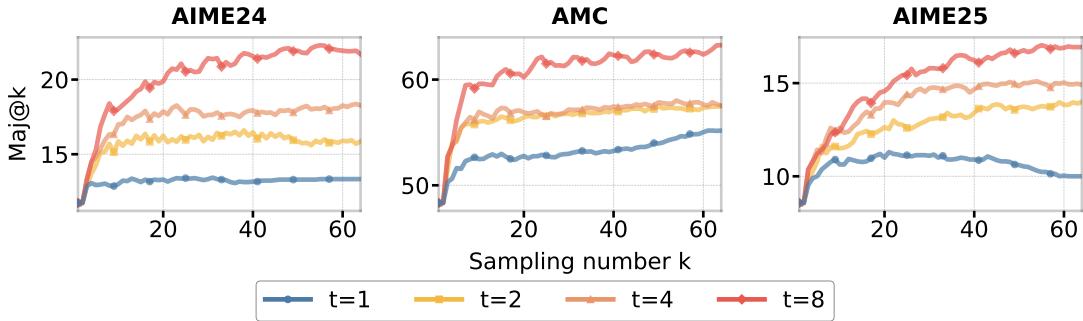


Figure 6: Maj@ k (Majority voting) for different numbers of checkpoints t on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. The case $t = 1$ represents the baseline of standard majority voting sampling on the final checkpoint. Our proposed Temporal Sampling with $t = 8$ checkpoints outperforms the baseline by more than 8, 7, and 7 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

significantly outperforms the baseline ($t = 1$), achieving improvements of more than 7, 8, and 1 percentage points across the three benchmarks when sampling $k = 64$ responses. We present more results of Best-of-N sampling with different reward models in Appendix F.1.

Takeaway 4: Improvement of Test-Time Scaling Performance

Temporal Sampling has better test-time scaling performance than sampling only on the final checkpoint.

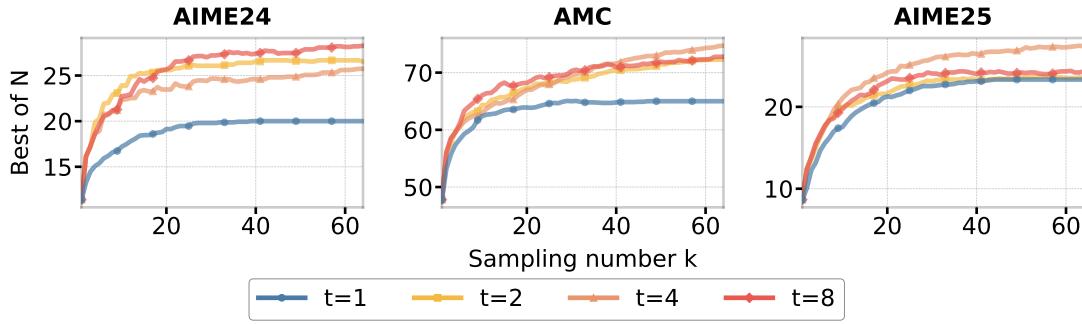


Figure 7: Best-of-N decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. The case $t = 1$ represents the baseline of standard BoN sampling on the final checkpoint. Our proposed Temporal Sampling with $t = 8$ checkpoints outperforms the baseline by more than 7, 8, and 1 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

Table 4: Temporal Sampling V.S. Model Merge on AIME24, AIME25 and AMC. We observed that temporal sampling consistently outperforms checkpoint merging across all benchmarks, particularly at larger sampling sizes (pass@64 and maj@64). When $t = 4$ and $k = 64$, temporal sampling exceeds checkpoint merging by 10.7, 9.5, and 7.6 on AIME2024, AMC, and AIME2025, respectively.

Method	Task	t	Pass@k					Maj@k				
			@4	@8	@16	@32	@64	@4	@8	@16	@32	@64
Merge	AIME24	2	17.6	21.4	25.2	28.4	29.8	12.2	13.0	13.5	13.6	13.5
Temporal Sampling	AIME24	2	21.7	26.5	31.3	34.9	36.5	13.3	14.9	15.3	15.8	16.0
Merge	AMC	2	68.4	74.9	79.4	81.8	82.4	53.0	54.0	55.0	55.8	56.9
Temporal Sampling	AMC	2	70.1	76.6	81.7	85.4	87.2	54.4	55.7	56.4	56.9	57.1
Merge	AIME25	2	16.6	22.1	26.6	29.1	29.9	7.7	8.4	9.5	10.3	11.2
Temporal Sampling	AIME25	2	18.7	24.5	29.7	33.5	36.1	10.7	11.5	12.4	13.3	13.6
Merge	AIME24	4	19.2	23.5	27.0	29.1	29.9	13.4	14.2	15.3	15.2	14.9
Temporal Sampling	AIME24	4	21.3	25.9	30.9	36.3	40.6	13.8	15.8	16.8	17.6	18.3
Merge	AMC	4	67.9	74.4	79.2	81.7	82.4	53.7	55.1	55.5	55.1	52.5
Temporal Sampling	AMC	4	70.6	78.4	84.9	89.5	91.9	54.2	56.4	56.9	57.4	57.1
Merge	AIME25	4	19.7	24.6	28.3	29.8	30.0	9.9	10.9	11.2	12.7	13.5
Temporal Sampling	AIME25	4	18.4	24.3	29.7	34.2	37.6	10.5	12.2	13.3	14.0	14.5

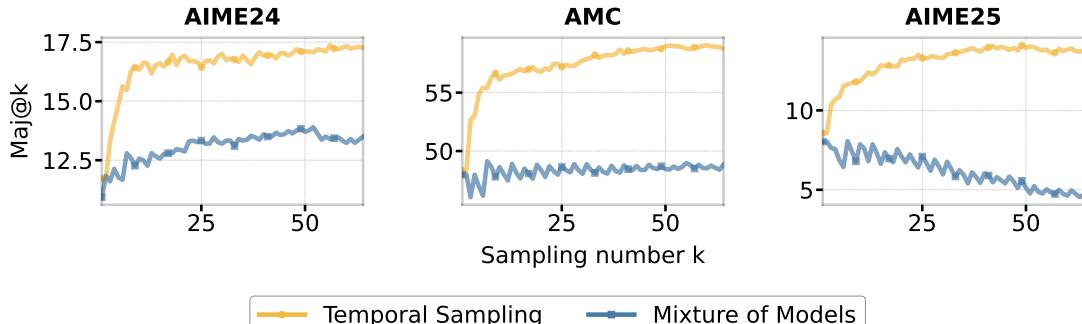


Figure 8: Maj@ k comparison between Temporal Sampling ($t = 3$) and a Mixture of Models (MoM) approach on the AIME2024, AMC, and AIME2025 benchmarks. For MoM, the model pool included the Qwen2.5-7B-Base final RL checkpoint, Deepseek-Math-7B-Instruct, and Llama-3.1-8B-Instruct. Temporal Sampling outperforms the MoM approach by more than 4, 9, and 9 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

464 3.6 MORE ABLATIONS
465

466 **Comparison with Model Merge.** We merged the last t checkpoints of training to form a single model and
467 compared it against temporal sampling over the same t checkpoints. As shown in Table 4, temporal sampling con-
468 sistently outperforms checkpoint merging across all benchmarks (AIME2024, AMC, AIME2025), particularly at
469 larger sampling sizes (pass@64 and maj@64). For example, when $t = 4$: on pass@64, temporal sampling exceeds
470 checkpoint merging by 10.7, 9.5, and 7.6 on AIME2024, AMC, and AIME2025, respectively. On maj@64, the
471 gains are 3.4, 4.6, and 1.0, respectively. These results suggest that sampling diverse responses from temporally
472 spaced checkpoints yields greater performance than simply averaging weights.

473 **Comparison with Mixture of Models (MoM).** We evaluate our proposed Temporal Sampling against the Mixture
474 of Models, which combines outputs from different foundation models to answer each question collaboratively. To
475 compare sampling efficiencies, we construct a model pool containing three models: our RL-trained final check-
476 point (Qwen2.5-7B-Base), Llama 3.1-8B, and DeepSeek-Math-7B-Instruct. We apply Temporal Sampling (with
477 $t = 3$) and the mixture strategy by sampling in a round-robin manner over the pool, then measure the majority
478 voting performance Maj@ k . As shown in Figure 8, Temporal Sampling achieves higher sampling performance
479 than the mixture of models under the same computational budget. At Maj@64, Temporal Sampling outperforms
480 the mixture approach by over 4, 9, and 9 points on the AIME24, AMC, and AIME25 benchmarks, respectively.

481 **Ablation on Different Models** We trained an RL
482 model using a non-Qwen-based DeepSeek-Math-7B,
483 and applied Temporal Sampling. We show that Tem-
484 poral Sampling provides consistent gains on non-
485 Qwen models. Please see Appendix F.5 for more in-
486 formation.

487 **Latency Overheads of Temporal Sampling.** We
488 show that reasonably allocating GPU resources could
489 make the latency overheads of temporal sampling sim-
490 ilar with that of sampling on final CKPT. We use a
491 total of 64 samples per question, 4 A100 GPUs and
492 conduct the following experiments on the 7B model.
493 We run each setting for three times and measure end-
494 to-end latency (in seconds):

495 (1) Sampling on final checkpoint: 1 model with data
496 parallel on 4 GPUs
497 (2) Temporal Sampling with $t = 4$: 4 models on 4 GPUs without data parallel
498 (3) Temporal Sampling with $t = 8$: 8 models on 4 GPUs with 2 CKPT per GPU (50% GPU utilization).

500 As shown in the Table 5, most of time temporal sampling has the similar latency overheads than sampling only on
501 final CKPT and the maximum additional overheads is within 40 seconds.

502 4 CONCLUSION AND FUTURE WORK
503

505 In this paper, we observed the phenomenon of Temporal Forgetting: many correct solutions emerge transiently
506 during training but are absent in the final model. Our analysis of training trajectories revealed significant forgetting
507 dynamics, with model answers oscillating between correct and incorrect states across checkpoints. Inspired by
508 this phenomenon, we propose Temporal Sampling, a simple inference-time method that samples from multiple
509 training checkpoints to recover forgotten solutions. This approach consistently improves reasoning performance
510 by 4-19 points in Pass@ k across benchmarks.

511 These findings suggest that true model competence may not reside in a single parameter snapshot, but rather in
512 the collective dynamics of training itself. Temporal Sampling offers a practical and powerful way to reclaim lost
513 reasoning ability, challenging the standard paradigm of using only the final model checkpoint for evaluation and
514 deployment.

515 We will further explore several promising directions as future work. Firstly, further reduce the storage costs of
516 temporal scaling, particularly for reinforcement learning trajectories, such as RL LoRA fine-tuning. Secondly,
517 investigating methods to transfer the performance gains from $\text{Pass}@k|t$ to $\text{Pass}@1|1$ is a promising avenue.
518 Third, developing a more comprehensive theoretical framework for learning and forgetting dynamics could better
519 explain the observed Temporal Forgetting phenomena during model training.

520 521 Table 5: Comparison of latency overheads between tem-
522 poral forgetting and sampling on final CKPT.

Exp	Run	Latency (in seconds)		
		AIME24	AIME25	AMC
Final CKPT Sampling	1	404	327	332
	2	382	342	346
	3	377	292	341
	Avg	388	320	340
Temporal Sampling (t=4)	1	400	358	371
	2	385	349	358
	3	412	365	384
	Avg	399	357	371
Temporal Sampling (t=8)	1	431	367	356
	2	364	326	408
	3	389	380	375
	Avg	395	358	380

522 ETHICS STATEMENT
523

524 This work investigates LLM reasoning for math related tasks. It **does not** involve human subjects, user studies,
525 or the collection of personally identifiable information. All experiments are conducted on **publicly available**
526 benchmarks released under their respective licenses, which, to the best of our knowledge, do not contain sensitive
527 personal data.

528 REPRODUCIBLE STATEMENT
529

530 We will provide the code for our implementation, along with detailed instructions for executing the pipeline end-to-
531 end. The main paper and appendix document key implementation details, including hyperparameter configurations
532 used during fine-tuning and evaluation. After publication, we will release the full codebase in a public GitHub
533 repository and make our training models publicly available on the Hugging Face platform.
534

535 REFERENCES
536

537 George E Andrews and Kimmo Eriksson. *Integer partitions*. Cambridge University Press, 2004.
538

539 Juhani Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate unrolled
540 differentiation, 2024. URL <https://arxiv.org/abs/2405.12186>.

541 Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
542 open models, 2024. URL [https://huggingface.co/spaces/HuggingFaceH4/
543 blogpost-scaling-test-time-compute](https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute).

544 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri
545 Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on
546 code. *arXiv preprint arXiv:2107.03374*, 2021.

547 Wenhui Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony Xia.
548 TheoremQA: A theorem-driven question answering dataset. In *The 2023 Conference on Empirical Methods in
549 Natural Language Processing*, 2023.

550 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.

551 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
552 Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao,
553 Zhusu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang
554 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin,
555 Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
556 Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang,
557 Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
558 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
559 Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
560 Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi
561 Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
562 Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li,
563 Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia
564 Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
565 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
566 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun,
567 Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei,
568 Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
569 Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan
570 Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu,
571 Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
572 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
573 Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei
574 Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1:
575 Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

576 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng Zhang,
577 Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment,
578 2023. URL <https://arxiv.org/abs/2304.06767>.

580 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

581

582

583 Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang.

584 Alphazero-like tree-search can guide large language model decoding and training, 2023.

585

586 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-

587 jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challeng-

588 ing benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems, 2024. URL

589 <https://arxiv.org/abs/2402.14008>.

590

591 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob

592 Steinhardt. Measuring mathematical problem solving with the math dataset. In J. Vanschoren and S. Yeung

593 (eds.), *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*, vol-

594 ume 1, 2021a.

595

596 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob

597 Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b. URL <https://arxiv.org/abs/2103.03874>.

598

599 Shengyi Costa Huang and Arash Ahmadian. Putting rl back in rlhf. https://huggingface.co/blog/putting_rl_back_in_rlhf_with_rloo, June 12 2024. Hugging Face Blog.

600

601 Intelligent Internet. Ii-thought : A large-scale, high-quality reasoning dataset, 2025.

602

603 Mingyu Jin, Weidi Luo, Sitao Cheng, Xinyi Wang, Wenyue Hua, Ruixiang Tang, William Yang Wang, and

604 Yongfeng Zhang. Disentangling memory and reasoning ability in large language models, 2025. URL

605 <https://arxiv.org/abs/2411.13504>.

606

607 Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Qianyi Sun, Boxing Chen, Dong Li, Xu He, Quan He,

608 Feng Wen, et al. MindStar: Enhancing math reasoning in pre-trained llms at inference time. *arXiv preprint*

609 arXiv:2405.16265, 2024.

610

611 Maxim Khanov, Jirayu Burapachep, and Yixuan Li. ARGs: Alignment as reward-guided search. In *International*

612 *Conference on Learning Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=shgx0eqdw6>.

613

614 Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025.

615

616 Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can distort pretrained

617 features and underperform out-of-distribution, 2022. URL <https://arxiv.org/abs/2202.10054>.

618

619 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement learning for gen-

620 eralizable medical reasoning in vision-language models, 2025. URL <https://arxiv.org/abs/2503.13939>.

621

622 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester

623 James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D.

624 Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith,

625 Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model

626 post-training, 2024.

627

628 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin

629 Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-

630 preview with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8>

631

632 Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of catastrophic

633 forgetting in large language models during continual fine-tuning. *arXiv preprint arXiv:2308.08747*, 2023.

634

635 Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can predict if they can

636 do better, even mid-generation. *arXiv preprint arXiv:2410.02725*, 2024.

637

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,

638 Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

638 NovaSky. Sky-T1: Train your own o1 preview model within \$450, 2025. URL <https://novasky-ai.github.io/posts/sky-t1>. Accessed: 2025-01-09.

639

640

641 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

642

643 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

644

645

646

647 Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, 2024. URL <https://qwenlm.github.io/blog/qwq-32b-preview/>.

648

649

650 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL <https://arxiv.org/abs/2305.18290>.

651

652

653 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024.

654

655

656

657 Yi Ren and Danica J. Sutherland. Learning dynamics of llm finetuning, 2025. URL <https://arxiv.org/abs/2407.10490>.

658

659

660 Yi Ren, Shangmin Guo, Wonho Bae, and Danica J. Sutherland. How to prepare your task head for finetuning, 2023. URL <https://arxiv.org/abs/2302.05779>.

661

662 Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Accounting for inference in language model scaling laws. In *International Conference on Machine Learning (ICML)*, volume 235, pp. 43445–43460, 2024.

663

664

665 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

666

667

668 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. DeepSeekMath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024a.

669

670

671 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024b.

672

673

674 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv: 2409.19256*, 2024.

675

676

677 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024a.

678

679

680 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more effective than scaling model parameters, 2024b. URL <https://arxiv.org/abs/2408.03314>.

681

682 OpenThoughts Team. Open Thoughts. <https://open-thoughts.ai>, January 2025a.

683

684 RUCAIBox STILL Team. Still-3-1.5b-preview: Enhancing slow thinking abilities of small models through reinforcement learning. 2025b. URL https://github.com/RUCAIBox/Slow_Thinking_with_LLMS.

685

686 Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. AlphaZero-like tree-search can guide large language model decoding and training. In *International Conference on Machine Learning (ICML)*, volume 235, pp. 49890–49920, 2024.

687

688

689 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models, 2023a. URL <https://arxiv.org/abs/2203.11171>.

690

691

692 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *International Conference on Learning Representations (ICLR)*, 2023b. URL <https://openreview.net/forum?id=1PL1NIMMrw>.

693

694

695

696 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
 697 Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information pro-*
 698 *cessing systems*, 35:24824–24837, 2022.

700 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried, Gabriel
 701 Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via reinforcement learning on
 702 open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.

703 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An em-
 704 pirical analysis of compute-optimal inference for problem-solving with language models. *arXiv preprint*
 705 *arXiv:2408.00724*, 2024.

706 Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Xie. Self-
 707 evaluation guided beam search for reasoning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
 708 S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 41618–41650. Curran
 709 Associates, Inc., 2023.

710 Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and Xiaodan
 711 Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data. *arXiv preprint*
 712 *arXiv:2405.14333*, 2024.

713 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong Zhang, Caiming
 714 Xiong, and Hanze Dong. A minimalist approach to llm reasoning: from rejection sampling to reinforce, 2025.
 715 URL <https://arxiv.org/abs/2504.11343>.

716 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
 717 Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren
 718 Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang,
 719 Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
 720 Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.
 721 *arXiv preprint arXiv:2412.15115*, 2024a.

722 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jin-
 723 gren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and Zhenru
 724 Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement. *arXiv*
 725 *preprint arXiv:2409.12122*, 2024b.

726 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
 727 of thoughts: Deliberate problem solving with large language models. In *Advances in Neural Information*
 728 *Processing Systems (NeurIPS)*, volume 36, pp. 11809–11822, 2023.

729 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun
 730 Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang,
 731 Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai,
 732 Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao,
 733 Yonghui Wu, and Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025.
 734 URL <https://arxiv.org/abs/2503.14476>.

735 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement
 736 learning really incentivize reasoning capacity in llms beyond the base model? *arXiv preprint arXiv:2504.13837*,
 737 2025.

738 Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model and
 739 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient. <https://hkust-nlp.notion.site/simplerl-reason>, 2025. Notion Blog.

740 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou,
 741 and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. *arXiv preprint*
 742 *arXiv:2501.07301*, 2025.

743 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and Yongqiang Ma.
 744 Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meet-
 745 ing of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok, Thailand,
 746 2024. Association for Computational Linguistics. URL <http://arxiv.org/abs/2403.13372>.

747

754
755

A LLM USE STATEMENT

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
We use LLMs as general-purpose assist tools to check typos and grammar errors in writing.

B RELATED WORK

Reinforcement learning for LLM. Reinforcement Learning (RL) has rapidly become a cornerstone for extending the capabilities of LLMs across various applications. Although it was first employed to align model behavior with human preferences through approaches like Reinforcement Learning from Human Feedback (RLHF) Ouyang et al. (2022), its role now encompasses reasoning on complex tasks Kimi Team (2025); DeepSeek-AI (2025); Lambert et al. (2024). For example, DeepSeek-R1 applied RL directly to a base “zero” LLM DeepSeek-AI (2025), and Kimi K1.5 augmented this framework with multimodal reasoning and verbosity control Kimi Team (2025). In particular, Reinforcement Learning has gained traction in areas such as mathematics and programming, where reward signals can be defined by clear, rule-based criteria like answer matching Lambert et al. (2024); Shao et al. (2024b); Chen et al. (2021); DeepSeek-AI (2025); Feng et al. (2023); Snell et al. (2024a); Xie et al. (2023); Wan et al. (2024). Advances in optimization, such as specialized PPO variants (e.g., VinePPO Feng et al. (2023)) and stabilized GRPO algorithms (e.g., DAPO Yu et al. (2025)), have simplified reward design, making RL more practical. Our work shifts focus from static performance gains of RL to the evolution of answer correctness over the procedure of RL training. We harness these temporal fluctuations as the diversity source to increase inference-time performance.

Inference Time Scaling. Expanding the computational budget available during inference has become a powerful lever for squeezing extra performance out of large language models, giving rise to an ever-growing family of test-time scaling (TTS) techniques OpenAI (2024). The field has seen a variety of approaches to leverage this. Established techniques include sampling-driven methods like majority voting Wang et al. (2023b) or best-of-N Sardana et al. (2024), which generate many candidate answers and select the most persuasive one. More intricate are search-based algorithms such as Tree-of-Thoughts (ToT) explorations Yao et al. (2023) and Monte-Carlo tree search (MCTS) Xie et al. (2023); Khanov et al. (2024); Wan et al. (2024). Such approaches often build upon the development of sophisticated verifiers and may integrate process-based reward signals directly into search methods Kang et al. (2024); Wu et al. (2024); Snell et al. (2024a). To further enhance efficiency and adaptiveness, other techniques include self-evaluation mechanisms for judicious compute allocation Manvi et al. (2024) and diversity-aware search tactics, sometimes referred to as Test-Time Scaling (TTS) with diversity, to reduce redundant sampling and explore a wider solution space Beeching et al. (2024).

Learning Dynamics. Learning dynamics analyze model behavior during training, such as explaining “aha moments” DeepSeek-AI (2025), and challenges in fine-tuning generalization (e.g., Kumar et al. (2022); Ren et al. (2023)). These works focus on the training process itself and offer novel perspectives on how models learn and develop capabilities. Other research analyzes the step-wise decomposition of how influence accumulates among different potential responses for both instruction and preference tuning in LLMs Ren & Sutherland (2025). This detailed analytical framework, offering hypothetical explanations for why specific types of hallucination are strengthened post-finetuning. From the data perspective, Training Data Attribution (TDA) Bae et al. (2024) identifies influential training examples to explain model predictions. Orthogonal to these works, we empirically investigate the dynamic fluctuations in answer correctness across diverse reasoning tasks, and harness the learning dynamics as a source of answer diversity to widen the sampling space and performance.

C LIMITATIONS AND BROADER IMPACTS

Our investigation into the **Temporal Forgetting** phenomenon has primarily concentrated on mathematical reasoning tasks. We have not yet extended our analysis to other potentially relevant domains where similar patterns might emerge, such as automated theorem proving Xin et al. (2024), healthcare applications Lai et al. (2025), or code generation Wei et al. (2025). The experimental foundation of our work focuses on GRPO Shao et al. (2024b) and SFT frameworks. While we believe our findings can generalize to other training methodologies, including on-policy approaches like PPO Schulman et al. (2017), RLOO Huang & Ahmadian (2024), and DAPO Yu et al. (2025), as well as off-policy techniques such as DPO Rafailov et al. (2024), RAFT Dong et al. (2023), and Reinforce-Rej Xiong et al. (2025) that rely on rejection sampling. we have not empirically validated this hypothesis.

When implementing Temporal Sampling, we focus on round-robin allocation strategies for distributing the k sampling attempts across t checkpoints. Alternative distribution approaches represent a promising avenue that we reserve for subsequent research.

Broader Impacts. Through our research, we have uncovered the temporal forgetting phenomenon and developed temporal sampling as an effective method to enhance inference-time sampling performance in mathematical reasoning. We have not identified negative societal implications associated with this work.

812 D PROOF OF UNBIASED ESTIMATION

813
 814 We provide a formal proof that our proposed estimator for Pass@ $k|t$ is unbiased. The Pass@ $k|t$ metric measures
 815 the probability of obtaining at least one correct answer when samples are drawn from multiple checkpoints in a
 816 round-robin manner. The following proof establishes the statistical validity of our evaluation framework, ensuring
 817 that our empirical measurements accurately reflect the true performance of **Temporal Sampling** across different
 818 checkpoints.

819 **Theorem 1.** Denote $r_{i,j}$ as the Pass@1 rate for the j -th checkpoint on problem i , $C_{i,j}$ as the number of correct
 820 samples among N candidates for problem i from checkpoint j . Let

$$822 \quad P_i = 1 - \prod_{j=1}^t (1 - r_{i,j})^{k_j}$$

823
 824 denote the probability of obtaining at least one correct answer when k samples are drawn from t checkpoints for
 825 problem i , (i.e., Pass@ $k|t$), where k_j is determined by the balanced integer partition of k on t :

$$826 \quad k_j = \begin{cases} \lfloor k/t \rfloor + 1 & \text{if } j \leq (k \pmod t) \\ \lfloor k/t \rfloor & \text{if } j > (k \pmod t) \end{cases}$$

827 We have

$$828 \quad \hat{P}_i = 1 - \prod_{j=1}^t \left(\frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right)$$

829
 830 is an unbiased estimator of P_i , i.e., $\mathbb{E}[\hat{P}_i] = P_i$.

831 *Proof.* For a single checkpoint j on problem i , we consider the probability of obtaining no correct solutions when
 832 sampling k_j solutions without replacement from N total samples. Given that $C_{i,j}$ of these N samples are correct,
 833 this probability follows the hypergeometric distribution:

$$834 \quad P(X_{i,j} = 0) = \frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}}$$

835 For Pass@ $k|t$, we succeed if at least one sample across all checkpoints is correct. The probability of failure (no
 836 correct solutions from any checkpoint) is:

$$837 \quad P(\text{failure}) = \prod_{j=1}^t P(X_{i,j} = 0) = \prod_{j=1}^t \frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}}$$

838 Thus, our estimator for the success probability is:

$$839 \quad \hat{P}_i = 1 - \prod_{j=1}^t \frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}}$$

840 To prove this estimator is unbiased, we need to show that $\mathbb{E}[\hat{P}_i] = P_i$. We first prove that:

$$841 \quad \mathbb{E} \left[\frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right] = (1 - r_{i,j})^{k_j}$$

842 Since $C_{i,j}$ follows a binomial distribution $B(N, r_{i,j})$, we have:

$$843 \quad \mathbb{E} \left[\frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right] = \sum_{c=0}^N \frac{\binom{N-c}{k_j}}{\binom{N}{k_j}} \cdot \binom{N}{c} r_{i,j}^c (1 - r_{i,j})^{N-c} \quad (1)$$

844 We can simplify the coefficient:

$$845 \quad \frac{\binom{N-c}{k_j}}{\binom{N}{k_j}} \cdot \binom{N}{c} = \frac{(N-c)!}{k_j!(N-c-k_j)!} \cdot \frac{k_j!(N-k_j)!}{N!} \cdot \frac{N!}{c!(N-c)!} \quad (2)$$

$$846 \quad = \binom{N-k_j}{c} \quad (3)$$

870 Substituting this back:

$$\mathbb{E} \left[\frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right] = \sum_{c=0}^{N-k_j} \binom{N-k_j}{c} r_{i,j}^c (1-r_{i,j})^{N-c} \quad (4)$$

$$= (1-r_{i,j})^{k_j} \sum_{c=0}^{N-k_j} \binom{N-k_j}{c} r_{i,j}^c (1-r_{i,j})^{N-k_j-c} \quad (5)$$

878 The summation represents the binomial expansion of $(r_{i,j} + (1-r_{i,j}))^{N-k_j} = 1^{N-k_j} = 1$, yielding:

$$\mathbb{E} \left[\frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right] = (1-r_{i,j})^{k_j} \quad (6)$$

883 Since the samples from different checkpoints are independent, we have:

$$\mathbb{E} \left[\prod_{j=1}^t \frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right] = \prod_{j=1}^t \mathbb{E} \left[\frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right] = \prod_{j=1}^t (1-r_{i,j})^{k_j} \quad (7)$$

887 Therefore:

$$\mathbb{E}[\hat{P}_i] = 1 - \mathbb{E} \left[\prod_{j=1}^t \frac{\binom{N-C_{i,j}}{k_j}}{\binom{N}{k_j}} \right] = 1 - \prod_{j=1}^t (1-r_{i,j})^{k_j} = P_i \quad (8)$$

892 This proves that \hat{P}_i is an unbiased estimator for Pass@ $k|t$. \square

895 E EXPERIMENT SETUP

897 E.1 GRPO

899 We follow [Luo et al. \(2025\)](#) and use the following hyper-parameters detailed in Table 6 for Zero RL training. We
900 perform experiments on eight A100 GPUs. The model is trained using VERL [Sheng et al. \(2024\)](#).

903 Table 6: This table shows the hyper-parameters for zero RL training.

905 Hyper-parameter	906 Value
Learning Rate	1×10^{-6}
Number of Epochs	9
Number of Devices	8
Rollout Batch Size	128
PPO Mini Batch Size	64
Max Prompt Length	1024
Max Response Length	3072 (Qwen2.5-MATH-7B), 8192 (OTHERS)
KL Coefficient	0.001
Rollout Engine	VLLM (v0.8.2)
Optimizer	Adamw
Learning Rate Scheduler	cosine
Warmup Ratio	0.1

917 E.2 SUPERVISED FINE-TUNING

919 Our model SFT is conducted using LLaMA-Factory ([Zheng et al., 2024](#)), on a server with four NVIDIA A100-
920 SXM4-80GB GPUs. We follow [NovaSky \(2025\)](#) for the training parameters. Table 7 lists hyper-parameters for
921 full parameter supervised fine-tuning.

923 F MORE EXPERIMENT RESULTS

925 F.1 TEMPORAL SAMPLING FOR BEST-OF-N

927 Figure 9 demonstrates the effectiveness of Temporal Sampling when combined with Best-of-N (BoN) decoding
on the AIME2024, AMC, and AIME2025 benchmarks. Using Qwen2.5-Math-PRM-72B [Zhang et al. \(2025\)](#) as

Table 7: This table shows the hyper-parameters for full parameter supervised fine-tuning.

Hyper-parameter	Value
Learning Rate	1×10^{-5}
Number of Epochs	3
Number of Devices	4
Per-device Batch Size	1
Optimizer	Adamw
Learning Rate Scheduler	cosine
Max Sequence Length	16384

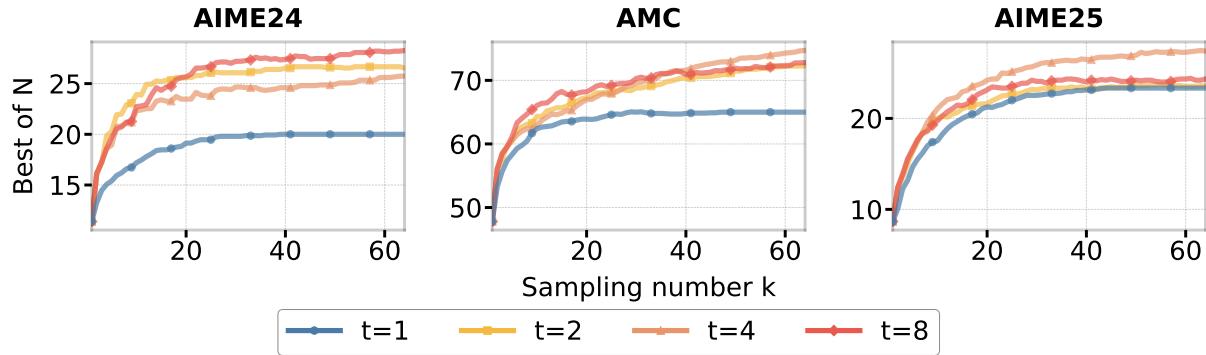


Figure 9: BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. Qwen2.5-Math-PRM-72B is used as the process reward model. We choose the answer with the highest reward as the final answer. The case $t = 1$ represents the baseline of standard BoN on the final checkpoint. Our proposed Temporal Sampling with $t = 8$ checkpoints outperforms the baseline by more than 7, 8, and 1 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

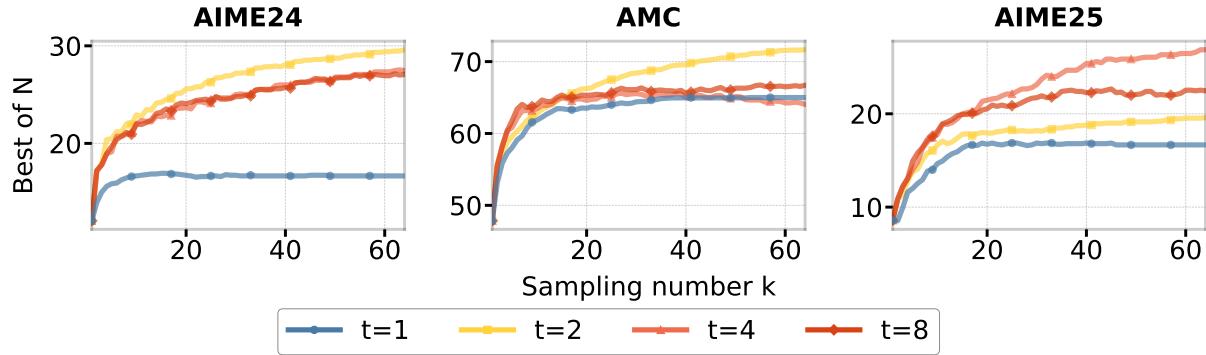


Figure 10: BoN (Best-of-N) decoding on the AIME2024, AMC, and AIME2025 benchmarks using Temporal Sampling. Qwen2.5-Math-PRM-7B is used as the process reward model. We choose the answer with the highest reward as the final answer. The case $t = 1$ represents the baseline of standard BoN on the final checkpoint. Our proposed Temporal Sampling with $t = 8$ checkpoints outperforms the baseline by more than 10, 2, and 5 percentage points on AIME2024, AMC, and AIME2025, respectively, when sampling 64 responses.

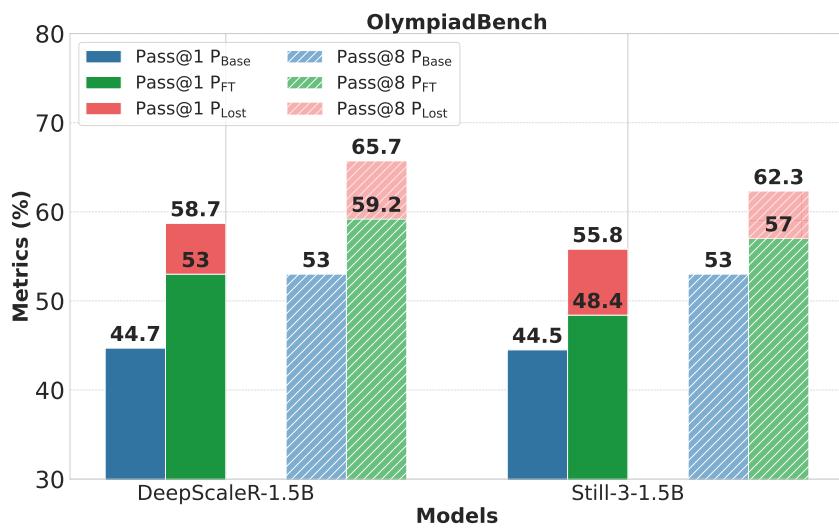
the process reward model, answers with the highest reward were selected as the final output. The results clearly show that Temporal Sampling with $t = 8$ checkpoints significantly outperforms the baseline ($t = 1$), achieving improvements of more than 7, 8, and 1 percentage points across the three benchmarks when sampling $k = 64$ responses. Figure 10 presents additional evidence for the effectiveness of Temporal Sampling with Best-of-N decoding when using the smaller Qwen2.5-Math-PRM-7B Zhang et al. (2025) as the process reward model. This highlights the value of leveraging multiple training checkpoints for enhancing reward-based selection methods.

F.2 MORE RESULTS OF TEMPORAL FORGETTING

Table 8 provides a comprehensive list of the SOTA models evaluated in Table 1 along with their corresponding base models.

986
987 Table 8: Full list of SOTA models evaluated in Table 1 and their corresponding base models.
988

Model	Based on	Training
DeepScaleR-1.5B	Distill-R1-1.5B	RL
Still-1.5B	Distill-R1-1.5B	RL
S1.1-1.5B	Qwen2.5-1.5B-Instruct	SFT
II-thought-1.5B-preview	Distill-R1-1.5B	RL
S1.1-3B	Qwen2.5-3B-Instruct	SFT
SmallThinker-3B	Qwen2.5-3B-Instruct	SFT
S1.1-7B	Qwen2.5-7B-Instruct	SFT
OpenR1-Qwen-7B	Qwen2.5-Math-7B-Instruct	SFT
OpenThinker-7B	Qwen2.5-7B-Instruct	SFT
s1-32B	Qwen2.5-32B-Instruct	SFT
Sky-T1-32B-Preview	Qwen2.5-32B-Instruct	SFT
Bespoke-Stratos-32B	Qwen2.5-32B-Instruct	SFT
OpenThinker-32B	Qwen2.5-32B-Instruct	SFT



1021 Figure 11: Performance of the base model ($P_{\text{Base}} \uparrow$), the fine-tuned model ($P_{\text{FT}} \uparrow$) and the Lost Score ($P_{\text{Lost}} \downarrow$)
1022 for Pass@1 sampling and Pass@8 sampling. Fine-tuned models like DeepscaleR-1.5B [Luo et al. \(2025\)](#) and Still-
1023 3-1.5B [Face \(2025\)](#) outperform the base model overall but also forget many questions the base model answered
1024 correctly.

1025
1026
1027
1028 Figure 11 illustrates the performance comparison between base models and fine-tuned models using both Pass@1
1029 and Pass@8 sampling on the OlympiadBench dataset. The figure shows that while fine-tuned models like
1030 DeepscaleR-1.5B and Still-3-1.5B achieve higher overall performance than their base models ($P_{\text{FT}} > P_{\text{Base}}$), they
1031 also exhibit the temporal forgetting phenomenon with substantial Lost Scores (P_{Lost}) for both Pass@1 sampling
1032 and Pass@8 sampling.

1033 F.3 MORE RESULTS OF FORGETTING DYNAMICS

1034
1035
1036
1037 Table 9 presents detailed performance metrics for different fine-tuned models evaluated specifically on AIME24
1038 and AMC benchmarks. The table shows the base model performance (P_{Base}), fine-tuned model performance (P_{FT}),
1039 Ever Correct Score (P_{ECS}), and Temporal Forgetting Score (P_{TFS}) across various models with both GRPO and
1040 SFT training methods. Notably, models exhibit significant temporal forgetting, with P_{TFS} values ranging from
1041 6.7% to 30%, which implies that many questions solved correctly at some point during training were ultimately
1042 answered incorrectly in the final checkpoint.

1043 Table 10 complements Table 2 by providing a more comprehensive view of base model (P_{Base}) and fine-tuned
1044 model (P_{FT}) performance across all five mathematical benchmark.

1044
1045 Table 9: Performance of fine-tuned models ($P_{FT} \uparrow$), the Ever Correct Score ($P_{ECS} \uparrow$), and the Temporal For-
1046 getting Score ($P_{TFS} \downarrow$) of different fine-tuned models evaluated on AIME24 and AMC. We observed both high
1047 P_{ECS} and P_{TFS} in spite of the improving overall performance, which implies a high percentage of questions
1048 (from 6.7% to 30%) are answered correctly at some checkpoint during training but are ultimately incorrect in the
1049 final checkpoint.

Model	AMC				AIME24			
	P_{Base}	P_{FT}	P_{ECS}	P_{TFS}	P_{Base}	P_{FT}	P_{ECS}	P_{TFS}
Qwen2.5-7B (GRPO)	32.5	47.5	77.5	30.0	6.7	6.7	23.4	16.7
Qwen2.5-7B (SFT)	32.5	52.5	75.0	22.5	6.7	10.0	20.0	10.0
Qwen2.5-1.5B (GRPO)	0.0	30.0	45.0	15.0	0.0	3.3	10.0	6.7
Qwen2.5-1.5B (SFT)	0.0	15.0	35.0	20.0	0.0	0.0	6.7	6.7
Qwen2.5-Math-7B (GRPO)	32.5	72.5	82.5	10.0	13.3	16.7	40.0	23.3
Qwen2.5-Math-7B (SFT)	32.5	50.0	75.0	25.0	13.3	20.0	40.0	20.0

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060 Table 10: Detailed performance score of base models (P_{Base}) and fine-tuned models (P_{FT}) across five mathe-
1061 matical benchmarks, served as complementary of Table 2.

Model	Olympiad		MATH-500		GPQA		AMC		AIME	
	P_{Base}	P_{FT}								
Qwen2.5-7B (GRPO)	22.1	39.7	53.2	73.8	29.8	33.8	32.5	47.5	6.7	6.7
Qwen2.5-7B (SFT)	22.1	40.1	53.2	69.8	29.8	25.3	32.5	52.5	6.7	10.0
Qwen2.5-1.5B (GRPO)	0.6	18.8	0.6	55.6	3.0	26.8	0.0	30.0	0.0	3.3
Qwen2.5-1.5B (SFT)	0.6	11.0	0.6	36.2	3.0	13.1	0.0	15.0	0.0	0.0
Qwen2.5-Math-7B (GRPO)	19.3	41.0	60.2	79.8	30.3	32.8	32.5	72.5	13.3	16.7
Qwen2.5-Math-7B (SFT)	19.3	43.9	60.2	76.4	30.3	30.8	32.5	50.0	13.3	20.0

1071 F.4 ABLATION ON CHECKPOINT SELECTION OF TEMPORAL SAMPLING

1072 We find that later checkpoints are more stable near convergence thus we choose the recent checkpoints for temporal
1073 sampling. We compared two different ordering strategies:

1074 Reverse (most recent first): ckpts 8, 7, 6, ..., 1

1075 Forward (least recent first): ckpts 8, 1, 2, ..., 7

1076 We observed that the reverse order consistently outperforms forward across most benchmarks in the Table 11.

1077
1078
1079
1080
1081 Table 11: Ablation on Checkpoint Selection of Temporal Sampling

Task	Order	Pass@k				Average
		pass@8	pass@16	pass@32	pass@64	
AIME24	Reverse	26.1	30.8	35.1	38.1	32.53
	Forward	25.5	29.4	32.6	34.8	30.58
AIME25	Reverse	24.1	29.6	34.2	37.4	31.33
	Forward	22.1	27.7	32.9	37.0	29.93
AMC	Reverse	77.6	83.7	88.3	90.9	85.13
	Forward	77.8	84.0	88.9	91.8	85.63

1093 F.5 ABLATION ON NON-QWEN-BASED MODELS

1094 We trained an RL model using a non-Qwen-based model, DeepSeek-Math-7B, and applied Temporal Sampling.
1095 Results are shown in Table 12. The results confirm that Temporal Sampling provides consistent gains on non-
1096 Qwen models.

1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125

1126
 1127 Table 12: Performance of Temporal Sampling on DeepSeek-Math-7B model after RL. We show that Temporal
 1128 Sampling provides consistent gains on this model.

1129 1130 1131 1132 1133 1134 1135 1136	1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159	1150 1151 1152 1153 1154 1155 1156 1157 1158 1159	Method	Task	Pass@k						
					@1	@2	@4	@8	@16	@32	@64
Final Checkpoint	AIME25	0.4	0.8	1.6	2.8	4.6	6.3	6.7			
Temporal Sampling (t=8)	AIME25	0.4	1.0	1.7	3.3	5.9	9.9	14.8			
Final Checkpoint	AIME24	1.1	2.2	4.0	6.6	9.9	13.3	16.7			
Temporal Sampling (t=8)	AIME24	1.1	2.1	3.9	6.7	10.0	13.7	18.6			
Final Checkpoint	AMC	17.1	25.4	34.9	45.3	55.7	63.9	70.0			
Temporal Sampling (t=8)	AMC	17.1	26.3	36.9	48.6	59.9	70.4	79.8			